1
|
Wang H, Huang Y, Zhu Z, Peng Y, Wei G, Wang X, Guan Q, Jin L, Feng Y, Zhang J. No Bidirectional Causal Relationship Between Traumatic Brain Injury and Parkinson's Disease: A Two-Sample Mendelian Randomization Study. Health Sci Rep 2025; 8:e70734. [PMID: 40303911 PMCID: PMC12035761 DOI: 10.1002/hsr2.70734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Revised: 03/24/2025] [Accepted: 04/02/2025] [Indexed: 05/02/2025] Open
Abstract
Background The incidence of Parkinson's disease (PD) is significantly increased in older people who have experienced traumatic brain injury (TBI), suggesting that TBI may be a potential risk factor for PD. However, the causal relationship remains ambiguous. Objective To investigate the association between TBI and PD using Mendelian randomization (MR) analyses. Methods Four genome-wide association databases were reviewed in detail, including GWAS Catalog, FinnGen, IEU OpenGWAS, and UK Biobank. Genetic data for TBI were obtained from the FinnGen data set, including 7430 clinically diagnosed cases and 404,751 controls, and PD was obtained from a meta-analysis in the GWAS Catalog, including 42,792 cases and 568,693 controls. The bidirectional two-sample MR analyses were used to investigate the causal association between TBI and PD. Results There was no evidence of a causal relationship between TBI and an increased risk of PD (IVW; OR = 1.11; 95% CI, 0.91-1.36; p = 0.308). Similarly, genetically predisposed PD was not associated with a high risk of TBI (IVW; OR = 0.96; 95% CI, 0.91-1.02; p = 0.209). Results from MR-Egger regression, weighted mode, and weighted median analyses were consistent with those from the IVW analysis. Additional sensitivity analyses further supported the robustness of our conclusions. Conclusions No causal relationship was found between TBI and PD.
Collapse
Affiliation(s)
- Huan Wang
- Department of Neurology, Tongji Hospital, School of MedicineTongji UniversityShanghaiChina
- Clinical Research Center, Tongji Hospital, School of MedicineTongji UniversityShanghaiChina
| | - Yibin Huang
- East China University of Science and TechnologyShanghaiChina
| | - Ziwen Zhu
- Department of Neurology, Tongji Hospital, School of MedicineTongji UniversityShanghaiChina
| | - Yanzi Peng
- Department of Neurology, Tongji Hospital, School of MedicineTongji UniversityShanghaiChina
| | - Guolian Wei
- Department of Neurology, Tongji Hospital, School of MedicineTongji UniversityShanghaiChina
| | - Xijin Wang
- Department of Neurology, Tongji Hospital, School of MedicineTongji UniversityShanghaiChina
| | - Qiang Guan
- Department of Neurology, Tongji Hospital, School of MedicineTongji UniversityShanghaiChina
| | - Lingjing Jin
- Department of Neurology and Neurological Rehabilitation, Shanghai Yangzhi Rehabilitation Hospital, School of MedicineTongji UniversityTongji UniversityShanghaiChina
| | - Ya Feng
- Department of Neurology, Shanghai General HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
| | - Jingxing Zhang
- Department of Neurology, Tongji Hospital, School of MedicineTongji UniversityShanghaiChina
| |
Collapse
|
2
|
Abstract
Both genetic and environmental factors modulate the risk of Parkinson's disease. In this article, all these pathophysiologic processes that contribute to damages at the tissue, cellular, organelle, and molecular levels, and their effects are talked about.
Collapse
Affiliation(s)
- Bin Xiao
- National Neuroscience Institute, Singapore; Duke-NUS Medical School, Singapore
| | - ZhiDong Zhou
- National Neuroscience Institute, Singapore; Duke-NUS Medical School, Singapore
| | - YinXia Chao
- National Neuroscience Institute, Singapore; Duke-NUS Medical School, Singapore
| | - Eng-King Tan
- National Neuroscience Institute, Singapore; Duke-NUS Medical School, Singapore.
| |
Collapse
|
3
|
Sabir MS, Makarious MB, Huizing M, Gahl WA, Platt FM, Malicdan MCV. Comprehensive analysis of SLC17A5 variants in large European cohorts reveals no association with Parkinson's disease risk. Parkinsonism Relat Disord 2025; 134:107790. [PMID: 40088783 DOI: 10.1016/j.parkreldis.2025.107790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/16/2024] [Revised: 02/13/2025] [Accepted: 03/10/2025] [Indexed: 03/17/2025]
Abstract
BACKGROUND Parkinson's disease (PD) is a neurodegenerative disorder characterized by dopaminergic neuron loss and α-synuclein aggregation. Aging is the primary risk factor, with both rare and common genetic variants playing a role. Previous studies have implicated lysosomal storage disorder (LSD)-related genes, including SLC17A5, in PD susceptibility. OBJECTIVE This study aimed to investigate the association of SLC17A5 variants, including rare and common variants and the FSASD-associated p.Arg39Cys missense variant, with PD risk in large European ancestry cohorts. METHODS Rare variant burden analyses were performed at minor allele frequency (MAF) thresholds of ≤1 % and ≤0.1 % in 7,184 PD cases and 51,650 controls using whole-genome and whole-exome sequencing data. Association testing of the p.Arg39Cys variant was conducted across five cohorts, encompassing both Finnish and non-Finnish Europeans. Common variant associations were examined using summary statistics from the largest European GWAS of PD. RESULTS No significant association was observed between rare SLC17A5 variants and PD at either MAF threshold. The p.Arg39Cys variant, though enriched in Finnish Europeans, showed no significant association with PD across several cohorts. Similarly, common SLC17A5 variants (MAF ≥1%) were not associated with PD risk. CONCLUSION Our findings do not support a role for SLC17A5 variants in PD susceptibility. While lysosomal dysfunction is central to PD pathogenesis, its contribution appears pathway-specific, with SLC17A5 unlikely to influence risk. Larger, multiethnic studies and functional analyses are needed to further investigate sialic acid metabolism in PD and related disorders.
Collapse
Affiliation(s)
- Marya S Sabir
- UDP Translational Laboratory, NIH Undiagnosed Diseases Program, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA; NIH Oxford-Cambridge Scholars Program, University of Oxford, Oxford, UK
| | - Mary B Makarious
- Center for Alzheimer's and Related Dementias, National Institutes of Health, Bethesda, MD, USA; DataTecnica LLC, Washington, DC, USA
| | - Marjan Huizing
- Human Biochemical Genetics Section, Medical Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| | - William A Gahl
- UDP Translational Laboratory, NIH Undiagnosed Diseases Program, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA; Human Biochemical Genetics Section, Medical Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| | - Frances M Platt
- Department of Pharmacology, University of Oxford, Oxford, UK
| | - May Christine V Malicdan
- UDP Translational Laboratory, NIH Undiagnosed Diseases Program, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA; Human Biochemical Genetics Section, Medical Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
4
|
Lange LM, Cerquera-Cleves C, Schipper M, Panagiotaropoulou G, Braun A, Kraft J, Awasthi S, Bell N, Posthuma D, Ripke S, Blauwendraat C, Heilbron K. Prioritizing Parkinson's disease risk genes in genome-wide association loci. NPJ Parkinsons Dis 2025; 11:77. [PMID: 40240380 PMCID: PMC12003903 DOI: 10.1038/s41531-025-00933-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2025] [Accepted: 03/31/2025] [Indexed: 04/18/2025] Open
Abstract
Many drug targets in ongoing Parkinson's disease (PD) clinical trials have strong genetic links. While genome-wide association studies (GWAS) nominate regions associated with disease, pinpointing causal genes is challenging. Our aim was to prioritize additional druggable genes underlying PD GWAS signals. The polygenic priority score (PoPS) integrates genome-wide information from MAGMA gene-level associations and over 57,000 gene-level features. We applied PoPS to East Asian and European PD GWAS data and prioritized genes based on PoPS, distance to the GWAS signal, and non-synonymous credible set variants. We prioritized 46 genes, including well-established PD genes (SNCA, LRRK2, GBA1, TMEM175, VPS13C), genes with strong literature evidence supporting a mechanistic link to PD (RIT2, BAG3, SCARB2, FYN, DYRK1A, NOD2, CTSB, SV2C, ITPKB), and genes relatively unexplored in PD. Many hold potential for drug repurposing or development. We prioritized high-confidence genes with strong links to PD pathogenesis that may represent our next-best candidates for developing disease-modifying therapeutics.
