1
|
Haridy Y, Norris SCP, Fabbri M, Nanglu K, Sharma N, Miller JF, Rivers M, La Riviere P, Vargas P, Ortega-Hernández J, Shubin NH. The origin of vertebrate teeth and evolution of sensory exoskeletons. Nature 2025:10.1038/s41586-025-08944-w. [PMID: 40399678 DOI: 10.1038/s41586-025-08944-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2024] [Accepted: 03/26/2025] [Indexed: 05/23/2025]
Abstract
The earliest record of tooth antecedents and the tissue dentine1,2, an early-vertebrate novelty, has been controversially represented by fragmentary Cambrian fossils identified as Anatolepis heintzi3-5. Anatolepis exoskeletons have the characteristic tubules of dentine that prompted their interpretation as the first precursors of teeth3, known as odontodes. Debates over whether Anatolepis is a legitimate vertebrate6-8 have arisen because of limitations in imaging and the lack of comparative exoskeletal tissues. Here, to resolve this controversy and understand the origin of dental tissues, we synchrotron-scanned diverse extinct and extant vertebrate and invertebrate exoskeletons. We find that the tubules of Anatolepis have been misidentified as dentine tubules and instead represent aglaspidid arthropod sensory sensilla structures9,10. Synchrotron scanning reveals that deep ultrastructural similarities between odontodes and sensory structures also extend to definitive vertebrate tissues. External odontodes of the Ordovician vertebrate Eriptychius11-13 feature large dentine tubules1 that are morphologically convergent with invertebrate sensilla. Immunofluorescence analysis shows that the external odontodes of extant chondrichthyans and teleosts retain extensive innervation suggestive of a sensory function akin to teeth14-16. These patterns of convergence and innervation reveal that dentine evolved as a sensory tissue in the exoskeleton of early vertebrates, a function retained in modern vertebrate teeth16. Middle-Ordovician fossils now represent the oldest known evidence for vertebrate dental tissues.
Collapse
Affiliation(s)
- Yara Haridy
- Department of Organismal Biology and Anatomy, The University of Chicago, Chicago, IL, USA.
| | - Sam C P Norris
- Department of Organismal Biology and Anatomy, The University of Chicago, Chicago, IL, USA
| | - Matteo Fabbri
- Department of Organismal Biology and Anatomy, The University of Chicago, Chicago, IL, USA
- Center for Functional Anatomy and Evolution, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Karma Nanglu
- Museum of Comparative Zoology, Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA, USA
- Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, Ontario, Canada
- Department of Earth Sciences, University of California, Riverside, Riverside, CA, USA
| | - Neelima Sharma
- Department of Organismal Biology and Anatomy, The University of Chicago, Chicago, IL, USA
| | - James F Miller
- School of Earth, Environment, and Sustainability, Missouri State University, Springfield, MO, USA
| | - Mark Rivers
- Center for Advanced Radiation Sources, The University of Chicago, Chicago, IL, USA
| | | | - Phillip Vargas
- Department of Radiology, University of Chicago, Chicago, IL, USA
| | - Javier Ortega-Hernández
- Museum of Comparative Zoology, Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA, USA
| | - Neil H Shubin
- Department of Organismal Biology and Anatomy, The University of Chicago, Chicago, IL, USA.
| |
Collapse
|
2
|
Chiappe LM, Navalón G, Martinelli AG, Carvalho IDS, Miloni Santucci R, Wu YH, Field DJ. Cretaceous bird from Brazil informs the evolution of the avian skull and brain. Nature 2024; 635:376-381. [PMID: 39537887 PMCID: PMC11560842 DOI: 10.1038/s41586-024-08114-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Accepted: 09/25/2024] [Indexed: 11/16/2024]
Abstract
A dearth of Mesozoic-aged, three-dimensional fossils hinders understanding of the origin of the distinctive skull and brain of modern (crown) birds1. Here we report Navaornis hestiae gen. et sp. nov., an exquisitely preserved fossil species from the Late Cretaceous of Brazil. The skull of Navaornis is toothless and large-eyed, with a vaulted cranium closely resembling the condition in crown birds; however, phylogenetic analyses recover Navaornis in Enantiornithes, a highly diverse clade of Mesozoic stem birds. Despite an overall geometry quantitatively indistinguishable from crown birds, the skull of Navaornis retains numerous plesiomorphies including a maxilla-dominated rostrum, an akinetic palate, a diapsid temporal configuration, a small cerebellum and a weakly expanded telencephalon. These archaic neurocranial traits are combined with a crown bird-like degree of brain flexion and a bony labyrinth comparable in shape to those of many crown birds but substantially larger. Altogether, the emergent cranial geometry of Navaornis shows an unprecedented degree of similarity between crown birds and enantiornithines, groups last sharing a common ancestor more than 130 million years ago2. Navaornis provides long-sought insight into the detailed cranial and endocranial morphology of stem birds phylogenetically crownward of Archaeopteryx, clarifying the pattern and timing by which the distinctive neuroanatomy of living birds was assembled.
