1
|
Galvan C, Lowry WE. Hangry hairs: intermittent fasting linked to hair loss. Cell Res 2025; 35:330-331. [PMID: 40000774 PMCID: PMC12012101 DOI: 10.1038/s41422-025-01082-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/27/2025] Open
Affiliation(s)
- Carlos Galvan
- Department of Molecular Cell and Developmental Biology, University of California, Los Angeles, CA, USA
- Jonsson Comprehensive Cancer Center, University of California, Los Angeles, CA, USA
- Molecular Biology Institute, University of California, Los Angeles, CA, USA
- Broad Center for Regenerative Medicine, University of California, Los Angeles, CA, USA
- Division of Dermatology, David Geffen School of Medicine, University of California, Los Angeles, CA, USA
| | - William E Lowry
- Department of Molecular Cell and Developmental Biology, University of California, Los Angeles, CA, USA.
- Jonsson Comprehensive Cancer Center, University of California, Los Angeles, CA, USA.
- Molecular Biology Institute, University of California, Los Angeles, CA, USA.
- Broad Center for Regenerative Medicine, University of California, Los Angeles, CA, USA.
- Division of Dermatology, David Geffen School of Medicine, University of California, Los Angeles, CA, USA.
| |
Collapse
|
2
|
Wang X, Wang Z, Liu Z, Huang F, Pan Z, Zhang Z, Liu T. Nutritional strategies in oncology: The role of dietary patterns in modulating tumor progression and treatment response. Biochim Biophys Acta Rev Cancer 2025; 1880:189322. [PMID: 40228747 DOI: 10.1016/j.bbcan.2025.189322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2025] [Revised: 04/08/2025] [Accepted: 04/10/2025] [Indexed: 04/16/2025]
Abstract
Dietary interventions can influence tumor growth by restricting tumor-specific nutritional requirements, altering the nutrient availability in the tumor microenvironment, or enhancing the cytotoxicity of anticancer drugs. Metabolic reprogramming of tumor cells, as a significant hallmark of tumor progression, has a profound impact on immune regulation, severely hindering tumor eradication. Dietary interventions can modify tumor metabolic processes to some extent, thereby further improving the efficacy of tumor treatment. In this review, we emphasize the impact of dietary patterns on tumor progression. By exploring the metabolic differences of nutrients in normal cells versus cancer cells, we further clarify how dietary patterns influence cancer treatment. We also discuss the effects of dietary patterns on traditional treatments such as immunotherapy, chemotherapy, radiotherapy, and the gut microbiome, thereby underscoring the importance of precision nutrition.
Collapse
Affiliation(s)
- Xueying Wang
- Department of Oncological Surgery, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang Province 150000, China
| | - Zeyao Wang
- Department of Oncological Surgery, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang Province 150000, China
| | - Zihan Liu
- Department of Oncological Surgery, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang Province 150000, China
| | - Fanxuan Huang
- Department of Oncological Surgery, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang Province 150000, China
| | - Zhaoyu Pan
- Department of Otolaryngology Head and Neck Surgery, Xiangya Hospital, Central South University, Hunan, China
| | - Zhiren Zhang
- Departments of Cardiology and Critical Care Medicine, The First Affiliated Hospital of Harbin Medical University, NHC Key Laboratory of Cell Transplantation, Key Laboratories of Education Ministry for Myocardial Ischemia Mechanism and Treatment, Harbin, China; Departments of Cardiology and Pharmacy and Breast Cancer surgery, Harbin Medical University Cancer Hospital, Institute of Metabolic Disease, Heilongjiang Academy of Medical Science, Heilongjiang Key Laboratory for Metabolic Disorder and Cancer Related Cardiovascular Diseases, Harbin, China.
| | - Tong Liu
- Department of Oncological Surgery, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang Province 150000, China; Departments of Cardiology and Critical Care Medicine, The First Affiliated Hospital of Harbin Medical University, NHC Key Laboratory of Cell Transplantation, Key Laboratories of Education Ministry for Myocardial Ischemia Mechanism and Treatment, Harbin, China.