Collapse
Affiliation(s)
- Lara M Lange
- Laboratory of Neurogenetics, National Institute on Aging, Bethesda, MD, USA
- Institute of Neurogenetics, University of Luebeck, Luebeck, Germany
| | - Catalina Cerquera-Cleves
- Neurology Unit, Department of Neurosciences, Hospital Universitario San Ignacio, Bogotá, Colombia
- Centre de recherche du Centre Hospitalier Universitaire de Québec, Axe Neurosciences, Département de Psychiatrie et Neurosciences, Laval University, Québec, QC, Canada
| | | | - Georgia Panagiotaropoulou
- Department of Psychiatry and Psychotherapy, Charité-Universitätsmedizin Berlin, Berlin, Germany
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- German Center for Mental Health (DZPG), partner site Berlin/Potsdam, Berlin, Germany
| | - Alice Braun
- Department of Psychiatry and Psychotherapy, Charité-Universitätsmedizin Berlin, Berlin, Germany
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- German Center for Mental Health (DZPG), partner site Berlin/Potsdam, Berlin, Germany
| | - Julia Kraft
- Department of Psychiatry and Psychotherapy, Charité-Universitätsmedizin Berlin, Berlin, Germany
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- German Center for Mental Health (DZPG), partner site Berlin/Potsdam, Berlin, Germany
| | - Swapnil Awasthi
- Department of Psychiatry and Psychotherapy, Charité-Universitätsmedizin Berlin, Berlin, Germany
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- German Center for Mental Health (DZPG), partner site Berlin/Potsdam, Berlin, Germany
| | - Nathaniel Bell
- Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Danielle Posthuma
- Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
- Department of Child and Adolescent Psychiatry and Pediatric Psychology, Section Complex Trait Genetics, Amsterdam Neuroscience, Vrije Universiteit Medical Center, Amsterdam, The Netherlands
| | - Stephan Ripke
- Department of Psychiatry and Psychotherapy, Charité-Universitätsmedizin Berlin, Berlin, Germany
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- German Center for Mental Health (DZPG), partner site Berlin/Potsdam, Berlin, Germany
| | - Cornelis Blauwendraat
- Laboratory of Neurogenetics, National Institute on Aging, Bethesda, MD, USA
- Center for Alzheimer's and Related Dementias, National Institute on Aging and National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| | - Karl Heilbron
- Department of Psychiatry and Psychotherapy, Charité-Universitätsmedizin Berlin, Berlin, Germany.
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA.
- German Center for Mental Health (DZPG), partner site Berlin/Potsdam, Berlin, Germany.
- Bayer AG, Research & Development, Pharmaceuticals, Berlin, Germany.
| |
Collapse
|
5
|
Son SM, Siddiqi FH, Lopez A, Ansari R, Tyrkalska SD, Park SJ, Kunath T, Metzakopian E, Fleming A, Rubinsztein DC. Alpha-synuclein mutations mislocalize cytoplasmic p300 compromising autophagy, which is rescued by ACLY inhibition. Neuron 2025:S0896-6273(25)00247-8. [PMID: 40262613 DOI: 10.1016/j.neuron.2025.03.028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Revised: 03/03/2025] [Accepted: 03/24/2025] [Indexed: 04/24/2025]
Abstract
Triplications and certain point mutations in the SNCA gene, encoding alpha-synuclein (α-Syn), cause Parkinson's disease (PD). Here, we demonstrate that the PD-causing A53T α-Syn mutation and elevated α-Syn expression perturb acetyl-coenzyme A (CoA) and p300 biology in human neurons and in the CNS of zebrafish and mice. This dysregulation is mediated by activation of ATP-citrate lyase (ACLY), a key enzyme that generates acetyl-CoA in the cytoplasm, via two mechanisms. First, ACLY activity increases acetyl-CoA levels, which activate p300. Second, ACLY activation increases LKB1 acetylation, which inhibits AMPK, leading to increased cytoplasmic and decreased nuclear p300. This lowers histone acetylation and increases acetylation of cytoplasmic p300 substrates, like raptor, which causes mechanistic target of rapamycin complex 1 (mTORC1) hyperactivation, thereby impairing autophagy. ACLY inhibitors rescue pathological phenotypes in PD neurons, organoids, zebrafish, and mouse models, suggesting that this pathway is a core feature of α-Syn toxicity and that ACLY may be a suitable therapeutic target.
Collapse
Affiliation(s)
- Sung Min Son
- Cambridge Institute for Medical Research (CIMR), University of Cambridge, Cambridge, UK; UK Dementia Research Institute, Cambridge Institute for Medical Research (CIMR), University of Cambridge, Cambridge, UK
| | - Farah H Siddiqi
- Cambridge Institute for Medical Research (CIMR), University of Cambridge, Cambridge, UK; UK Dementia Research Institute, Cambridge Institute for Medical Research (CIMR), University of Cambridge, Cambridge, UK
| | - Ana Lopez
- Cambridge Institute for Medical Research (CIMR), University of Cambridge, Cambridge, UK; UK Dementia Research Institute, Cambridge Institute for Medical Research (CIMR), University of Cambridge, Cambridge, UK; Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, UK
| | - Rizwan Ansari
- UK Dementia Research Institute, Department of Clinical Neurosciences, Cambridge Biomedical Campus, University of Cambridge, Cambridge, UK
| | - Sylwia D Tyrkalska
- Cambridge Institute for Medical Research (CIMR), University of Cambridge, Cambridge, UK; UK Dementia Research Institute, Cambridge Institute for Medical Research (CIMR), University of Cambridge, Cambridge, UK; Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, UK
| | - So Jung Park
- Cambridge Institute for Medical Research (CIMR), University of Cambridge, Cambridge, UK; UK Dementia Research Institute, Cambridge Institute for Medical Research (CIMR), University of Cambridge, Cambridge, UK
| | - Tilo Kunath
- Centre for Regenerative Medicine, Institute for Regeneration and Repair, University of Edinburgh, Edinburgh, UK
| | - Emmanouil Metzakopian
- UK Dementia Research Institute, Department of Clinical Neurosciences, Cambridge Biomedical Campus, University of Cambridge, Cambridge, UK; bit.bio, The Dorothy Hodgkin Building, Babraham Research Campus, Cambridge, UK
| | - Angeleen Fleming
- Cambridge Institute for Medical Research (CIMR), University of Cambridge, Cambridge, UK; UK Dementia Research Institute, Cambridge Institute for Medical Research (CIMR), University of Cambridge, Cambridge, UK; Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, UK
| | - David C Rubinsztein
- Cambridge Institute for Medical Research (CIMR), University of Cambridge, Cambridge, UK; UK Dementia Research Institute, Cambridge Institute for Medical Research (CIMR), University of Cambridge, Cambridge, UK.
| |
Collapse
|
6
|
Martín-Bórnez M, Shar N, Nour MA, Murphy D, Elsayed I, Megha SN, Nwaokorie F, Olusanya A, Kuznetsov N, Bandres-Ciga S, Noyce AJ, Iwaki H, Jones L, Gómez-Garre P, Mir P, Periñan MT. Does COMT Play a Role in Parkinson's Disease Susceptibility Across Diverse Ancestral Populations? MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2025:2025.04.11.25325572. [PMID: 40297458 PMCID: PMC12036390 DOI: 10.1101/2025.04.11.25325572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/30/2025]
Abstract
Background The catechol-O-methyltransferase (COMT) gene is involved in brain catecholamine metabolism, but its association with Parkinson's disease (PD) risk remains unclear. Objective To investigate the relationship between COMT genetic variants and PD risk across diverse ancestries. Methods We analyzed COMT variants in 2,251 PD patients and 2,835 controls of European descent using whole-genome sequencing from the Accelerating Medicines Partnership-Parkinson Disease (AMP-PD), along with 20,427 PD patients and 11,837 controls from 10 ancestries using genotyping data from the Global Parkinson's Genetics Program (GP2). Results Utilizing the largest case-control datasets to date, no significant enrichment of COMT risk alleles in PD patients was observed across any ancestry group after correcting for multiple testing. Among Europeans, no correlations with cognitive decline, motor function, motor complications, or time to LID onset were observed. Conclusions These findings emphasize the need for larger, diverse cohorts to confirm the role of COMT in PD development and progression.