Collapse
Affiliation(s)
- Luis M Chiappe
- Dinosaur Institute, Natural History Museum of Los Angeles County, Los Angeles, CA, USA.
| | - Guillermo Navalón
- Department of Earth Sciences, University of Cambridge, Cambridge, UK.
| | - Agustín G Martinelli
- Sección Paleontología de Vertebrados, CONICET-Museo Argentino de Ciencias Naturales Bernardino Rivadavia, Buenos Aires, Argentina
| | - Ismar de Souza Carvalho
- Instituto de Geociências, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
- Centro de Geociências, Coimbra University, Coimbra, Portugal
| | | | - Yun-Hsin Wu
- Dinosaur Institute, Natural History Museum of Los Angeles County, Los Angeles, CA, USA
| | - Daniel J Field
- Department of Earth Sciences, University of Cambridge, Cambridge, UK.
- Museum of Zoology, University of Cambridge, Cambridge, UK.
| |
Collapse
|
3
|
Iijima M, Mayerl CJ, Munteanu VD, Blob RW. Forelimb muscle activation patterns in American alligators: Insights into the evolution of limb posture and powered flight in archosaurs. J Anat 2024; 244:943-958. [PMID: 38242862 PMCID: PMC11095314 DOI: 10.1111/joa.14011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 01/08/2024] [Accepted: 01/09/2024] [Indexed: 01/21/2024] Open
Abstract
The evolution of archosaurs provides an important context for understanding the mechanisms behind major functional transformations in vertebrates, such as shifts from sprawling to erect limb posture and the acquisition of powered flight. While comparative anatomy and ichnology of extinct archosaurs have offered insights into musculoskeletal and gait changes associated with locomotor transitions, reconstructing the evolution of motor control requires data from extant species. However, the scarcity of electromyography (EMG) data from the forelimb, especially of crocodylians, has hindered understanding of neuromuscular evolution in archosaurs. Here, we present EMG data for nine forelimb muscles from American alligators during terrestrial locomotion. Our aim was to investigate the modulation of motor control across different limb postures and examine variations in motor control across phylogeny and locomotor modes. Among the nine muscles examined, m. pectoralis, the largest forelimb muscle and primary shoulder adductor, exhibited significantly smaller mean EMG amplitudes for steps in which the shoulder was more adducted (i.e., upright). This suggests that using a more adducted limb posture helps to reduce forelimb muscle force and work during stance. As larger alligators use a more adducted shoulder and hip posture, the sprawling to erect postural transition that occurred in the Triassic could be either the cause or consequence of the evolution of larger body size in archosaurs. Comparisons of EMG burst phases among tetrapods revealed that a bird and turtle, which have experienced major musculoskeletal transformations, displayed distinctive burst phases in comparison to those from an alligator and lizard. These results support the notion that major shifts in body plan and locomotor modes among sauropsid lineages were associated with significant changes in muscle activation patterns.
