1
|
Xie Z, Zhang X, Sun B, Li J, Xie Y, Liu F, Wu J, Wu Y. Patterns of trace elements deposition in Indo-Pacific humpback dolphin (Sousa chinensis) teeth reflect early life history: A pilot study. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 957:177773. [PMID: 39626416 DOI: 10.1016/j.scitotenv.2024.177773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Revised: 11/22/2024] [Accepted: 11/24/2024] [Indexed: 12/21/2024]
Abstract
Understanding early life history events within a population is imperative for developing effective conservation and management practices, particularly for vulnerable species in degraded environments with high environmental variability. Here, we first investigated the lifetime record of trace element (TE) accumulation in the teeth of Indo-Pacific humpback dolphins from the Pearl River Estuary, China, using in-situ laser ablation-inductively coupled plasma-mass spectrometry microanalysis, and further explored the suitability of teeth TEs as bioindicators of critical life stages. A total of 26 TEs were detected in the teeth of eight dolphins, with concentrations ranging from 0.003 ± 0.003 μg/g (Be) to 522,405.9 ± 44,690.3 (Ca) μg/g. The varied TE composition in teeth of the dolphins may be related to environmental exposure or the species-specific accumulation of TEs. Generalized linear mixed models showed that the accumulation of nearly half of the detected TEs (V, Fe, Co, Zn, Ga, As, Mo, Sn, Sb, Ba, and Bi) in the dolphin teeth is sex-specific. Temporal analyses revealed that the concentrations of Cu, As, Sr, Ba, and Bi demonstrate age-related changes in metabolic demands and elimination efficiency. Notably, the ratios of Ba/Ca and Sr/Ca in teeth of the dolphins exhibited clear physiological signals, which reconstructed the time of weaning (3-4 years of age). Moreover, the trends in the ratios of Zn/Ca suggest that female dolphins may reach sexual maturity at 9-11 years of age. These findings provide insights into marine mammal development, emphasizing the need for further research on TE accumulation mechanisms and ecological impacts.
Collapse
Affiliation(s)
- Zhenhui Xie
- School of Marine Sciences, Zhuhai Key Laboratory of Marine Bioresources and Environment, Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, Pearl River Estuary Marine Ecosystem Research Station, Ministry of Education, Sun Yat-Sen University, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai 519082, China
| | - Xiyang Zhang
- School of Marine Sciences, Zhuhai Key Laboratory of Marine Bioresources and Environment, Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, Pearl River Estuary Marine Ecosystem Research Station, Ministry of Education, Sun Yat-Sen University, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai 519082, China
| | - Bin Sun
- School of Marine Sciences, Zhuhai Key Laboratory of Marine Bioresources and Environment, Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, Pearl River Estuary Marine Ecosystem Research Station, Ministry of Education, Sun Yat-Sen University, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai 519082, China
| | - Jun Li
- School of Marine Sciences, Zhuhai Key Laboratory of Marine Bioresources and Environment, Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, Pearl River Estuary Marine Ecosystem Research Station, Ministry of Education, Sun Yat-Sen University, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai 519082, China
| | - Yanqing Xie
- School of Marine Sciences, Zhuhai Key Laboratory of Marine Bioresources and Environment, Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, Pearl River Estuary Marine Ecosystem Research Station, Ministry of Education, Sun Yat-Sen University, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai 519082, China
| | - Fei Liu
- School of Marine Sciences, Zhuhai Key Laboratory of Marine Bioresources and Environment, Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, Pearl River Estuary Marine Ecosystem Research Station, Ministry of Education, Sun Yat-Sen University, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai 519082, China
| | - Jiaxue Wu
- School of Marine Sciences, Zhuhai Key Laboratory of Marine Bioresources and Environment, Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, Pearl River Estuary Marine Ecosystem Research Station, Ministry of Education, Sun Yat-Sen University, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai 519082, China.
| | - Yuping Wu
- School of Marine Sciences, Zhuhai Key Laboratory of Marine Bioresources and Environment, Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, Pearl River Estuary Marine Ecosystem Research Station, Ministry of Education, Sun Yat-Sen University, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai 519082, China.