| |
Collapse
|
3
|
Nan K, Zhong Z, Yue Y, Shen Y, Zhang H, Wang Z, Zhuma K, Yu B, Fu Y, Wang L, Sun X, Qu M, Chen Z, Guo M, Zhang J, Chu Y, Liu R, Miao C. Fasting-mimicking diet-enriched Bifidobacterium pseudolongum suppresses colorectal cancer by inducing memory CD8 + T cells. Gut 2025; 74:775-786. [PMID: 39870395 DOI: 10.1136/gutjnl-2024-333020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Accepted: 01/06/2025] [Indexed: 01/29/2025]
Abstract
BACKGROUND Fasting-mimicking diet (FMD) boosts the antitumour immune response in patients with colorectal cancer (CRC). The gut microbiota is a key host immunity regulator, affecting physiological homeostasis and disease pathogenesis. OBJECTIVE We aimed to investigate how FMD protects against CRC via gut microbiota modulation. DESIGN We assessed probiotic species enrichment in FMD-treated CRC mice using faecal metagenomic sequencing. The candidate species were verified in antibiotic-treated conventional and germ-free mouse models. Immune landscape alterations were evaluated using single-cell RNA sequencing and multicolour flow cytometry. The microbiota-derived antitumour metabolites were identified using metabolomic profiling. RESULTS Faecal metagenomic profiling revealed Bifidobacterium pseudolongum enrichment in FMD-treated CRC mice. B. pseudolongum mediates the FMD antitumour effects by increasing the tissue-resident memory CD8+ T-cell (TRM) population in CRC mice. The level of L-arginine, a B. pseudolongum functional metabolite, increased in FMD-treated CRC mice; furthermore, L-arginine induced the TRM phenotype in vivo and in vitro. Mechanistically, L-arginine is transported by the solute carrier family 7-member 1 (SLC7A1) receptor in CD8+ T cells. Both FMD and B. pseudolongum improved anti-CTLA-4 efficacy in the orthotopic mouse CRC model. In FMD-treated patients with CRC, the CD8+ TRM cell number increased as B. pseudolongum and L-arginine accumulated. The abundance of CD8+ TRM cells and B. pseudolongum was associated with a better prognosis in patients with CRC. CONCLUSION B. pseudolongum contributes to the FMD antitumour effects in CRC by producing L-arginine. This promotes CD8+ T-cell differentiation into memory cells. B. pseudolongum administration is a potential CRC therapeutic strategy.
Collapse
Affiliation(s)
- Ke Nan
- Department of Anesthesiology, Zhongshan Hospital, Fudan University, Shanghai, China
- Shanghai Key Laboratory of Perioperative Stress and Protection, and Shanghai Clinical Research Center for Anesthesiology, Shanghai, China
| | - Ziwen Zhong
- Department of Anesthesiology, Zhongshan Hospital, Fudan University, Shanghai, China
- Shanghai Key Laboratory of Perioperative Stress and Protection, and Shanghai Clinical Research Center for Anesthesiology, Shanghai, China
| | - Ying Yue
- Department of Anesthesiology, Zhongshan Hospital, Fudan University, Shanghai, China
- Shanghai Key Laboratory of Perioperative Stress and Protection, and Shanghai Clinical Research Center for Anesthesiology, Shanghai, China
| | - Yang Shen
- Department of Anesthesiology, Zhongshan Hospital, Fudan University, Shanghai, China
- Shanghai Key Laboratory of Perioperative Stress and Protection, and Shanghai Clinical Research Center for Anesthesiology, Shanghai, China
| | - Hao Zhang
- Department of Anesthesiology, Zhongshan Hospital, Fudan University, Shanghai, China
- Shanghai Key Laboratory of Perioperative Stress and Protection, and Shanghai Clinical Research Center for Anesthesiology, Shanghai, China
| | - Zhiqiang Wang
- Department of Immunology, School of Basic Medical Sciences, and Shanghai Key Laboratory of Medical Epigenetics and Metabolism, Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Kameina Zhuma
- Department of Immunology, School of Basic Medical Sciences, and Shanghai Key Laboratory of Medical Epigenetics and Metabolism, Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Baichao Yu
- Department of Immunology, School of Basic Medical Sciences, and Shanghai Key Laboratory of Medical Epigenetics and Metabolism, Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Ying Fu
- Department of Immunology, School of Basic Medical Sciences, and Shanghai Key Laboratory of Medical Epigenetics and Metabolism, Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Luman Wang
- Department of Immunology, School of Basic Medical Sciences, and Shanghai Key Laboratory of Medical Epigenetics and Metabolism, Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Xingfeng Sun
- Department of Anesthesiology, Zhongshan Hospital, Fudan University, Shanghai, China
- Anesthesiology, Obstetrics and Gynecology, Hospital of Fudan University, Shanghai, China
| | - Mengdi Qu
- Department of Anesthesiology, Zhongshan Hospital, Fudan University, Shanghai, China
- Shanghai Key Laboratory of Perioperative Stress and Protection, and Shanghai Clinical Research Center for Anesthesiology, Shanghai, China
| | - Zhaoyuan Chen
- Department of Anesthesiology, Zhongshan Hospital, Fudan University, Shanghai, China
