1
|
Hör J. Advancing RNA phage biology through meta-omics. Nucleic Acids Res 2025; 53:gkaf314. [PMID: 40263712 PMCID: PMC12014289 DOI: 10.1093/nar/gkaf314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2025] [Revised: 04/03/2025] [Accepted: 04/10/2025] [Indexed: 04/24/2025] Open
Abstract
Bacteriophages with RNA genomes are among the simplest biological entities on Earth. Since their discovery in the 1960s, they have been used as important models to understand the principal processes of life, including translation and the genetic code. While RNA phages were generally thought of as rare oddities in nature, meta-omics methods are rapidly changing this simplistic view by studying diverse biomes with unprecedented resolution. Metatranscriptomics dramatically expanded the number of known RNA phages from tens to tens of thousands, revealed their widespread abundance, and discovered several new families of potential RNA phages with largely unknown hosts, biology, and environmental impact. At the same time, (meta)genomic analyses of bacterial hosts are discovering an arsenal of defense systems bacteria employ to protect themselves from predation, whose functions in immunity against RNA phages we are only beginning to understand. Here, I review how meta-omics approaches are advancing the field of RNA phage biology with a focus on the discovery of new RNA phages and how bacteria might fight them.
Collapse
Affiliation(s)
- Jens Hör
- Helmholtz Institute for RNA-based Infection Research (HIRI), Helmholtz Centre for Infection Research (HZI), Würzburg 97080, Germany
- Faculty of Medicine, University of Würzburg, Würzburg 97080, Germany
| |
Collapse
|
2
|
Xiao G, Shi H, Liu M, Huang M, Li S, Zhou X, Li H, Zhang G. Trans-cleavage activity of Cas12a effectors can be unleashed by both double-stranded DNA and single-stranded RNA targeting in absence of PAM. Int J Biol Macromol 2025; 309:142992. [PMID: 40222509 DOI: 10.1016/j.ijbiomac.2025.142992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2024] [Revised: 03/27/2025] [Accepted: 04/07/2025] [Indexed: 04/15/2025]
Abstract
CRISPR-Cas12a is a powerful tool in nucleic acid detection, but the relationship between its trans-cleavage activity and protospacer adjacent motif (PAM) sequences remains incompletely understood. In this study, we synthesized diverse PAM-sequence substrates and conducted systematic cis-cleavage and trans-cleavage experiments with three Cas12a orthologs. We found that double-stranded DNA (dsDNA) can activate Cas12a's trans-cleavage activity even without PAM and this activation occurring independently of cis-cleavage. Notably, our results also revealed that single-stranded RNA (ssRNA) can directly initiate the trans-cleavage activity of Cas12a.We also experimentally validated the feasibility of CRISPR-Cas12a in detecting target dsDNA lacking PAM sequences, including identifying mutated sites in clinical samples. Structural prediction using AlphaFold 3 revealed the potential mechanism of Cas12a's PAM-independent trans-cleavage. Our research expands the understanding of Cas12a's trans-cleavage mechanism and demonstrates its potential for nucleic acid detection beyond PAM-dependent targets. This discovery broadens the application scope of Cas12a, providing new opportunities for developing highly sensitive and versatile diagnostic platforms.
Collapse
Affiliation(s)
- Guohui Xiao
- National Clinical Research Center for Infectious Diseases, Guangdong Provincial Clinical Research Center for Tuberculosis, Shenzhen Third People's Hospital, Southern University of Science and Technology, Shenzhen 518112, China
| | - Hongyu Shi
- School of Clinical Medicine, Southwest Medical University, Luzhou 646000, China
| | - Meixia Liu
- National Clinical Research Center for Infectious Diseases, Guangdong Provincial Clinical Research Center for Tuberculosis, Shenzhen Third People's Hospital, Southern University of Science and Technology, Shenzhen 518112, China
| | - Min Huang
- National Clinical Research Center for Infectious Diseases, Guangdong Provincial Clinical Research Center for Tuberculosis, Shenzhen Third People's Hospital, Southern University of Science and Technology, Shenzhen 518112, China
| | - Siqi Li
- National Clinical Research Center for Infectious Diseases, Guangdong Provincial Clinical Research Center for Tuberculosis, Shenzhen Third People's Hospital, Southern University of Science and Technology, Shenzhen 518112, China
| | - Xuefeng Zhou
- National Clinical Research Center for Infectious Diseases, Guangdong Provincial Clinical Research Center for Tuberculosis, Shenzhen Third People's Hospital, Southern University of Science and Technology, Shenzhen 518112, China
| | - Hengfei Li
- Department of Infectious Diseases, Hubei Provincial Hospital of Traditional Chinese Medicine, Wuhan 430061, China
| | - Guoliang Zhang
- National Clinical Research Center for Infectious Diseases, Guangdong Provincial Clinical Research Center for Tuberculosis, Shenzhen Third People's Hospital, Southern University of Science and Technology, Shenzhen 518112, China; School of Clinical Medicine, Southwest Medical University, Luzhou 646000, China.
| |
Collapse
|
3
|
Chen J, Chen Y, Huang L, Lin X, Chen H, Xiang W, Liu L. Trans-nuclease activity of Cas9 activated by DNA or RNA target binding. Nat Biotechnol 2025; 43:558-568. [PMID: 38811761 DOI: 10.1038/s41587-024-02255-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Accepted: 04/18/2024] [Indexed: 05/31/2024]
Abstract
Type V and type VI CRISPR-Cas systems have been shown to cleave nonspecific single-stranded DNA (ssDNA) or single-stranded RNA (ssRNA) in trans, but this has not been observed in type II CRISPR-Cas systems using single guide RNA. We show here that the type II CRISPR-Cas9 systems directed by CRISPR RNA and trans-activating CRISPR RNA dual RNAs show RuvC domain-dependent trans-cleavage activity for both ssDNA and ssRNA substrates. Cas9 possesses sequence preferences for trans-cleavage substrates, preferring to cleave T- or C-rich ssDNA substrates. We find that the trans-cleavage activity of Cas9 can be activated by target ssDNA, double-stranded DNA and ssRNA. The crystal structure of Cas9 in complex with guide RNA and target RNA provides a structural basis for the binding of target RNA to activate Cas9. Based on the trans-cleavage activity of Cas9 and nucleic acid amplification technology, we develop the nucleic acid detection platforms DNA-activated Cas9 detection and RNA-activated Cas9 detection, which are capable of detecting DNA and RNA samples with high sensitivity and specificity.
Collapse
Affiliation(s)
- Jiyun Chen
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, China
| | - Ying Chen
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, China
| | - Linglong Huang
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, China
| | - Xiaofeng Lin
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, China
| | - Hong Chen
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, China
| | - Wenwen Xiang
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, China
| | - Liang Liu
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, China.
| |
Collapse
|
4
|
Yang S, Wei Y, Quansah E, Zhang Z, Da W, Wang B, Wang K, Sun D, Tao Z, Zhang C. Cas12a is competitive for gene editing in the malaria parasites. Microb Pathog 2025; 200:107340. [PMID: 39880137 DOI: 10.1016/j.micpath.2025.107340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 01/22/2025] [Accepted: 01/25/2025] [Indexed: 01/31/2025]
Abstract
Malaria, caused by the Plasmodium parasites, has always been one of the worst infectious diseases that threaten human health, making it necessary for us to study the genetic function and physiological mechanisms of Plasmodium parasites from the molecular level to find more effective ways of addressing the increasingly pressing threat. The CRISPR (Clustered regularly interspaced short palindromic repeats)-Cas (CRISPR-associated protein) is an RNA-guided adaptive immune system, which has been extensively developed and used as a genome editing tool in many organisms, including Plasmodium parasites. However, due to the physiological characteristics and special genomic characteristics of Plasmodium parasites, most of the tools currently used for genome editing of Plasmodium parasites have not met expectations. CRISPR-Cas12a (also known as Cpf1), one of the CRISPR-Cas systems, has attracted considerable attention because of its characteristics of being used for biological diagnosis and multiple genome editing. Recent studies have shown that its unique properties fit the genetic makeup of Plasmodium parasites making it a promising tool for gene editing in these parasites. In this review, we have summarized the relevant content of the Cas12 family, especially the frequently used Cas12a, its advantages for gene editing, and the application prospects in Plasmodium parasites.
Collapse
Affiliation(s)
- Shijie Yang
- The Second Clinical Medical College, Anhui Medical University, Hefei, 230032, People's Republic of China
| | - Yiming Wei
- The Second Clinical Medical College, Anhui Medical University, Hefei, 230032, People's Republic of China
| | - Elvis Quansah
- Department of Microbiology and Parasitology, Anhui Key Laboratory of Zoonoses, School of Basic Medical Sciences, Anhui Medical University, Hefei, 230032, People's Republic of China
| | - Ziyu Zhang
- The First Clinical Medical College, Anhui Medical University, Hefei, 230032, People's Republic of China
| | - Weiran Da
- The First Clinical Medical College, Anhui Medical University, Hefei, 230032, People's Republic of China
| | - Bingjie Wang
- The First Clinical Medical College, Anhui Medical University, Hefei, 230032, People's Republic of China
| | - Kaige Wang
- The First Clinical Medical College, Anhui Medical University, Hefei, 230032, People's Republic of China
| | - Danhong Sun
- The Second Clinical Medical College, Anhui Medical University, Hefei, 230032, People's Republic of China.
| | - Zhiyong Tao
- Key Laboratory of Infection and Immunity of Anhui Higher Education Institutes, Bengbu Medical University, 2600 Donghai Avenue, Bengbu, Anhui, 233030, People's Republic of China.
| | - Chao Zhang
- Department of Microbiology and Parasitology, Anhui Key Laboratory of Zoonoses, School of Basic Medical Sciences, Anhui Medical University, Hefei, 230032, People's Republic of China.
| |
Collapse
|
5
|
Schut FT, Hallmark T, Dmytrenko O, Jackson RN, Beisel CL. Purification and in vivo, cell-free, and in vitro characterization of CRISPR-Cas12a2. Methods Enzymol 2025; 712:143-181. [PMID: 40121071 DOI: 10.1016/bs.mie.2025.01.032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/25/2025]
Abstract
The CRISPR-associated (Cas) nuclease Cas12a2 from Sulfuricurvum sp. PC08-66 (SuCas12a2) binds RNA targets with a complementary guide (g)RNA. Target RNA binding causes a major conformational rearrangement in Cas12a2 that activates a RuvC nuclease domain to collaterally cleave RNA, ssDNA and dsDNA, arresting growth and providing population-level immunity. Here, we report in vivo, cell-free, and in vitro methods to characterize the collateral cleavage activity of SuCas12a2 as well as a procedure for gRNA design. As part of the in vivo methods, we describe how to capture growth arrest through plasmid interference and induction of an SOS DNA damage response in the bacterium Escherichia coli. We further apply cell-free transcription-translation to affirm collateral cleavage activity triggered by an expressed RNA target. Finally, as part of the in vitro methods, we describe how to purify active nuclease and subsequently conduct biochemical cleavage assays. In total, the outlined methods should accelerate the exploration of SuCas12a2 and other related Cas nucleases, revealing new features of CRISPR biology and helping develop new CRISPR technologies for molecular diagnostics and other applications.