| |
Collapse
|
2
|
Newham E, Corfe IJ, Brewer P, Bright JA, Fernandez V, Gostling NJ, Hoffmann S, Jäger KRK, Kague E, Lovric G, Marone F, Panciroli E, Schneider P, Schultz JA, Suhonen H, Witchell A, Gill PG, Martin T. The origins of mammal growth patterns during the Jurassic mammalian radiation. SCIENCE ADVANCES 2024; 10:eado4555. [PMID: 39110800 PMCID: PMC11758522 DOI: 10.1126/sciadv.ado4555] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Accepted: 06/28/2024] [Indexed: 01/26/2025]
Abstract
We use synchrotron x-ray tomography of annual growth increments in the dental cementum of mammaliaforms (stem and crown fossil mammals) from three faunas across the Jurassic to map the origin of patterns of mammalian growth patterns, which are intrinsically related to mammalian endothermy. Although all fossils studied exhibited slower growth rates, longer life spans, and delayed sexual maturity relative to comparably sized extant mammals, the earliest crown mammals developed significantly faster growth rates in early life that reduced at sexual maturity, compared to stem mammaliaforms. Estimation of basal metabolic rates (BMRs) suggests that some fossil crown mammals had BMRs approaching the lowest rates of extant mammals. We suggest that mammalian growth patterns first evolved during their mid-Jurassic adaptive radiation, although growth remained slower than in extant mammals.
Collapse
Affiliation(s)
- Elis Newham
- School of Engineering and Materials Sciences, Queen Mary University of London, London, UK
- Section Palaeontology, Bonn Institute of Organismic Biology, Rheinische Friedrich-Wilhelms-Universität Bonn, Bonn, Germany
| | - Ian J. Corfe
- Institute of Biotechnology, University of Helsinki, Helsinki, Finland
- Research Laboratory, Geological Survey of Finland, Espoo, Finland
| | | | - Jen A. Bright
- School of Natural Sciences, University of Hull, Hull, UK
| | | | - Neil J. Gostling
- School of Biological Sciences, Faculty of Environmental and Life Sciences, The University of Southampton, Southampton, UK
| | - Simone Hoffmann
- Department of Anatomy, College of Osteopathic Medicine, New York Institute of Technology, Old Westbury, NY, USA
| | - Kai R. K. Jäger
- Section Palaeontology, Bonn Institute of Organismic Biology, Rheinische Friedrich-Wilhelms-Universität Bonn, Bonn, Germany
| | - Erika Kague
- School of Physiology, Pharmacology and Neuroscience, Biomedical Sciences, University of Bristol, Bristol, UK
- Centre for Genomic and Experimental Medicine, Institute of Genetics and Cancer, The University of Edinburgh, Edinburgh, UK
| | - Goran Lovric
- Swiss Light Source, Paul Scherrer Institute, Villigen, Switzerland
| | - Federica Marone
- Swiss Light Source, Paul Scherrer Institute, Villigen, Switzerland
| | - Elsa Panciroli
- National Museums Scotland, Chambers Street, Edinburgh, UK
- Oxford University Museum of Natural History, Parks Road, Oxford, UK
| | - Philipp Schneider
- Bioengineering Science Research Group, Faculty of Engineering and Physical Sciences, University of Southampton, Southampton, UK
- High-Performance Vision Systems, Center for Vision, Automation & Control, AIT Austrian Institute of Technology, Vienna, Austria
| | - Julia A. Schultz
- Section Palaeontology, Bonn Institute of Organismic Biology, Rheinische Friedrich-Wilhelms-Universität Bonn, Bonn, Germany
| | - Heikki Suhonen
- Department of Physics, University of Helsinki, Helsinki, Finland
| | - Alex Witchell
- School of Biological Sciences, Faculty of Environmental and Life Sciences, The University of Southampton, Southampton, UK
| | - Pamela G. Gill
- Department of Science, Natural History Museum, London, UK
- School of Earth Sciences, University of Bristol, Bristol, UK
| | - Thomas Martin
- Section Palaeontology, Bonn Institute of Organismic Biology, Rheinische Friedrich-Wilhelms-Universität Bonn, Bonn, Germany
| |
Collapse
|
3
|
Emken S, Witzel C, Kierdorf U, Frölich K, Kierdorf H. A labeling study of dentin formation rates during crown and root growth of porcine mandibular first molars. Anat Rec (Hoboken) 2024; 307:2103-2120. [PMID: 38051150 DOI: 10.1002/ar.25358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2023] [Revised: 11/14/2023] [Accepted: 11/15/2023] [Indexed: 12/07/2023]
Abstract
We used fluorochrome labeling to study spatiotemporal variation of dentin apposition (DAR) and extension (DER) rates during crown and root formation of mandibular first molars from wild boar and domestic pigs. DAR was reconstructed along the course of dentinal tubules in four zones of the crown and in the upper root area. In all five zones, mean DAR increased during the first 30% to 40% of apposition, reaching highest values (22-23 μm/day) in the upper-lateral crown zone. Lowest values were recorded near the dentin-pulp interface (DPI). Typically, DARs in contemporaneously formed dentin areas were higher in more cuspally compared to more cervically/apically located zones. DER was high (>200 μm/day) in early postnatal crown dentin and then decreased markedly in cervical direction, with lowest values in the cervical crown zone. After this nadir, DER sharply increased in the upper 30% to 40% of the root extension, reaching values equaling (wild boar) or even surpassing (domestic pigs) those recorded in the upper lateral crown. After this peak, DER again decreased. While DAR did not differ markedly between wild boar and domestic pigs, the DER showed marked differences, both regarding maximum values (208.1 μm/day in wild boar, 272.2 μm/day in domestic pigs) and the timing of the root growth spurt, which occurred earlier in the domestic pigs. We consider the more rapid recruitment of secretory odontoblasts in domestic pigs (reflected by higher DER) a side effect of selection for rapid body growth during pig domestication.