- Shanghai Key Laboratory of Perioperative Stress and Protection, and Shanghai Clinical Research Center for Anesthesiology, Shanghai, China
| | - Miaomiao Guo
- Department of Anesthesiology, Zhongshan Hospital, Fudan University, Shanghai, China
- Shanghai Key Laboratory of Perioperative Stress and Protection, and Shanghai Clinical Research Center for Anesthesiology, Shanghai, China
| | - Jie Zhang
- Department of Anesthesiology, Zhongshan Hospital, Fudan University, Shanghai, China
- Shanghai Key Laboratory of Perioperative Stress and Protection, and Shanghai Clinical Research Center for Anesthesiology, Shanghai, China
| | - Yiwei Chu
- Department of Immunology, School of Basic Medical Sciences, and Shanghai Key Laboratory of Medical Epigenetics and Metabolism, Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Ronghua Liu
- Shanghai Fifth People's Hospital, and Shanghai Key Laboratory of Medical Epigenetics, Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Changhong Miao
- Department of Anesthesiology, Zhongshan Hospital, Fudan University, Shanghai, China
- Shanghai Key Laboratory of Perioperative Stress and Protection, and Shanghai Clinical Research Center for Anesthesiology, Shanghai, China
| |
Collapse
|
4
|
Fleming N. Fasting for weight loss is all the rage: what are the health benefits? Nature 2025; 639:855-857. [PMID: 40133618 DOI: 10.1038/d41586-025-00895-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/27/2025]
|
5
|
Shi L, Zha H, Zhao J, An H, Huang H, Xia Y, Yan Z, Song Z, Zhu J. Caloric restriction exacerbates renal post-ischemic injury and fibrosis by modulating mTORC1 signaling and autophagy. Redox Biol 2025; 80:103500. [PMID: 39837191 PMCID: PMC11787690 DOI: 10.1016/j.redox.2025.103500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2024] [Revised: 01/12/2025] [Accepted: 01/14/2025] [Indexed: 01/23/2025] Open
Abstract
OBJECTIVE This study investigates the effects of caloric restriction (CR) on renal injury and fibrosis following ischemia-reperfusion injury (IRI), with a focus on the roles of the mechanistic/mammalian target of rapamycin complex 1 (mTORC1) signaling and autophagy. METHODS A mouse model of unilateral IRI with or without CR was used. Renal function was assessed through serum creatinine and blood urea nitrogen levels, while histological analysis and molecular assays evaluated tubular injury, fibrosis, mTORC1 signaling, and autophagy activation. Inducible renal tubule-specific Atg7 knockout mice and autophagy inhibitor 3-MA were used to elucidate autophagy's role in renal outcomes. RESULTS CR exacerbated renal dysfunction, tubular injury, and fibrosis in IRI mice, associated with suppressed mTORC1 signaling and enhanced autophagy. Rapamycin, an mTORC1 inhibitor, mimicked the effects of CR, further supporting the involvement of mTORC1-autophagy pathway. Tubule-specific Atg7 knockout and autophagy inhibitor 3-MA mitigated these effects, indicating a central role for autophagy in CR-induced renal damage. Glucose supplementation, but not branched-chain amino acids (BCAAs), alleviated CR-induced renal fibrosis and dysfunction by restoring mTORC1 activation. Finally, we identified leucyl-tRNA synthetase 1 (LARS1) as a key mediator of nutrient sensing and mTORC1 activation, demonstrating its glucose dependency under CR conditions. CONCLUSION Our study provides novel insights into the interplay between nutrient metabolism, mTORC1 signaling, and autophagy in IRI-induced renal damages, offering potential therapeutic targets for mitigating CR-associated complications after renal IRI.
Collapse
Affiliation(s)
- Lang Shi
- Department of Nephrology, The First Hospital of Lanzhou University, Lanzhou, 730000, China; The First Clinical Medical College, Lanzhou University, Lanzhou, 730000, China
| | - Hongchu Zha
- Department of Nephrology, The First Clinical Medical College of Three Gorges University, Center People's Hospital of Yichang, Yichang, 443000, China
| | - Juan Zhao
- Department of Laboratory Medicine, The First Hospital of Lanzhou University, Lanzhou, 730000, China
| | - Haiqian An
- Department of Nephrology, The First Hospital of Lanzhou University, Lanzhou, 730000, China; The First Clinical Medical College, Lanzhou University, Lanzhou, 730000, China
| | - Hua Huang
- Department of Nephrology, The First Clinical Medical College of Three Gorges University, Center People's Hospital of Yichang, Yichang, 443000, China
| | - Yao Xia
- Department of Nephrology, The First Clinical Medical College of Three Gorges University, Center People's Hospital of Yichang, Yichang, 443000, China
| | - Ziyu Yan
- Department of Nephrology, The First Clinical Medical College of Three Gorges University, Center People's Hospital of Yichang, Yichang, 443000, China
| | - Zhixia Song
- Department of Nephrology, The People's Hospital of Longhua, Shenzhen, 518109, China
| | - Jiefu Zhu
- Department of Organ Transplantation, Renmin Hospital of Wuhan University, Wuhan, 430060, China.
