1
|
Jones CP, Ferré-D’Amaré AR. Structural switching dynamically controls the doubly pseudoknotted Rous sarcoma virus-programmed ribosomal frameshifting element. Proc Natl Acad Sci U S A 2025; 122:e2418418122. [PMID: 40172966 PMCID: PMC12002268 DOI: 10.1073/pnas.2418418122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Accepted: 02/26/2025] [Indexed: 04/04/2025] Open
Abstract
A hallmark of retrovirus replication is the translation of two different polyproteins from one RNA through programmed -1 frameshifting. This is a mechanism in which the actively translating ribosome is induced to slip in the 5' direction at a defined codon and then continues translating in the new reading frame. Programmed frameshifting controls the stoichiometry of viral proteins and is therefore under stringent evolutionary selection. Forty years ago, the first frameshifting stimulatory element was discovered in the Rous sarcoma virus. The ~120 nt RNA segment was predicted to contain a pseudoknot, but its 3D structure has remained elusive. Now, we have determined cryoEM and X-ray crystallographic structures of this classic retroviral element, finding that it adopts a butterfly-like double-pseudoknot fold. One "wing" contains a dynamic pyrimidine-rich helix, observed crystallographically in two conformations and in a third conformation via cryoEM. The other wing encompasses the predicted pseudoknot, which interacts with a second unexpected pseudoknot through a toggle residue, A2546. This key purine switches conformations between structural states and tunes the stability of interacting residues in the two wings. We find that its mutation can modulate frameshifting by as much as 50-fold, likely by altering the relative abundance of different structural states in the conformational ensemble of the RNA. Taken together, our structure-function analyses reveal how a dynamic double pseudoknot junction stimulates frameshifting by taking advantage of conformational heterogeneity, supporting a multistate model in which high Shannon entropy enhances frameshifting efficiency.
Collapse
Affiliation(s)
- Christopher P. Jones
- Laboratory of Nucleic Acids, Biochemistry and Biophysics Center, National Heart, Lung and Blood Institute, Bethesda, MD20892-8012
| | - Adrian R. Ferré-D’Amaré
- Laboratory of Nucleic Acids, Biochemistry and Biophysics Center, National Heart, Lung and Blood Institute, Bethesda, MD20892-8012
| |
Collapse
|
2
|
Loughran G, Andreev DE, Terenin IM, Namy O, Mikl M, Yordanova MM, McManus CJ, Firth AE, Atkins JF, Fraser CS, Ignatova Z, Iwasaki S, Kufel J, Larsson O, Leidel SA, Mankin AS, Mariotti M, Tanenbaum ME, Topisirovic I, Vázquez-Laslop N, Viero G, Caliskan N, Chen Y, Clark PL, Dinman JD, Farabaugh PJ, Gilbert WV, Ivanov P, Kieft JS, Mühlemann O, Sachs MS, Shatsky IN, Sonenberg N, Steckelberg AL, Willis AE, Woodside MT, Valasek LS, Dmitriev SE, Baranov PV. Guidelines for minimal reporting requirements, design and interpretation of experiments involving the use of eukaryotic dual gene expression reporters (MINDR). Nat Struct Mol Biol 2025; 32:418-430. [PMID: 40033152 DOI: 10.1038/s41594-025-01492-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Accepted: 01/20/2025] [Indexed: 03/05/2025]
Abstract
Dual reporters encoding two distinct proteins within the same mRNA have had a crucial role in identifying and characterizing unconventional mechanisms of eukaryotic translation. These mechanisms include initiation via internal ribosomal entry sites (IRESs), ribosomal frameshifting, stop codon readthrough and reinitiation. This design enables the expression of one reporter to be influenced by the specific mechanism under investigation, while the other reporter serves as an internal control. However, challenges arise when intervening test sequences are placed between these two reporters. Such sequences can inadvertently impact the expression or function of either reporter, independent of translation-related changes, potentially biasing the results. These effects may occur due to cryptic regulatory elements inducing or affecting transcription initiation, splicing, polyadenylation and antisense transcription as well as unpredictable effects of the translated test sequences on the stability and activity of the reporters. Unfortunately, these unintended effects may lead to misinterpretation of data and the publication of incorrect conclusions in the scientific literature. To address this issue and to assist the scientific community in accurately interpreting dual-reporter experiments, we have developed comprehensive guidelines. These guidelines cover experimental design, interpretation and the minimal requirements for reporting results. They are designed to aid researchers conducting these experiments as well as reviewers, editors and other investigators who seek to evaluate published data.
Collapse
Affiliation(s)
- Gary Loughran
- School of Biochemistry and Cell Biology, University College Cork, Cork, Ireland.
- EIRNA Bio, Bioinnovation Hub, Cork, Ireland.
| | - Dmitry E Andreev
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, Russia
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, RAS, Moscow, Russia
| | - Ilya M Terenin
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, Russia
| | - Olivier Namy
- Institute for Integrative Biology of the Cell, CEA, Université Paris-Saclay, CNRS, Gif-sur-Yvette, France
| | - Martin Mikl
- Department of Human Biology, University of Haifa, Haifa, Israel
| | - Martina M Yordanova
- School of Biochemistry and Cell Biology, University College Cork, Cork, Ireland
| | - C Joel McManus
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, PA, USA
| | - Andrew E Firth
- Division of Virology, Department of Pathology, Addenbrookes Hospital, University of Cambridge, Cambridge, UK
| | - John F Atkins
- School of Biochemistry and Cell Biology, University College Cork, Cork, Ireland
| | - Christopher S Fraser
- Department of Molecular and Cellular Biology, College of Biological Sciences, University of California, Davis, Davis, CA, USA
| | - Zoya Ignatova
- Institute of Biochemistry and Molecular Biology, University of Hamburg, Hamburg, Germany
| | - Shintaro Iwasaki
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, the University of Tokyo, Kashiwa, Japan
- RNA Systems Biochemistry Laboratory, RIKEN Cluster for Pioneering Research, Wako, Japan
| | - Joanna Kufel
- Institute of Genetics and Biotechnology, Faculty of Biology, University of Warsaw, Warsaw, Poland
| | - Ola Larsson
- Department of Oncology-Pathology, Science for Life Laboratory, Karolinska Institute, Stockholm, Sweden
| | - Sebastian A Leidel
- Department of Chemistry, Biochemistry and Pharmaceutical Sciences, University of Bern, Bern, Switzerland
| | - Alexander S Mankin
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Illinois Chicago, Chicago, IL, USA
- Center for Biomolecular Sciences, University of Illinois Chicago, Chicago, IL, USA
| | - Marco Mariotti
- Departament de Genètica, Microbiologia i Estadística, Facultat de Biologia, Universitat de Barcelona, Barcelona, Spain
| | - Marvin E Tanenbaum
- Oncode Institute, Hubrecht Institute-KNAW and University Medical Center Utrecht, Utrecht, the Netherlands
- Department of Bionanoscience, Delft University of Technology, Delft, the Netherlands
| | - Ivan Topisirovic
- Lady Davis Institute, McGill University, Montréal, Quebec, Canada
- Gerald Bronfman Department of Oncology, McGill University, Montréal, Quebec, Canada
- Department of Biochemistry, McGill University, Montréal, Quebec, Canada
- Division of Experimental Medicine, McGill University, Montréal, Quebec, Canada
| | - Nora Vázquez-Laslop
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Illinois Chicago, Chicago, IL, USA
| | - Gabriela Viero
- Institute of Biophysics, National Research Council (CNR) Unit, Povo, Italy
| | - Neva Caliskan
- Helmholtz Institute for RNA-based Infection Research, Helmholtz Centre for Infection Research (HZI), Würzburg, Germany
- Faculty of Biology and Preclinical Medicine, University of Regensburg, Regensburg, Germany
| | - Yiwen Chen
- Department of Bioinformatics and Computational Biology, Division of Quantitative Sciences, the University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Patricia L Clark
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN, USA
| | - Jonathan D Dinman
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD, USA
- Institute for Bioscience & Biotechnology Research, Rockville, MD, USA
| | - Philip J Farabaugh
- Department of Biological Sciences, University of Maryland Baltimore County, Baltimore, MD, USA
| | - Wendy V Gilbert
- Department of Molecular Biophysics and Biochemistry, Yale School of Medicine, New Haven, CT, USA
| | - Pavel Ivanov
- Division of Rheumatology, Inflammation and Immunity, Brigham and Women's Hospital, Boston, MA, USA
- Department of Medicine, Harvard Medical School, Boston, MA, USA
| | - Jeffrey S Kieft
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
- RNA Bioscience Initiative, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
- New York Structural Biology Center, New York, NY, USA
| | - Oliver Mühlemann
- Department of Chemistry, Biochemistry and Pharmaceutical Sciences, University of Bern, Bern, Switzerland
| | - Matthew S Sachs
- Department of Biology, Texas A&M University, College Station, TX, USA
| | - Ivan N Shatsky
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, Russia
| | - Nahum Sonenberg
- Department of Biochemistry, McGill University, Montréal, Quebec, Canada
| | - Anna-Lena Steckelberg
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY, USA
| | - Anne E Willis
- MRC Toxicology Unit, University of Cambridge, Cambridge, UK
| | - Michael T Woodside
- Department of Physics, Li Ka Shing Institute of Virology and Centre for Prions and Protein Folding Diseases, University of Alberta, Edmonton, Alberta, Canada
| | - Leos Shivaya Valasek
- Laboratory of Regulation of Gene Expression, Institute of Microbiology of the Czech Academy of Sciences, Prague, Czech Republic.