Collapse
Affiliation(s)
- Friso T Schut
- Helmholtz Institute for RNA-based Infection Research (HIRI), Helmholtz Centre for Infection Research (HZI), Würzburg, Germany
| | - Thomson Hallmark
- Department of Chemistry and Biochemistry, Utah State University, Logan, UT, United States
| | - Oleg Dmytrenko
- Helmholtz Institute for RNA-based Infection Research (HIRI), Helmholtz Centre for Infection Research (HZI), Würzburg, Germany
| | - Ryan N Jackson
- Department of Chemistry and Biochemistry, Utah State University, Logan, UT, United States.
| | - Chase L Beisel
- Helmholtz Institute for RNA-based Infection Research (HIRI), Helmholtz Centre for Infection Research (HZI), Würzburg, Germany; Medical Faculty, University of Würzburg, Würzburg, Germany.
| |
Collapse
|
6
|
Yu H, Feng M, Liu C, Wang F, Pan S, Sui G, Jing W, Cheng X. CRISPR-Cas12a2-based rapid and sensitive detection system for target nucleic acid. Int J Biol Macromol 2025; 290:138996. [PMID: 39706401 DOI: 10.1016/j.ijbiomac.2024.138996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Revised: 11/24/2024] [Accepted: 12/17/2024] [Indexed: 12/23/2024]
Abstract
Infectious diseases are extremely important public health issues, where the design of effective, rapid, and convenient detection platforms is critical. In this study, we coupled SuCas12a2, a novel Cas12 family RNA-targeting nuclease, with conventional PCR and recombinase polymerase amplification (RPA), respectively, to develop novel detection approaches, named PCR-SuCas12a2 and RPA-SuCas12a2. SuCas12a2 possesses collateral cleavage activity and cuts the additional single-stranded RNA (ssRNA) added to the reaction system once the ternary complex RNA-SuCas12a2-CRISPR RNA (crRNA) is formed. SuCas12a2 is specifically activated, where the cleaved fluorescent-labeled probes release fluorescent signals, with the strength of the fluorescent signal being proportional to the concentration of nucleic acids specifically bound to crRNA. Simultaneous transcription and SuCas12a2 detection can be performed in a single tube by introducing the T7 promoter sequence into the forward primer. Entamoeba histolytica (E. histolytica) and Mycoplasma pneumoniae (M. pneumoniae) were used as proof specimens to evaluate the performance of the platform. PCR-SuCas12a2 has excellent capabilities, including high specificity with no cross-reactivity from other species and ultra-sensitivity that achieves a detection of one copy per reaction for E. histolytica and M. pneumoniae. However, the sensitivity of the RPA-SuCas12a2 assay was 102 copies per reaction, which was inferior to PCR-SuCas12a2. Clinical samples were obtained from suspected infection patients of E. histolytica and M. pneumoniae, and used to evaluate the systems demonstrated 100 % specificity. The technique shows robust performance and suggests great potential for point-of-care testing of other pathogens to facilitate effective management and control of the spread of diseases.
Collapse
Affiliation(s)
- Helin Yu
- Shanghai Institute of Infectious Disease and Biosecurity, Fudan University, Shanghai 200032, China; Department of Medical Microbiology and Parasitology, School of Basic Medical Sciences, Fudan University, Shanghai 20032, China
| | - Meng Feng
- Department of Medical Microbiology and Parasitology, School of Basic Medical Sciences, Fudan University, Shanghai 20032, China
| | - Chuncao Liu
- Shanghai Institute of Infectious Disease and Biosecurity, Fudan University, Shanghai 200032, China; Department of Medical Microbiology and Parasitology, School of Basic Medical Sciences, Fudan University, Shanghai 20032, China
| | - Feifei Wang
- Shanghai Institute of Infectious Disease and Biosecurity, Fudan University, Shanghai 200032, China; Department of Medical Microbiology and Parasitology, School of Basic Medical Sciences, Fudan University, Shanghai 20032, China
| | - Shaokun Pan
- Shanghai Institute of Infectious Disease and Biosecurity, Fudan University, Shanghai 200032, China; Department of Medical Microbiology and Parasitology, School of Basic Medical Sciences, Fudan University, Shanghai 20032, China
| | - Guodong Sui
- Department of Environmental Science and Engineering, Fudan University, Shanghai 200438, China
| | - Wenwen Jing
- Department of Medical Microbiology and Parasitology, School of Basic Medical Sciences, Fudan University, Shanghai 20032, China.
| | - Xunjia Cheng
- Shanghai Institute of Infectious Disease and Biosecurity, Fudan University, Shanghai 200032, China; Department of Medical Microbiology and Parasitology, School of Basic Medical Sciences, Fudan University, Shanghai 20032, China.
| |
Collapse
|
7
|
Baca CF, Marraffini LA. Nucleic acid recognition during prokaryotic immunity. Mol Cell 2025; 85:309-322. [PMID: 39824170 PMCID: PMC11750177 DOI: 10.1016/j.molcel.2024.12.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Revised: 12/04/2024] [Accepted: 12/09/2024] [Indexed: 01/20/2025]
Abstract
Parasitic elements often spread to hosts through the delivery of their nucleic acids to the recipient. This is particularly true for the primary parasites of bacteria, bacteriophages (phages) and plasmids. Although bacterial immune systems can sense a diverse set of infection signals, such as a protein unique to the invader or the disruption of natural host processes, phage and plasmid nucleic acids represent some of the most common molecules that are recognized as foreign to initiate defense. In this review, we will discuss the various elements of invader nucleic acids that can be distinguished by bacterial host immune systems as "non-self" and how this signal is relayed to activate an immune response.
Collapse
Affiliation(s)
- Christian F Baca
- Laboratory of Bacteriology, The Rockefeller University, New York, NY 10065, USA; Tri-Institutional PhD Program in Chemical Biology, Weill Cornell Medical College, Rockefeller University and Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA.
| | - Luciano A Marraffini
- Laboratory of Bacteriology, The Rockefeller University, New York, NY 10065, USA; Howard Hughes Medical Institute, The Rockefeller University, New York, NY 10065, USA.
| |
Collapse
|
8
|
Chen L, Hu M, Zhou X. Trends in developing one-pot CRISPR diagnostics strategies. Trends Biotechnol 2025; 43:98-110. [PMID: 39095257 DOI: 10.1016/j.tibtech.2024.07.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Revised: 07/09/2024] [Accepted: 07/12/2024] [Indexed: 08/04/2024]
Abstract
The integration of nucleic acid amplification (NAA) with the CRISPR detection system has led to significant advancements and opportunities for development in molecular diagnostics. Nevertheless, the incompatibility between CRISPR cleavage and NAA has significantly impeded the commercialization of this technology. Currently, several one-pot detection strategies based on CRISPR systems have been devised to address concerns regarding aerosol contamination risk and operational complexity associated with step-by-step detection as well as the sensitivity limitation of conventional one-pot methods. In this review, we provide a comprehensive introduction and outlook of the various solutions of the one-pot CRISPR assay for practitioners who are committed to developing better CRISPR nucleic acid detection technologies to promote the progress of molecular diagnostics.
Collapse
Affiliation(s)
- Lin Chen
- School of Life sciences, South China Normal University, Guangzhou 510631, P. R. China
| | - Menglu Hu
- School of Life sciences, South China Normal University, Guangzhou 510631, P. R. China.
| | - Xiaoming Zhou
- School of Life sciences, South China Normal University, Guangzhou 510631, P. R. China; MOE Key laboratory of Laser Life Science & Guangdong Provincial Key Laboratory of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou 510631, China.
| |
Collapse
|
9
|
Aviram N, Shilton AK, Lyn NG, Reis BS, Brivanlou A, Marraffini LA. Cas10 relieves host growth arrest to facilitate spacer retention during type III-A CRISPR-Cas immunity. Cell Host Microbe 2024; 32:2050-2062.e6. [PMID: 39626678 PMCID: PMC11708336 DOI: 10.1016/j.chom.2024.11.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 10/30/2024] [Accepted: 11/05/2024] [Indexed: 12/11/2024]
Abstract
Cells from all kingdoms of life can enter growth arrest in unfavorable environmental conditions. Key to this process are mechanisms enabling recovery from this state. Staphylococcal type III-A CRISPR-Cas loci encode the Cas10 complex that uses a guide RNA to locate complementary viral transcripts and start an immune response. When the target sequence is expressed late in the viral lytic cycle, defense requires the activity of Csm6, a non-specific RNase that inhibits the growth of the infected cell. How Csm6 protects from infection and whether growth can be restored is not known. Here, we show that growth arrest provides immunity at the population level, preventing viral replication and allowing uninfected cells to propagate. In addition, the ssDNase activity of Cas10 is required for the regrowth of a subset of the arrested cells and the recovery of the infected host, presumably ending the immune response through degradation of the viral DNA.
Collapse
Affiliation(s)
- Naama Aviram
- Laboratory of Bacteriology, The Rockefeller University, 1230 York Ave., New York, NY 10065, USA.
| | - Amanda K Shilton
- Laboratory of Bacteriology, The Rockefeller University, 1230 York Ave., New York, NY 10065, USA
| | - Nia G Lyn
- Laboratory of Bacteriology, The Rockefeller University, 1230 York Ave., New York, NY 10065, USA
| | - Bernardo S Reis
- Laboratory of Mucosal Immunology, The Rockefeller University, 1230 York Ave., New York, NY 10065, USA
| | - Amir Brivanlou
- Laboratory of Bacteriology, The Rockefeller University, 1230 York Ave., New York, NY 10065, USA
| | - Luciano A Marraffini
- Laboratory of Bacteriology, The Rockefeller University, 1230 York Ave., New York, NY 10065, USA; Howard Hughes Medical Institute, The Rockefeller University, 1230 York Ave., New York, NY 10065, USA.
| |
Collapse
|
10
|
Wu WY, Adiego-Pérez B, van der Oost J. Biology and applications of CRISPR-Cas12 and transposon-associated homologs. Nat Biotechnol 2024; 42:1807-1821. [PMID: 39633151 DOI: 10.1038/s41587-024-02485-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Accepted: 10/24/2024] [Indexed: 12/07/2024]
Abstract
CRISPR-associated Cas12 proteins are a highly variable collection of nucleic acid-targeting proteins. All Cas12 variants use RNA guides and a single nuclease domain to target complementary DNA or, in rare cases, RNA. The high variability of Cas12 effectors can be explained by a series of independent evolution events from different transposon-associated TnpB-like ancestors. Despite basic structural and functional similarities, this has resulted in unprecedented variation of the Cas12 effector proteins in terms of size, domain composition, guide structure, target identity and interference strategy. In this Review, we compare the unique molecular features of natural and engineered Cas12 and TnpB variants. Furthermore, we provide an overview of established genome editing and diagnostic applications and discuss potential future directions.
Collapse
Affiliation(s)
- Wen Y Wu
- Laboratory of Microbiology, Wageningen University & Research, Wageningen, the Netherlands.
- Department of Chemical and Pharmaceutical Biology, Groningen Research Institute of Pharmacy, University of Groningen, Groningen, the Netherlands.
| | - Belén Adiego-Pérez
- Laboratory of Microbiology, Wageningen University & Research, Wageningen, the Netherlands
| | - John van der Oost
- Laboratory of Microbiology, Wageningen University & Research, Wageningen, the Netherlands.
| |
Collapse
|
11
|
Jabalera Y, Tascón I, Samperio S, López-Alonso JP, Gonzalez-Lopez M, Aransay AM, Abascal-Palacios G, Beisel CL, Ubarretxena-Belandia I, Perez-Jimenez R. A resurrected ancestor of Cas12a expands target access and substrate recognition for nucleic acid editing and detection. Nat Biotechnol 2024:10.1038/s41587-024-02461-3. [PMID: 39482449 DOI: 10.1038/s41587-024-02461-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Accepted: 10/02/2024] [Indexed: 11/03/2024]
Abstract
The properties of Cas12a nucleases constrict the range of accessible targets and their applications. In this study, we applied ancestral sequence reconstruction (ASR) to a set of Cas12a orthologs from hydrobacteria to reconstruct a common ancestor, ReChb, characterized by near-PAMless targeting and the recognition of diverse nucleic acid activators and collateral substrates. ReChb shares 53% sequence identity with the closest Cas12a ortholog but no longer requires a T-rich PAM and can achieve genome editing in human cells at sites inaccessible to the natural FnCas12a or the engineered and PAM-flexible enAsCas12a. Furthermore, ReChb can be triggered not only by double-stranded DNA but also by single-stranded RNA and DNA targets, leading to non-specific collateral cleavage of all three nucleic acid substrates with similar efficiencies. Finally, tertiary and quaternary structures of ReChb obtained by cryogenic electron microscopy reveal the molecular details underlying its expanded biophysical activities. Overall, ReChb expands the application space of Cas12a nucleases and underscores the potential of ASR for enhancing CRISPR technologies.