| |
Collapse
|
6
|
Sugiki S, Horie T, Kunii K, Sakamoto T, Nakamura Y, Chikazawa I, Morita N, Ishigaki Y, Miyazawa K. Integrated Bioinformatic Analyses Reveal Thioredoxin as a Putative Marker of Cancer Stem Cells and Prognosis in Prostate Cancer. Cancer Inform 2025; 24:11769351251319872. [PMID: 40008390 PMCID: PMC11851766 DOI: 10.1177/11769351251319872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Accepted: 01/22/2025] [Indexed: 02/27/2025] Open
Abstract
Objectives Prostate cancer stem cells (CSCs) play an important role in cancer cell survival, proliferation, metastasis, and recurrence; thus, removing CSCs is important for complete cancer removal. However, the mechanisms underlying CSC functions remain largely unknown, making it difficult to develop new anticancer drugs targeting CSCs. Herein, we aimed to identify novel factors that regulate stemness and predict prognosis. Methods We reanalyzed 2 single-cell RNA sequencing data of prostate cancer (PCa) tissues using Seurat. We used gene set enrichment analysis (GSEA) to estimate CSCs and identified common upregulated genes in CSCs between these datasets. To investigate whether its expression levels change over CSC differentiation, we performed a trajectory analysis using monocle 3. In addition, GSEA helped us understand how the identified genes regulate stemness. Finally, to assess their clinical significance, we used the Cancer Genome Atlas database to evaluate their impact on prognosis. Results The expression of thioredoxin (TXN), a redox enzyme, was approximately 1.2 times higher in prostate CSCs than in PCa cells (P < 1 × 10-10), and TXN expression decreased over CSC differentiation. In addition, GSEA suggested that intracellular signaling pathways, including MYC, may be involved in stemness regulation by TXN. Furthermore, TXN expression correlated with poor prognosis (P < .05) in PCa patients with high stemness. Conclusions Despite the limited sample size in our study and the need for further in vitro and in vivo experiments to demonstrate whether TXN functionally regulates prostate CSCs, our findings suggest that TXN may serve as a novel therapeutic target against CSCs. Moreover, TXN expression in CSCs could be a useful marker for predicting the prognosis of PCa patients.
Collapse
Affiliation(s)
- Shigeru Sugiki
- Department of Urology, Kanazawa Medical University, Kahoku, Ishikawa, Japan
| | - Tetsuhiro Horie
- Medical Research Institute, Kanazawa Medical University, Kahoku, Ishikawa, Japan
- Department of Pharmacy, Kanazawa Medical University Hospital, Kahoku, Ishikawa, Japan
| | - Kenshiro Kunii
- Department of Urology, Kanazawa Medical University, Kahoku, Ishikawa, Japan
| | - Takuya Sakamoto
- Medical Research Institute, Kanazawa Medical University, Kahoku, Ishikawa, Japan
- Department of Pharmacy, Kanazawa Medical University Hospital, Kahoku, Ishikawa, Japan
| | - Yuka Nakamura
- Medical Research Institute, Kanazawa Medical University, Kahoku, Ishikawa, Japan
| | - Ippei Chikazawa
- Department of Urology, Kanazawa Medical University, Kahoku, Ishikawa, Japan
| | - Nobuyo Morita
- Department of Urology, Kanazawa Medical University, Kahoku, Ishikawa, Japan
| | - Yasuhito Ishigaki
- Medical Research Institute, Kanazawa Medical University, Kahoku, Ishikawa, Japan
| | - Katsuhito Miyazawa
- Department of Urology, Kanazawa Medical University, Kahoku, Ishikawa, Japan
| |
Collapse
|
7
|
Nagaraja S, Ojeda-Miron L, Zhang R, Oreskovic E, Hu Y, Zeve D, Sharma K, Hyman RR, Zhang Q, Castillo A, Breault DT, Yilmaz ÖH, Buenrostro JD. Clonal memory of colitis accumulates and promotes tumor growth. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.02.13.638099. [PMID: 40027722 PMCID: PMC11870415 DOI: 10.1101/2025.02.13.638099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/05/2025]
Abstract
Chronic inflammation is a well-established risk factor for cancer, but the underlying molecular mechanisms remain unclear. Using a mouse model of colitis, we demonstrate that colonic stem cells retain an epigenetic memory of inflammation following disease resolution, characterized by a cumulative gain of activator protein 1 (AP-1) transcription factor activity. Further, we develop SHARE-TRACE, a method that enables simultaneous profiling of gene expression, chromatin accessibility and clonal history in single cells, enabling high resolution tracking of epigenomic memory. This reveals that inflammatory memory is propagated cell-intrinsically and inherited through stem cell lineages, with certain clones demonstrating dramatically stronger memory than others. Finally, we show that colitis primes stem cells for amplified expression of regenerative gene programs following oncogenic mutation that accelerate tumor growth. This includes a subpopulation of tumors that have exceptionally high AP-1 activity and the additional upregulation of pro-oncogenic programs. Together, our findings provide a mechanistic link between chronic inflammation and malignancy, revealing how long-lived epigenetic alterations in regenerative tissues may contribute to disease susceptibility and suggesting potential therapeutic strategies to mitigate cancer risk in patients with chronic inflammatory conditions.