| | - Sergey E Dmitriev
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, Russia.
| | - Pavel V Baranov
- School of Biochemistry and Cell Biology, University College Cork, Cork, Ireland.
| |
Collapse
|
3
|
Aleksashin NA, Langeberg CJ, Shelke RR, Yin T, Cate JD. RNA elements required for the high efficiency of West Nile virus-induced ribosomal frameshifting. Nucleic Acids Res 2025; 53:gkae1248. [PMID: 39698810 PMCID: PMC11797035 DOI: 10.1093/nar/gkae1248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Revised: 11/29/2024] [Accepted: 12/04/2024] [Indexed: 12/20/2024] Open
Abstract
West Nile virus (WNV) requires programmed -1 ribosomal frameshifting for translation of the viral genome. The efficiency of WNV frameshifting is among the highest known. However, it remains unclear why WNV exhibits such a high frameshifting efficiency. Here, we employed dual-luciferase reporter assays in multiple human cell lines to probe the RNA requirements for highly efficient frameshifting by the WNV genome. We find that both the sequence and structure of a predicted RNA pseudoknot downstream of the slippery sequence-the codons in the genome on which frameshifting occurs-are required for efficient frameshifting. We also show that multiple proposed RNA secondary structures downstream of the slippery sequence are inconsistent with efficient frameshifting. We also find that the base of the pseudoknot structure likely is unfolded prior to frameshifting. Finally, we show that many mutations in the WNV slippery sequence allow efficient frameshifting, but often result in aberrant shifting into other reading frames. Mutations in the slippery sequence also support a model in which frameshifting occurs concurrent with or after ribosome translocation. These results provide a comprehensive analysis of the molecular determinants of WNV-programmed ribosomal frameshifting and provide a foundation for the development of new antiviral strategies targeting viral gene expression.
Collapse
Affiliation(s)
- Nikolay A Aleksashin
- Innovative Genomics Institute, University of California, Berkeley, Berkeley, CA 94720, USA
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Conner J Langeberg
- Innovative Genomics Institute, University of California, Berkeley, Berkeley, CA 94720, USA
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Rohan R Shelke
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Tianhao Yin
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Jamie H D Cate
- Innovative Genomics Institute, University of California, Berkeley, Berkeley, CA 94720, USA
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA
- Department of Chemistry, University of California, Berkeley, Berkeley, CA 94720, USA
| |
Collapse
|
4
|
Loughran G, De Pace R, Ding N, Zhang J, Jungreis I, Carancini G, Mudge JM, Wang J, Kellis M, Atkins JF, Baranov PV, Firth AE, Li X, Bonifacino JS, Khan YA. Programmed ribosomal frameshifting during PLEKHM2 mRNA decoding generates a constitutively active proteoform that supports myocardial function. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2024.08.30.610563. [PMID: 39372779 PMCID: PMC11451614 DOI: 10.1101/2024.08.30.610563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 10/08/2024]
Abstract
Programmed ribosomal frameshifting is a process where a proportion of ribosomes change their reading frame on an mRNA1, rephasing the ribosome relative to the mRNA. While frameshifting is commonly employed by viruses2, very few phylogenetically conserved examples are known in nuclear encoded genes and some of the evidence is controversial3,4. Here we report a +1 frameshifting event during decoding of the human gene PLEKHM2 5. This frameshifting occurs at the sequence UCC_UUU_CGG, which is conserved in vertebrates and is similar to an influenza virus sequence that frameshifts with similar efficiency6,7. The new C-terminal domain generated by this frameshift forms an α-helix, which relieves PLEKHM2 from autoinhibition and allows it to move to the tips of cells via association with kinesin-1 without requiring activation by ARL8. Reintroducing both the canonically-translated and frameshifted protein are necessary to restore normal contractile function of PLEKHM2-knockout cardiomyocytes, demonstrating the necessity of frameshifting for normal cardiac activity.
Collapse
Affiliation(s)
- Gary Loughran
- School of Biochemistry and Cell Biology, University College Cork, Cork, Ireland
| | - Raffaella De Pace
- Neurosciences and Cellular and Structural Biology Division, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA
| | - Ningyu Ding
- Department of Cardiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, Republic of China and Henan Key Laboratory of Hereditary Cardiovascular Diseases, Zhengzhou 450052, China
| | - Jianchao Zhang
- Department of Cardiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, Republic of China and Henan Key Laboratory of Hereditary Cardiovascular Diseases, Zhengzhou 450052, China
| | - Irwin Jungreis
- MIT Computer Science and Artificial Intelligence Laboratory, Cambridge, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | | | - Jonathan M. Mudge
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton CB10 1SD, Cambridge, UK
| | - Ji Wang
- Department of Pathology, University of Cambridge, Cambridge, UK
- Institute of Precision Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, Republic of China
| | - Manolis Kellis
- MIT Computer Science and Artificial Intelligence Laboratory, Cambridge, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - John F. Atkins
- School of Biochemistry and Cell Biology, University College Cork, Cork, Ireland
| | - Pavel V. Baranov
- School of Biochemistry and Cell Biology, University College Cork, Cork, Ireland
| | - Andrew E. Firth
- Department of Pathology, University of Cambridge, Cambridge, UK
| | - Xiaowei Li
- Department of Cardiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, Republic of China and Henan Key Laboratory of Hereditary Cardiovascular Diseases, Zhengzhou 450052, China
| | - Juan S. Bonifacino
- Neurosciences and Cellular and Structural Biology Division, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA
| | - Yousuf A. Khan
- Department of Molecular and Cellular Physiology, Stanford University, Stanford, CA, USA
- Department of Neurology and Neurological Sciences, Stanford University, Stanford, CA, USA
- Department of Structural Biology, Stanford University, Stanford, CA, USA
- Department of Photon Science, Stanford University, Stanford, CA, USA
| |
Collapse
|
5
|
Aleksashin NA, Langeberg CJ, Shelke RR, Yin T, Cate JHD. RNA elements required for the high efficiency of West Nile Virus-induced ribosomal frameshifting. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.16.618579. [PMID: 39464146 PMCID: PMC11507841 DOI: 10.1101/2024.10.16.618579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/29/2024]
Abstract
West Nile Virus (WNV), a member of the Flaviviridae family, requires programmed -1 ribosomal frameshifting (PRF) for translation of the viral genome. The efficiency of WNV frameshifting is among the highest observed to date. Despite structural similarities to frameshifting sites in other viruses, it remains unclear why WNV exhibits such a high frameshifting efficiency. Here we employed dual-luciferase reporter assays in multiple human cell lines to probe the RNA requirements for highly efficient frameshifting by the WNV genome. We find that both the sequence and structure of a predicted RNA pseudoknot downstream of the slippery sequence-the codons in the genome on which frameshifting occurs-are required for efficient frameshifting. We also show that multiple proposed RNA secondary structures downstream of the slippery sequence are inconsistent with efficient frameshifting. We mapped the most favorable distance between the slippery site and the pseudoknot essential for optimal frameshifting, and found the base of the pseudoknot structure likely is unfolded prior to frameshifting. Finally, we find that many mutations in the WNV slippery sequence allow efficient frameshifting, but often result in aberrant shifting into other reading frames. Mutations in the slippery sequence also support a model in which frameshifting occurs concurrent with or after translocation of the mRNA and tRNA on the ribosome. These results provide a comprehensive analysis of the molecular determinants of WNV-programmed ribosomal frameshifting and provide a foundation for the development of new antiviral strategies targeting viral gene expression.