Collapse
Affiliation(s)
- Miguel Martín-Bórnez
- Unidad de Trastornos del Movimiento, Servicio de Neurología, Instituto de Biomedicina de Sevilla, Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Seville, Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas, Instituto de Salud Carlos III, Madrid, Spain
| | - Nisar Shar
- Department of clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, London WC1N 3BG, UK
- NED University of Engineering & Technology, Karachi, Pakistan
| | | | - David Murphy
- Department of clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, London WC1N 3BG, UK
| | - Inas Elsayed
- Faculty of Pharmacy, University of Gezira, Wadmedani, Sudan
- Systems Biology Ireland, School of Medicine and Medical Science, University College Dublin, Dublin, Ireland
| | - Shri N Megha
- Department of Neurology, National Institute of Mental Health and Neurosciences, India
| | - Francisca Nwaokorie
- Department of Medical Laboratory Science, Faculty of Basic Medical Sciences, College of Medicine, University of Lagos, Nigeria
| | - Adedunni Olusanya
- Department of Pharmacology, Therapeutics and Toxicology, Faculty of Basic Medical Sciences, College of Medicine, University of Lagos, Nigeria
| | - Nicole Kuznetsov
- Center for Alzheimer’s and Related Dementias (CARD), National Institute on Aging and National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
- Data Tecnica, Washington DC, USA
| | - Sara Bandres-Ciga
- Center for Alzheimer’s and Related Dementias (CARD), National Institute on Aging and National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| | - Alastair J Noyce
- Center for Preventive Neurology, Wolfson Institute of Population Health, Faculty of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Hirotaka Iwaki
- Center for Alzheimer’s and Related Dementias (CARD), National Institute on Aging and National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
- Data Tecnica, Washington DC, USA
| | - Lietsel Jones
- Center for Alzheimer’s and Related Dementias (CARD), National Institute on Aging and National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
- Data Tecnica, Washington DC, USA
| | - Pilar Gómez-Garre
- Unidad de Trastornos del Movimiento, Servicio de Neurología, Instituto de Biomedicina de Sevilla, Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Seville, Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas, Instituto de Salud Carlos III, Madrid, Spain
| | - Pablo Mir
- Unidad de Trastornos del Movimiento, Servicio de Neurología, Instituto de Biomedicina de Sevilla, Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Seville, Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas, Instituto de Salud Carlos III, Madrid, Spain
- Departamento de Medicina, Facultad de Medicina, Universidad de Sevilla, Seville, Spain
| | - Maria Teresa Periñan
- Unidad de Trastornos del Movimiento, Servicio de Neurología, Instituto de Biomedicina de Sevilla, Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Seville, Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas, Instituto de Salud Carlos III, Madrid, Spain
- Center for Preventive Neurology, Wolfson Institute of Population Health, Faculty of Medicine and Dentistry, Queen Mary University of London, London, UK
| |
Collapse
|
7
|
Huang D, Ovcharenko I. Silencer variants are key drivers of gene upregulation in Alzheimer's disease. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2025:2025.04.07.25325386. [PMID: 40297423 PMCID: PMC12036408 DOI: 10.1101/2025.04.07.25325386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/30/2025]
Abstract
Alzheimer's disease (AD), particularly late-onset AD, stands as the most prevalent neurodegenerative disorder globally. Owing to its substantial heritability, genetic studies have emerged as indispensable for elucidating genes and biological pathways driving AD onset and progression. However, genetic and molecular mechanisms underlying AD remain poorly defined, largely due to the pronounced heterogeneity of AD and the intricate interactions among AD genetic factors. Notably, approximately 90% of AD-associated genetic variants reside in intronic and intergenic regions, yet their functional significance has remained largely uncharacterized. To address this challenge, we developed a deep learning framework combining bulk and single-cell epigenomic data to evaluate the regulatory potential (i.e., silencing and activating strength) of noncoding AD variants in the dorsolateral prefrontal cortex (DLPFCs) and its major cell types. This model identified 1,457 silencer and 3,084 enhancer AD-associated variants in the DLPFC and binned them into silencer variants only (SL), enhancer variants only (EN), or both variant types (ENSL) classes. Each class exerts distinct cellular and molecular influences on AD pathogenesis. EN loci predominantly regulate housekeeping metabolic processes, whereas SL loci (including the genes MS4A6A , TREM2 , USP6NL , HLA-D ) are selectively linked to immune responses. Notably, 71% of these genes are significantly upregulated in AD and pro-inflammation-stimulated microglia. Furthermore, genes associated with SL loci are, in neuronal cells, often responsive to glutamate receptor antagonists (e.g, NBQX) and anti-inflammatory perturbagens (such as D-64131), the compound classes known for reducing the AD risk. ENSL loci, in contrast, are uniquely implicated in memory maintenance, neurofibrillary tangle assembly, and are also shared by other neurological disorders such as Parkinson's disease and schizophrenia. Key genes in this class of loci, such as MAPT , CR1/2 , and CLU , are frequently upregulated in AD subtypes with hyperphosphorylated tau aggregates. Critically, our model can accurately predict the impact of regulatory variants, with an average Pearson correlation coefficient of 0.54 and a directional concordance rate of 70% between our predictions and experimental outcomes. This model identified rs636317 as a causal AD variant in the MS4A locus, distinguishing it from the 7bp-away allele-neutral variant rs636341. Similarly, rs7922621 was prioritized over its 54-bp-away allele-neutral rs7901634 in the TSPAN14 locus. Additional causal variants include rs6701713 in the CR1 locus, and rs28834970 and rs755951 in the PTK2B locus. Collectively, this work advances our understanding of the regulatory landscape of AD-associated genetic variants, providing a framework to explore their functional roles in the pathogenesis of this complex disease.
Collapse
|
8
|
Duarte-Zambrano F, Alfonso-Cedeño DF, Barrero JA, Rodríguez-Vanegas LA, Moreno-Cárdenas V, Olarte-Díaz A, Arboleda G, Arboleda H. Genetic variants associated with idiopathic Parkinson's disease in Latin America: A systematic review. Neurogenetics 2025; 26:43. [PMID: 40178685 PMCID: PMC11968493 DOI: 10.1007/s10048-025-00817-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2025] [Accepted: 03/02/2025] [Indexed: 04/05/2025]
Abstract
Idiopathic Parkinson's disease (PD) constitutes a complex trait influenced by genetic, environmental, and lifestyle factors, with an estimated heritability of nearly 30%. However, a large proportion of the heritable variation linked to PD remains uncertain, partly due to ancestral bias. Expanding research into Hispanic populations can contribute to address this gap. To review the evidence of genetic variants associated with idiopathic PD in Latin America. A PRISMA-compliant systematic review was conducted in MEDLINE, EMBASE and LILACS, compiling studies published up to February 7, 2025. Nineteen case-control studies were included. Two hypothesis-free studies identified rs525496 near H2BW1 as a protective factor and rs356182 in SNCA as a risk factor through XWAS and GWAS, respectively. Seventeen hypothesis-driven studies examined over three hundred variants, identifying nineteen genetic markers; risk factors included one INDEL in NR4A2, CNV burdens in PRKN, SNCA, and PLA2G6, along with fourteen variants in six loci including GBA, APOEε4, MTHFR, LRRK2, and SNCA. Three SNPs in the PICALM, ALDH1A1, and APOE-ε3 loci were identified as protective factors. Additionally, six SNCA variant haplotypes appear to increase PD risk, while two NR4A2 INDELs haplotypes showed mixed effects. This review summarized genetic loci associated with idiopathic PD in Latin American populations evidencing an overlap with European findings as well as novel loci, although awaiting replication and validation. These observations contribute to the understanding of genetic configuration of the disease and highlight the need for further genomic research in underrepresented groups that include local ancestry analysis within admixed cohorts to guide development of personalized treatments and population-specific interventions.
Collapse
Affiliation(s)
- Felipe Duarte-Zambrano
- Semillero de Investigación en Neurociencias, Facultad de Medicina, Universidad Nacional de Colombia, Bogotá, Colombia.
- Grupo de Investigación en Neurociencias y Muerte Celular, Facultad de Medicina E Instituto de Genética, Universidad Nacional de Colombia, Bogotá, Colombia.
| | - David Felipe Alfonso-Cedeño
- Semillero de Investigación en Neurociencias, Facultad de Medicina, Universidad Nacional de Colombia, Bogotá, Colombia
| | - Jorge A Barrero
- Semillero de Investigación en Neurociencias, Facultad de Medicina, Universidad Nacional de Colombia, Bogotá, Colombia
| | | | - Valentina Moreno-Cárdenas
- Semillero de Investigación en Neurociencias, Facultad de Medicina, Universidad Nacional de Colombia, Bogotá, Colombia
| | - Anamaría Olarte-Díaz
- Semillero de Investigación en Neurociencias, Facultad de Medicina, Universidad Nacional de Colombia, Bogotá, Colombia
| | - Gonzalo Arboleda
- Grupo de Investigación en Neurociencias y Muerte Celular, Facultad de Medicina E Instituto de Genética, Universidad Nacional de Colombia, Bogotá, Colombia
- Departamento de Patología, Facultad de Medicina, Universidad Nacional de Colombia, Bogotá, Colombia
| | - Humberto Arboleda
- Semillero de Investigación en Neurociencias, Facultad de Medicina, Universidad Nacional de Colombia, Bogotá, Colombia
- Grupo de Investigación en Neurociencias y Muerte Celular, Facultad de Medicina E Instituto de Genética, Universidad Nacional de Colombia, Bogotá, Colombia
- Departamento de Pediatría E Instituto de Genética, Facultad de Medicina, Universidad Nacional de Colombia, Bogotá, Colombia
| |
Collapse
|
9
|
Mandla R, Shi Z, Hou K, Wang Y, Mies G, Aw AJ, Cullina S, Kenny E, Atkinson E, Martin AR, Pasaniuc B. Large-scale admixture mapping in the All of Us Research Program improves the characterization of cross-population phenotypic differences. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2025:2025.04.02.25325115. [PMID: 40236441 PMCID: PMC11998848 DOI: 10.1101/2025.04.02.25325115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 04/17/2025]
Abstract
Admixed individuals have largely been understudied in medical research due to their complex genetic ancestries. However, the consideration of admixture can help identify ancestry-enriched genetic associations, delineating some of the genetic underpinnings of cross-population phenotypic variation. To this end, we performed local ancestry inference within the All of Us Research Program to identify individuals with recent admixture between African (AFR) and European (EUR) populations (N=48,921). We identified evidence of local AFR ancestry enrichment at the HLA locus, suggestive of putative selection since admixture. Furthermore, we performed the largest admixture mapping (ADM) efforts in AFR-EUR Admixed individuals for 22 traits, identifying 71 associations between inferred local AFR ancestries and a trait. Variants from published GWAS could only account for 18 (25%) of the ADM associations, highlighting novel loci where ancestral haplotypes explained some phenotypic variation. Previous studies likely have not identified these loci due to the low availability of high-powered GWAS in populations genetically similar to AFR. One such loci was 9q21.33, associated with 1.4-fold risk of end-stage kidney disease (ESKD) for carriers of inferred local AFR ancestries at the region. This locus contains the gene SLC28A3, which has previously been linked to kidney function but has never been associated with cross-population ESKD prevalence differences. Together, our results expand upon the existing literature on phenotypic differences between populations, highlighting loci where genetic ancestries play a critical role in the genetic architecture of disease.