Collapse
|
8
|
Sartorelli V, Ciuffoli V. Metabolic regulation in adult and aging skeletal muscle stem cells. Genes Dev 2025; 39:186-208. [PMID: 39662967 PMCID: PMC11789647 DOI: 10.1101/gad.352277.124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2024]
Abstract
Adult stem cells maintain homeostasis and enable regeneration of most tissues. Quiescence, proliferation, and differentiation of stem cells and their progenitors are tightly regulated processes governed by dynamic transcriptional, epigenetic, and metabolic programs. Previously thought to merely reflect a cell's energy state, metabolism is now recognized for its critical regulatory functions, controlling not only energy and biomass production but also the cell's transcriptome and epigenome. In this review, we explore how metabolic pathways, metabolites, and transcriptional and epigenetic regulators are functionally interlinked in adult and aging skeletal muscle stem cells.
Collapse
Affiliation(s)
- Vittorio Sartorelli
- Laboratory of Muscle Stem Cells and Gene Regulation, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Veronica Ciuffoli
- Laboratory of Muscle Stem Cells and Gene Regulation, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, Maryland 20892, USA
| |
Collapse
|
9
|
Caprara G, Pallavi R, Sanyal S, Pelicci PG. Dietary Restrictions and Cancer Prevention: State of the Art. Nutrients 2025; 17:503. [PMID: 39940361 PMCID: PMC11820753 DOI: 10.3390/nu17030503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2024] [Revised: 01/22/2025] [Accepted: 01/25/2025] [Indexed: 02/16/2025] Open
Abstract
Worldwide, almost 10 million cancer deaths occurred in 2022, a number that is expected to rise to 16.3 million by 2040. Primary prevention has long been acknowledged as a crucial approach to reducing cancer incidence. In fact, between 30 and 50 percent of all tumors are known to be preventable by eating a healthy diet, staying active, avoiding alcohol, smoking, and being overweight. Accordingly, many international organizations have created tumor prevention guidelines, which underlie the importance of following a diet that emphasizes eating plant-based foods while minimizing the consumption of red/processed meat, sugars, processed foods, and alcohol. However, further research is needed to define the relationship between the effect of specific diets or nutritional components on cancer prevention. Interestingly, reductions in food intake and dietetic restrictions can extend the lifespan of yeast, nematodes, flies, and rodents. Despite controversial results in humans, those approaches have the potential to ameliorate health via direct and indirect effects on specific signaling pathways involved in cancer onset. Here, we describe the latest knowledge on the cancer-preventive potential of dietary restrictions and the biochemical processes involved. Molecular, preclinical, and clinical studies evaluating the effects of different fasting strategies will also be reviewed.
Collapse
Affiliation(s)
- Greta Caprara
- Department of Experimental Oncology, European Institute of Oncology (IEO), Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), 20139 Milan, Italy
| | - Rani Pallavi
- Department of Experimental Oncology, European Institute of Oncology (IEO), Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), 20139 Milan, Italy
- Brien Holden Eye Research Centre, L. V. Prasad Eye Institute, Hyderabad 500034, India
- The Operation Eyesight Universal Institute for Eye Cancer, L. V. Prasad Eye Institute, Hyderabad 500034, India; (R.P.); (S.S.)
| | - Shalini Sanyal
- Brien Holden Eye Research Centre, L. V. Prasad Eye Institute, Hyderabad 500034, India
- The Operation Eyesight Universal Institute for Eye Cancer, L. V. Prasad Eye Institute, Hyderabad 500034, India; (R.P.); (S.S.)