Collapse
Affiliation(s)
- Nikolay A. Aleksashin
- Innovative Genomics Institute, University of California-Berkeley, Berkeley, CA, USA
- Department of Molecular & Cell Biology, University of California-Berkeley, Berkeley, CA, USA
| | - Conner J. Langeberg
- Innovative Genomics Institute, University of California-Berkeley, Berkeley, CA, USA
- Department of Molecular & Cell Biology, University of California-Berkeley, Berkeley, CA, USA
| | - Rohan R. Shelke
- Department of Molecular & Cell Biology, University of California-Berkeley, Berkeley, CA, USA
| | - Tianhao Yin
- Department of Molecular & Cell Biology, University of California-Berkeley, Berkeley, CA, USA
| | - Jamie H. D. Cate
- Innovative Genomics Institute, University of California-Berkeley, Berkeley, CA, USA
- Department of Molecular & Cell Biology, University of California-Berkeley, Berkeley, CA, USA
- Department of Chemistry, University of California-Berkeley, Berkeley, CA, USA
| |
Collapse
|
6
|
Carmody PJ, Roushar FJ, Tedman A, Wang W, Herwig M, Kim M, McDonald EF, Noguera K, Wong-Roushar J, Poirier JL, Zelt NB, Pockrass BT, McKee AG, Kuntz CP, Raju SV, Plate L, Penn WD, Schlebach JP. Ribosomal frameshifting selectively modulates the assembly, function, and pharmacological rescue of a misfolded CFTR variant. Proc Natl Acad Sci U S A 2024; 121:e2414768121. [PMID: 39388263 PMCID: PMC11494300 DOI: 10.1073/pnas.2414768121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Accepted: 08/19/2024] [Indexed: 10/12/2024] Open
Abstract
The cotranslational misfolding of the cystic fibrosis transmembrane conductance regulator chloride channel (CFTR) plays a central role in the molecular basis of CF. The misfolding of the most common CF variant (ΔF508) remodels both the translational regulation and quality control of CFTR. Nevertheless, it is unclear how the misassembly of the nascent polypeptide may directly influence the activity of the translation machinery. In this work, we identify a structural motif within the CFTR transcript that stimulates efficient -1 ribosomal frameshifting and triggers the premature termination of translation. Though this motif does not appear to impact the interactome of wild-type CFTR, silent mutations that disrupt this RNA structure alter the association of nascent ΔF508 CFTR with numerous translation and quality control proteins. Moreover, disrupting this RNA structure enhances the functional gating of the ΔF508 CFTR channel at the plasma membrane and its pharmacological rescue by the CFTR modulators contained in the CF drug Trikafta. The effects of the RNA structure on ΔF508 CFTR appear to be attenuated in the absence of the ER membrane protein complex, which was previously found to modulate ribosome collisions during "preemptive quality control" of a misfolded CFTR homolog. Together, our results reveal that ribosomal frameshifting selectively modulates the assembly, function, and pharmacological rescue of a misfolded CFTR variant. These findings suggest that interactions between the nascent chain, quality control machinery, and ribosome may dynamically modulate ribosomal frameshifting in order to tune the processivity of translation in response to cotranslational misfolding.
Collapse
Affiliation(s)
- Patrick J. Carmody
- Department of Chemistry, Indiana University Bloomington, Bloomington, IN47401
| | - Francis J. Roushar
- Department of Chemistry, Indiana University Bloomington, Bloomington, IN47401
| | - Austin Tedman
- The James Tarpo Junior and Margaret Tarpo Department of Chemistry, Purdue University, West Lafayette, IN47907
| | - Wei Wang
- Department of Medicine, University of Alabama at Birmingham, Birmingham, AL35233
| | - Madeline Herwig
- Department of Chemistry, Vanderbilt University, Nashville, TN37240
| | - Minsoo Kim
- Department of Chemistry, Vanderbilt University, Nashville, TN37240
- Program in Chemical and Physical Biology, Vanderbilt University, Nashville, TN37240
| | - Eli F. McDonald
- Department of Chemistry, Vanderbilt University, Nashville, TN37240
| | - Karen Noguera
- Department of Chemistry, Indiana University Bloomington, Bloomington, IN47401
| | | | - Jon-Luc Poirier
- Department of Chemistry, Indiana University Bloomington, Bloomington, IN47401
| | - Nathan B. Zelt
- Department of Chemistry, Indiana University Bloomington, Bloomington, IN47401
| | - Ben T. Pockrass
- Department of Chemistry, Indiana University Bloomington, Bloomington, IN47401
| | - Andrew G. McKee
- Department of Chemistry, Indiana University Bloomington, Bloomington, IN47401
| | - Charles P. Kuntz
- The James Tarpo Junior and Margaret Tarpo Department of Chemistry, Purdue University, West Lafayette, IN47907
| | - S. Vamsee Raju
- Department of Medicine, University of Alabama at Birmingham, Birmingham, AL35233
| | - Lars Plate
- Department of Chemistry, Vanderbilt University, Nashville, TN37240
- Department of Biological Sciences, Vanderbilt University, Nashville, TN37240
| | - Wesley D. Penn
- Department of Chemistry, Indiana University Bloomington, Bloomington, IN47401
| | - Jonathan P. Schlebach
- The James Tarpo Junior and Margaret Tarpo Department of Chemistry, Purdue University, West Lafayette, IN47907
| |
Collapse
|
7
|
Cagliani R, Forni D, Mozzi A, Fuchs R, Tussia-Cohen D, Arrigoni F, Pozzoli U, De Gioia L, Hagai T, Sironi M. Evolution of Virus-like Features and Intrinsically Disordered Regions in Retrotransposon-derived Mammalian Genes. Mol Biol Evol 2024; 41:msae154. [PMID: 39101471 PMCID: PMC11299033 DOI: 10.1093/molbev/msae154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 07/16/2024] [Accepted: 07/19/2024] [Indexed: 08/06/2024] Open
Abstract
Several mammalian genes have originated from the domestication of retrotransposons, selfish mobile elements related to retroviruses. Some of the proteins encoded by these genes have maintained virus-like features; including self-processing, capsid structure formation, and the generation of different isoforms through -1 programmed ribosomal frameshifting. Using quantitative approaches in molecular evolution and biophysical analyses, we studied 28 retrotransposon-derived genes, with a focus on the evolution of virus-like features. By analyzing the rate of synonymous substitutions, we show that the -1 programmed ribosomal frameshifting mechanism in three of these genes (PEG10, PNMA3, and PNMA5) is conserved across mammals and originates alternative proteins. These genes were targets of positive selection in primates, and one of the positively selected sites affects a B-cell epitope on the spike domain of the PNMA5 capsid, a finding reminiscent of observations in infectious viruses. More generally, we found that retrotransposon-derived proteins vary in their intrinsically disordered region content and this is directly associated with their evolutionary rates. Most positively selected sites in these proteins are located in intrinsically disordered regions and some of them impact protein posttranslational modifications, such as autocleavage and phosphorylation. Detailed analyses of the biophysical properties of intrinsically disordered regions showed that positive selection preferentially targeted regions with lower conformational entropy. Furthermore, positive selection introduces variation in binary sequence patterns across orthologues, as well as in chain compaction. Our results shed light on the evolutionary trajectories of a unique class of mammalian genes and suggest a novel approach to study how intrinsically disordered region biophysical characteristics are affected by evolution.
Collapse
Affiliation(s)
- Rachele Cagliani
- Scientific Institute IRCCS E. MEDEA, Computational Biology Unit, Bosisio Parini 23842, Italy
| | - Diego Forni
- Scientific Institute IRCCS E. MEDEA, Computational Biology Unit, Bosisio Parini 23842, Italy
| | - Alessandra Mozzi
- Scientific Institute IRCCS E. MEDEA, Computational Biology Unit, Bosisio Parini 23842, Italy
| | - Rotem Fuchs
- Shmunis School of Biomedicine and Cancer Research, George S Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv 69978, Israel
| | - Dafna Tussia-Cohen
- Shmunis School of Biomedicine and Cancer Research, George S Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv 69978, Israel
| | - Federica Arrigoni
- Department of Biotechnology and Biosciences, University of Milan-Bicocca, Milan 20126, Italy
| | - Uberto Pozzoli
- Scientific Institute IRCCS E. MEDEA, Computational Biology Unit, Bosisio Parini 23842, Italy
| | - Luca De Gioia
- Department of Biotechnology and Biosciences, University of Milan-Bicocca, Milan 20126, Italy
| | - Tzachi Hagai
- Shmunis School of Biomedicine and Cancer Research, George S Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv 69978, Israel
| | - Manuela Sironi
- Scientific Institute IRCCS E. MEDEA, Computational Biology Unit, Bosisio Parini 23842, Italy
| |
Collapse
|
8
|
Carmody P, Roushar FJ, Tedman A, Wang W, Herwig M, Kim M, McDonald EF, Noguera K, Wong-Roushar J, Poirier JL, Zelt NB, Pockrass BT, McKee AG, Kuntz CP, Raju SV, Plate L, Penn WD, Schlebach JP. Ribosomal Frameshifting Selectively Modulates the Assembly, Function, and Pharmacological Rescue of a Misfolded CFTR Variant. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.05.02.539166. [PMID: 39091758 PMCID: PMC11290997 DOI: 10.1101/2023.05.02.539166] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/04/2024]
Abstract
The cotranslational misfolding of the cystic fibrosis transmembrane conductance regulator chloride channel (CFTR) plays a central role in the molecular basis of cystic fibrosis (CF). The misfolding of the most common CF variant (ΔF508) remodels both the translational regulation and quality control of CFTR. Nevertheless, it is unclear how the misassembly of the nascent polypeptide may directly influence the activity of the translation machinery. In this work, we identify a structural motif within the CFTR transcript that stimulates efficient -1 ribosomal frameshifting and triggers the premature termination of translation. Though this motif does not appear to impact the interactome of wild-type CFTR, silent mutations that disrupt this RNA structure alter the association of nascent ΔF508 CFTR with numerous translation and quality control proteins. Moreover, disrupting this RNA structure enhances the functional gating of the ΔF508 CFTR channel at the plasma membrane and its pharmacological rescue by the CFTR modulators contained in the CF drug Trikafta. The effects of the RNA structure on ΔF508 CFTR appear to be attenuated in the absence of the ER membrane protein complex (EMC), which was previously found to modulate ribosome collisions during "preemptive quality control" of a misfolded CFTR homolog. Together, our results reveal that ribosomal frameshifting selectively modulates the assembly, function, and pharmacological rescue of a misfolded CFTR variant. These findings suggest interactions between the nascent chain, quality control machinery, and ribosome may dynamically modulate ribosomal frameshifting in order to tune the processivity of translation in response to cotranslational misfolding.