Collapse
Affiliation(s)
- Ravi Mandla
- Graduate Program in Genomics and Computational Biology, University of Pennsylvania, Philadelphia, PA, USA
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Zhuozheng Shi
- Graduate Program in Genomics and Computational Biology, University of Pennsylvania, Philadelphia, PA, USA
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Kangcheng Hou
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Ying Wang
- Analytic and Translational Genetics Unit, Massachusetts General Hospital, Boston, MA, USA
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Georgia Mies
- Graduate Program in Genomics and Computational Biology, University of Pennsylvania, Philadelphia, PA, USA
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Alan J. Aw
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Sinead Cullina
- Institute for Genomic Health, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | | | - Eimear Kenny
- Institute for Genomic Health, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Elizabeth Atkinson
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - Alicia R. Martin
- Analytic and Translational Genetics Unit, Massachusetts General Hospital, Boston, MA, USA
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Bogdan Pasaniuc
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
10
|
Pan L, Yang L, Ding W, Hu Y, Yang W, Wang J, Zhang Z, Fan K, Sun Z, Liang Y, Lin X, Chen J, Zhang Y. Integrated genetic analysis and single cell-RNA sequencing for brain image-derived phenotypes and Parkinson's disease. Prog Neuropsychopharmacol Biol Psychiatry 2025; 138:111317. [PMID: 40081564 DOI: 10.1016/j.pnpbp.2025.111317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/16/2024] [Revised: 02/22/2025] [Accepted: 03/04/2025] [Indexed: 03/16/2025]
Abstract
BACKGROUND Previous studies have reported Parkinson's disease (PD) patients usually have changes in brain image-derived phenotypes (IDPs). However, the role of genetic factors in their association and biological mechanism remains unclear. We aimed to unveil genetic and biological links between brain IDPs and PD. METHODS Using genome-wide association study (GWAS) summary statistics and single-cell RNA sequencing (scRNA-seq) data, we performed a comprehensive analysis between 624 brain IDPs and PD. The genetic correlations and causality were examined by linkage disequilibrium score regression (LDSC), two-sample bidirectional Mendelian randomization (MR) and meta-analysis. Potential shared genes were identified using MAGMA and PLACO. Finally, pathway enrichment using FUMA and Metascape, and scRNA-seq analysis were performed to determine biological mechanisms and gene expression atlas across various cell types in brain tissue. RESULTS LDSC revealed that 50 brain IDPs were genetically correlated with PD (P < 0.05), in which 5 IDPs, exhibited putative causality on PD through MR (P < 0.05). For instance, we identified that the increased volume of the right thalamus (IVW: OR = 2.08, 95 % CI: 1.33 to 3.25, PFDR = 0.03) was positively correlated with the risk of PD, which was also supported by replicated MR (IVW: OR = 1.63, 95 % CI: 1.17-2.26, PFDR = 0.02) in FinnGen and meta-analysis (OR = 1.78, 95 % CI: 1.36-2.31, PFDR = 5.00 × 10-4). Additionally, we identified 56 unique pleiotropic genes, such as FAM13A, with notable enrichment in neuronal cells. Biological mechanism analysis revealed these genes were enriched in brain tissues and a variety of pathways such as negative regulation of neuron apoptotic processes. CONCLUSION We indicated the shared genetic architecture and biological mechanisms between brain IDPs and PD. These findings might provide insights on the therapeutic intervention and early prediction of PD at the brain imaging level.
Collapse
Affiliation(s)
- Lin Pan
- Department of Neurology, Neuroscience Research Center, The First Hospital of Jilin University, Changchun, China
| | - Laiyu Yang
- Department of Urology, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Weijie Ding
- Department of Neurology, Neuroscience Research Center, The First Hospital of Jilin University, Changchun, China
| | - Yongfei Hu
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Dongfeng Road East 651, Guangzhou 510060, China
| | - Wenzhuo Yang
- Department of Neurosurgery, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Jingning Wang
- Department of Neurology, Neuroscience Research Center, The First Hospital of Jilin University, Changchun, China
| | - Zhiyun Zhang
- Department of Plastic Surgery, The First Hospital of Jilin University, Changchun 130000, China
| | - Kangli Fan
- Department of Neurology, Neuroscience Research Center, The First Hospital of Jilin University, Changchun, China
| | - Zhihui Sun
- Department of Neurology, Neuroscience Research Center, The First Hospital of Jilin University, Changchun, China
| | - Yue Liang
- Department of Neurology, Neuroscience Research Center, The First Hospital of Jilin University, Changchun, China
| | - Xiaoyue Lin
- Department of Neurology, Neuroscience Research Center, The First Hospital of Jilin University, Changchun, China
| | - Jun Chen
- Department of Neurology, Neuroscience Research Center, The First Hospital of Jilin University, Changchun, China.
| | - Ying Zhang
- Department of Neurology, Neuroscience Research Center, The First Hospital of Jilin University, Changchun, China.
| |
Collapse
|
11
|
Antico O, Thompson PW, Hertz NT, Muqit MMK, Parton LE. Targeting mitophagy in neurodegenerative diseases. Nat Rev Drug Discov 2025; 24:276-299. [PMID: 39809929 DOI: 10.1038/s41573-024-01105-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/25/2024] [Indexed: 01/16/2025]
Abstract
Mitochondrial dysfunction is a hallmark of idiopathic neurodegenerative diseases, including Parkinson disease, amyotrophic lateral sclerosis, Alzheimer disease and Huntington disease. Familial forms of Parkinson disease and amyotrophic lateral sclerosis are often characterized by mutations in genes associated with mitophagy deficits. Therefore, enhancing the mitophagy pathway may represent a novel therapeutic approach to targeting an underlying pathogenic cause of neurodegenerative diseases, with the potential to deliver neuroprotection and disease modification, which is an important unmet need. Accumulating genetic, molecular and preclinical model-based evidence now supports targeting mitophagy in neurodegenerative diseases. Despite clinical development challenges, small-molecule-based approaches for selective mitophagy enhancement - namely, USP30 inhibitors and PINK1 activators - are entering phase I clinical trials for the first time.
Collapse
Affiliation(s)
- Odetta Antico
- MRC Protein Phosphorylation and Ubiquitylation Unit, School of Life Sciences, University of Dundee, Dundee, UK
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, USA
| | - Paul W Thompson
- Mission Therapeutics Ltd, Babraham Research Campus, Cambridge, UK
| | | | - Miratul M K Muqit
- MRC Protein Phosphorylation and Ubiquitylation Unit, School of Life Sciences, University of Dundee, Dundee, UK
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, USA
| | - Laura E Parton
- Mission Therapeutics Ltd, Babraham Research Campus, Cambridge, UK.
| |
Collapse
|
12
|
Kim NJ, Chowdhury NF, Buetow KH, Thompson PM, Irimia A. Genetic Insights into Brain Morphology: a Genome-Wide Association Study of Cortical Thickness and T 1-Weighted MRI Gray Matter-White Matter Intensity Contrast. Neuroinformatics 2025; 23:26. [PMID: 40167904 PMCID: PMC11961481 DOI: 10.1007/s12021-025-09722-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/06/2025] [Indexed: 04/02/2025]
Abstract
In T1-weighted magnetic resonance imaging (MRI), cortical thickness (CT) and gray-white matter contrast (GWC) capture brain morphological traits and vary with age-related disease. To gain insight into genetic factors underlying brain structure and dynamics observed during neurodegeneration, this genome-wide association study (GWAS) quantifies the relationship between single nucleotide polymorphisms (SNPs) and both CT and GWC in UK Biobank participants (N = 43,002). To our knowledge, this is the first GWAS to investigate the genetic determinants of cortical T1-MRI GWC in humans. We found 251 SNPs associated with CT or GWC for at least 1% of cortical locations, including 42 for both CT and GWC; 127 for only CT; and 82 for only GWC. Identified SNPs include rs1080066 (THSB1, featuring the strongest association with both CT and GWC), rs13107325 (SLC39A8, linked to CT at the largest number of cortical locations), and rs864736 (KCNK2, associated with GWC at the largest number of cortical locations). Dimensionality reduction reveals three major gene ontologies constraining CT (neural signaling, ion transport, cell migration) and four constraining GWC (neural cell development, cellular homeostasis, tissue repair, ion transport). Our findings provide insight into genetic determinants of GWC and CT, highlighting pathways associated with brain anatomy and dynamics of neurodegeneration. These insights can assist the development of gene therapies and treatments targeting brain diseases.