Collapse
Affiliation(s)
- Ylenia Jabalera
- Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Derio, Spain
| | - Igor Tascón
- Ikerbasque Foundation for Science, Bilbao, Spain
- Instituto Biofisika (UPV/EHU, CSIC), University of the Basque Country, Leioa, Spain
| | - Sara Samperio
- Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Derio, Spain
| | - Jorge P López-Alonso
- Instituto Biofisika (UPV/EHU, CSIC), University of the Basque Country, Leioa, Spain
- Basque Resource for Electron Microscopy, Leioa, Spain
| | - Monika Gonzalez-Lopez
- Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Derio, Spain
| | - Ana M Aransay
- Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Derio, Spain
- CIBERehd, ISCIII, Madrid, Spain
| | - Guillermo Abascal-Palacios
- Ikerbasque Foundation for Science, Bilbao, Spain
- Instituto Biofisika (UPV/EHU, CSIC), University of the Basque Country, Leioa, Spain
| | - Chase L Beisel
- Helmholtz Institute for RNA-based Infection Research (HIRI), Helmholtz Centre for Infection Research (HZI), Würzburg, Germany
- Medical Faculty, University of Würzburg, Würzburg, Germany
| | - Iban Ubarretxena-Belandia
- Ikerbasque Foundation for Science, Bilbao, Spain.
- Instituto Biofisika (UPV/EHU, CSIC), University of the Basque Country, Leioa, Spain.
| | - Raul Perez-Jimenez
- Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Derio, Spain.
- Ikerbasque Foundation for Science, Bilbao, Spain.
| |
Collapse
|
12
|
Wang L, Han H. Strategies for improving the genome-editing efficiency of class 2 CRISPR/Cas system. Heliyon 2024; 10:e38588. [PMID: 39397905 PMCID: PMC11471210 DOI: 10.1016/j.heliyon.2024.e38588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2024] [Revised: 09/26/2024] [Accepted: 09/26/2024] [Indexed: 10/15/2024] Open
Abstract
Since its advent, gene-editing technology has been widely used in microorganisms, animals, plants, and other species. This technology shows remarkable application prospects, giving rise to a new biotechnological industry. In particular, third-generation gene editing technology, represented by the CRISPR/Cas9 system, has become the mainstream gene editing technology owing to its advantages of high efficiency, simple operation, and low cost. These systems can be widely used because they have been modified and optimized, leading to notable improvements in the efficiency of gene editing. This review introduces the characteristics of popular CRISPR/Cas systems and optimization methods aimed at improving the editing efficiency of class 2 CRISPR/Cas systems, providing a reference for the development of superior gene editing systems. Additionally, the review discusses the development and optimization of base editors, primer editors, gene activation and repression tools, as well as the advancement and refinement of compact systems such as IscB, TnpB, Fanzor, and Cas12f.
Collapse
Affiliation(s)
- Linli Wang
- Frontiers Science Center for Molecular Design Breeding (MOE), China Agricultural University, Beijing, 100193, China
- Beijing Key Laboratory of Animal Genetic Improvement, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
- Key Laboratory of Animal Genetics, Breeding and Reproduction of the Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Hongbing Han
- Frontiers Science Center for Molecular Design Breeding (MOE), China Agricultural University, Beijing, 100193, China
- Beijing Key Laboratory of Animal Genetic Improvement, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
- Key Laboratory of Animal Genetics, Breeding and Reproduction of the Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| |
Collapse
|
13
|
Olijslager L, Weijers D, Swarts D. Distribution of specific prokaryotic immune systems correlates with host optimal growth temperature. NAR Genom Bioinform 2024; 6:lqae105. [PMID: 39165676 PMCID: PMC11333966 DOI: 10.1093/nargab/lqae105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 07/15/2024] [Accepted: 08/02/2024] [Indexed: 08/22/2024] Open
Abstract
Prokaryotes encode an arsenal of highly diverse immune systems to protect themselves against invading nucleic acids such as viruses, plasmids and transposons. This includes invader-interfering systems that neutralize invaders to protect their host, and abortive-infection systems, which trigger dormancy or cell death in their host to offer population-level immunity. Most prokaryotic immune systems are found across different environments and prokaryotic phyla, but their distribution appears biased and the factors that influence their distribution are largely unknown. Here, we compared and combined the prokaryotic immune system identification tools DefenseFinder and PADLOC to obtain an expanded view of the immune system arsenal. Our results show that the number of immune systems encoded is positively correlated with genome size and that the distribution of specific immune systems is linked to phylogeny. Furthermore, we reveal that certain invader-interfering systems are more frequently encoded by hosts with a relatively high optimum growth temperature, while abortive-infection systems are generally more frequently encoded by hosts with a relatively low optimum growth temperature. Combined, our study reveals several factors that correlate with differences in the distribution of prokaryotic immune systems and extends our understanding of how prokaryotes protect themselves from invaders in different environments.
Collapse
Affiliation(s)
- Lisa H Olijslager
- Laboratory of Biochemistry, Wageningen University, Wageningen, Stippeneng 4, 6708WE, the Netherlands
| | - Dolf Weijers
- Laboratory of Biochemistry, Wageningen University, Wageningen, Stippeneng 4, 6708WE, the Netherlands
| | - Daan C Swarts
- Laboratory of Biochemistry, Wageningen University, Wageningen, Stippeneng 4, 6708WE, the Netherlands
| |
Collapse
|
14
|
Cheng K, Sun Y, Yu H, Hu Y, He Y, Shen Y. Staphylococcus aureus SOS response: Activation, impact, and drug targets. MLIFE 2024; 3:343-366. [PMID: 39359682 PMCID: PMC11442139 DOI: 10.1002/mlf2.12137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 03/17/2024] [Accepted: 04/10/2024] [Indexed: 10/04/2024]
Abstract
Staphylococcus aureus is a common cause of diverse infections, ranging from superficial to invasive, affecting both humans and animals. The widespread use of antibiotics in clinical treatments has led to the emergence of antibiotic-resistant strains and small colony variants. This surge presents a significant challenge in eliminating infections and undermines the efficacy of available treatments. The bacterial Save Our Souls (SOS) response, triggered by genotoxic stressors, encompasses host immune defenses and antibiotics, playing a crucial role in bacterial survival, invasiveness, virulence, and drug resistance. Accumulating evidence underscores the pivotal role of the SOS response system in the pathogenicity of S. aureus. Inhibiting this system offers a promising approach for effective bactericidal treatments and curbing the evolution of antimicrobial resistance. Here, we provide a comprehensive review of the activation, impact, and key proteins associated with the SOS response in S. aureus. Additionally, perspectives on therapeutic strategies targeting the SOS response for S. aureus, both individually and in combination with traditional antibiotics are proposed.
Collapse
Affiliation(s)
- Kaiying Cheng
- Zhejiang Key Laboratory of Medical Epigenetics, Department of Immunology and Pathogen Biology, School of Basic Medical Sciences, Affiliated Hospital of Hangzhou Normal UniversityHangzhou Normal UniversityHangzhouChina
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of MedicineZhejiang UniversityHangzhouChina
| | - Yukang Sun
- Zhejiang Key Laboratory of Medical Epigenetics, Department of Immunology and Pathogen Biology, School of Basic Medical Sciences, Affiliated Hospital of Hangzhou Normal UniversityHangzhou Normal UniversityHangzhouChina
| | - Huan Yu
- Zhejiang Key Laboratory of Medical Epigenetics, Department of Immunology and Pathogen Biology, School of Basic Medical Sciences, Affiliated Hospital of Hangzhou Normal UniversityHangzhou Normal UniversityHangzhouChina
| | - Yingxuan Hu
- Zhejiang Key Laboratory of Medical Epigenetics, Department of Immunology and Pathogen Biology, School of Basic Medical Sciences, Affiliated Hospital of Hangzhou Normal UniversityHangzhou Normal UniversityHangzhouChina
| | - Yini He
- Zhejiang Key Laboratory of Medical Epigenetics, Department of Immunology and Pathogen Biology, School of Basic Medical Sciences, Affiliated Hospital of Hangzhou Normal UniversityHangzhou Normal UniversityHangzhouChina
| | - Yuanyuan Shen
- Zhejiang Key Laboratory of Medical Epigenetics, Department of Immunology and Pathogen Biology, School of Basic Medical Sciences, Affiliated Hospital of Hangzhou Normal UniversityHangzhou Normal UniversityHangzhouChina
| |
Collapse
|
15
|
Jiao C, Peeck NL, Yu J, Ghaem Maghami M, Kono S, Collias D, Martinez Diaz SL, Larose R, Beisel CL. TracrRNA reprogramming enables direct PAM-independent detection of RNA with diverse DNA-targeting Cas12 nucleases. Nat Commun 2024; 15:5909. [PMID: 39003282 PMCID: PMC11246509 DOI: 10.1038/s41467-024-50243-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Accepted: 07/04/2024] [Indexed: 07/15/2024] Open
Abstract
Many CRISPR-Cas immune systems generate guide (g)RNAs using trans-activating CRISPR RNAs (tracrRNAs). Recent work revealed that Cas9 tracrRNAs could be reprogrammed to convert any RNA-of-interest into a gRNA, linking the RNA's presence to Cas9-mediated cleavage of double-stranded (ds)DNA. Here, we reprogram tracrRNAs from diverse Cas12 nucleases, linking the presence of an RNA-of-interest to dsDNA cleavage and subsequent collateral single-stranded DNA cleavage-all without the RNA necessarily encoding a protospacer-adjacent motif (PAM). After elucidating nuclease-specific design rules, we demonstrate PAM-independent RNA detection with Cas12b, Cas12e, and Cas12f nucleases. Furthermore, rationally truncating the dsDNA target boosts collateral cleavage activity, while the absence of a gRNA reduces background collateral activity and enhances sensitivity. Finally, we apply this platform to detect 16 S rRNA sequences from five different bacterial pathogens using a universal reprogrammed tracrRNA. These findings extend tracrRNA reprogramming to diverse dsDNA-targeting Cas12 nucleases, expanding the flexibility and versatility of CRISPR-based RNA detection.
Collapse
Affiliation(s)
- Chunlei Jiao
- Helmholtz Institute for RNA-based Infection Research (HIRI), Helmholtz-Centre for Infection Research (HZI), Würzburg, Germany
| | - Natalia L Peeck
- Helmholtz Institute for RNA-based Infection Research (HIRI), Helmholtz-Centre for Infection Research (HZI), Würzburg, Germany
| | - Jiaqi Yu
- Helmholtz Institute for RNA-based Infection Research (HIRI), Helmholtz-Centre for Infection Research (HZI), Würzburg, Germany
| | - Mohammad Ghaem Maghami
- Helmholtz Institute for RNA-based Infection Research (HIRI), Helmholtz-Centre for Infection Research (HZI), Würzburg, Germany
| | - Sarah Kono
- Helmholtz Institute for RNA-based Infection Research (HIRI), Helmholtz-Centre for Infection Research (HZI), Würzburg, Germany
| | - Daphne Collias
- Helmholtz Institute for RNA-based Infection Research (HIRI), Helmholtz-Centre for Infection Research (HZI), Würzburg, Germany
| | - Sandra L Martinez Diaz
- Helmholtz Institute for RNA-based Infection Research (HIRI), Helmholtz-Centre for Infection Research (HZI), Würzburg, Germany
| | - Rachael Larose
- Helmholtz Institute for RNA-based Infection Research (HIRI), Helmholtz-Centre for Infection Research (HZI), Würzburg, Germany
| | - Chase L Beisel
- Helmholtz Institute for RNA-based Infection Research (HIRI), Helmholtz-Centre for Infection Research (HZI), Würzburg, Germany.