| | - Pier Giuseppe Pelicci
- Department of Experimental Oncology, European Institute of Oncology (IEO), Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), 20139 Milan, Italy
| |
Collapse
|
10
|
Chen H, Liu C, Cui S, Xia Y, Zhang K, Cheng H, Peng J, Yu X, Li L, Yu H, Zhang J, Zheng JS, Zhang B. Intermittent fasting triggers interorgan communication to suppress hair follicle regeneration. Cell 2025; 188:157-174.e22. [PMID: 39674178 DOI: 10.1016/j.cell.2024.11.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Revised: 08/29/2024] [Accepted: 11/06/2024] [Indexed: 12/16/2024]
Abstract
Intermittent fasting has gained global popularity for its potential health benefits, although its impact on somatic stem cells and tissue biology remains elusive. Here, we report that commonly used intermittent fasting regimens inhibit hair follicle regeneration by selectively inducing apoptosis in activated hair follicle stem cells (HFSCs). This effect is independent of calorie reduction, circadian rhythm alterations, or the mTORC1 cellular nutrient-sensing mechanism. Instead, fasting activates crosstalk between adrenal glands and dermal adipocytes in the skin, triggering the rapid release of free fatty acids into the niche, which in turn disrupts the normal metabolism of HFSCs and elevates their cellular reactive oxygen species levels, causing oxidative damage and apoptosis. A randomized clinical trial (NCT05800730) indicates that intermittent fasting inhibits human hair growth. Our study uncovers an inhibitory effect of intermittent fasting on tissue regeneration and identifies interorgan communication that eliminates activated HFSCs and halts tissue regeneration during periods of unstable nutrient supply.
Collapse
Affiliation(s)
- Han Chen
- College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang 310000, China; School of Life Sciences, Westlake University, Hangzhou, Zhejiang 310000, China
| | - Chao Liu
- School of Life Sciences, Westlake University, Hangzhou, Zhejiang 310000, China
| | - Shiyao Cui
- School of Life Sciences, Westlake University, Hangzhou, Zhejiang 310000, China
| | - Yingqian Xia
- School of Life Sciences, Westlake University, Hangzhou, Zhejiang 310000, China; Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang 310000, China; Research Center for Industries of the Future, Westlake University, Hangzhou, Zhejiang 310000, China
| | - Ke Zhang
- School of Life Sciences, Westlake University, Hangzhou, Zhejiang 310000, China
| | - Hanxiao Cheng
- Department of Plastic Surgery, Affiliated Hangzhou First People's Hospital, School of Medicine, Westlake University, Hangzhou, Zhejiang 310000, China
| | - Jingyu Peng
- School of Life Sciences, Westlake University, Hangzhou, Zhejiang 310000, China
| | - Xiaoling Yu
- School of Life Sciences, Westlake University, Hangzhou, Zhejiang 310000, China
| | - Luyang Li
- School of Life Sciences, Westlake University, Hangzhou, Zhejiang 310000, China
| | - Hualin Yu
- College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang 310000, China; School of Life Sciences, Westlake University, Hangzhou, Zhejiang 310000, China
| | - Jufang Zhang
- Department of Plastic Surgery, Affiliated Hangzhou First People's Hospital, School of Medicine, Westlake University, Hangzhou, Zhejiang 310000, China
| | - Ju-Sheng Zheng
- School of Life Sciences, Westlake University, Hangzhou, Zhejiang 310000, China; School of Medicine, Westlake University, Hangzhou, Zhejiang 310000, China
| | - Bing Zhang
- School of Life Sciences, Westlake University, Hangzhou, Zhejiang 310000, China; Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang 310000, China; Research Center for Industries of the Future, Westlake University, Hangzhou, Zhejiang 310000, China.
| |
Collapse
|
11
|
Li N, Sun YJ, Huang LY, Li RR, Zhang JS, Qiu AH, Wang J, Yang L. Fasting-mimicking diet potentiates anti-tumor effects of CDK4/6 inhibitors against breast cancer by suppressing NRAS- and IGF1-mediated mTORC1 signaling. Drug Resist Updat 2025; 78:101161. [PMID: 39499997 DOI: 10.1016/j.drup.2024.101161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 09/28/2024] [Accepted: 10/13/2024] [Indexed: 12/18/2024]
Abstract
AIMS Acquired resistance to cyclin-dependent kinase 4/6 inhibitors (CDK4/6i) frequently emerges, and CDK4/6i-containing therapies in triple-negative breast cancer (TNBC) remain to be determined. METHODS RNA-sequencing, cell viability analysis, immunoblotting, siRNA transfection et al. were used to investigate and verify the resistance mechanism. BALB/c nude mice xenograft models and spontaneous MMTV-PyMT models were used to explore in vivo efficacy. RESULTS The mTOR pathway was activated in acquired CDK4/6i-resistant cells and inhibition of mTORC1 restored the sensitivity. While fasting-mimicking diet (FMD) enhances the activity of anticancer agents by inhibiting the mTORC1 signaling, we assessed FMD and found that FMD restored the sensitivity of CDK4/6i-resistant cells to abemaciclib and potentiated the anti-tumor activity of CDK4/6i in TNBC. The anti-tumor effects of FMD and/or CDK4/6i were accompanied by the downregulation of S6 phosphorylation. FMD cooperated with CDK4/6i to suppress the levels of IGF1 and RAS. The combination of FMD and abemaciclib also led to a potent inhibition of tumor growth in spontaneous transgenic MMTV-PyMT mouse models. CONCLUSIONS Our data demonstrate that FMD overcomes resistance and potentiates the anti-tumor effect of CDK4/6i by inhibiting mTORC1 signaling via lowering the levels of IGF1 and RAS, providing the rationale for clinical investigation of a potential FMD-CDK4/6i strategy in breast cancer.