Collapse
Affiliation(s)
- Nicholas J Kim
- University of Southern California (Alfred E. Mann Department of Biomedical Engineering, Viterbi School of Engineering), Los Angeles, CA, USA
- University of Southern California (Ethel Percy Andrus Gerontology Center, Leonard Davis School of Gerontology), Los Angeles, CA, USA
| | - Nahian F Chowdhury
- University of Southern California (Ethel Percy Andrus Gerontology Center, Leonard Davis School of Gerontology), Los Angeles, CA, USA
| | - Kenneth H Buetow
- Arizona State University (School of Life Sciences Center for Social Dynamics and Complexity), Tempe, AZ, USA
| | - Paul M Thompson
- University of Southern California (Mark and Mary Stevens Neuroimaging and Informatics Institute), Marina del Rey, Los Angeles, CA, USA
| | - Andrei Irimia
- University of Southern California (Alfred E. Mann Department of Biomedical Engineering, Viterbi School of Engineering), Los Angeles, CA, USA.
- University of Southern California (Ethel Percy Andrus Gerontology Center, Leonard Davis School of Gerontology), Los Angeles, CA, USA.
- University of Southern California (Department of Quantitative & Computational Biology, Dornsife College of Arts and Sciences), Los Angeles, CA, USA.
- King's College London (Centre for Healthy Brain Aging, Institute of Psychiatry, Psychology & Neuroscience), London, England, UK.
| |
Collapse
|
13
|
Dilliott AA, Costanzo MC, Bandres-Ciga S, Blauwendraat C, Casey B, Hoang Q, Iwaki H, Jang D, Kim JJ, Leonard HL, Levine KS, Makarious M, Nguyen TT, Rouleau GA, Singleton AB, Smadbeck P, Solle J, Vitale D, Nalls M, Flannick J, Burtt NP, Farhan SMK. The Neurodegenerative Disease Knowledge Portal: Propelling Discovery Through the Sharing of Neurodegenerative Disease Genomic Resources. Neurol Genet 2025; 11:e200246. [PMID: 39996130 PMCID: PMC11849525 DOI: 10.1212/nxg.0000000000200246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Accepted: 01/02/2025] [Indexed: 02/26/2025]
Abstract
Although large-scale genetic association studies have proven useful for the delineation of neurodegenerative disease processes, we still lack a full understanding of the pathologic mechanisms of these diseases, resulting in few appropriate treatment options and diagnostic challenges. To mitigate these gaps, the Neurodegenerative Disease Knowledge Portal (NDKP) was created as an open-science initiative with the aim to aggregate, enable analysis, and display all available genomic datasets of neurodegenerative disease, while protecting the integrity and confidentiality of the underlying datasets. The portal contains 218 genomic datasets, including genotyping and sequencing studies, of individuals across 10 different phenotypic groups, including neurologic conditions such as Alzheimer disease, amyotrophic lateral sclerosis, Lewy body dementia, and Parkinson disease. In addition to securely hosting large genomic datasets, the NDKP provides accessible workflows and tools to effectively use the datasets and assist in the facilitation of customized genomic analyses. Here, we summarize the genomic datasets currently included within the portal, the bioinformatics processing of the datasets, and the variety of phenotypes captured. We also present example use cases of the various user interfaces and integrated analytic tools to demonstrate their extensive utility in enabling the extraction of high-quality results at the source, for both genomics experts and those in other disciplines. Overall, the NDKP promotes open science and collaboration, maximizing the potential for discovery from the large-scale datasets researchers and consortia are expending immense resources to produce and resulting in reproducible conclusions to improve diagnostic and therapeutic care for patients with neurodegenerative disease.
Collapse
Affiliation(s)
- Allison A Dilliott
- Department of Neurology and Neurosurgery, McGill University, Montreal, Quebec, Canada
- Montreal Neurological Institute-Hospital, McGill University, Montreal, Quebec, Canada
| | - Maria C Costanzo
- Programs in Metabolism and Medical and Population Genetics, The Broad Institute of MIT and Harvard, Cambridge, MA
| | - Sara Bandres-Ciga
- Center for Alzheimer's and Related Dementias, NIH, Bethesda, MD
- Laboratory of Neurogenetics, NIH, Bethesda, MD
| | - Cornelis Blauwendraat
- Center for Alzheimer's and Related Dementias, NIH, Bethesda, MD
- Laboratory of Neurogenetics, NIH, Bethesda, MD
| | - Bradford Casey
- Michael J. Fox Foundation for Parkinson's Research, New York, NY
| | - Quy Hoang
- Programs in Metabolism and Medical and Population Genetics, The Broad Institute of MIT and Harvard, Cambridge, MA
| | - Hirotaka Iwaki
- Center for Alzheimer's and Related Dementias, NIH, Bethesda, MD
- DataTecnica LLC, Washington, DC
| | - Dongkeun Jang
- Programs in Metabolism and Medical and Population Genetics, The Broad Institute of MIT and Harvard, Cambridge, MA
| | - Jonggeol Jeffrey Kim
- Center for Alzheimer's and Related Dementias, NIH, Bethesda, MD
- Laboratory of Neurogenetics, NIH, Bethesda, MD
| | - Hampton L Leonard
- Center for Alzheimer's and Related Dementias, NIH, Bethesda, MD
- DataTecnica LLC, Washington, DC
| | - Kristin S Levine
- Center for Alzheimer's and Related Dementias, NIH, Bethesda, MD
- DataTecnica LLC, Washington, DC
| | - Mary Makarious
- Center for Alzheimer's and Related Dementias, NIH, Bethesda, MD
- Laboratory of Neurogenetics, NIH, Bethesda, MD
| | - Trang T Nguyen
- Programs in Metabolism and Medical and Population Genetics, The Broad Institute of MIT and Harvard, Cambridge, MA
| | - Guy A Rouleau
- Department of Neurology and Neurosurgery, McGill University, Montreal, Quebec, Canada
- Montreal Neurological Institute-Hospital, McGill University, Montreal, Quebec, Canada
- Department of Human Genetics, McGill University, Montreal, Quebec, Canada
| | - Andrew B Singleton
- Center for Alzheimer's and Related Dementias, NIH, Bethesda, MD
- Laboratory of Neurogenetics, NIH, Bethesda, MD
| | - Patrick Smadbeck
- Programs in Metabolism and Medical and Population Genetics, The Broad Institute of MIT and Harvard, Cambridge, MA
| | - J Solle
- Michael J. Fox Foundation for Parkinson's Research, New York, NY
| | - Dan Vitale
- Center for Alzheimer's and Related Dementias, NIH, Bethesda, MD
- DataTecnica LLC, Washington, DC
| | - Mike Nalls
- Center for Alzheimer's and Related Dementias, NIH, Bethesda, MD
- Laboratory of Neurogenetics, NIH, Bethesda, MD
- DataTecnica LLC, Washington, DC
| | - Jason Flannick
- Programs in Metabolism and Medical and Population Genetics, The Broad Institute of MIT and Harvard, Cambridge, MA
- Department of Pediatrics, Boston Children's Hospital, Boston, MA; and
- Department of Pediatrics, Harvard Medical School, Boston, MA
| | - Noël P Burtt
- Programs in Metabolism and Medical and Population Genetics, The Broad Institute of MIT and Harvard, Cambridge, MA
| | - Sali M K Farhan
- Department of Neurology and Neurosurgery, McGill University, Montreal, Quebec, Canada
- Montreal Neurological Institute-Hospital, McGill University, Montreal, Quebec, Canada
- Department of Human Genetics, McGill University, Montreal, Quebec, Canada
| |
Collapse
|
14
|
Li X, Jin S, Wang D, Wu Y, Tang X, Liu Y, Yao T, Han S, Sun L, Wang Y, Hou SX. Accumulation of Damaging Lipids in the Arf1-Ablated Neurons Promotes Neurodegeneration through Releasing mtDNA and Activating Inflammatory Pathways in Microglia. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2414260. [PMID: 40019378 PMCID: PMC12021055 DOI: 10.1002/advs.202414260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Revised: 02/02/2025] [Indexed: 03/01/2025]
Abstract
Lipid metabolism disorders in both neurons and glial cells have been found in neurodegenerative (ND) patients and animal models. However, the pathological connection between lipid droplets and NDs remains poorly understood. The recent work has highlighted the utility of a neuron-specific Arf1-knockout mouse model and corresponding cells for elucidating the nexus between lipid metabolism disorders and amyotrophic lateral sclerosis (ALS) and multiple sclerosis (MS). In this study, it is found that Arf1 deficiency first induced surplus fatty acid synthesis through the AKT-mTORC1-SREBP1-FASN axis, which further triggered endoplasmic reticulum (ER)-mitochondrial stress cascade via calcium flux. The organelle stress cascade further caused mitochondrial DNA (mtDNA) to be released into cytoplasm. Concurrently, the FASN-driven fatty acid synthesis in the Arf1-deficient neurons might also induce accumulation of sphingolipids in lysosomes that caused dysfunction of autophagy and lysosomes, which further promoted lysosomal stress and mitochondria-derived extracellular vesicles (MDEVs) release. The released MDEVs carried mtDNA into microglia to activate the inflammatory pathways and neurodegeneration. The studies on neuronal lipid droplets (LDs) and recent studies of microglial LDs suggest a unified pathological function of LDs in NDs: activating the inflammatory pathways in microglia. This finding potentially provides new therapeutic strategies for NDs.