- Medical Faculty, University of Würzburg, Würzburg, Germany.
| |
Collapse
|
16
|
Krsek A, Baticic L, Sotosek V, Braut T. The Role of Biomarkers in HPV-Positive Head and Neck Squamous Cell Carcinoma: Towards Precision Medicine. Diagnostics (Basel) 2024; 14:1448. [PMID: 39001338 PMCID: PMC11241541 DOI: 10.3390/diagnostics14131448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 07/03/2024] [Accepted: 07/04/2024] [Indexed: 07/16/2024] Open
Abstract
Head and neck cancer (HNC) represents a significant global health challenge, with squamous cell carcinomas (SCCs) accounting for approximately 90% of all HNC cases. These malignancies, collectively referred to as head and neck squamous cell carcinoma (HNSCC), originate from the mucosal epithelium lining the larynx, pharynx, and oral cavity. The primary risk factors associated with HNSCC in economically disadvantaged nations have been chronic alcohol consumption and tobacco use. However, in more affluent countries, the landscape of HNSCC has shifted with the identification of human papillomavirus (HPV) infection, particularly HPV-16, as a major risk factor, especially among nonsmokers. Understanding the evolving risk factors and the distinct biological behaviors of HPV-positive and HPV-negative HNSCC is critical for developing targeted treatment strategies and improving patient outcomes in this complex and diverse group of cancers. Accurate diagnosis of HPV-positive HNSCC is essential for developing a comprehensive model that integrates the molecular characteristics, immune microenvironment, and clinical outcomes. The aim of this comprehensive review was to summarize the current knowledge and advances in the identification of DNA, RNA, and protein biomarkers in bodily fluids and tissues that have introduced new possibilities for minimally or non-invasive cancer diagnosis, monitoring, and assessment of therapeutic responses.
Collapse
Affiliation(s)
- Antea Krsek
- Faculty of Medicine, University of Rijeka, 51000 Rijeka, Croatia;
| | - Lara Baticic
- Department of Medical Chemistry, Biochemistry and Clinical Chemistry, Faculty of Medicine, University of Rijeka, 51000 Rijeka, Croatia
| | - Vlatka Sotosek
- Department of Clinical Medical Sciences I, Faculty of Health Studies, University of Rijeka, 51000 Rijeka, Croatia;
- Department of Anesthesiology, Reanimatology, Emergency and Intensive Care Medicine, Faculty of Medicine, University of Rijeka, 51000 Rijeka, Croatia
| | - Tamara Braut
- Department of Otorhinolaryngology and Head and Neck Surgery, Clinical Hospital Centre Rijeka, 51000 Rijeka, Croatia;
| |
Collapse
|
17
|
Zhou S, Ran J, Man S, Zhang J, Yuan R, Yang X. Exploring the Effect of Steric Hindrance on Trans-cleavage Activity of CRISPR-cas12a for Ultrasensitive SERS Detection of P53 DNA. Anal Chem 2024; 96:10654-10661. [PMID: 38875020 DOI: 10.1021/acs.analchem.4c01347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2024]
Abstract
The trans-cleavage properties of Cas12a make it important for gene editing and disease diagnosis. In this work, the effect of spatial site resistance on the trans-cleavage activity of Cas12a was studied. First, we have explored the cutting effect of Cas12a when different-sized nanoparticles are linked with various spacings of DNA strands using the fluorescence method. The minimum spacing with different-sized nanoparticles that cas12a can cut was determined. We found that when the size of the nanoparticles increases, the minimum spacing that cas12a can cut gradually increases. Subsequently, we verified the conclusion using the surface-enhanced Raman scattering (SERS) method, and at the same time, we designed a SERS biosensor that can achieve ultrasensitive detection of P53 DNA with a linear range of 1 fM-10 nM and a limit of detection of 0.40 fM. Our work develops a deep study of the trans-cleavage activity of Cas12a and gives a guide for DNA design in cas12a-related studies, which can be applied in biomedical analysis and other fields.
Collapse
Affiliation(s)
- Shixin Zhou
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, PR China
| | - Jinzhuo Ran
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, PR China
| | - Shanyou Man
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, PR China
| | - Jiale Zhang
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, PR China
| | - Ruo Yuan
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, PR China
| | - Xia Yang
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, PR China
| |
Collapse
|
18
|
Vialetto E, Miele S, Goren MG, Yu J, Yu Y, Collias D, Beamud B, Osbelt L, Lourenço M, Strowig T, Brisse S, Barquist L, Qimron U, Bikard D, Beisel C. Systematic interrogation of CRISPR antimicrobials in Klebsiella pneumoniae reveals nuclease-, guide- and strain-dependent features influencing antimicrobial activity. Nucleic Acids Res 2024; 52:6079-6091. [PMID: 38661215 PMCID: PMC11162776 DOI: 10.1093/nar/gkae281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 03/24/2024] [Accepted: 04/03/2024] [Indexed: 04/26/2024] Open
Abstract
CRISPR-Cas systems can be utilized as programmable-spectrum antimicrobials to combat bacterial infections. However, how CRISPR nucleases perform as antimicrobials across target sites and strains remains poorly explored. Here, we address this knowledge gap by systematically interrogating the use of CRISPR antimicrobials using multidrug-resistant and hypervirulent strains of Klebsiella pneumoniae as models. Comparing different Cas nucleases, DNA-targeting nucleases outperformed RNA-targeting nucleases based on the tested targets. Focusing on AsCas12a that exhibited robust targeting across different strains, we found that the elucidated modes of escape varied widely, restraining opportunities to enhance killing. We also encountered individual guide RNAs yielding different extents of clearance across strains, which were linked to an interplay between improper gRNA folding and strain-specific DNA repair and survival. To explore features that could improve targeting across strains, we performed a genome-wide screen in different K. pneumoniae strains that yielded guide design rules and trained an algorithm for predicting guide efficiency. Finally, we showed that Cas12a antimicrobials can be exploited to eliminate K. pneumoniae when encoded in phagemids delivered by T7-like phages. Altogether, our results highlight the importance of evaluating antimicrobial activity of CRISPR antimicrobials across relevant strains and define critical parameters for efficient CRISPR-based targeting.
Collapse
Affiliation(s)
- Elena Vialetto
- Helmholtz Institute for RNA-based Infection Research (HIRI), Helmholtz Centre for Infection Research (HZI), 97080 Würzburg, Germany
| | - Solange Miele
- Institut Pasteur, Université Paris Cité, Synthetic Biology, Paris, France
| | - Moran G Goren
- Faculty of Medicine, Tel Aviv University, 69978 Tel Aviv, Israel
| | - Jiaqi Yu
- Helmholtz Institute for RNA-based Infection Research (HIRI), Helmholtz Centre for Infection Research (HZI), 97080 Würzburg, Germany
| | - Yanying Yu
- Helmholtz Institute for RNA-based Infection Research (HIRI), Helmholtz Centre for Infection Research (HZI), 97080 Würzburg, Germany
| | - Daphne Collias
- Helmholtz Institute for RNA-based Infection Research (HIRI), Helmholtz Centre for Infection Research (HZI), 97080 Würzburg, Germany
| | - Beatriz Beamud
- Institut Pasteur, Université Paris Cité, Synthetic Biology, Paris, France
| | - Lisa Osbelt
- Helmholtz Centre for Infection Research (HZI), 38124 Braunschweig, Germany
- German Center for Infection Research (DZIF), partner site Hannover-Braunschweig, 38124 Braunschweig, Germany
| | - Marta Lourenço
- Institut Pasteur, Université Paris Cité, Biodiversity and Epidemiology of Bacterial Pathogens, Paris, France
| | - Till Strowig
- Helmholtz Centre for Infection Research (HZI), 38124 Braunschweig, Germany
- German Center for Infection Research (DZIF), partner site Hannover-Braunschweig, 38124 Braunschweig, Germany
| | - Sylvain Brisse
- Institut Pasteur, Université Paris Cité, Biodiversity and Epidemiology of Bacterial Pathogens, Paris, France
| | - Lars Barquist
- Helmholtz Institute for RNA-based Infection Research (HIRI), Helmholtz Centre for Infection Research (HZI), 97080 Würzburg, Germany
- Department of Biology, University of Toronto Mississauga, Mississauga, Ontario L5L 1C6, Canada
- University of Würzburg, Medical Faculty, 97080 Würzburg, Germany
| | - Udi Qimron
- Faculty of Medicine, Tel Aviv University, 69978 Tel Aviv, Israel
| | - David Bikard
- Institut Pasteur, Université Paris Cité, Synthetic Biology, Paris, France
| | - Chase L Beisel
- Helmholtz Institute for RNA-based Infection Research (HIRI), Helmholtz Centre for Infection Research (HZI), 97080 Würzburg, Germany
- University of Würzburg, Medical Faculty, 97080 Würzburg, Germany
| |
Collapse
|
19
|
Nemudraia A, Nemudryi A, Wiedenheft B. Repair of CRISPR-guided RNA breaks enables site-specific RNA excision in human cells. Science 2024; 384:808-814. [PMID: 38662916 PMCID: PMC11175973 DOI: 10.1126/science.adk5518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Accepted: 04/14/2024] [Indexed: 05/07/2024]
Abstract
Genome editing with CRISPR RNA-guided endonucleases generates DNA breaks that are resolved by cellular DNA repair machinery. However, analogous methods to manipulate RNA remain unavailable. We show that site-specific RNA breaks generated with type-III CRISPR complexes are repaired in human cells and that this repair can be used for programmable deletions in human transcripts to restore gene function. Collectively, this work establishes a technology for precise RNA manipulation with potential therapeutic applications.
Collapse
Affiliation(s)
- Anna Nemudraia
- Department of Microbiology and Cell Biology, Montana State University; Bozeman, MT, 59717, USA
| | - Artem Nemudryi
- Department of Microbiology and Cell Biology, Montana State University; Bozeman, MT, 59717, USA
| | - Blake Wiedenheft
- Department of Microbiology and Cell Biology, Montana State University; Bozeman, MT, 59717, USA
| |
Collapse
|
20
|
Zhang J, Li Z, Guo C, Guan X, Avery L, Banach D, Liu C. Intrinsic RNA Targeting Triggers Indiscriminate DNase Activity of CRISPR-Cas12a. Angew Chem Int Ed Engl 2024; 63:e202403123. [PMID: 38516796 PMCID: PMC11073899 DOI: 10.1002/anie.202403123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 03/18/2024] [Accepted: 03/19/2024] [Indexed: 03/23/2024]
Abstract
The CRISPR-Cas12a system has emerged as a powerful tool for next-generation nucleic acid-based molecular diagnostics. However, it has long been believed to be effective only on DNA targets. Here, we investigate the intrinsic RNA-enabled trans-cleavage activity of AsCas12a and LbCas12a and discover that they can be directly activated by full-size RNA targets, although LbCas12a exhibits weaker trans-cleavage activity than AsCas12a on both single-stranded DNA and RNA substrates. Remarkably, we find that the RNA-activated Cas12a possesses higher specificity in recognizing mutated target sequences compared to DNA activation. Based on these findings, we develop the "Universal Nuclease for Identification of Virus Empowered by RNA-Sensing" (UNIVERSE) assay for nucleic acid testing. We incorporate a T7 transcription step into this assay, thereby eliminating the requirement for a protospacer adjacent motif (PAM) sequence in the target. Additionally, we successfully detect multiple PAM-less targets in HIV clinical samples that are undetectable by the conventional Cas12a assay based on double-stranded DNA activation, demonstrating unrestricted target selection with the UNIVERSE assay. We further validate the clinical utility of the UNIVERSE assay by testing both HIV RNA and HPV 16 DNA in clinical samples. We envision that the intrinsic RNA targeting capability may bring a paradigm shift in Cas12a-based nucleic acid detection and further enhance the understanding of CRISPR-Cas biochemistry.