Collapse
Affiliation(s)
- Simon Emken
- Department of Biology, University of Hildesheim, Hildesheim, Germany
| | - Carsten Witzel
- Department of Biology, University of Hildesheim, Hildesheim, Germany
| | - Uwe Kierdorf
- Department of Biology, University of Hildesheim, Hildesheim, Germany
| | - Kai Frölich
- Department of Biology, University of Hildesheim, Hildesheim, Germany
- Tierpark Arche Warder e.V., Warder, Germany
| | - Horst Kierdorf
- Department of Biology, University of Hildesheim, Hildesheim, Germany
| |
Collapse
|
4
|
de Magalhães JP. The longevity bottleneck hypothesis: Could dinosaurs have shaped ageing in present-day mammals? Bioessays 2024; 46:e2300098. [PMID: 38018264 DOI: 10.1002/bies.202300098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 11/01/2023] [Accepted: 11/02/2023] [Indexed: 11/30/2023]
Abstract
The evolution and biodiversity of ageing have long fascinated scientists and the public alike. While mammals, including long-lived species such as humans, show a marked ageing process, some species of reptiles and amphibians exhibit very slow and even the absence of ageing phenotypes. How can reptiles and other vertebrates age slower than mammals? Herein, I propose that evolving during the rule of the dinosaurs left a lasting legacy in mammals. For over 100 million years when dinosaurs were the dominant predators, mammals were generally small, nocturnal, and short-lived. My hypothesis is that such a long evolutionary pressure on early mammals for rapid reproduction led to the loss or inactivation of genes and pathways associated with long life. I call this the 'longevity bottleneck hypothesis', which is further supported by the absence in mammals of regenerative traits. Although mammals, such as humans, can evolve long lifespans, they do so under constraints dating to the dinosaur era.
Collapse
Affiliation(s)
- João Pedro de Magalhães
- Genomics of Ageing and Rejuvenation Lab, Institute of Inflammation and Ageing, University of Birmingham, Birmingham, UK
| |
Collapse
|
5
|
White HE, Tucker AS, Fernandez V, Portela Miguez R, Hautier L, Herrel A, Urban DJ, Sears KE, Goswami A. Pedomorphosis in the ancestry of marsupial mammals. Curr Biol 2023:S0960-9822(23)00457-8. [PMID: 37119816 DOI: 10.1016/j.cub.2023.04.009] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 02/27/2023] [Accepted: 04/05/2023] [Indexed: 05/01/2023]
Abstract
Within mammals, different reproductive strategies (e.g., egg laying, live birth of extremely underdeveloped young, and live birth of well-developed young) have been linked to divergent evolutionary histories. How and when developmental variation across mammals arose is unclear. While egg laying is unquestionably considered the ancestral state for all mammals, many long-standing biases treat the extreme underdeveloped state of marsupial young as the ancestral state for therian mammals (clade including both marsupials and placentals), with the well-developed young of placentals often considered the derived mode of development. Here, we quantify mammalian cranial morphological development and estimate ancestral patterns of cranial shape development using geometric morphometric analysis of the largest comparative ontogenetic dataset of mammals to date (165 specimens, 22 species). We identify a conserved region of cranial morphospace for fetal specimens, after which cranial morphology diversified through ontogeny in a cone-shaped pattern. This cone-shaped pattern of development distinctively reflected the upper half of the developmental hourglass model. Moreover, cranial morphological variation was found to be significantly associated with the level of development (position on the altricial-precocial spectrum) exhibited at birth. Estimation of ancestral state allometry (size-related shape change) reconstructs marsupials as pedomorphic relative to the ancestral therian mammal. In contrast, the estimated allometries for the ancestral placental and ancestral therian were indistinguishable. Thus, from our results, we hypothesize that placental mammal cranial development most closely reflects that of the ancestral therian mammal, while marsupial cranial development represents a more derived mode of mammalian development, in stark contrast to many interpretations of mammalian evolution.