Collapse
Affiliation(s)
- Patrick Carmody
- Department of Chemistry, Indiana University Bloomington, Bloomington, IN, USA 47401
| | - Francis J Roushar
- Department of Chemistry, Indiana University Bloomington, Bloomington, IN, USA 47401
| | - Austin Tedman
- The James Tarpo Jr. and Margaret Tarpo Department of Chemistry, Purdue University, West Lafayette, IN, USA 47907
| | - Wei Wang
- Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA 35233
| | - Madeline Herwig
- Department of Chemistry, Vanderbilt University, Nashville, TN, USA 37240
| | - Minsoo Kim
- Department of Chemistry, Vanderbilt University, Nashville, TN, USA 37240
- Program in Chemical and Physical Biology, Vanderbilt University, Nashville, TN, USA 37240
| | - Eli F McDonald
- Department of Chemistry, Vanderbilt University, Nashville, TN, USA 37240
| | - Karen Noguera
- Department of Chemistry, Indiana University Bloomington, Bloomington, IN, USA 47401
| | | | - Jon-Luc Poirier
- Department of Chemistry, Indiana University Bloomington, Bloomington, IN, USA 47401
| | - Nathan B Zelt
- Department of Chemistry, Indiana University Bloomington, Bloomington, IN, USA 47401
| | - Ben T Pockrass
- Department of Chemistry, Indiana University Bloomington, Bloomington, IN, USA 47401
| | - Andrew G McKee
- Department of Chemistry, Indiana University Bloomington, Bloomington, IN, USA 47401
| | - Charles P Kuntz
- The James Tarpo Jr. and Margaret Tarpo Department of Chemistry, Purdue University, West Lafayette, IN, USA 47907
| | - S Vamsee Raju
- Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA 35233
| | - Lars Plate
- Department of Chemistry, Vanderbilt University, Nashville, TN, USA 37240
- Department of Biological Sciences, Vanderbilt University, Nashville, TN, USA 37240
| | - Wesley D Penn
- Department of Chemistry, Indiana University Bloomington, Bloomington, IN, USA 47401
| | - Jonathan P Schlebach
- The James Tarpo Jr. and Margaret Tarpo Department of Chemistry, Purdue University, West Lafayette, IN, USA 47907
| |
Collapse
|
9
|
Newman T, Chang HFK, Jabbari H. DinoKnot: Duplex Interaction of Nucleic Acids With PseudoKnots. IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS 2024; 21:348-359. [PMID: 38345958 DOI: 10.1109/tcbb.2024.3362308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2024]
Abstract
Interaction of nucleic acid molecules is essential for their functional roles in the cell and their applications in biotechnology. While simple duplex interactions have been studied before, the problem of efficiently predicting the minimum free energy structure of more complex interactions with possibly pseudoknotted structures remains a challenge. In this work, we introduce a novel and efficient algorithm for prediction of Duplex Interaction of Nucleic acids with pseudoKnots, DinoKnot follows the hierarchical folding hypothesis to predict the secondary structure of two interacting nucleic acid strands (both homo- and hetero-dimers). DinoKnot utilizes the structure of molecules before interaction as a guide to find their duplex structure allowing for possible base pair competitions. To showcase DinoKnots's capabilities we evaluated its predicted structures against (1) experimental results for SARS-CoV-2 genome and nine primer-probe sets, (2) a clinically verified example of a mutation affecting detection, and (3) a known nucleic acid interaction involving a pseudoknot. In addition, we compared our results against our closest competition, RNAcofold, further highlighting DinoKnot's strengths. We believe DinoKnot can be utilized for various applications including screening new variants for potential detection issues and supporting existing applications involving DNA/RNA interactions, adding structural considerations to the interaction to elicit functional information.
Collapse
|
10
|
Kolakada D, Campbell AE, Galvis LB, Li Z, Lore M, Jagannathan S. A system of reporters for comparative investigation of EJC-independent and EJC-enhanced nonsense-mediated mRNA decay. Nucleic Acids Res 2024; 52:e34. [PMID: 38375914 PMCID: PMC11014337 DOI: 10.1093/nar/gkae121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 01/05/2024] [Accepted: 02/07/2024] [Indexed: 02/21/2024] Open
Abstract
Nonsense-mediated mRNA decay (NMD) is a network of pathways that degrades transcripts that undergo premature translation termination. In mammals, NMD can be divided into the exon junction complex (EJC)-enhanced and EJC-independent branches. Fluorescence- and luminescence-based reporters have long been effective tools to investigate NMD, yet existing reporters largely focus on the EJC-enhanced pathway. Here, we present a system of reporters for comparative studies of EJC-independent and EJC-enhanced NMD. This system also enables the study of NMD-associated outcomes such as premature termination codon (PTC) readthrough and truncated protein degradation. These reporters are compatible with fluorescence or luminescence-based readouts via transient transfection or stable integration. Using this reporter system, we show that EJC-enhanced NMD RNA levels are reduced by 2- or 9-fold and protein levels are reduced by 7- or 12-fold compared to EJC-independent NMD, depending on the reporter gene used. Additionally, the extent of readthrough induced by G418 and an NMD inhibitor (SMG1i), alone and in combination, varies across NMD substrates. When combined, G418 and SMG1i increase readthrough product levels in an additive manner for EJC-independent reporters, while EJC-enhanced reporters show a synergistic effect. We present these reporters as a valuable toolkit to deepen our understanding of NMD and its associated mechanisms.
Collapse
Affiliation(s)
- Divya Kolakada
- Molecular Biology Graduate Program, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Amy E Campbell
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Laura Baquero Galvis
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Zhongyou Li
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Mlana Lore
- Molecular Biology Graduate Program, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Sujatha Jagannathan
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
- RNA Bioscience Initiative, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| |
Collapse
|
11
|
Ren G, Gu X, Zhang L, Gong S, Song S, Chen S, Chen Z, Wang X, Li Z, Zhou Y, Li L, Yang J, Lai F, Dang Y. Ribosomal frameshifting at normal codon repeats recodes functional chimeric proteins in human. Nucleic Acids Res 2024; 52:2463-2479. [PMID: 38281188 PMCID: PMC10954444 DOI: 10.1093/nar/gkae035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 01/04/2024] [Accepted: 01/10/2024] [Indexed: 01/30/2024] Open
Abstract
Ribosomal frameshifting refers to the process that ribosomes slip into +1 or -1 reading frame, thus produce chimeric trans-frame proteins. In viruses and bacteria, programmed ribosomal frameshifting can produce essential trans-frame proteins for viral replication or regulation of other biological processes. In humans, however, functional trans-frame protein derived from ribosomal frameshifting is scarcely documented. Combining multiple assays, we show that short codon repeats could act as cis-acting elements that stimulate ribosomal frameshifting in humans, abbreviated as CRFS hereafter. Using proteomic analyses, we identified many putative CRFS events from 32 normal human tissues supported by trans-frame peptides positioned at codon repeats. Finally, we show a CRFS-derived trans-frame protein (HDAC1-FS) functions by antagonizing the activities of HDAC1, thus affecting cell migration and apoptosis. These data suggest a novel type of translational recoding associated with codon repeats, which may expand the coding capacity of mRNA and diversify the regulation in human.