Collapse
Affiliation(s)
- Jiongyu Zhang
- Department of Biomedical Engineering, University of Connecticut Health Center, Farmington, Connecticut 06030, United States
- Department of Biomedical Engineering, University of Connecticut, Storrs, Connecticut 06269, United States
| | - Ziyue Li
- Department of Biomedical Engineering, University of Connecticut Health Center, Farmington, Connecticut 06030, United States
- Department of Biomedical Engineering, University of Connecticut, Storrs, Connecticut 06269, United States
| | - Chong Guo
- Department of Biomedical Engineering, University of Connecticut Health Center, Farmington, Connecticut 06030, United States
- Department of Biomedical Engineering, University of Connecticut, Storrs, Connecticut 06269, United States
| | - Xin Guan
- Department of Biomedical Engineering, University of Connecticut Health Center, Farmington, Connecticut 06030, United States
- Department of Biomedical Engineering, University of Connecticut, Storrs, Connecticut 06269, United States
| | - Lori Avery
- Department of Pathology and Laboratory Medicine, University of Connecticut Health Center, Farmington, Connecticut 06030, United States
| | - David Banach
- Department of Medicine, Division of Infectious Diseases, University of Connecticut Health Center, Farmington, Connecticut 06030, United States
| | - Changchun Liu
- Department of Biomedical Engineering, University of Connecticut Health Center, Farmington, Connecticut 06030, United States
| |
Collapse
|
21
|
Nalefski EA, Kooistra RM, Parikh I, Hedley S, Rajaraman K, Madan D. Determinants of CRISPR Cas12a nuclease activation by DNA and RNA targets. Nucleic Acids Res 2024; 52:4502-4522. [PMID: 38477377 PMCID: PMC11077072 DOI: 10.1093/nar/gkae152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 02/13/2024] [Accepted: 02/21/2024] [Indexed: 03/14/2024] Open
Abstract
The RNA-guided CRISPR-associated (Cas) enzyme Cas12a cleaves specific double-stranded (ds-) or single-stranded (ss-) DNA targets (in cis), unleashing non-specific ssDNA cleavage (in trans). Though this trans-activity is widely coopted for diagnostics, little is known about target determinants promoting optimal enzyme performance. Using quantitative kinetics, we show formation of activated nuclease proceeds via two steps whereby rapid binding of Cas12a ribonucleoprotein to target is followed by a slower allosteric transition. Activation does not require a canonical protospacer-adjacent motif (PAM), nor is utilization of such PAMs predictive of high trans-activity. We identify several target determinants that can profoundly impact activation times, including bases within the PAM (for ds- but not ssDNA targets) and sequences within and outside those complementary to the spacer, DNA topology, target length, presence of non-specific DNA, and ribose backbone itself, uncovering previously uncharacterized cleavage of and activation by RNA targets. The results provide insight into the mechanism of Cas12a activation, with direct implications on the role of Cas12a in bacterial immunity and for Cas-based diagnostics.
Collapse
Affiliation(s)
| | | | | | | | | | - Damian Madan
- Global Health Labs, Inc, Bellevue, WA 98007, USA
| |
Collapse
|
22
|
Yang C, Du C, Yuan F, Yu P, Wang B, Su C, Zou R, Wang J, Yan X, Sun C, Li H. CRISPR/Cas12a-derived ratiometric fluorescence sensor for high-sensitive Pb 2+ detection based on CDs@ZIF-8 and DNAzyme. Biosens Bioelectron 2024; 251:116089. [PMID: 38354496 DOI: 10.1016/j.bios.2024.116089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Revised: 12/26/2023] [Accepted: 01/28/2024] [Indexed: 02/16/2024]
Abstract
Benefiting from specific target recognition and trans-cleavage capabilities, the CRISPR/Cas12a system has great application prospects in the design of highly sensitive and rapid fluorescence biosensors. The CRISPR/Cas12a-based fluorophore-quencher molecular beacons exhibit single-color emission and are easily exposed to interference from environmental factors. Herein, we design a CRISPR/Cas12a-derived ratiometric fluorescence sensor for Pb2+ detection based on embedded carbon dots@zeolitic imidazolate framework-8 (CDs@ZIF-8) composites and DNAzyme. The functions of ZIF-8 about encapsulating red emissive CDs in the inner cavity and adsorbing DNA on the outer surface are integrated to establish dual fluorescence signals, thereby reducing the possibility of interference and improving sensing accuracy. The presence of Pb2+ is converted into the change of activator by the GR5 DNAzyme to activate the CRISPR/Cas12a system, which provides signal amplification through multiple turnovers of side branch cutting, achieving highly sensitive detection of Pb2+ with a low detection limit of 18 pM. This method has the advantages of simplicity, universality, and excellent quantitative ability, and has broad prospects in sensing applications.
Collapse
Affiliation(s)
- Chuanyu Yang
- Department of Food Quality and Safety, College of Food Science and Engineering, Jilin University, Changchun 130062, China
| | - Caiyi Du
- Department of Food Quality and Safety, College of Food Science and Engineering, Jilin University, Changchun 130062, China
| | - Feiyu Yuan
- Department of Food Quality and Safety, College of Food Science and Engineering, Jilin University, Changchun 130062, China
| | - Peitong Yu
- Department of Food Quality and Safety, College of Food Science and Engineering, Jilin University, Changchun 130062, China
| | - Boxu Wang
- Department of Food Quality and Safety, College of Food Science and Engineering, Jilin University, Changchun 130062, China
| | - Changshun Su
- Department of Food Quality and Safety, College of Food Science and Engineering, Jilin University, Changchun 130062, China
| | - Ruiqi Zou
- Department of Food Quality and Safety, College of Food Science and Engineering, Jilin University, Changchun 130062, China
| | - Junyang Wang
- Department of Food Quality and Safety, College of Food Science and Engineering, Jilin University, Changchun 130062, China
| | - Xu Yan
- College of Electronic Science and Engineering, Jilin University, Changchun 130012, China
| | - Chunyan Sun
- Department of Food Quality and Safety, College of Food Science and Engineering, Jilin University, Changchun 130062, China; Chongqing Research Institute, Jilin University, Chongqing 401123, China.
| | - Hongxia Li
- Department of Food Quality and Safety, College of Food Science and Engineering, Jilin University, Changchun 130062, China; Chongqing Research Institute, Jilin University, Chongqing 401123, China.
| |
Collapse
|
23
|
Prostova M, Kanevskaya A, Panteleev V, Lisitskaya L, Perfilova Tugaeva KV, Sluchanko NN, Esyunina D, Kulbachinskiy A. DNA-targeting short Argonautes complex with effector proteins for collateral nuclease activity and bacterial population immunity. Nat Microbiol 2024; 9:1368-1381. [PMID: 38622379 DOI: 10.1038/s41564-024-01654-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2023] [Accepted: 02/28/2024] [Indexed: 04/17/2024]
Abstract
Two prokaryotic defence systems, prokaryotic Argonautes (pAgos) and CRISPR-Cas, detect and cleave invader nucleic acids using complementary guides and the nuclease activities of pAgo or Cas proteins. However, not all pAgos are active nucleases. A large clade of short pAgos bind nucleic acid guides but lack nuclease activity, suggesting a different mechanism of action. Here we investigate short pAgos associated with a putative effector nuclease, NbaAgo from Novosphingopyxis baekryungensis and CmeAgo from Cupriavidus metallidurans. We show that these pAgos form a heterodimeric complex with co-encoded effector nucleases (short prokaryotic Argonaute, DNase and RNase associated (SPARDA)). RNA-guided target DNA recognition unleashes the nuclease activity of SPARDA leading to indiscriminate collateral cleavage of DNA and RNA. Activation of SPARDA by plasmids or phages results in degradation of cellular DNA and cell death or dormancy, conferring target-specific population protection and expanding the range of known prokaryotic immune systems.
Collapse
Affiliation(s)
- Maria Prostova
- Institute of Gene Biology, Russian Academy of Sciences, Moscow, Russia.
| | - Anna Kanevskaya
- Institute of Gene Biology, Russian Academy of Sciences, Moscow, Russia.
| | | | - Lidia Lisitskaya
- Institute of Gene Biology, Russian Academy of Sciences, Moscow, Russia
| | - Kristina V Perfilova Tugaeva
- A.N. Bach Institute of Biochemistry, Federal Research Center of Biotechnology, Russian Academy of Sciences, Moscow, Russia
| | - Nikolai N Sluchanko
- A.N. Bach Institute of Biochemistry, Federal Research Center of Biotechnology, Russian Academy of Sciences, Moscow, Russia
| | - Daria Esyunina
- Institute of Gene Biology, Russian Academy of Sciences, Moscow, Russia
| | | |
Collapse
|
24
|
Jia HY, Zhang XY, Ye BC, Yin BC. An Orthogonal CRISPR/dCas12a System for RNA Imaging in Live Cells. Anal Chem 2024; 96:5913-5921. [PMID: 38563119 DOI: 10.1021/acs.analchem.3c05975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
CRISPR/Cas technology has made great progress in the field of live-cell imaging beyond genome editing. However, effective and easy-to-use CRISPR systems for labeling multiple RNAs of interest are still needed. Here, we engineered a CRISPR/dCas12a system that enables the specific recognition of the target RNA under the guidance of a PAM-presenting oligonucleotide (PAMmer) to mimic the PAM recognition mechanism for DNA substrates. We demonstrated the feasibility and specificity of this system for specifically visualizing endogenous mRNA. By leveraging dCas12a-mediated precursor CRISPR RNA (pre-crRNA) processing and the orthogonality of dCas12a from different bacteria, we further demonstrated the proposed system as a simple and versatile molecular toolkit for multiplexed imaging of different types of RNA transcripts in live cells with high specificity. This programmable dCas12a system not only broadens the RNA imaging toolbox but also facilitates diverse applications for RNA manipulation.