Collapse
Affiliation(s)
- Ning Li
- Department of Breast Oncology, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou 510060, China
| | - Ya-Jie Sun
- Department of Breast Oncology, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou 510060, China
| | - Li-Yun Huang
- Department of Pathology, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou 510060, China
| | - Rong-Rong Li
- Department of Radiotherapy, Cancer Center, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou 510080, China; Shantou University Medical College, Shantou University, Shantou, Guangdong 515000, China
| | - Jun-Sheng Zhang
- Department of Breast Oncology, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou 510060, China
| | - Ai-Hua Qiu
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou 510060, China
| | - Jing Wang
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou 510060, China.
| | - Lu Yang
- Department of Radiotherapy, Cancer Center, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou 510080, China; Shantou University Medical College, Shantou University, Shantou, Guangdong 515000, China.
| |
Collapse
|
12
|
Shay JES, Yilmaz ÖH. Dietary and metabolic effects on intestinal stem cells in health and disease. Nat Rev Gastroenterol Hepatol 2025; 22:23-38. [PMID: 39358589 DOI: 10.1038/s41575-024-00980-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 08/05/2024] [Indexed: 10/04/2024]
Abstract
Diet and nutritional metabolites exhibit wide-ranging effects on health and disease partly by altering tissue composition and function. With rapidly rising rates of obesity, there is particular interest in how obesogenic diets influence tissue homeostasis and risk of tumorigenesis; epidemiologically, these diets have a positive correlation with various cancers, including colorectal cancer. The gastrointestinal tract is a highly specialized, continuously renewing tissue with a fundamental role in nutrient uptake and is, in turn, influenced by diet composition and host metabolic state. Intestinal stem cells are found at the base of the intestinal crypt and can generate all mature lineages that comprise the intestinal epithelium and are uniquely influenced by host diet, metabolic by-products and energy dynamics. Similarly, tumour growth and metabolism can also be shaped by nutrient availability and host diet. In this Review, we discuss how different diets and metabolic changes influence intestinal stem cells in homeostatic and pathological conditions, as well as tumorigenesis. We also discuss how dietary changes and composition affect the intestinal epithelium and its surrounding microenvironment.
Collapse
Affiliation(s)
- Jessica E S Shay
- Department of Biology, The David H. Koch Institute for Integrative Cancer Research at MIT, Massachusetts Institute of Technology, Cambridge, MA, USA
- Gastrointestinal Unit, Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Ömer H Yilmaz
- Department of Biology, The David H. Koch Institute for Integrative Cancer Research at MIT, Massachusetts Institute of Technology, Cambridge, MA, USA.
- Department of Pathology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA.
- Department of Pathology, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA, USA.
- Broad Institute of MIT and Harvard, Cambridge, MA, USA.
- Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology and Harvard, Cambridge, MA, USA.
| |
Collapse
|
13
|
Cortellino S, D'Angelo M, Quintiliani M, Giordano A. Cancer knocks you out by fasting: Cachexia as a consequence of metabolic alterations in cancer. J Cell Physiol 2025; 240:e31417. [PMID: 39245862 DOI: 10.1002/jcp.31417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Revised: 07/18/2024] [Accepted: 08/09/2024] [Indexed: 09/10/2024]
Abstract
Neoplastic transformation reprograms tumor and surrounding host cell metabolism, increasing nutrient consumption and depletion in the tumor microenvironment. Tumors uptake nutrients from neighboring normal tissues or the bloodstream to meet energy and anabolic demands. Tumor-induced chronic inflammation, a high-energy process, also consumes nutrients to sustain its dysfunctional activities. These tumor-related metabolic and physiological changes, including chronic inflammation, negatively impact systemic metabolism and physiology. Furthermore, the adverse effects of antitumor therapy and tumor obstruction impair the endocrine, neural, and gastrointestinal systems, thereby confounding the systemic status of patients. These alterations result in decreased appetite, impaired nutrient absorption, inflammation, and shift from anabolic to catabolic metabolism. Consequently, cancer patients often suffer from malnutrition, which worsens prognosis and increases susceptibility to secondary adverse events. This review explores how neoplastic transformation affects tumor and microenvironment metabolism and inflammation, leading to poor prognosis, and discusses potential strategies and clinical interventions to improve patient outcomes.