Collapse
Affiliation(s)
- Guiping Ren
- State Key Laboratory for Conservation and Utilization of Bio-Resource in Yunnan, Key Laboratory for Southwest Microbial Diversity of the Ministry of Education, Yunnan Key Laboratory of Cell Metabolism and Diseases, Center for Life Science, School of Life Sciences, Yunnan University, Kunming 650021, China
- Southwest United Graduate School, Kunming650092, China
| | - Xiaoqian Gu
- State Key Laboratory for Conservation and Utilization of Bio-Resource in Yunnan, Key Laboratory for Southwest Microbial Diversity of the Ministry of Education, Yunnan Key Laboratory of Cell Metabolism and Diseases, Center for Life Science, School of Life Sciences, Yunnan University, Kunming 650021, China
- Southwest United Graduate School, Kunming650092, China
| | - Lu Zhang
- State Key Laboratory for Conservation and Utilization of Bio-Resource in Yunnan, Key Laboratory for Southwest Microbial Diversity of the Ministry of Education, Yunnan Key Laboratory of Cell Metabolism and Diseases, Center for Life Science, School of Life Sciences, Yunnan University, Kunming 650021, China
- Southwest United Graduate School, Kunming650092, China
| | - Shimin Gong
- State Key Laboratory for Conservation and Utilization of Bio-Resource in Yunnan, Key Laboratory for Southwest Microbial Diversity of the Ministry of Education, Yunnan Key Laboratory of Cell Metabolism and Diseases, Center for Life Science, School of Life Sciences, Yunnan University, Kunming 650021, China
- Southwest United Graduate School, Kunming650092, China
| | - Shuang Song
- State Key Laboratory for Conservation and Utilization of Bio-Resource in Yunnan, Key Laboratory for Southwest Microbial Diversity of the Ministry of Education, Yunnan Key Laboratory of Cell Metabolism and Diseases, Center for Life Science, School of Life Sciences, Yunnan University, Kunming 650021, China
- Southwest United Graduate School, Kunming650092, China
| | - Shunkai Chen
- State Key Laboratory for Conservation and Utilization of Bio-Resource in Yunnan, Key Laboratory for Southwest Microbial Diversity of the Ministry of Education, Yunnan Key Laboratory of Cell Metabolism and Diseases, Center for Life Science, School of Life Sciences, Yunnan University, Kunming 650021, China
- Southwest United Graduate School, Kunming650092, China
| | - Zhenjing Chen
- State Key Laboratory for Conservation and Utilization of Bio-Resource in Yunnan, Key Laboratory for Southwest Microbial Diversity of the Ministry of Education, Yunnan Key Laboratory of Cell Metabolism and Diseases, Center for Life Science, School of Life Sciences, Yunnan University, Kunming 650021, China
- Southwest United Graduate School, Kunming650092, China
| | - Xiaoyan Wang
- State Key Laboratory for Conservation and Utilization of Bio-Resource in Yunnan, Key Laboratory for Southwest Microbial Diversity of the Ministry of Education, Yunnan Key Laboratory of Cell Metabolism and Diseases, Center for Life Science, School of Life Sciences, Yunnan University, Kunming 650021, China
- Southwest United Graduate School, Kunming650092, China
| | - Zhanbiao Li
- State Key Laboratory for Conservation and Utilization of Bio-Resource in Yunnan, Key Laboratory for Southwest Microbial Diversity of the Ministry of Education, Yunnan Key Laboratory of Cell Metabolism and Diseases, Center for Life Science, School of Life Sciences, Yunnan University, Kunming 650021, China
- Southwest United Graduate School, Kunming650092, China
| | - Yingshui Zhou
- State Key Laboratory for Conservation and Utilization of Bio-Resource in Yunnan, Key Laboratory for Southwest Microbial Diversity of the Ministry of Education, Yunnan Key Laboratory of Cell Metabolism and Diseases, Center for Life Science, School of Life Sciences, Yunnan University, Kunming 650021, China
- Southwest United Graduate School, Kunming650092, China
| | - Longxi Li
- State Key Laboratory for Conservation and Utilization of Bio-Resource in Yunnan, Key Laboratory for Southwest Microbial Diversity of the Ministry of Education, Yunnan Key Laboratory of Cell Metabolism and Diseases, Center for Life Science, School of Life Sciences, Yunnan University, Kunming 650021, China
- Southwest United Graduate School, Kunming650092, China
| | - Jiao Yang
- State Key Laboratory for Conservation and Utilization of Bio-Resource in Yunnan, Key Laboratory for Southwest Microbial Diversity of the Ministry of Education, Yunnan Key Laboratory of Cell Metabolism and Diseases, Center for Life Science, School of Life Sciences, Yunnan University, Kunming 650021, China
- Southwest United Graduate School, Kunming650092, China
| | - Fan Lai
- State Key Laboratory for Conservation and Utilization of Bio-Resource in Yunnan, Key Laboratory for Southwest Microbial Diversity of the Ministry of Education, Yunnan Key Laboratory of Cell Metabolism and Diseases, Center for Life Science, School of Life Sciences, Yunnan University, Kunming 650021, China
- Southwest United Graduate School, Kunming650092, China
| | - Yunkun Dang
- State Key Laboratory for Conservation and Utilization of Bio-Resource in Yunnan, Key Laboratory for Southwest Microbial Diversity of the Ministry of Education, Yunnan Key Laboratory of Cell Metabolism and Diseases, Center for Life Science, School of Life Sciences, Yunnan University, Kunming 650021, China
- Southwest United Graduate School, Kunming650092, China
| |
Collapse
|
12
|
Springstein BL, Paulo JA, Park H, Henry K, Fleming E, Feder Z, Harper JW, Hochschild A. Systematic analysis of nonprogrammed frameshift suppression in E. coli via translational tiling proteomics. Proc Natl Acad Sci U S A 2024; 121:e2317453121. [PMID: 38289956 PMCID: PMC10861913 DOI: 10.1073/pnas.2317453121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Accepted: 12/20/2023] [Indexed: 02/01/2024] Open
Abstract
The synthesis of proteins as encoded in the genome depends critically on translational fidelity. Nevertheless, errors inevitably occur, and those that result in reading frame shifts are particularly consequential because the resulting polypeptides are typically nonfunctional. Despite the generally maladaptive impact of such errors, the proper decoding of certain mRNAs, including many viral mRNAs, depends on a process known as programmed ribosomal frameshifting. The fact that these programmed events, commonly involving a shift to the -1 frame, occur at specific evolutionarily optimized "slippery" sites has facilitated mechanistic investigation. By contrast, less is known about the scope and nature of error (i.e., nonprogrammed) frameshifting. Here, we examine error frameshifting by monitoring spontaneous frameshift events that suppress the effects of single base pair deletions affecting two unrelated test proteins. To map the precise sites of frameshifting, we developed a targeted mass spectrometry-based method called "translational tiling proteomics" for interrogating the full set of possible -1 slippage events that could produce the observed frameshift suppression. Surprisingly, such events occur at many sites along the transcripts, involving up to one half of the available codons. Only a subset of these resembled canonical "slippery" sites, implicating alternative mechanisms potentially involving noncognate mispairing events. Additionally, the aggregate frequency of these events (ranging from 1 to 10% in our test cases) was higher than we might have anticipated. Our findings point to an unexpected degree of mechanistic diversity among ribosomal frameshifting events and suggest that frameshifted products may contribute more significantly to the proteome than generally assumed.
Collapse
Affiliation(s)
| | - Joao A. Paulo
- Department of Cell Biology, Harvard Medical School, BostonMA02115
| | - Hankum Park
- Department of Cell Biology, Harvard Medical School, BostonMA02115
| | - Kemardo Henry
- Department of Microbiology, Harvard Medical School, BostonMA02115
| | - Eleanor Fleming
- Department of Microbiology, Harvard Medical School, BostonMA02115
| | - Zoë Feder
- Department of Microbiology, Harvard Medical School, BostonMA02115
| | - J. Wade Harper
- Department of Cell Biology, Harvard Medical School, BostonMA02115
| | - Ann Hochschild
- Department of Microbiology, Harvard Medical School, BostonMA02115
| |
Collapse
|
13
|
Xiao Y, Wang R, Han X, Wang W, Liang A. The Deficiency of Hypusinated eIF5A Decreases the Putrescine/Spermidine Ratio and Inhibits +1 Programmed Ribosomal Frameshifting during the Translation of Ty1 Retrotransposon in Saccharomyces cerevisiae. Int J Mol Sci 2024; 25:1766. [PMID: 38339043 PMCID: PMC10855120 DOI: 10.3390/ijms25031766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 01/26/2024] [Accepted: 01/30/2024] [Indexed: 02/12/2024] Open
Abstract
Programmed ribosomal frameshifting (PRF) exists in all branches of life that regulate gene expression at the translational level. The eukaryotic translation initiation factor 5A (eIF5A) is a highly conserved protein essential in all eukaryotes. It is identified initially as an initiation factor and functions broadly in translation elongation and termination. The hypusination of eIF5A is specifically required for +1 PRF at the shifty site derived from the ornithine decarboxylase antizyme 1 (OAZ1) in Saccharomyces cerevisiae. However, whether the regulation of +1 PRF by yeast eIF5A is universal remains unknown. Here, we found that Sc-eIF5A depletion decreased the putrescine/spermidine ratio. The re-introduction of Sc-eIF5A in yeast eIF5A mutants recovered the putrescine/spermidine ratio. In addition, the Sc-eIF5A depletion decreases +1 PRF during the decoding of Ty1 retrotransposon mRNA, but has no effect on -1 PRF during the decoding of L-A virus mRNA. The re-introduction of Sc-eIF5A in yeast eIF5A mutants restored the +1 PRF rate of Ty1. The inhibition of the hypusine modification of yeast eIF5A by GC7 treatment or by mutating the hypusination site Lys to Arg caused decreases of +1 PRF rates in the Ty1 retrotransposon. Furthermore, mutational studies of the Ty1 frameshifting element support a model where the efficient removal of ribosomal subunits at the first Ty1 frame 0 stop codon is required for the frameshifting of trailing ribosomes. This dependency is likely due to the unique position of the frame 0 stop codon distance from the slippery sequence of Ty1. The results showed that eIF5A is a trans-regulator of +1 PRF for Ty1 retrotransposon and could function universally in yeast.
Collapse
Affiliation(s)
- Yu Xiao
- Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Institute of Biotechnology, Shanxi University, Taiyuan 030006, China; (Y.X.); (R.W.); (X.H.)