Collapse
Affiliation(s)
- Hai-Yan Jia
- Lab of Biosystem and Microanalysis, State Key Laboratory of Bioreactor Engineering, Shanghai Collaborative Innovation Center for Biomanufacturing Technology, East China University of Science and Technology, Shanghai 200237, China
| | - Xin-Yue Zhang
- Lab of Biosystem and Microanalysis, State Key Laboratory of Bioreactor Engineering, Shanghai Collaborative Innovation Center for Biomanufacturing Technology, East China University of Science and Technology, Shanghai 200237, China
| | - Bang-Ce Ye
- Lab of Biosystem and Microanalysis, State Key Laboratory of Bioreactor Engineering, Shanghai Collaborative Innovation Center for Biomanufacturing Technology, East China University of Science and Technology, Shanghai 200237, China
- School of Chemistry and Chemical Engineering, Shihezi University, Xinjiang 832000, China
| | - Bin-Cheng Yin
- Lab of Biosystem and Microanalysis, State Key Laboratory of Bioreactor Engineering, Shanghai Collaborative Innovation Center for Biomanufacturing Technology, East China University of Science and Technology, Shanghai 200237, China
- School of Chemistry and Chemical Engineering, Shihezi University, Xinjiang 832000, China
| |
Collapse
|
25
|
Ghouneimy A, Ali Z, Aman R, Jiang W, Aouida M, Mahfouz M. CRISPR-Based Multiplex Detection of Human Papillomaviruses for One-Pot Point-of-Care Diagnostics. ACS Synth Biol 2024; 13:837-850. [PMID: 38349963 PMCID: PMC10949237 DOI: 10.1021/acssynbio.3c00655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Revised: 12/20/2023] [Accepted: 01/24/2024] [Indexed: 02/15/2024]
Abstract
The World Health Organization's global initiative toward eliminating high-risk Human Papillomavirus (hrHPV)-related cancers recommends DNA testing over visual inspection in all settings for primary cancer screening and HPV eradication by 2100. However, multiple hrHPV types cause different types of cancers, and there is a pressing need for an easy-to-use, multiplex point-of-care diagnostic platform for detecting different hrHPV types. Recently, CRISPR-Cas systems have been repurposed for point-of-care detection. Here, we established a CRISPR-Cas multiplexed diagnostic assay (CRISPRD) to detect cervical cancer-causing hrHPVs in one reaction (one-pot assay). We harnessed the compatibility of thermostable AapCas12b, TccCas13a, and HheCas13a nucleases with isothermal amplification and successfully detected HPV16 and HPV18, along with an internal control in a single-pot assay with a limit of detection of 10 copies and 100% specificity. This platform offers a rapid and practical solution for the multiplex detection of hrHPVs, which may facilitate large-scale hrHPV point-of-care screening. Furthermore, the CRISPRD platform programmability enables it to be adapted for the multiplex detection of any two nucleic acid biomarkers as well as internal control.
Collapse
Affiliation(s)
- Ahmed Ghouneimy
- Laboratory
for Genome Engineering and Synthetic Biology, Division of Biological
Sciences, 4700 King Abdullah University
of Science and Technology, Thuwal 23955-6900, Saudi Arabia
| | - Zahir Ali
- Laboratory
for Genome Engineering and Synthetic Biology, Division of Biological
Sciences, 4700 King Abdullah University
of Science and Technology, Thuwal 23955-6900, Saudi Arabia
| | - Rashid Aman
- Laboratory
for Genome Engineering and Synthetic Biology, Division of Biological
Sciences, 4700 King Abdullah University
of Science and Technology, Thuwal 23955-6900, Saudi Arabia
| | - Wenjun Jiang
- Laboratory
for Genome Engineering and Synthetic Biology, Division of Biological
Sciences, 4700 King Abdullah University
of Science and Technology, Thuwal 23955-6900, Saudi Arabia
| | - Mustapha Aouida
- Division
of Biological and Biomedical Sciences, College of Health and Life
Sciences, Hamad Bin Khalifa University, Education City, Qatar Foundation, P.O. Box: 34110 Doha, Qatar
| | - Magdy Mahfouz
- Laboratory
for Genome Engineering and Synthetic Biology, Division of Biological
Sciences, 4700 King Abdullah University
of Science and Technology, Thuwal 23955-6900, Saudi Arabia
| |
Collapse
|
26
|
Pacesa M, Pelea O, Jinek M. Past, present, and future of CRISPR genome editing technologies. Cell 2024; 187:1076-1100. [PMID: 38428389 DOI: 10.1016/j.cell.2024.01.042] [Citation(s) in RCA: 81] [Impact Index Per Article: 81.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 01/23/2024] [Accepted: 01/26/2024] [Indexed: 03/03/2024]
Abstract
Genome editing has been a transformative force in the life sciences and human medicine, offering unprecedented opportunities to dissect complex biological processes and treat the underlying causes of many genetic diseases. CRISPR-based technologies, with their remarkable efficiency and easy programmability, stand at the forefront of this revolution. In this Review, we discuss the current state of CRISPR gene editing technologies in both research and therapy, highlighting limitations that constrain them and the technological innovations that have been developed in recent years to address them. Additionally, we examine and summarize the current landscape of gene editing applications in the context of human health and therapeutics. Finally, we outline potential future developments that could shape gene editing technologies and their applications in the coming years.
Collapse
Affiliation(s)
- Martin Pacesa
- Laboratory of Protein Design and Immunoengineering, École Polytechnique Fédérale de Lausanne and Swiss Institute of Bioinformatics, Station 19, CH-1015 Lausanne, Switzerland
| | - Oana Pelea
- Department of Biochemistry, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
| | - Martin Jinek
- Department of Biochemistry, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland.
| |
Collapse
|
27
|
Montagud‐Martínez R, Márquez‐Costa R, Heras‐Hernández M, Dolcemascolo R, Rodrigo G. On the ever-growing functional versatility of the CRISPR-Cas13 system. Microb Biotechnol 2024; 17:e14418. [PMID: 38381083 PMCID: PMC10880580 DOI: 10.1111/1751-7915.14418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 01/17/2024] [Accepted: 01/22/2024] [Indexed: 02/22/2024] Open
Abstract
CRISPR-Cas systems evolved in prokaryotes to implement a powerful antiviral immune response as a result of sequence-specific targeting by ribonucleoproteins. One of such systems consists of an RNA-guided RNA endonuclease, known as CRISPR-Cas13. In very recent years, this system is being repurposed in different ways in order to decipher and engineer gene expression programmes. Here, we discuss the functional versatility of the CRISPR-Cas13 system, which includes the ability for RNA silencing, RNA editing, RNA tracking, nucleic acid detection and translation regulation. This functional palette makes the CRISPR-Cas13 system a relevant tool in the broad field of systems and synthetic biology.
Collapse
Affiliation(s)
- Roser Montagud‐Martínez
- Institute for Integrative Systems Biology (I2SysBio)CSIC – University of ValenciaPaternaSpain
| | - Rosa Márquez‐Costa
- Institute for Integrative Systems Biology (I2SysBio)CSIC – University of ValenciaPaternaSpain
| | - María Heras‐Hernández
- Institute for Integrative Systems Biology (I2SysBio)CSIC – University of ValenciaPaternaSpain
| | - Roswitha Dolcemascolo
- Institute for Integrative Systems Biology (I2SysBio)CSIC – University of ValenciaPaternaSpain
| | - Guillermo Rodrigo
- Institute for Integrative Systems Biology (I2SysBio)CSIC – University of ValenciaPaternaSpain
| |
Collapse
|
28
|
Wimmer F, Englert F, Wandera KG, Alkhnbashi O, Collins S, Backofen R, Beisel C. Interrogating two extensively self-targeting Type I CRISPR-Cas systems in Xanthomonas albilineans reveals distinct anti-CRISPR proteins that block DNA degradation. Nucleic Acids Res 2024; 52:769-783. [PMID: 38015466 PMCID: PMC10810201 DOI: 10.1093/nar/gkad1097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Revised: 10/25/2023] [Accepted: 10/31/2023] [Indexed: 11/29/2023] Open
Abstract
CRISPR-Cas systems store fragments of invader DNA as spacers to recognize and clear those same invaders in the future. Spacers can also be acquired from the host's genomic DNA, leading to lethal self-targeting. While self-targeting can be circumvented through different mechanisms, natural examples remain poorly explored. Here, we investigate extensive self-targeting by two CRISPR-Cas systems encoding 24 self-targeting spacers in the plant pathogen Xanthomonas albilineans. We show that the native I-C and I-F1 systems are actively expressed and that CRISPR RNAs are properly processed. When expressed in Escherichia coli, each Cascade complex binds its PAM-flanked DNA target to block transcription, while the addition of Cas3 paired with genome targeting induces cell killing. While exploring how X. albilineans survives self-targeting, we predicted putative anti-CRISPR proteins (Acrs) encoded within the bacterium's genome. Screening of identified candidates with cell-free transcription-translation systems and in E. coli revealed two Acrs, which we named AcrIC11 and AcrIF12Xal, that inhibit the activity of Cas3 but not Cascade of the respective system. While AcrF12Xal is homologous to AcrIF12, AcrIC11 shares sequence and structural homology with the anti-restriction protein KlcA. These findings help explain tolerance of self-targeting through two CRISPR-Cas systems and expand the known suite of DNA degradation-inhibiting Acrs.
Collapse
Affiliation(s)
- Franziska Wimmer
- Helmholtz Institute for RNA-based Infection Research (HIRI), Helmholtz Centre for Infection Research (HZI), 97080 Würzburg, Germany
| | - Frank Englert
- Helmholtz Institute for RNA-based Infection Research (HIRI), Helmholtz Centre for Infection Research (HZI), 97080 Würzburg, Germany
| | - Katharina G Wandera
- Helmholtz Institute for RNA-based Infection Research (HIRI), Helmholtz Centre for Infection Research (HZI), 97080 Würzburg, Germany
| | - Omer S Alkhnbashi
- Information and Computer Science Department, King Fahd University of Petroleum and Minerals (KFUPM), Dhahran 31261, Saudi Arabia
- Interdisciplinary Research Center for Intelligent Secure Systems (IRC-ISS), King Fahd University of Petroleum and Minerals (KFUPM), Dhahran 31261, Saudi Arabia
| | - Scott P Collins
- Department of Chemical & Biomolecular Engineering, North Carolina State University, Raleigh, NC 27695, USA
| | - Rolf Backofen
- Bioinformatics group, Department of Computer Science, University of Freiburg, Freiburg, Germany
- Signalling Research Centres BIOSS and CIBSS, University of Freiburg, Freiburg, Germany
| | - Chase L Beisel
- Helmholtz Institute for RNA-based Infection Research (HIRI), Helmholtz Centre for Infection Research (HZI), 97080 Würzburg, Germany
- Department of Chemical & Biomolecular Engineering, North Carolina State University, Raleigh, NC 27695, USA
- Medical Faculty, University of Würzburg, 97080 Würzburg, Germany
| |
Collapse
|
29
|
Adler BA, Trinidad MI, Bellieny-Rabelo D, Zhang E, Karp HM, Skopintsev P, Thornton BW, Weissman RF, Yoon P, Chen L, Hessler T, Eggers AR, Colognori D, Boger R, Doherty EE, Tsuchida CA, Tran RV, Hofman L, Shi H, Wasko KM, Zhou Z, Xia C, Al-Shimary MJ, Patel JR, Thomas VCJX, Pattali R, Kan MJ, Vardapetyan A, Yang A, Lahiri A, Maxwell MF, Murdock AG, Ramit GC, Henderson HR, Calvert RW, Bamert R, Knott GJ, Lapinaite A, Pausch P, Cofsky J, Sontheimer EJ, Wiedenheft B, Fineran PC, Brouns SJJ, Sashital DG, Thomas BC, Brown CT, Goltsman DSA, Barrangou R, Siksnys V, Banfield JF, Savage DF, Doudna JA. CasPEDIA Database: a functional classification system for class 2 CRISPR-Cas enzymes. Nucleic Acids Res 2024; 52:D590-D596. [PMID: 37889041 PMCID: PMC10767948 DOI: 10.1093/nar/gkad890] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 09/29/2023] [Accepted: 10/04/2023] [Indexed: 10/28/2023] Open
Abstract
CRISPR-Cas enzymes enable RNA-guided bacterial immunity and are widely used for biotechnological applications including genome editing. In particular, the Class 2 CRISPR-associated enzymes (Cas9, Cas12 and Cas13 families), have been deployed for numerous research, clinical and agricultural applications. However, the immense genetic and biochemical diversity of these proteins in the public domain poses a barrier for researchers seeking to leverage their activities. We present CasPEDIA (http://caspedia.org), the Cas Protein Effector Database of Information and Assessment, a curated encyclopedia that integrates enzymatic classification for hundreds of different Cas enzymes across 27 phylogenetic groups spanning the Cas9, Cas12 and Cas13 families, as well as evolutionarily related IscB and TnpB proteins. All enzymes in CasPEDIA were annotated with a standard workflow based on their primary nuclease activity, target requirements and guide-RNA design constraints. Our functional classification scheme, CasID, is described alongside current phylogenetic classification, allowing users to search related orthologs by enzymatic function and sequence similarity. CasPEDIA is a comprehensive data portal that summarizes and contextualizes enzymatic properties of widely used Cas enzymes, equipping users with valuable resources to foster biotechnological development. CasPEDIA complements phylogenetic Cas nomenclature and enables researchers to leverage the multi-faceted nucleic-acid targeting rules of diverse Class 2 Cas enzymes.