Collapse
Affiliation(s)
- Masaya Iijima
- Structure and Motion Lab, Department of Comparative Biomedical SciencesThe Royal Veterinary CollegeHertfordshireUK
- Nagoya University MuseumNagoyaJapan
| | | | - V. David Munteanu
- Department of Biological SciencesClemson UniversityClemsonSouth CarolinaUSA
| | - Richard W. Blob
- Department of Biological SciencesClemson UniversityClemsonSouth CarolinaUSA
| |
Collapse
|
4
|
Ollonen J, Khannoon ER, Macrì S, Vergilov V, Kuurne J, Saarikivi J, Soukainen A, Aalto IM, Werneburg I, Diaz RE, Di-Poï N. Dynamic evolutionary interplay between ontogenetic skull patterning and whole-head integration. Nat Ecol Evol 2024; 8:536-551. [PMID: 38200368 DOI: 10.1038/s41559-023-02295-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Accepted: 11/29/2023] [Indexed: 01/12/2024]
Abstract
The arrangement and morphology of the vertebrate skull reflect functional and ecological demands, making it a highly adaptable structure. However, the fundamental developmental and macroevolutionary mechanisms leading to different vertebrate skull phenotypes remain unclear. Here we exploit the morphological diversity of squamate reptiles to assess the developmental and evolutionary patterns of skull variation and covariation in the whole head. Our geometric morphometric analysis of a complex squamate ontogenetic dataset (209 specimens, 169 embryos, 44 species), covering stages from craniofacial primordia to fully ossified bones, reveals that morphological differences between snake and lizard skulls arose gradually through changes in spatial relationships (heterotopy) followed by alterations in developmental timing or rate (heterochrony). Along with dynamic spatiotemporal changes in the integration pattern of skull bone shape and topology with surrounding brain tissues and sensory organs, we identify a relatively higher phenotypic integration of the developing snake head compared with lizards. The eye, nasal cavity and Jacobson's organ are pivotal in skull morphogenesis, highlighting the importance of sensory rearrangements in snake evolution. Furthermore, our findings demonstrate the importance of early embryonic, ontogenetic and tissue interactions in shaping craniofacial evolution and ecological diversification in squamates, with implications for the nature of cranio-cerebral relations across vertebrates.
Collapse
Affiliation(s)
- Joni Ollonen
- Institute of Biotechnology, Helsinki Institute of Life Science, University of Helsinki, Helsinki, Finland
| | - Eraqi R Khannoon
- Biology Department, College of Science, Taibah University, Al Madinah Al Munawwarah, Saudi Arabia
- Zoology Department, Faculty of Science, Fayoum University, Fayoum, Egypt
| | - Simone Macrì
- Institute of Biotechnology, Helsinki Institute of Life Science, University of Helsinki, Helsinki, Finland
| | - Vladislav Vergilov
- National Museum of Natural History, Bulgarian Academy of Sciences, Sofia, Bulgaria
| | - Jaakko Kuurne
- Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland
| | - Jarmo Saarikivi
- Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland
| | - Arttu Soukainen
- Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland
| | - Ida-Maria Aalto
- Institute of Biotechnology, Helsinki Institute of Life Science, University of Helsinki, Helsinki, Finland
| | - Ingmar Werneburg
- Senckenberg Centre for Human Evolution and Palaeoenvironment, Eberhard Karls Universität, Tübingen, Germany
- Fachbereich Geowissenschaften, Eberhard Karls Universität, Tübingen, Germany
| | - Raul E Diaz
- Department of Biological Sciences, California State University, Los Angeles, CA, USA
- Department of Herpetology, Natural History Museum of Los Angeles County, Los Angeles, CA, USA
| | - Nicolas Di-Poï
- Institute of Biotechnology, Helsinki Institute of Life Science, University of Helsinki, Helsinki, Finland.