Collapse
Affiliation(s)
- Heather E White
- Science Department, Natural History Museum, Cromwell Road, London SW7 5BD, UK; Centre for Craniofacial and Regenerative Biology, King's College London, Great Maze Pond, London SE1 9RT, UK; Division of Biosciences, University College London, Gower Street, London WC1E 6DE, UK.
| | - Abigail S Tucker
- Centre for Craniofacial and Regenerative Biology, King's College London, Great Maze Pond, London SE1 9RT, UK
| | - Vincent Fernandez
- European Synchrotron Radiation Facility, 71 rue des Martyrs, 38000 Grenoble, France
| | | | - Lionel Hautier
- Science Department, Natural History Museum, Cromwell Road, London SW7 5BD, UK; Institut des Sciences de l'Evolution, Université de Montpellier, CNRS, IRD, EPHE, Montpellier 34095, France
| | - Anthony Herrel
- UMR 7179, Centre National de la Recherche Scientifique/Muséum National d'Histoire Naturelle, Département Adaptations du Vivant, 55 rue Buffon, 75005 Paris, France
| | - Daniel J Urban
- Institute of Genomic Biology, University of Illinois, Urbana, IL 61801, USA
| | - Karen E Sears
- Department of Ecology and Evolutionary Biology, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Anjali Goswami
- Science Department, Natural History Museum, Cromwell Road, London SW7 5BD, UK; Division of Biosciences, University College London, Gower Street, London WC1E 6DE, UK
| |
Collapse
|
6
|
Smith TM, Arora M, Bharatiya M, Dirks W, Austin C. Brief Communication: Elemental Models of Primate Nursing and Weaning Revisited. AMERICAN JOURNAL OF BIOLOGICAL ANTHROPOLOGY 2023; 180:216-223. [PMID: 37406034 PMCID: PMC10099337 DOI: 10.1002/ajpa.24655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Revised: 10/25/2022] [Accepted: 11/01/2022] [Indexed: 07/07/2023]
Abstract
Objectives Intra-tooth patterns of trace elements barium (Ba) and strontium (Sr) have been used to infer human and nonhuman primate nursing histories, including australopithecine and Neanderthal juveniles. Here we contrast the two elemental models in first molars (M1s) of four wild baboons and explore the assumptions that underlie each. Materials and Methods Laser ablation-inductively coupled plasma-mass spectrometry (LA-ICP-MS) was employed to create comprehensive calcium-normalized barium and strontium (Ba/Ca, Sr/Ca) maps of M1 enamel and dentine at 35 micron resolution. Results Postnatal Ba/Ca values were typically high, peaking ~0.5 years of age and then decreasing throughout M1 crown formation; all four individuals showed minimal Ba/Ca values between ~1.2-1.8 years, consistent with field reports of the cessation of suckling. Enamel Sr/Ca did not support patterns of previous LA-ICP-MS spot sampling as the enamel rarely showed discrete Sr/Ca secretory zonation. Increases in Sr/Ca appeared in coronal dentine beginning ~0.3 years, with varied peak value ages (~0.7-2.7 years) and no evidence of a predicted postweaning decline. Discussion Inferences of baboon weaning ages from initial Ba/Ca minima are more congruent with behavioral observations than Sr/Ca maxima; this is consistent with studies of captive macaques of known weaning ages. Elemental variation is more apparent in the coronal dentine than the enamel of these baboons, which may relate to its more rapid mineralization and protection from the oral environment. Inferences of nursing histories from enamel Sr/Ca patterns alone should be reconsidered, and elevated values of Ba/Ca and Sr/Ca in teeth formed after weaning require further study.
Collapse
Affiliation(s)
- Tanya M. Smith
- Griffith Centre for Social and Cultural ResearchGriffith UniversityNathanAustralia
- Australian Research Centre for Human EvolutionGriffith UniversityNathanAustralia
| | - Manish Arora
- Department of Environmental Medicine and Public HealthIcahn School of Medicine at Mount SinaiNew YorkNew YorkUSA
| | - Maya Bharatiya
- Griffith Centre for Social and Cultural ResearchGriffith UniversityNathanAustralia
- Australian Research Centre for Human EvolutionGriffith UniversityNathanAustralia
| | - Wendy Dirks
- Department of AnthropologyDurham UniversityDurhamUK
| | - Christine Austin
- Department of Environmental Medicine and Public HealthIcahn School of Medicine at Mount SinaiNew YorkNew YorkUSA
| |
Collapse
|