- Shanxi Key Laboratory of Biotechnology, Taiyuan 030006, China
| | - Ruanlin Wang
- Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Institute of Biotechnology, Shanxi University, Taiyuan 030006, China; (Y.X.); (R.W.); (X.H.)
- Shanxi Key Laboratory of Biotechnology, Taiyuan 030006, China
| | - Xiaxia Han
- Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Institute of Biotechnology, Shanxi University, Taiyuan 030006, China; (Y.X.); (R.W.); (X.H.)
- Shanxi Key Laboratory of Biotechnology, Taiyuan 030006, China
| | - Wei Wang
- Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Institute of Biotechnology, Shanxi University, Taiyuan 030006, China; (Y.X.); (R.W.); (X.H.)
- Shanxi Key Laboratory of Biotechnology, Taiyuan 030006, China
| | - Aihua Liang
- Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Institute of Biotechnology, Shanxi University, Taiyuan 030006, China; (Y.X.); (R.W.); (X.H.)
- Shanxi Key Laboratory of Biotechnology, Taiyuan 030006, China
| |
Collapse
|
14
|
Huang SH, Chen SC, Wu TY, Chen CY, Yu CH. Programmable modulation of ribosomal frameshifting by mRNA targeting CRISPR-Cas12a system. iScience 2023; 26:108492. [PMID: 38125012 PMCID: PMC10730746 DOI: 10.1016/j.isci.2023.108492] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 09/13/2023] [Accepted: 11/16/2023] [Indexed: 12/23/2023] Open
Abstract
Minus 1 programmed ribosomal frameshifting (-1 PRF) is a conserved translational regulation event essential for critical biological processes, including the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) replication. Efficient trans-modulation of the structured RNA element crucial to -1 PRF will endow the therapeutic application. Here, we demonstrate that CRISPR RNA can stimulate efficient -1 PRF. Assembled CRISPR-Cas12a, but not CRISPR-Cas9, complex further enhances -1 PRF efficiency through its higher capacity to stall translating ribosomes. We additionally perform CRISPR-Cas12a targeting to impair the SARS-CoV-2 frameshifting pseudoknot structure via a focused screening. We demonstrate that targeting CRISPR-Cas12a results in more than 70% suppression of -1 PRF in vitro and about 50% suppression in mammalian cells. Our results show the expanded function of the CRISPR-Cas12 system in modulating -1 PRF efficiency through stalling ribosomes and deforming frameshifting stimulatory signals, which could serve as a new strategy for future coronavirus pandemics.
Collapse
Affiliation(s)
- Shih-Hong Huang
- Department of Biochemistry and Molecular Biology, College of Medicine, National Cheng Kung University, Tainan, Taiwan
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Shih-Cheng Chen
- Department of Biochemistry and Molecular Biology, College of Medicine, National Cheng Kung University, Tainan, Taiwan
- National Institute of Cancer Research, National Health Research Institutes, Tainan, Taiwan
| | | | - Cheng-Yao Chen
- YD BioLabs, Inc., Hsinchu, Taiwan
- School of Medical Laboratory Science and Biotechnology, Taipei Medical University, Taipei, Taiwan
| | - Chien-Hung Yu
- Department of Biochemistry and Molecular Biology, College of Medicine, National Cheng Kung University, Tainan, Taiwan
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| |
Collapse
|
15
|
Kelly JA, Dinman JD. Shiftless Is a Novel Member of the Ribosome Stress Surveillance Machinery That Has Evolved to Play a Role in Innate Immunity and Cancer Surveillance. Viruses 2023; 15:2296. [PMID: 38140537 PMCID: PMC10747187 DOI: 10.3390/v15122296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 11/20/2023] [Accepted: 11/21/2023] [Indexed: 12/24/2023] Open
Abstract
A longstanding paradox in molecular biology has centered on the question of how very long proteins are synthesized, despite numerous measurements indicating that ribosomes spontaneously shift reading frame at rates that should preclude their ability completely translate their mRNAs. Shiftless (SFL; C19orf66) was originally identified as an interferon responsive gene encoding an antiviral protein, indicating that it is part of the innate immune response. This activity is due to its ability to bind ribosomes that have been programmed by viral sequence elements to shift reading frame. Curiously, Shiftless is constitutively expressed at low levels in mammalian cells. This study examines the effects of altering Shiftless homeostasis, revealing how it may be used by higher eukaryotes to identify and remove spontaneously frameshifted ribosomes, resolving the apparent limitation on protein length. Data also indicate that Shiftless plays a novel role in the ribosome-associated quality control program. A model is proposed wherein SFL recognizes and arrests frameshifted ribosomes, and depending on SFL protein concentrations, either leads to removal of frameshifted ribosomes while leaving mRNAs intact, or to mRNA degradation. We propose that SFL be added to the growing pantheon of proteins involved in surveilling translational fidelity and controlling gene expression in higher eukaryotes.
Collapse
Affiliation(s)
| | - Jonathan D. Dinman
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD 20742, USA;
| |
Collapse
|
16
|
Gaydukova SA, Moldovan MA, Vallesi A, Heaphy SM, Atkins JF, Gelfand MS, Baranov PV. Nontriplet feature of genetic code in Euplotes ciliates is a result of neutral evolution. Proc Natl Acad Sci U S A 2023; 120:e2221683120. [PMID: 37216548 PMCID: PMC10235951 DOI: 10.1073/pnas.2221683120] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Accepted: 04/12/2023] [Indexed: 05/24/2023] Open
Abstract
The triplet nature of the genetic code is considered a universal feature of known organisms. However, frequent stop codons at internal mRNA positions in Euplotes ciliates ultimately specify ribosomal frameshifting by one or two nucleotides depending on the context, thus posing a nontriplet feature of the genetic code of these organisms. Here, we sequenced transcriptomes of eight Euplotes species and assessed evolutionary patterns arising at frameshift sites. We show that frameshift sites are currently accumulating more rapidly by genetic drift than they are removed by weak selection. The time needed to reach the mutational equilibrium is several times longer than the age of Euplotes and is expected to occur after a several-fold increase in the frequency of frameshift sites. This suggests that Euplotes are at an early stage of the spread of frameshifting in expression of their genome. In addition, we find the net fitness burden of frameshift sites to be noncritical for the survival of Euplotes. Our results suggest that fundamental genome-wide changes such as a violation of the triplet character of genetic code can be introduced and maintained solely by neutral evolution.
Collapse
Affiliation(s)
- Sofya A. Gaydukova
- Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, Moscow199911, Russia
| | - Mikhail A. Moldovan
- A. A. Kharkevich Institute for Information Transmission Problems RAS, Moscow127051, Russia
| | - Adriana Vallesi
- Laboratory of Eukaryotic Microbiology and Animal Biology, School of Biosciences and Veterinary Medicine, University of Camerino, Camerino62032, Italy
| | - Stephen M. Heaphy
- School of Biochemistry and Cell Biology, University College Cork, CorkT12 XF62, Ireland
| | - John F. Atkins
- School of Biochemistry and Cell Biology, University College Cork, CorkT12 XF62, Ireland
- Department of Human Genetics, University of Utah, Salt Lake City, UT84112
| | - Mikhail S. Gelfand
- A. A. Kharkevich Institute for Information Transmission Problems RAS, Moscow127051, Russia
| | - Pavel V. Baranov
- School of Biochemistry and Cell Biology, University College Cork, CorkT12 XF62, Ireland
| |
Collapse
|
17
|
Rodnina MV. Decoding and Recoding of mRNA Sequences by the Ribosome. Annu Rev Biophys 2023; 52:161-182. [PMID: 37159300 DOI: 10.1146/annurev-biophys-101922-072452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Faithful translation of messenger RNA (mRNA) into protein is essential to maintain protein homeostasis in the cell. Spontaneous translation errors are very rare due to stringent selection of cognate aminoacyl transfer RNAs (tRNAs) and the tight control of the mRNA reading frame by the ribosome. Recoding events, such as stop codon readthrough, frameshifting, and translational bypassing, reprogram the ribosome to make intentional mistakes and produce alternative proteins from the same mRNA. The hallmark of recoding is the change of ribosome dynamics. The signals for recoding are built into the mRNA, but their reading depends on the genetic makeup of the cell, resulting in cell-specific changes in expression programs. In this review, I discuss the mechanisms of canonical decoding and tRNA-mRNA translocation; describe alternative pathways leading to recoding; and identify the links among mRNA signals, ribosome dynamics, and recoding.
Collapse
Affiliation(s)
- Marina V Rodnina
- Department of Physical Biochemistry, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany;
| |
Collapse
|
18
|
Rehfeld F, Eitson JL, Ohlson MB, Chang TC, Schoggins JW, Mendell JT. CRISPR screening reveals a dependency on ribosome recycling for efficient SARS-CoV-2 programmed ribosomal frameshifting and viral replication. Cell Rep 2023; 42:112076. [PMID: 36753415 PMCID: PMC9884621 DOI: 10.1016/j.celrep.2023.112076] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 11/21/2022] [Accepted: 01/23/2023] [Indexed: 01/31/2023] Open
Abstract
During translation of the genomic RNA of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the causative virus in the COVID-19 pandemic, host ribosomes undergo programmed ribosomal frameshifting (PRF) at a conserved structural element. Although PRF is essential for coronavirus replication, host factors that regulate this process have not yet been identified. Here we perform genome-wide CRISPR-Cas9 knockout screens to identify regulators of SARS-CoV-2 PRF. These screens reveal that loss of ribosome recycling factors markedly decreases frameshifting efficiency and impairs SARS-CoV-2 viral replication. Mutational studies support a model wherein efficient removal of ribosomal subunits at the ORF1a stop codon is required for frameshifting of trailing ribosomes. This dependency upon ribosome recycling is not observed with other non-pathogenic human betacoronaviruses and is likely due to the unique position of the ORF1a stop codon in the SARS clade of coronaviruses. These findings therefore uncover host factors that support efficient SARS-CoV-2 translation and replication.