Collapse
Affiliation(s)
- Salvatore Cortellino
- Laboratory of Molecular Oncology, Responsible Research Hospital, Campobasso, Italy
- Scuola Superiore Meridionale (SSM), School for Advanced Studies, Federico II University, Naples, Italy
- SHRO Italia Foundation ETS, Candiolo, Turin, Italy
| | - Margherita D'Angelo
- Department of Experimental Medicine, University of Campania Luigi Vanvitelli, Naples, Italy
| | | | - Antonio Giordano
- Sbarro Institute for Cancer Research and Molecular Medicine, Center for Biotechnology, College of Science and Technology, Temple University, Philadelphia, Pennsylvania, USA
- Department of Medical Biotechnologies, University of Siena, Siena, Italy
| |
Collapse
|
14
|
Kozlov M. Fasting can reduce weight - but also hair growth. Nature 2024:10.1038/d41586-024-04084-9. [PMID: 39672932 DOI: 10.1038/d41586-024-04084-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2024]
|
15
|
Xie Y, Ye H, Liu Z, Liang Z, Zhu J, Zhang R, Li Y. Fasting as an Adjuvant Therapy for Cancer: Mechanism of Action and Clinical Practice. Biomolecules 2024; 14:1437. [PMID: 39595613 PMCID: PMC11591922 DOI: 10.3390/biom14111437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Revised: 11/06/2024] [Accepted: 11/08/2024] [Indexed: 11/28/2024] Open
Abstract
The fundamental biological characteristics of tumor cells are characterized by irregularities in signaling and metabolic pathways, which are evident through increased glucose uptake, altered mitochondrial function, and the ability to evade growth signals. Interventions such as fasting or fasting-mimicking diets represent a promising strategy that can elicit distinct responses in normal cells compared to tumor cells. These dietary strategies can alter the circulating levels of various hormones and metabolites, including blood glucose, insulin, glucagon, growth hormone, insulin-like growth factor, glucocorticoids, and epinephrine, thereby potentially exerting an anticancer effect. Additionally, elevated levels of insulin-like growth factor-binding proteins and ketone bodies may increase tumor cells' dependence on their own metabolites, ultimately leading to their apoptosis. The combination of fasting or fasting-mimicking diets with radiotherapy or chemotherapeutic agents has demonstrated enhanced anticancer efficacy. This paper aims to classify fasting, elucidate the mechanisms that underlie its effects, assess its impact on various cancer types, and discuss its clinical applications. We will underscore the differential effects of fasting on normal and cancer cells, the mechanisms responsible for these effects, and the imperative for clinical implementation.
Collapse
Affiliation(s)
| | | | | | | | | | - Rongxin Zhang
- Guangdong Provincial Key Laboratory for Research and Evaluation of Pharmaceutical Preparations, Department of Biotechnology, School of Life Sciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou 510006, China; (Y.X.); (H.Y.); (Z.L.); (Z.L.); (J.Z.)
| | - Yan Li
- Guangdong Provincial Key Laboratory for Research and Evaluation of Pharmaceutical Preparations, Department of Biotechnology, School of Life Sciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou 510006, China; (Y.X.); (H.Y.); (Z.L.); (Z.L.); (J.Z.)
| |
Collapse
|
16
|
Brunner S, Janssen KP, Ecker J. Post-fast refeeding: rise of intestinal stemness and mutagen-induced cancer risk through polyamine metabolism. Signal Transduct Target Ther 2024; 9:317. [PMID: 39528467 PMCID: PMC11555366 DOI: 10.1038/s41392-024-02038-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Revised: 10/28/2024] [Accepted: 10/30/2024] [Indexed: 11/16/2024] Open
Affiliation(s)
- Sarah Brunner
- Institute of Clinical Chemistry and Laboratory Medicine, Functional Lipidomics and Metabolism Research, University Hospital Regensburg, Regensburg, Germany
| | - Klaus-Peter Janssen
- Technical University of Munich, School of Medicine and Health, Dept. of Surgery, 81675, Munich, Germany
| | - Josef Ecker
- Institute of Clinical Chemistry and Laboratory Medicine, Functional Lipidomics and Metabolism Research, University Hospital Regensburg, Regensburg, Germany.
| |
Collapse
|
17
|
Kozlov M. The surprising cause of fasting's regenerative powers. Nature 2024:10.1038/d41586-024-02700-2. [PMID: 39169140 DOI: 10.1038/d41586-024-02700-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/23/2024]
|