Collapse
Affiliation(s)
- Xu Li
- Department of Cell and Developmental Biology at School of Life SciencesState Key Laboratory of Genetic EngineeringInstitute of Metabolism and Integrative BiologyChildren's HospitalZhongshan HospitalFudan UniversityShanghai200438China
| | - Shuhan Jin
- Department of Cell and Developmental Biology at School of Life SciencesState Key Laboratory of Genetic EngineeringInstitute of Metabolism and Integrative BiologyChildren's HospitalZhongshan HospitalFudan UniversityShanghai200438China
| | - Danke Wang
- Department of Cell and Developmental Biology at School of Life SciencesState Key Laboratory of Genetic EngineeringInstitute of Metabolism and Integrative BiologyChildren's HospitalZhongshan HospitalFudan UniversityShanghai200438China
| | - Ying Wu
- Department of Cell and Developmental Biology at School of Life SciencesState Key Laboratory of Genetic EngineeringInstitute of Metabolism and Integrative BiologyChildren's HospitalZhongshan HospitalFudan UniversityShanghai200438China
| | - Xiaoyu Tang
- Department of Cell and Developmental Biology at School of Life SciencesState Key Laboratory of Genetic EngineeringInstitute of Metabolism and Integrative BiologyChildren's HospitalZhongshan HospitalFudan UniversityShanghai200438China
| | - Yufan Liu
- Department of Cell and Developmental Biology at School of Life SciencesState Key Laboratory of Genetic EngineeringInstitute of Metabolism and Integrative BiologyChildren's HospitalZhongshan HospitalFudan UniversityShanghai200438China
| | - Tiange Yao
- Department of Cell and Developmental Biology at School of Life SciencesState Key Laboratory of Genetic EngineeringInstitute of Metabolism and Integrative BiologyChildren's HospitalZhongshan HospitalFudan UniversityShanghai200438China
| | - Shoufa Han
- State Key Laboratory for Physical Chemistry of Solid SurfacesDepartment of Chemical BiologyCollege of Chemistry and Chemical EngineeringThe Key Laboratory for Chemical Biology of Fujian ProvinceThe MOE Key Laboratory of Spectrochemical Analysis & InstrumentationInnovation Center for Cell Signalling NetworkXiamen UniversityXiamen361005China
| | - Lin Sun
- Department of Cell and Developmental Biology at School of Life SciencesState Key Laboratory of Genetic EngineeringInstitute of Metabolism and Integrative BiologyChildren's HospitalZhongshan HospitalFudan UniversityShanghai200438China
| | - Yuetong Wang
- Department of Cell and Developmental Biology at School of Life SciencesState Key Laboratory of Genetic EngineeringInstitute of Metabolism and Integrative BiologyChildren's HospitalZhongshan HospitalFudan UniversityShanghai200438China
| | - Steven X. Hou
- Department of Cell and Developmental Biology at School of Life SciencesState Key Laboratory of Genetic EngineeringInstitute of Metabolism and Integrative BiologyChildren's HospitalZhongshan HospitalFudan UniversityShanghai200438China
| |
Collapse
|
15
|
Lie IH, Tan MMX, Andersen MS, Toft M, Pihlstrøm L. Epigenome-wide association study, meta-analysis, and multiscore profiling of whole blood in Parkinson's disease. Ann Clin Transl Neurol 2025; 12:701-713. [PMID: 39907161 PMCID: PMC12040500 DOI: 10.1002/acn3.52292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Accepted: 12/16/2024] [Indexed: 02/06/2025] Open
Abstract
OBJECTIVES An increasing body of evidence indicates altered DNA methylation in Parkinson's disease, yet the reproducibility and utility of such methylation changes are largely unexplored. We aimed to further elucidate the role of dysregulated DNA methylation in Parkinson's disease and to evaluate the biomarker potential of methylation-based profiling. METHODS We conducted an epigenome-wide association study (EWAS) in whole blood, including 280 Parkinson's disease and 279 control participants from Oslo, Norway. Next, we took advantage of data from the Parkinson's Progression Markers Initiative (PPMI) and a previously published EWAS to conduct a whole blood EWAS meta-analysis in Parkinson's disease, incorporating results from a total of 3068 participants. Finally, we generated multiple methylation-based scores for each Oslo and PPMI participant and tested their association with disease status, individually and in a joint multiscore model. RESULTS In EWAS meta-analysis, we confirm SLC7A11 hypermethylation and nominate a novel differentially methylated CpG near LPIN1. A joint multiscore model incorporating polygenic risk and methylation-based estimates of epigenetic Parkinson's disease risk, smoking, and leukocyte proportions differentiated patients from control participants with an area under the receiver-operator curve of 0.82 in the Oslo cohort and 0.65 in PPMI. INTERPRETATION Our results highlight the power of DNA methylation profiling to capture multiple aspects of disease risk, indicating a biomarker potential for precision medicine in neurodegenerative disorders. The reproducibility of specific differentially methylated CpGs across data sets was limited but may improve if future studies are designed to account for disease stage and incorporate environmental exposure data.
Collapse
Affiliation(s)
- Ingeborg Haugesag Lie
- Department of NeurologyOslo University HospitalOsloNorway
- Institute of Clinical MedicineUniversity of OsloOsloNorway
| | | | | | - Mathias Toft
- Department of NeurologyOslo University HospitalOsloNorway
- Institute of Clinical MedicineUniversity of OsloOsloNorway
| | | |
Collapse
|
16
|
Hatzimanolis O, Sykes AM, Cristino AS. Circular RNAs in neurological conditions - computational identification, functional validation, and potential clinical applications. Mol Psychiatry 2025; 30:1652-1675. [PMID: 39966624 PMCID: PMC11919710 DOI: 10.1038/s41380-025-02925-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 01/11/2025] [Accepted: 02/10/2025] [Indexed: 02/20/2025]
Abstract
Non-coding RNAs (ncRNAs) have gained significant attention in recent years due to advancements in biotechnology, particularly high-throughput total RNA sequencing. These developments have led to new understandings of non-coding biology, revealing that approximately 80% of non-coding regions in the genome possesses biochemical functionality. Among ncRNAs, circular RNAs (circRNAs), first identified in 1976, have emerged as a prominent research field. CircRNAs are abundant in most human cell types, evolutionary conserved, highly stable, and formed by back-splicing events which generate covalently closed ends. Notably, circRNAs exhibit high expression levels in neural tissue and perform diverse biochemical functions, including acting as molecular sponges for microRNAs, interacting with RNA-binding proteins to regulate their availability and activity, modulating transcription and splicing, and even translating into functional peptides in some cases. Recent advancements in computational and experimental methods have enhanced our ability to identify and validate circRNAs, providing valuable insights into their biological roles. This review focuses on recent developments in circRNA research as they related to neuropsychiatric and neurodegenerative conditions. We also explore their potential applications in clinical diagnostics, therapeutics, and future research directions. CircRNAs remain a relatively underexplored area of non-coding biology, particularly in the context of neurological disorders. However, emerging evidence supports their role as critical players in the etiology and molecular mechanisms of conditions such as schizophrenia, bipolar disorder, major depressive disorder, Alzheimer's disease, and Parkinson's disease. These findings suggest that circRNAs may provide a novel framework contributing to the molecular dysfunctions underpinning these complex neurological conditions.
Collapse
Affiliation(s)
- Oak Hatzimanolis
- Institute for Biomedicine and Glycomics, Griffith University, Brisbane, QLD, Australia
| | - Alex M Sykes
- Institute for Biomedicine and Glycomics, Griffith University, Brisbane, QLD, Australia
| | - Alexandre S Cristino
- Institute for Biomedicine and Glycomics, Griffith University, Brisbane, QLD, Australia.
| |
Collapse
|
17
|
Askarova A, Yaa RM, Marzi SJ, Nott A. Genetic risk for neurodegenerative conditions is linked to disease-specific microglial pathways. PLoS Genet 2025; 21:e1011407. [PMID: 40202986 PMCID: PMC12017514 DOI: 10.1371/journal.pgen.1011407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 04/23/2025] [Accepted: 03/24/2025] [Indexed: 04/11/2025] Open
Abstract
Genome-wide association studies have identified thousands of common variants associated with an increased risk of neurodegenerative disorders. However, the noncoding localization of these variants has made the assignment of target genes for brain cell types challenging. Genomic approaches that infer chromosomal 3D architecture can link noncoding risk variants and distal gene regulatory elements such as enhancers to gene promoters. By using enhancer-to-promoter interactome maps for human microglia, neurons, and oligodendrocytes, we identified cell-type-specific enrichment of genetic heritability for brain disorders through stratified linkage disequilibrium score regression. Our analysis suggests that genetic heritability for multiple neurodegenerative disorders is enriched at microglial chromatin contact sites, while schizophrenia heritability is predominantly enriched at chromatin contact sites in neurons followed by oligodendrocytes. Through Hi-C coupled multimarker analysis of genomic annotation (H-MAGMA), we identified disease risk genes for Alzheimer's disease, Parkinson's disease, multiple sclerosis, amyotrophic lateral sclerosis and schizophrenia. We found that disease-risk genes were overrepresented in microglia compared to other brain cell types across neurodegenerative conditions and within neurons for schizophrenia. Notably, the microglial risk genes and pathways identified were largely specific to each disease. Our findings reinforce microglia as an important, genetically informed cell type for therapeutic interventions in neurodegenerative conditions and highlight potentially targetable disease-relevant pathways.