Collapse
Affiliation(s)
- Frederick Rehfeld
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Jennifer L Eitson
- Department of Microbiology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Maikke B Ohlson
- Department of Microbiology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Tsung-Cheng Chang
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - John W Schoggins
- Department of Microbiology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Joshua T Mendell
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Harold C. Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA.
| |
Collapse
|
19
|
Loughran G, Li X, O’Loughlin S, Atkins JF, Baranov P. Monitoring translation in all reading frames downstream of weak stop codons provides mechanistic insights into the impact of nucleotide and cellular contexts. Nucleic Acids Res 2022; 51:304-314. [PMID: 36533511 PMCID: PMC9841425 DOI: 10.1093/nar/gkac1180] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Revised: 11/08/2022] [Accepted: 11/25/2022] [Indexed: 12/23/2022] Open
Abstract
A stop codon entering the ribosome A-site is normally decoded by release factors that induce release of the polypeptide. Certain factors influence the efficiency of the termination which is in competition with elongation in either the same (readthrough) or an alternative (frameshifting) reading frame. To gain insight into the competition between these processes, we monitored translation in parallel from all three reading frames downstream of stop codons while changing the nucleotide context of termination sites or altering cellular conditions (polyamine levels). We found that P-site codon identity can have a major impact on the termination efficiency of the OPRL1 stop signal, whereas for the OAZ1 ORF1 stop signal, the P-site codon mainly influences the reading frame of non-terminating ribosomes. Changes to polyamine levels predominantly influence the termination efficiency of the OAZ1 ORF1 stop signal. In contrast, increasing polyamine levels stimulate readthrough of the OPRL1 stop signal by enhancing near-cognate decoding rather than by decreasing termination efficiency. Thus, by monitoring the four competing processes occurring at stop codons we were able to determine which is the most significantly affected upon perturbation. This approach may be useful for the interrogation of other recoding phenomena where alternative decoding processes compete with standard decoding.
Collapse
Affiliation(s)
- Gary Loughran
- Correspondence may also be addressed to Gary Loughran.
| | - Xiang Li
- School of Biochemistry and Cell Biology, University College Cork, Cork, Ireland
| | - Sinead O’Loughlin
- School of Biochemistry and Cell Biology, University College Cork, Cork, Ireland
| | - John F Atkins
- School of Biochemistry and Cell Biology, University College Cork, Cork, Ireland,Department of Human Genetics, University of Utah, Salt Lake City, UT 84112, USA
| | | |
Collapse
|
20
|
Embree CM, Abu-Alhasan R, Singh G. Features and factors that dictate if terminating ribosomes cause or counteract nonsense-mediated mRNA decay. J Biol Chem 2022; 298:102592. [PMID: 36244451 PMCID: PMC9661723 DOI: 10.1016/j.jbc.2022.102592] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 10/07/2022] [Accepted: 10/10/2022] [Indexed: 11/13/2022] Open
Abstract
Nonsense-mediated mRNA decay (NMD) is a quality control pathway in eukaryotes that continuously monitors mRNA transcripts to ensure truncated polypeptides are not produced. The expression of many normal mRNAs that encode full-length polypeptides is also regulated by this pathway. Such transcript surveillance by NMD is intimately linked to translation termination. When a ribosome terminates translation at a normal termination codon, NMD is not activated, and mRNA can undergo repeated rounds of translation. On the other hand, when translation termination is deemed abnormal, such as that on a premature termination codon, it leads to a series of poorly understood events involving the NMD pathway, which destabilizes the transcript. In this review, we summarize our current understanding of how the NMD machinery interfaces with the translation termination factors to initiate NMD. We also discuss a variety of cis-acting sequence contexts and trans-acting factors that can cause readthrough, ribosome reinitiation, or ribosome frameshifting at stop codons predicted to induce NMD. These alternative outcomes can lead to the ribosome translating downstream of such stop codons and hence the transcript escaping NMD. NMD escape via these mechanisms can have wide-ranging implications on human health, from being exploited by viruses to hijack host cell systems to being harnessed as potential therapeutic possibilities to treat genetic diseases.
Collapse
Affiliation(s)
- Caleb M Embree
- Department of Molecular Genetics, The Ohio State University, Columbus, Ohio, USA; Center for RNA Biology, The Ohio State University, Columbus, Ohio USA
| | - Rabab Abu-Alhasan
- Department of Molecular Genetics, The Ohio State University, Columbus, Ohio, USA; Center for RNA Biology, The Ohio State University, Columbus, Ohio USA
| | - Guramrit Singh
- Department of Molecular Genetics, The Ohio State University, Columbus, Ohio, USA; Center for RNA Biology, The Ohio State University, Columbus, Ohio USA.
| |
Collapse
|
21
|
Champagne J, Mordente K, Nagel R, Agami R. Slippy-Sloppy translation: a tale of programmed and induced-ribosomal frameshifting. Trends Genet 2022; 38:1123-1133. [PMID: 35641342 DOI: 10.1016/j.tig.2022.05.009] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Revised: 05/10/2022] [Accepted: 05/11/2022] [Indexed: 01/24/2023]
Abstract
Programmed ribosomal frameshifting (PRF) is a key mechanism that viruses use to generate essential proteins for replication, and as a means of regulating gene expression. PRF generally involves recoding signals or frameshift stimulators to elevate the occurrence of frameshifting at shift-prone 'slippery' sequences. Given its essential role in viral replication, targeting PRF was envisioned as an attractive tool to block viral infection. However, in contrast to controlled-PRF mechanisms, recent studies have shown that ribosomes of many human cancer cell types are prone to frameshifting upon amino acid shortage; thus, these cells are deemed to be sloppy. The resulting products of a sloppy frameshift at the 'hungry' codons are aberrant proteins the degradation and display of which at the cell surface can trigger T cell activation. In this review, we address recent discoveries in ribosomal frameshifting and their functional consequences for the proteome in human cancer cells.
Collapse
Affiliation(s)
- Julien Champagne
- Division of Oncogenomics, Oncode Institute, The Netherlands Cancer Institute, Plesmanlaan 121, 1066CX Amsterdam, The Netherlands
| | - Kelly Mordente
- Division of Oncogenomics, Oncode Institute, The Netherlands Cancer Institute, Plesmanlaan 121, 1066CX Amsterdam, The Netherlands
| | - Remco Nagel
- Division of Oncogenomics, Oncode Institute, The Netherlands Cancer Institute, Plesmanlaan 121, 1066CX Amsterdam, The Netherlands
| | - Reuven Agami
- Division of Oncogenomics, Oncode Institute, The Netherlands Cancer Institute, Plesmanlaan 121, 1066CX Amsterdam, The Netherlands; Erasmus MC, Rotterdam University, Rotterdam, The Netherlands.
| |
Collapse
|
22
|
Loughran G, Fedorova AD, Khan YA, Atkins JF, Baranov PV. Lack of evidence for ribosomal frameshifting in ATP7B mRNA decoding. Mol Cell 2022; 82:3745-3749.e2. [PMID: 36115342 PMCID: PMC9548414 DOI: 10.1016/j.molcel.2022.08.024] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 08/03/2022] [Accepted: 08/18/2022] [Indexed: 11/20/2022]
Abstract
The research article describing the discovery of ribosomal frameshifting in the bacterial CopA gene also reported the occurrence of frameshifting in the expression of the human ortholog ATP7B based on assays using dual luciferase reporters. An examination of the publicly available ribosome profiling data and the phylogenetic analysis of the proposed frameshifting site cast doubt on the validity of this claim and prompted us to reexamine the evidence. We observed similar apparent frameshifting efficiencies as the original authors using the same type of vector that synthesizes both luciferases as a single polyprotein. However, we noticed anomalously low absolute luciferase activities from the N-terminal reporter that suggests interference of reporter activity or levels by the ATP7B test cassette. When we tested the same proposed ATP7B frameshifting cassette in a more recently developed reporter system in which the reporters are released without being included in a polyprotein, no frameshifting was detected above background levels.