Collapse
Affiliation(s)
- Benjamin A Adler
- Innovative Genomics Institute, University of California, Berkeley, CA 94720, USA
- California Institute for Quantitative Biosciences (QB3), University of California, Berkeley, CA 94720, USA
| | - Marena I Trinidad
- Innovative Genomics Institute, University of California, Berkeley, CA 94720, USA
- Howard Hughes Medical Institute, University of California, Berkeley, CA 94720, USA
| | - Daniel Bellieny-Rabelo
- Innovative Genomics Institute, University of California, Berkeley, CA 94720, USA
- California Institute for Quantitative Biosciences (QB3), University of California, Berkeley, CA 94720, USA
| | - Elaine Zhang
- Innovative Genomics Institute, University of California, Berkeley, CA 94720, USA
- Howard Hughes Medical Institute, University of California, Berkeley, CA 94720, USA
| | - Hannah M Karp
- Innovative Genomics Institute, University of California, Berkeley, CA 94720, USA
- Department of Chemistry, University of California, Berkeley, CA 94720, USA
| | - Petr Skopintsev
- Innovative Genomics Institute, University of California, Berkeley, CA 94720, USA
- California Institute for Quantitative Biosciences (QB3), University of California, Berkeley, CA 94720, USA
| | - Brittney W Thornton
- Innovative Genomics Institute, University of California, Berkeley, CA 94720, USA
- Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720, USA
| | - Rachel F Weissman
- Innovative Genomics Institute, University of California, Berkeley, CA 94720, USA
- Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720, USA
| | - Peter H Yoon
- Innovative Genomics Institute, University of California, Berkeley, CA 94720, USA
- Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720, USA
| | - LinXing Chen
- Innovative Genomics Institute, University of California, Berkeley, CA 94720, USA
- Department of Earth and Planetary Sciences, University of California, Berkeley, CA 94720, USA
| | - Tomas Hessler
- Innovative Genomics Institute, University of California, Berkeley, CA 94720, USA
- Department of Earth and Planetary Sciences, University of California, Berkeley, CA 94720, USA
- Department of Environmental Science, Policy, and Management, University of California, Berkeley, CA 94720, USA
- EGSB Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Amy R Eggers
- Innovative Genomics Institute, University of California, Berkeley, CA 94720, USA
- Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720, USA
| | - David Colognori
- Innovative Genomics Institute, University of California, Berkeley, CA 94720, USA
- Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720, USA
| | - Ron Boger
- Innovative Genomics Institute, University of California, Berkeley, CA 94720, USA
- California Institute for Quantitative Biosciences (QB3), University of California, Berkeley, CA 94720, USA
| | - Erin E Doherty
- Innovative Genomics Institute, University of California, Berkeley, CA 94720, USA
- California Institute for Quantitative Biosciences (QB3), University of California, Berkeley, CA 94720, USA
| | - Connor A Tsuchida
- Innovative Genomics Institute, University of California, Berkeley, CA 94720, USA
- University of California, Berkeley - University of California, San Francisco Graduate Program in Bioengineering, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Ryan V Tran
- Department of Chemistry, University of California, Berkeley, CA 94720, USA
| | - Laura Hofman
- Innovative Genomics Institute, University of California, Berkeley, CA 94720, USA
- California Institute for Quantitative Biosciences (QB3), University of California, Berkeley, CA 94720, USA
- Graduate School of Life Sciences, Utrecht University, 3584 CS Utrecht, UT, The Netherlands
| | - Honglue Shi
- Innovative Genomics Institute, University of California, Berkeley, CA 94720, USA
- Howard Hughes Medical Institute, University of California, Berkeley, CA 94720, USA
| | - Kevin M Wasko
- Innovative Genomics Institute, University of California, Berkeley, CA 94720, USA
- Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720, USA
| | - Zehan Zhou
- Innovative Genomics Institute, University of California, Berkeley, CA 94720, USA
- Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720, USA
| | - Chenglong Xia
- Innovative Genomics Institute, University of California, Berkeley, CA 94720, USA
- California Institute for Quantitative Biosciences (QB3), University of California, Berkeley, CA 94720, USA
| | - Muntathar J Al-Shimary
- Innovative Genomics Institute, University of California, Berkeley, CA 94720, USA
- Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720, USA
| | - Jaymin R Patel
- Innovative Genomics Institute, University of California, Berkeley, CA 94720, USA
| | - Vienna C J X Thomas
- Innovative Genomics Institute, University of California, Berkeley, CA 94720, USA
- Department of Chemistry, University of California, Berkeley, CA 94720, USA
| | - Rithu Pattali
- Innovative Genomics Institute, University of California, Berkeley, CA 94720, USA
- Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720, USA
| | - Matthew J Kan
- Innovative Genomics Institute, University of California, Berkeley, CA 94720, USA
- Department of Pediatrics, Division of Allergy, Immunology, and Bone Marrow Transplantation, University of California, San Francisco, CA 94158, USA
| | - Anna Vardapetyan
- Innovative Genomics Institute, University of California, Berkeley, CA 94720, USA
| | - Alana Yang
- Innovative Genomics Institute, University of California, Berkeley, CA 94720, USA
- Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720, USA
| | - Arushi Lahiri
- Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720, USA
| | - Micaela F Maxwell
- Department of Chemistry and Biochemistry, Hampton University, Hampton, VA 23668, USA
| | - Andrew G Murdock
- Innovative Genomics Institute, University of California, Berkeley, CA 94720, USA
| | - Glenn C Ramit
- Innovative Genomics Institute, University of California, Berkeley, CA 94720, USA
| | - Hope R Henderson
- Innovative Genomics Institute, University of California, Berkeley, CA 94720, USA
| | - Roland W Calvert
- Monash Biomedicine Discovery Institute, Department of Biochemistry and Molecular Biology, Faculty of Medicine, Nursing and Health Sciences, Monash University, Clayton, VIC 3168, Australia
| | - Rebecca S Bamert
- Monash Biomedicine Discovery Institute, Department of Biochemistry and Molecular Biology, Faculty of Medicine, Nursing and Health Sciences, Monash University, Clayton, VIC 3168, Australia
| | - Gavin J Knott
- Monash Biomedicine Discovery Institute, Department of Biochemistry and Molecular Biology, Faculty of Medicine, Nursing and Health Sciences, Monash University, Clayton, VIC 3168, Australia
| | - Audrone Lapinaite
- School of Molecular Sciences, Arizona State University, Tempe, AZ 85281, USA
- Arizona State University-Banner Neurodegenerative Disease Research Center at the Biodesign Institute, Arizona State University, Tempe, AZ 85281, USA
- Center for Molecular Design and Biomimetics, The Biodesign Institute, Arizona State University, Tempe, AZ 85281, USA
| | - Patrick Pausch
- LSC-EMBL Partnership Institute for Genome Editing Technologies, Life Sciences Center, Vilnius University, Vilnius 10257, Lithuania
| | - Joshua C Cofsky
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA
| | - Erik J Sontheimer
- RNA Therapeutics Institute, University of Massachusetts Chan Medical School, Worcester, MA 01655, USA
- Program in Molecular Medicine, University of Massachusetts Chan Medical School, Worcester, MA 01655, USA
- Li Weibo Institute for Rare Diseases Research, University of Massachusetts Chan Medical School, Worcester, MA 01655, USA
| | - Blake Wiedenheft
- Department of Microbiology and Cell Biology, Montana State University, Bozeman, MT 59717, USA
| | - Peter C Fineran
- Department of Microbiology and Immunology, University of Otago, Dunedin 9016, New Zealand
- Genetics Otago, University of Otago, Dunedin 9016, New Zealand
- Bioprotection Aotearoa, University of Otago, Dunedin 9016, New Zealand
- Maurice Wilkins Centre for Molecular Biodiscovery, University of Otago, Dunedin 9016, New Zealand
| | - Stan J J Brouns
- Department of Bionanoscience, Delft University of Technology, 2629 HZ Delft, Netherlands
- Kavli Institute of Nanoscience, 2629 HZ Delft, The Netherlands
| | - Dipali G Sashital
- Roy J. Carver Department of Biochemistry, Biophysics and Molecular Biology, Iowa State University, Ames, IA 50011, USA
| | | | | | | | - Rodolphe Barrangou
- Innovative Genomics Institute, University of California, Berkeley, CA 94720, USA
- Department of Food, Bioprocessing and Nutrition Sciences, North Carolina State University, Raleigh, NC 27606, USA
| | - Virginius Siksnys
- Institute of Biotechnology, Life Sciences Center, Vilnius University, Vilnius 10257, Lithuania
| | - Jillian F Banfield
- Innovative Genomics Institute, University of California, Berkeley, CA 94720, USA
- Department of Earth and Planetary Sciences, University of California, Berkeley, CA 94720, USA
- Department of Environmental Science, Policy, and Management, University of California, Berkeley, CA 94720, USA
- EGSB Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
- The University of Melbourne, Parkville, VIC 3052, Australia
| | - David F Savage
- Innovative Genomics Institute, University of California, Berkeley, CA 94720, USA
- Howard Hughes Medical Institute, University of California, Berkeley, CA 94720, USA
- Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720, USA
| | - Jennifer A Doudna
- Innovative Genomics Institute, University of California, Berkeley, CA 94720, USA
- California Institute for Quantitative Biosciences (QB3), University of California, Berkeley, CA 94720, USA
- Howard Hughes Medical Institute, University of California, Berkeley, CA 94720, USA
- Department of Chemistry, University of California, Berkeley, CA 94720, USA
- Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720, USA
- MBIB Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
- Gladstone Institutes, University of California, San Francisco, CA 94158, USA
| |
Collapse
|
30
|
Song YL, He XL, Li Y, Wang M, Jiang M, Xu L, Yu X. Homogeneous detection of viral nucleic acid via selective recognition proximity ligation and signal amplification with T7 transcription and CRISPR/Cas12a system. Anal Chim Acta 2023; 1280:341881. [PMID: 37858564 DOI: 10.1016/j.aca.2023.341881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 08/23/2023] [Accepted: 10/05/2023] [Indexed: 10/21/2023]
Abstract
The synthetic biology has employed the synthetic gene networks through engineering to construct various functions in biological systems. However, the use of gene circuits to create sensors for detecting low-abundance targets has been limited due to the lack of signal amplification strategies beyond direct output of detection signals. To address this issue, we introduce a novel method utilizing Selective Recognition Proximity Ligation and signal amplification with T7 Transcription and CRISPR/Cas12a system (SRPL-TraCs), which permits the incorporation of cell-free gene circuits with signal amplification and enables the construction of high-order cascade signal amplification strategy to detect biomarkers in homogeneous systems. Specifically, the SRPL-TraCs utilizes selective recognition proximity ligation with high-fidelity T4 DNA ligase and generates a unique crRNA via T7 transcription, along with target-activated Cas12a/crRNA system to achieve excellent specificity for HIV-1 DNA. With this straightforward synthetic biology-based method, the proposed SRPL-TraCs has the potential to detect numerous other interesting targets beyond the nucleic acids.