Collapse
Affiliation(s)
- Aydan Askarova
- Department of Brain Sciences, Imperial College London, London, United Kingdom
- United Kingdom Dementia Research Institute, Imperial College London, London, United Kingdom
| | - Reuben M. Yaa
- Department of Brain Sciences, Imperial College London, London, United Kingdom
- United Kingdom Dementia Research Institute, Imperial College London, London, United Kingdom
| | - Sarah J. Marzi
- Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London, United Kingdom
- United Kingdom Dementia Research Institute, King’s College London, London, United Kingdom
| | - Alexi Nott
- Department of Brain Sciences, Imperial College London, London, United Kingdom
- United Kingdom Dementia Research Institute, Imperial College London, London, United Kingdom
| |
Collapse
|
18
|
Bhalala OG, Beamish J, Eratne D, Summerell P, Porter T, Laws SM, Kang MJ, Huq AJ, Chiu WH, Cadwallader C, Walterfang M, Farrand S, Evans AH, Kelso W, Churilov L, Watson R, Yassi N, Velakoulis D, Loi SM. Blood biomarker profiles in young-onset neurocognitive disorders: A cohort study. Aust N Z J Psychiatry 2025; 59:378-388. [PMID: 39825484 PMCID: PMC11924289 DOI: 10.1177/00048674241312805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/20/2025]
Abstract
INTRODUCTION Young-onset neurocognitive symptoms result from a heterogeneous group of neurological and psychiatric disorders which present a diagnostic challenge. To identify such factors, we analysed the Biomarkers in Younger-Onset Neurocognitive Disorders cohort, a study of individuals <65 years old presenting with neurocognitive symptoms for a diagnosis and who have undergone cognitive and biomarker analyses. METHODS Sixty-five participants (median age at assessment of 56 years, 45% female) were recruited during their index presentation to the Royal Melbourne Hospital Neuropsychiatry Centre, a tertiary specialist service in Melbourne, Australia, and categorized as either early-onset Alzheimer's disease (n = 18), non-Alzheimer's disease neurodegeneration (n = 23) or primary psychiatric disorders (n = 24). Levels of neurofilament light chain, glial fibrillary acidic protein and phosphorylated-tau 181, apolipoprotein E genotype and late-onset Alzheimer's disease polygenic risk scores were determined. Information-theoretic model selection identified discriminatory factors. RESULTS Neurofilament light chain, glial fibrillary acidic protein and phosphorylated-tau 181 levels were elevated in early-onset Alzheimer's disease compared with other diagnostic categories. A multi-omic model selection identified that a combination of cognitive and blood biomarkers, but not the polygenic risk score, discriminated between early-onset Alzheimer's disease and primary psychiatric disorders (area under the curve ⩾ 0.975, 95% confidence interval: 0.825-1.000). Phosphorylated-tau 181 alone significantly discriminated between early-onset Alzheimer's disease and non-Alzheimer's disease neurodegeneration causes (area under the curve = 0.950, 95% confidence interval: 0.877-1.00). DISCUSSION Discriminating between early-onset Alzheimer's disease, non-Alzheimer's disease neurodegeneration and primary psychiatric disorders causes of young-onset neurocognitive symptoms is possible by combining cognitive profiles with blood biomarkers. These results support utilizing blood biomarkers for the work-up of young-onset neurocognitive symptoms and highlight the need for the development of a young-onset Alzheimer's disease-specific polygenic risk score.
Collapse
Affiliation(s)
- Oneil G Bhalala
- Department of Medicine, Royal Melbourne Hospital, The University of Melbourne, Parkville, VIC, Australia
- Population Health and Immunity Division, Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia
| | - Jessica Beamish
- Neuropsychiatry Centre, The Royal Melbourne Hospital, Parkville, VIC, Australia
| | - Dhamidhu Eratne
- Neuropsychiatry Centre, The Royal Melbourne Hospital, Parkville, VIC, Australia
- Department of Psychiatry, The University of Melbourne, Parkville, VIC, Australia
| | - Patrick Summerell
- Neuropsychiatry Centre, The Royal Melbourne Hospital, Parkville, VIC, Australia
| | - Tenielle Porter
- Centre for Precision Health, Edith Cowan University, Joondalup, WA, Australia
| | - Simon M Laws
- Centre for Precision Health, Edith Cowan University, Joondalup, WA, Australia
| | - Matthew Jy Kang
- Neuropsychiatry Centre, The Royal Melbourne Hospital, Parkville, VIC, Australia
- Department of Psychiatry, The University of Melbourne, Parkville, VIC, Australia
| | - Aamira J Huq
- Department of Medicine, Royal Melbourne Hospital, The University of Melbourne, Parkville, VIC, Australia
| | - Wei-Hsuan Chiu
- Department of Psychiatry, The University of Melbourne, Parkville, VIC, Australia
| | - Claire Cadwallader
- Neuropsychiatry Centre, The Royal Melbourne Hospital, Parkville, VIC, Australia
- Memory and Aging Center, UCSF Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, USA
| | - Mark Walterfang
- Neuropsychiatry Centre, The Royal Melbourne Hospital, Parkville, VIC, Australia
- Department of Psychiatry, The University of Melbourne, Parkville, VIC, Australia
- The Florey Institute of Neuroscience and Mental Health, Parkville, VIC, Australia
- School of Medical and Health Sciences, Edith Cowan University, Joondalup, WA, Australia
| | - Sarah Farrand
- Neuropsychiatry Centre, The Royal Melbourne Hospital, Parkville, VIC, Australia
- Department of Psychiatry, The University of Melbourne, Parkville, VIC, Australia
| | - Andrew H Evans
- Department of Medicine, Royal Melbourne Hospital, The University of Melbourne, Parkville, VIC, Australia
| | - Wendy Kelso
- Neuropsychiatry Centre, The Royal Melbourne Hospital, Parkville, VIC, Australia
| | - Leonid Churilov
- Department of Medicine, Royal Melbourne Hospital, The University of Melbourne, Parkville, VIC, Australia
| | - Rosie Watson
- Department of Medicine, Royal Melbourne Hospital, The University of Melbourne, Parkville, VIC, Australia
- Population Health and Immunity Division, Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia
| | - Nawaf Yassi
- Department of Medicine, Royal Melbourne Hospital, The University of Melbourne, Parkville, VIC, Australia
- Population Health and Immunity Division, Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia
| | - Dennis Velakoulis
- Neuropsychiatry Centre, The Royal Melbourne Hospital, Parkville, VIC, Australia
- Department of Psychiatry, The University of Melbourne, Parkville, VIC, Australia
| | - Samantha M Loi
- Neuropsychiatry Centre, The Royal Melbourne Hospital, Parkville, VIC, Australia
- Department of Psychiatry, The University of Melbourne, Parkville, VIC, Australia
| |
Collapse
|
19
|
Cheng F, Feng Y, Yang X, Flanagan M, Chen X, Bonakdarpour B, Jamshidi P, Castellani R, Mao Q, Chu X, Gao H, Liu Y, Dou L, Xu J, Hou Y, Martin W, Nelson P, Leverenz J, Hu M, Li Y, Pieper A, Cummings J. Genomic and epigenomic insights into purkinje and granule neurons in Alzheimer's disease and related dementia using single-nucleus multiome analysis. RESEARCH SQUARE 2025:rs.3.rs-6264481. [PMID: 40235507 PMCID: PMC11998783 DOI: 10.21203/rs.3.rs-6264481/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/17/2025]
Abstract
Although the human cerebellum is known to be neuropathologically impaired in Alzheimer's disease (AD) and AD-related dementias (ADRD), the cell type-specific transcriptional and epigenomic changes that contribute to this pathology are not well understood. Here, we report single-nucleus multiome (snRNA-seq and snATAC-seq) analysis of 103,861 nuclei isolated from both cerebellum and frontal cortex of AD/ADRD patients and normal controls. Using peak-to-gene linkage analysis, we identified 431,834 significant linkages between gene expression and cell subtype-specific chromatin accessibility regions enriched for candidate cis-regulatory elements (cCREs). These cCREs were associated with AD/ADRD-specific transcriptomic changes and disease-related gene regulatory networks, especially for RAR Related Orphan Receptor A (RORA) and E74 Like ETS Transcription Factor 1 (ELF1) in cerebellar Purkinje cells and granule cells, respectively. Trajectory analysis of granule cell populations further identified disease-relevant transcription factors, such as RORA, and their regulatory targets. Finally, we pinpointed two likely causal genes, Seizure Related 6 Homolog Like 2 (SEZ6L2) in Purkinje cells and KAT8 Regulatory NSL Complex Subunit 1 (KANSL1) in granule cells, through integrative analysis of cCREs derived from snATAC-seq, genome-wide AD/ADRD loci, and three-dimensional (3D) genome data. Via CRISPRi experiments, we found that perturbation of rs4788201 and rs62056801 significantly inhibited the expression of their target genes, SEZ6L2 and KANSL1, in human iPSC-derived neurons. This cell subtype-specific regulatory landscape in the human cerebellum identified here offers novel genomic and epigenomic insights into the neuropathology and pathobiology of AD/ADRD and other neurological disorders if broadly applied.