Collapse
Affiliation(s)
- Gary Loughran
- School of Biochemistry and Cell Biology, University College Cork, Cork, Ireland.
| | - Alla D Fedorova
- School of Biochemistry and Cell Biology, University College Cork, Cork, Ireland; Science Foundation Center for Research Training in Genomics Data Science, University College Cork, Cork, Ireland
| | - Yousuf A Khan
- Department of Molecular and Cellular Physiology, Stanford University, Stanford, CA, USA
| | - John F Atkins
- School of Biochemistry and Cell Biology, University College Cork, Cork, Ireland; Department of Human Genetics, University of Utah, Salt Lake City, UT 84112, USA
| | - Pavel V Baranov
- School of Biochemistry and Cell Biology, University College Cork, Cork, Ireland.
| |
Collapse
|
23
|
Meydan S, Klepacki D, Karthikeyan S, Margus T, Thomas P, Jones JE, Khan YA, Briggs J, Dinman JD, Vázquez-Laslop N, Mankin AS. Response to: Lack of evidence for ribosomal frameshifting in ATP7B mRNA decoding. Mol Cell 2022; 82:3523. [PMID: 36115343 DOI: 10.1016/j.molcel.2022.08.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 08/04/2022] [Accepted: 08/18/2022] [Indexed: 11/17/2022]
Affiliation(s)
- Sezen Meydan
- Center for Biomolecular Sciences - m/c 870, University of Illinois at Chicago, 900 S. Ashland Avenue, Chicago, IL 60607, USA
| | - Dorota Klepacki
- Center for Biomolecular Sciences - m/c 870, University of Illinois at Chicago, 900 S. Ashland Avenue, Chicago, IL 60607, USA
| | - Subbulakshmi Karthikeyan
- Center for Biomolecular Sciences - m/c 870, University of Illinois at Chicago, 900 S. Ashland Avenue, Chicago, IL 60607, USA
| | - Tõnu Margus
- Center for Biomolecular Sciences - m/c 870, University of Illinois at Chicago, 900 S. Ashland Avenue, Chicago, IL 60607, USA
| | - Paul Thomas
- Proteomics Center of Excellence, Northwestern University, 633 Clark Street, Chicago, IL 60208, USA
| | - John E Jones
- Proteomics Center of Excellence, Northwestern University, 633 Clark Street, Chicago, IL 60208, USA
| | - Yousuf A Khan
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD 20742, USA
| | - Joseph Briggs
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD 20742, USA
| | - Jonathan D Dinman
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD 20742, USA
| | - Nora Vázquez-Laslop
- Center for Biomolecular Sciences - m/c 870, University of Illinois at Chicago, 900 S. Ashland Avenue, Chicago, IL 60607, USA.
| | - Alexander S Mankin
- Center for Biomolecular Sciences - m/c 870, University of Illinois at Chicago, 900 S. Ashland Avenue, Chicago, IL 60607, USA.
| |
Collapse
|
24
|
Romero Romero ML, Landerer C, Poehls J, Toth‐Petroczy A. Phenotypic mutations contribute to protein diversity and shape protein evolution. Protein Sci 2022; 31:e4397. [PMID: 36040266 PMCID: PMC9375231 DOI: 10.1002/pro.4397] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 06/14/2022] [Accepted: 07/04/2022] [Indexed: 11/16/2022]
Abstract
Errors in DNA replication generate genetic mutations, while errors in transcription and translation lead to phenotypic mutations. Phenotypic mutations are orders of magnitude more frequent than genetic ones, yet they are less understood. Here, we review the types of phenotypic mutations, their quantifications, and their role in protein evolution and disease. The diversity generated by phenotypic mutation can facilitate adaptive evolution. Indeed, phenotypic mutations, such as ribosomal frameshift and stop codon readthrough, sometimes serve to regulate protein expression and function. Phenotypic mutations have often been linked to fitness decrease and diseases. Thus, understanding the protein heterogeneity and phenotypic diversity caused by phenotypic mutations will advance our understanding of protein evolution and have implications on human health and diseases.
Collapse
Affiliation(s)
- Maria Luisa Romero Romero
- Max Planck Institute of Molecular Cell Biology and GeneticsDresdenGermany
- Center for Systems Biology DresdenDresdenGermany
| | - Cedric Landerer
- Max Planck Institute of Molecular Cell Biology and GeneticsDresdenGermany
- Center for Systems Biology DresdenDresdenGermany
| | - Jonas Poehls
- Max Planck Institute of Molecular Cell Biology and GeneticsDresdenGermany
- Center for Systems Biology DresdenDresdenGermany
| | - Agnes Toth‐Petroczy
- Max Planck Institute of Molecular Cell Biology and GeneticsDresdenGermany
- Center for Systems Biology DresdenDresdenGermany
- Cluster of Excellence Physics of LifeTU DresdenDresdenGermany
| |
Collapse
|
25
|
Wright SE, Rodriguez CM, Monroe J, Xing J, Krans A, Flores BN, Barsur V, Ivanova MI, Koutmou KS, Barmada SJ, Todd PK. CGG repeats trigger translational frameshifts that generate aggregation-prone chimeric proteins. Nucleic Acids Res 2022; 50:8674-8689. [PMID: 35904811 PMCID: PMC9410890 DOI: 10.1093/nar/gkac626] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Accepted: 07/13/2022] [Indexed: 11/25/2022] Open
Abstract
CGG repeat expansions in the FMR1 5’UTR cause the neurodegenerative disease Fragile X-associated tremor/ataxia syndrome (FXTAS). These repeats form stable RNA secondary structures that support aberrant translation in the absence of an AUG start codon (RAN translation), producing aggregate-prone peptides that accumulate within intranuclear neuronal inclusions and contribute to neurotoxicity. Here, we show that the most abundant RAN translation product, FMRpolyG, is markedly less toxic when generated from a construct with a non-repetitive alternating codon sequence in place of the CGG repeat. While exploring the mechanism of this differential toxicity, we observed a +1 translational frameshift within the CGG repeat from the arginine to glycine reading frame. Frameshifts occurred within the first few translated repeats and were triggered predominantly by RNA sequence and structural features. Short chimeric R/G peptides form aggregates distinct from those formed by either pure arginine or glycine, and these chimeras induce toxicity in cultured rodent neurons. Together, this work suggests that CGG repeats support translational frameshifting and that chimeric RAN translated peptides may contribute to CGG repeat-associated toxicity in FXTAS and related disorders.
Collapse
Affiliation(s)
- Shannon E Wright
- Department of Neurology, University of Michigan, Ann Arbor, MI 48109, USA.,Neuroscience Graduate Program, University of Michigan, Ann Arbor, MI 48109, USA
| | - Caitlin M Rodriguez
- Department of Neurology, University of Michigan, Ann Arbor, MI 48109, USA.,Neuroscience Graduate Program, University of Michigan, Ann Arbor, MI 48109, USA.,Department of Genetics, Stanford University School of Medicine, Stanford, CA 84305, USA
| | - Jeremy Monroe
- Department of Chemistry, University of Michigan, Ann Arbor, MI 48109, USA
| | - Jiazheng Xing
- Department of Neurology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Amy Krans
- Department of Neurology, University of Michigan, Ann Arbor, MI 48109, USA.,VA Ann Arbor Healthcare System, Ann Arbor, MI 48105, USA
| | - Brittany N Flores
- Department of Neurology, University of Michigan, Ann Arbor, MI 48109, USA.,Cellular and Molecular Biology Graduate Program, University of Michigan, Ann Arbor, MI 48109, USA
| | - Venkatesha Barsur
- Department of Pathology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Magdalena I Ivanova
- Department of Neurology, University of Michigan, Ann Arbor, MI 48109, USA.,Biophysics Program, University of Michigan, Ann Arbor, MI 48109, USA
| | - Kristin S Koutmou
- Department of Chemistry, University of Michigan, Ann Arbor, MI 48109, USA
| | - Sami J Barmada
- Department of Neurology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Peter K Todd
- Department of Neurology, University of Michigan, Ann Arbor, MI 48109, USA.,VA Ann Arbor Healthcare System, Ann Arbor, MI 48105, USA
| |
Collapse
|
26
|
Abstract
The constrained nature of viral genomes has allowed a translational sleight of hand known as −1 Programmed Ribosomal Frameshifting (−1 PRF) to flourish. Numerous studies have sought to tease apart the mechanisms and implications of −1PRF utilizing a few techniques. The dual-luciferase assay and ribosomal profiling have driven the PRF field to make great advances; however, the use of these assays means that the full impact of the genomic and cellular context on −1 PRF is often lost. Here, we discuss how the Minimal Frameshifting Element (MFE) and its constraints can hide contextual effects on −1 PRF. We review how sequence elements proximal to the traditionally defined MFE, such as the coronavirus attenuator sequence, can affect the observed rates of −1 PRF. Further, the MFE-based approach fully obscured −1 PRF in Barley yellow dwarf virus and would render the exploration of −1 PRF difficult in Porcine reproductive and respiratory syndrome virus, Encephalomyocarditis virus, Theiler’s murine encephalomyelitis virus, and Sindbis virus. Finally, we examine how the cellular context of tRNA abundance, miRNAs, and immune response elements can affect −1 PRF. The use of MFE was instrumental in establishing the basic foundations of PRF; however, it has become clear that the contextual impact on −1 PRF is no longer the exception so much as it is the rule and argues for new approaches to study −1PRF that embrace context. We therefore urge our field to expand the strategies and methods used to explore −1 PRF.
Collapse
|