| |
Collapse
|
5
|
Egawa S, Griffin CT, Bishop PJ, Pintore R, Tsai HP, Botelho JF, Smith-Paredes D, Kuratani S, Norell MA, Nesbitt SJ, Hutchinson JR, Bhullar BAS. The dinosaurian femoral head experienced a morphogenetic shift from torsion to growth along the avian stem. Proc Biol Sci 2022; 289:20220740. [PMID: 36196539 PMCID: PMC9532989 DOI: 10.1098/rspb.2022.0740] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
Significant evolutionary shifts in locomotor behaviour often involve comparatively subtle anatomical transitions. For dinosaurian and avian evolution, medial overhang of the proximal femur has been central to discussions. However, there is an apparent conflict with regard to the evolutionary origin of the dinosaurian femoral head, with neontological and palaeontological data suggesting seemingly incongruent hypotheses. To reconcile this, we reconstructed the evolutionary history of morphogenesis of the proximal end of the femur from early archosaurs to crown birds. Embryological comparison of living archosaurs (crocodylians and birds) suggests the acquisition of the greater overhang of the femoral head in dinosaurs results from additional growth of the proximal end in the medial-ward direction. On the other hand, the fossil record suggests that this overhang was acquired by torsion of the proximal end, which projected in a more rostral direction ancestrally. We reconcile this apparent conflict by inferring that the medial overhang of the dinosaur femoral head was initially acquired by torsion, which was then superseded by mediad growth. Details of anatomical shifts in fossil forms support this hypothesis, and their biomechanical implications are congruent with the general consensus regarding broader morpho-functional evolution on the avian stem.
Collapse
Affiliation(s)
- Shiro Egawa
- Department of Earth & Planetary Sciences and Peabody Museum of Natural History, Yale University, New Haven, CT 06520, USA.,Laboratory for Evolutionary Morphology, RIKEN Center for Biosystems Dynamics Research (BDR), Kobe, Japan.,Department of Neurophysiology, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Tokyo, Japan
| | - Christopher T Griffin
- Department of Earth & Planetary Sciences and Peabody Museum of Natural History, Yale University, New Haven, CT 06520, USA
| | - Peter J Bishop
- Structure and Motion Laboratory, Department of Comparative Biomedical Sciences, The Royal Veterinary College, Hawkshead Lane, North Mymms AL9 7TA, UK.,Museum of Comparative Zoology, Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA, USA.,Geosciences Program, Queensland Museum, Brisbane, Australia
| | - Romain Pintore
- Structure and Motion Laboratory, Department of Comparative Biomedical Sciences, The Royal Veterinary College, Hawkshead Lane, North Mymms AL9 7TA, UK.,Mécanismes adaptatifs et évolution (MECADEV)/UMR 7179, CNRS/Muséum National d'Histoire Naturelle, Paris, France
| | - Henry P Tsai
- Department of Biomedical Sciences, Missouri State University, Springfield, MO 65897, USA
| | - João F Botelho
- Department of Earth & Planetary Sciences and Peabody Museum of Natural History, Yale University, New Haven, CT 06520, USA.,Department of Biology, Southern Connecticut State University, New Haven, CT 06515, USA.,Escuela de Medicina Veterinaria, Facultad de Agronomía e Ingeniería Forestal, Facultad de Ciencias Biológicas y Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Daniel Smith-Paredes
- Department of Earth & Planetary Sciences and Peabody Museum of Natural History, Yale University, New Haven, CT 06520, USA
| | - Shigeru Kuratani
- Laboratory for Evolutionary Morphology, RIKEN Center for Biosystems Dynamics Research (BDR), Kobe, Japan
| | - Mark A Norell
- Division of Vertebrate Paleontology, American Museum of Natural History, New York, NY, USA
| | | | - John R Hutchinson
- Structure and Motion Laboratory, Department of Comparative Biomedical Sciences, The Royal Veterinary College, Hawkshead Lane, North Mymms AL9 7TA, UK
| | - Bhart-Anjan S Bhullar
- Department of Earth & Planetary Sciences and Peabody Museum of Natural History, Yale University, New Haven, CT 06520, USA
| |
Collapse
|
6
|
Ksepka D. Developmental biology: A dinosaur in a quail egg. Curr Biol 2022; 32:R964-R967. [PMID: 36167048 DOI: 10.1016/j.cub.2022.08.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Developmental biology and paleontology have a long history of reciprocal illumination. New research reveals that the embryonic development of the bird pelvis parallels the evolutionary transition from archosaurs to birds.
Collapse
Affiliation(s)
- Daniel Ksepka
- Bruce Museum, Greenwich, CT 06614, USA; Department of Ornithology, American Museum of Natural History, New York, NY 10024, USA; Division of Science and Education, Field Museum of Natural History, Chicago, IL 60605, USA; Department of Ecology and Evolutionary Biology, University of Connecticut, Storrs, CT 06269, USA.
| |
Collapse
|