Collapse
Affiliation(s)
- Yong-Li Song
- Tongji School of Pharmacy, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Xiang-Lan He
- Tongji School of Pharmacy, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Yong Li
- College of Life Sciences, South-Central Minzu University, Wuhan, 430074, China
| | - Ming Wang
- Department of Clinical Laboratory, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Ming Jiang
- Tongji School of Pharmacy, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Li Xu
- Tongji School of Pharmacy, Huazhong University of Science and Technology, Wuhan, 430030, China; Hubei Jiangxia Laboratory, Wuhan, 430200, China.
| | - Xu Yu
- Tongji School of Pharmacy, Huazhong University of Science and Technology, Wuhan, 430030, China; Hubei Jiangxia Laboratory, Wuhan, 430200, China.
| |
Collapse
|
31
|
Aquino-Jarquin G. Genome and transcriptome engineering by compact and versatile CRISPR-Cas systems. Drug Discov Today 2023; 28:103793. [PMID: 37797813 DOI: 10.1016/j.drudis.2023.103793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 09/08/2023] [Accepted: 09/28/2023] [Indexed: 10/07/2023]
Abstract
Comparative genomics has enabled the discovery of tiny clustered regularly interspaced short palindromic repeat (CRISPR) bacterial immune system effectors with enormous potential for manipulating eukaryotic genomes. Recently, smaller Cas proteins, including miniature Cas9, Cas12, and Cas13 proteins, have been identified and validated as efficient genome editing and base editing tools in human cells. The compact size of these novel CRISPR effectors is highly desirable for generating CRISPR-based therapeutic approaches, mainly to overcome in vivo delivery constraints, providing a promising opportunity for editing pathogenic mutations of clinical relevance and knocking down RNAs in human cells without inducing chromosomal insertions or genome alterations. Thus, these tiny CRISPR-Cas systems represent new and highly programmable, specific, and efficient platforms, which expand the CRISPR toolkit for potential therapeutic opportunities.
Collapse
Affiliation(s)
- Guillermo Aquino-Jarquin
- RNA Biology and Genome Editing Section. Research on Genomics, Genetics, and Bioinformatics Laboratory. Hemato-Oncology Building, 4th Floor, Section 2. Children's Hospital of Mexico, Federico Gómez, Mexico City, Mexico.
| |
Collapse
|
32
|
Song X, Lei S, Liu S, Liu Y, Fu P, Zeng Z, Yang K, Chen Y, Li M, She Q, Han W. Catalytically inactive long prokaryotic Argonaute systems employ distinct effectors to confer immunity via abortive infection. Nat Commun 2023; 14:6970. [PMID: 37914725 PMCID: PMC10620215 DOI: 10.1038/s41467-023-42793-3] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Accepted: 10/20/2023] [Indexed: 11/03/2023] Open
Abstract
Argonaute proteins (Agos) bind short nucleic acids as guides and are directed by them to recognize target complementary nucleic acids. Diverse prokaryotic Agos (pAgos) play potential functions in microbial defense. The functions and mechanisms of a group of full-length yet catalytically inactive pAgos, long-B pAgos, remain unclear. Here, we show that most long-B pAgos are functionally connected with distinct associated proteins, including nucleases, Sir2-domain-containing proteins and trans-membrane proteins, respectively. The long-B pAgo-nuclease system (BPAN) is activated by guide RNA-directed target DNA recognition and performs collateral DNA degradation in vitro. In vivo, the system mediates genomic DNA degradation after sensing invading plasmid, which kills the infected cells and results in the depletion of the invader from the cell population. Together, the BPAN system provides immunoprotection via abortive infection. Our data also suggest that the defense strategy is employed by other long-B pAgos equipped with distinct associated proteins.
Collapse
Affiliation(s)
- Xinmi Song
- State Key Laboratory of Agricultural Microbiology and College of Life Science and Technology, Hubei Hongshan Laboratory, Huazhong Agricultural University, 430070, Wuhan, China
| | - Sheng Lei
- State Key Laboratory of Agricultural Microbiology and College of Life Science and Technology, Hubei Hongshan Laboratory, Huazhong Agricultural University, 430070, Wuhan, China
| | - Shunhang Liu
- State Key Laboratory of Agricultural Microbiology and College of Life Science and Technology, Hubei Hongshan Laboratory, Huazhong Agricultural University, 430070, Wuhan, China
| | - Yanqiu Liu
- State Key Laboratory of Agricultural Microbiology and College of Life Science and Technology, Hubei Hongshan Laboratory, Huazhong Agricultural University, 430070, Wuhan, China
| | - Pan Fu
- State Key Laboratory of Agricultural Microbiology and College of Life Science and Technology, Hubei Hongshan Laboratory, Huazhong Agricultural University, 430070, Wuhan, China
| | - Zhifeng Zeng
- State Key Laboratory of Agricultural Microbiology and College of Life Science and Technology, Hubei Hongshan Laboratory, Huazhong Agricultural University, 430070, Wuhan, China
| | - Ke Yang
- State Key Laboratory of Agricultural Microbiology and College of Life Science and Technology, Hubei Hongshan Laboratory, Huazhong Agricultural University, 430070, Wuhan, China
| | - Yu Chen
- State Key Laboratory of Agricultural Microbiology and College of Life Science and Technology, Hubei Hongshan Laboratory, Huazhong Agricultural University, 430070, Wuhan, China
| | - Ming Li
- CAS Key Laboratory of Microbial Physiological and Metabolic Engineering, State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Qunxin She
- CRISPR and Archaea Biology Research Center, State Key Laboratory of Microbial Technology, Shandong University, Binhai Road 72, 266237, Jimo, Qingdao, China
| | - Wenyuan Han
- State Key Laboratory of Agricultural Microbiology and College of Life Science and Technology, Hubei Hongshan Laboratory, Huazhong Agricultural University, 430070, Wuhan, China.
| |
Collapse
|
33
|
Chu J, Romero A, Taulbee J, Aran K. Development of Single Molecule Techniques for Sensing and Manipulation of CRISPR and Polymerase Enzymes. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2300328. [PMID: 37226388 PMCID: PMC10524706 DOI: 10.1002/smll.202300328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 03/20/2023] [Indexed: 05/26/2023]
Abstract
Clustered regularly interspaced short palindromic repeats (CRISPR) and polymerases are powerful enzymes and their diverse applications in genomics, proteomics, and transcriptomics have revolutionized the biotechnology industry today. CRISPR has been widely adopted for genomic editing applications and Polymerases can efficiently amplify genomic transcripts via polymerase chain reaction (PCR). Further investigations into these enzymes can reveal specific details about their mechanisms that greatly expand their use. Single-molecule techniques are an effective way to probe enzymatic mechanisms because they may resolve intermediary conformations and states with greater detail than ensemble or bulk biosensing techniques. This review discusses various techniques for sensing and manipulation of single biomolecules that can help facilitate and expedite these discoveries. Each platform is categorized as optical, mechanical, or electronic. The methods, operating principles, outputs, and utility of each technique are briefly introduced, followed by a discussion of their applications to monitor and control CRISPR and Polymerases at the single molecule level, and closing with a brief overview of their limitations and future prospects.
Collapse
Affiliation(s)
- Josephine Chu
- Henry E. Riggs School of Applied Life Sciences, Keck Graduate Institute, Claremont, CA, 91711, USA
| | - Andres Romero
- Henry E. Riggs School of Applied Life Sciences, Keck Graduate Institute, Claremont, CA, 91711, USA
| | - Jeffrey Taulbee
- Henry E. Riggs School of Applied Life Sciences, Keck Graduate Institute, Claremont, CA, 91711, USA
| | - Kiana Aran
- Henry E. Riggs School of Applied Life Sciences, Keck Graduate Institute, Claremont, CA, 91711, USA
- Cardea, San Diego, CA, 92121, USA
- University of California Berkeley, Berkeley, CA, 94720, USA
| |
Collapse
|
34
|
Cheng M, Tan C, Xiang B, Lin W, Cheng B, Peng X, Yang Y, Lin Y. Chain hybridization-based CRISPR-lateral flow assay enables accurate gene visual detection. Anal Chim Acta 2023; 1270:341437. [PMID: 37311609 DOI: 10.1016/j.aca.2023.341437] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 05/22/2023] [Accepted: 05/26/2023] [Indexed: 06/15/2023]
Abstract
Visualized gene detection based on the CRISPR-Cas12/CRISPR-Cas13 technology and lateral flow assay device (CRISPR-LFA) has shown great potential in point-of-care testing sector. Current CRISPR-LFA methodology mainly utilizes conventional immuno-based LFA test strips, which could visualize whether the reporter probe is trans-cleaved by Cas protein, indicating the target positive detection. However, conventional CRISPR-LFA usually produces false-positive results in target negative assay. Herein, a nucleic acid Chain Hybridization-based Lateral Flow Assay platform, named CHLFA, has been developed to achieve the CRISPR-CHLFA concept. Different from the conventional CRISPR-LFA, the proposed CRISPR-CHLFA system was established based on the nucleic acid hybridization between the GNP-probe embedded in test strips and ssDNA (or ssRNA) reporter from CRISPR (LbaCas12a or LbuCas13a) reaction, which eliminated the requirement of immunoreaction in conventional immuno-based LFA. The assay realized the detection of 1-10 copy of target gene per reaction within 50 min. The CRISPR-CHLFA system achieved highly accurate visual detection of target negative samples, thus overcoming the false-positive problem that often produced in assays using conventional CRISPR-LFA. The CRISPR-CHLFA platform was further adopted for the visual detection of marker gene from SASR-CoV-2 Omicron variant and Mycobacterium tuberculosis (MTB), respectively, and 100% accuracy for the analysis of clinical specimens (45 SASR-CoV-2 specimens and 20 MTB specimens) was obtained. The proposed CRISPR-CHLFA system could provide an alternative platform for the development of POCT biosensors and can be widely adopted in accurate and visualized gene detection.
Collapse
Affiliation(s)
- Meng Cheng
- Department of Laboratory Medicine, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Caiwei Tan
- Department of Laboratory Medicine, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Bo Xiang
- Department of Laboratory Medicine, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Weihong Lin
- Department of Laboratory Medicine, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Bolin Cheng
- Department of Laboratory Medicine, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Xuechun Peng
- Department of Laboratory Medicine, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Yihao Yang
- Department of Laboratory Medicine, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Yongping Lin
- Department of Laboratory Medicine, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China; KingMed School of Laboratory Medicine, Guangzhou Medical University, Guangzhou, China.
| |
Collapse
|
35
|
RNA targeting unleashes indiscriminate nuclease activity of CRISPR-Cas12a2. Nature 2023; 613:582-587. [PMID: 36599980 PMCID: PMC9849127 DOI: 10.1038/s41586-022-05560-w] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Accepted: 11/11/2022] [Indexed: 01/06/2023]
Abstract
Cas12a2 is a CRISPR-associated nuclease that performs RNA-guided, sequence-nonspecific degradation of single-stranded RNA, single-stranded DNA and double-stranded DNA following recognition of a complementary RNA target, culminating in abortive infection1. Here we report structures of Cas12a2 in binary, ternary and quaternary complexes to reveal a complete activation pathway. Our structures reveal that Cas12a2 is autoinhibited until binding a cognate RNA target, which exposes the RuvC active site within a large, positively charged cleft. Double-stranded DNA substrates are captured through duplex distortion and local melting, stabilized by pairs of 'aromatic clamp' residues that are crucial for double-stranded DNA degradation and in vivo immune system function. Our work provides a structural basis for this mechanism of abortive infection to achieve population-level immunity, which can be leveraged to create rational mutants that degrade a spectrum of collateral substrates.
Collapse
|