Collapse
|
20
|
Leonard HL. Novel Parkinson's Disease Genetic Risk Factors Within and Across European Populations. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2025:2025.03.14.24319455. [PMID: 40166558 PMCID: PMC11957085 DOI: 10.1101/2025.03.14.24319455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/02/2025]
Abstract
Introduction We conducted a meta-analysis of Parkinson's disease genome-wide association study summary statistics, stratified by source (clinically-recruited case-control cohorts versus population biobanks) and by general European versus European isolate ancestries. This study included 63,555 cases, 17,700 proxy cases with a family history of Parkinson's disease, and 1,746,386 controls, making it the largest investigation of Parkinson's disease genetic risk to date. Methods Meta-analyses were performed using standard fixed and random effect models for the European sub-populations, the case-control studies, and the population biobanks separately. Finally, all of the European ancestries for all study types as well as proxy cases were combined in our final cross-European meta-analysis. We estimated heritable risk across ancestry groups, investigated tissue and cell-type enrichment, and prioritized risk genes using public data to facilitate functional follow-up efforts. Results The final combined cross-European meta-analysis identified 134 risk loci (59 novel), with a total of 157 independent signals, significantly expanding our understanding of Parkinson's disease risk. Multi-omic data integration revealed that expression of the nominated risk genes are highly enriched in brain tissues, particularly in neuronal and astrocyte cell types. Additionally, we prioritized 33 high-confidence genes across these 134 loci for future follow-up studies. Conclusions By integrating diverse European populations and leveraging harmonized data from the Global Parkinson's Genetics Program (GP2), we reveal new insight into the genetic architecture of Parkinson's disease. We identified a total of 134 risk loci, expanding the number of known loci associated with PD by approximately 24%. We also provided an initial layer of biological context to these results through follow-up analyses in an effort to facilitate follow-up studies and precision medicine efforts with the goal of advancing Parkinson's disease research.
Collapse
|
21
|
Harvey J, Imm J, Kouhsar M, Smith AR, Creese B, Smith RG, Wheildon G, Chouliaras L, Shireby G, Jaunmuktane Z, De Pablo-Fernández E, Warner T, Lett D, Gveric D, Brooks H, Attems J, Thomas A, Dempster E, Ballard C, O’Brien JT, Aarsland D, Mill J, Pihlstrøm L, Pishva E, Lunnon K. Interrogating DNA methylation associated with Lewy body pathology in a cross brain-region and multi-cohort study. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2025:2025.03.13.25323837. [PMID: 40162278 PMCID: PMC11952592 DOI: 10.1101/2025.03.13.25323837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 04/02/2025]
Abstract
Lewy body (LB) diseases are an umbrella term encompassing a range of neurodegenerative conditions all characterized by the hallmark of intra-neuronal α-synuclein associated with the development of motor and cognitive dysfunction. In this study, we have conducted a large meta-analysis of DNA methylation across multiple cortical brain regions, in relation to increasing burden of LB pathology. Utilizing a combined dataset of 1239 samples across 855 unique donors, we identified a set of 30 false discovery rate (FDR) significant loci that are differentially methylated in association with LB pathology, the most significant of which were located in UBASH3B and PTAFR, as well as an intergenic locus. Ontological enrichment analysis of our meta-analysis results highlights several neurologically relevant traits, including synaptic, inflammatory and vascular alterations. We leverage our summary statistics to compare DNA methylation signatures between different neurodegenerative pathologies and highlight a shared epigenetic profile across LB diseases, Alzheimer's disease and Huntington's disease, although the top-ranked loci show disease specificity. Finally, utilizing summary statistics from previous large-scale genome-wide association studies we report FDR significant enrichment of DNA methylation differences with respect to increasing LB pathology in the SNCA genomic region, a gene previously associated with Parkinson's disease and dementia with Lewy bodies.
Collapse
Affiliation(s)
- Joshua Harvey
- Department of Clinical and Biomedical Science, Faculty of Health and Life Sciences, University of Exeter, Exeter, UK
| | - Jennifer Imm
- Department of Clinical and Biomedical Science, Faculty of Health and Life Sciences, University of Exeter, Exeter, UK
| | - Morteza Kouhsar
- Department of Clinical and Biomedical Science, Faculty of Health and Life Sciences, University of Exeter, Exeter, UK
| | - Adam R. Smith
- Department of Clinical and Biomedical Science, Faculty of Health and Life Sciences, University of Exeter, Exeter, UK
| | - Byron Creese
- Department of Clinical and Biomedical Science, Faculty of Health and Life Sciences, University of Exeter, Exeter, UK
- Department of Life Sciences, College of Health, Medicine and Life Sciences, Brunel University of London, London, UK
| | - Rebecca G. Smith
- Department of Clinical and Biomedical Science, Faculty of Health and Life Sciences, University of Exeter, Exeter, UK
| | - Gregory Wheildon
- Department of Clinical and Biomedical Science, Faculty of Health and Life Sciences, University of Exeter, Exeter, UK
| | - Leonidas Chouliaras
- Department of Psychiatry, University of Cambridge School of Clinical Medicine, Cambridge, UK
- Specialty Dementia and Frailty Service, Essex Partnership University NHS Foundation Trust, St Margaret’s Hospital. Epping, UK
| | - Gemma Shireby
- Great Ormond Street Hospital, University College London, London, UK
| | - Zane Jaunmuktane
- Queen Square Brain Bank for Neurological Disorders, University College London Queen Square Institute of Neurology, University College London, London, UK
| | - Eduardo De Pablo-Fernández
- Queen Square Brain Bank for Neurological Disorders, University College London Queen Square Institute of Neurology, University College London, London, UK
| | - Thomas Warner
- Queen Square Brain Bank for Neurological Disorders, University College London Queen Square Institute of Neurology, University College London, London, UK
| | - Debbie Lett
- Newcastle Brain Tissue Resource, Newcastle University, Newcastle, UK
| | - Djordje Gveric
- MS and Parkinson’s Tissue Bank, Department of Brain Sciences, Imperial College London, London, UK
| | - Hannah Brooks
- The Oxford Brain Bank, University of Oxford, Oxford, UK
| | - Johannes Attems
- Newcastle Brain Tissue Resource, Newcastle University, Newcastle, UK
| | - Alan Thomas
- Newcastle Brain Tissue Resource, Newcastle University, Newcastle, UK
| | - Emma Dempster
- Department of Clinical and Biomedical Science, Faculty of Health and Life Sciences, University of Exeter, Exeter, UK
| | - Clive Ballard
- Department of Clinical and Biomedical Science, Faculty of Health and Life Sciences, University of Exeter, Exeter, UK
| | - John T O’Brien
- Department of Psychiatry, University of Cambridge School of Clinical Medicine, Cambridge, UK
| | - Dag Aarsland
- Institute of Psychiatry, Psychology & Neuroscience (IoPPN), Kings College London, UK
| | - Jonathan Mill
- Department of Clinical and Biomedical Science, Faculty of Health and Life Sciences, University of Exeter, Exeter, UK
| | - Lasse Pihlstrøm
- Institute of Clinical Medicine, Oslo University Hospital, Oslo, Norway
| | - Ehsan Pishva
- Department of Clinical and Biomedical Science, Faculty of Health and Life Sciences, University of Exeter, Exeter, UK
- Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience (MHeNS), Maastricht University, Maastricht, The Netherlands
| | - Katie Lunnon
- Department of Clinical and Biomedical Science, Faculty of Health and Life Sciences, University of Exeter, Exeter, UK
| |
Collapse
|
22
|
Boudriot E, Stephan M, Rabe F, Smigielski L, Schmitt A, Falkai P, Ziller MJ, Rossner MJ, Homan P, Papiol S, Raabe FJ. Genetic Analysis of Retinal Cell Types in Neuropsychiatric Disorders. JAMA Psychiatry 2025; 82:285-295. [PMID: 39775833 PMCID: PMC11883512 DOI: 10.1001/jamapsychiatry.2024.4230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/10/2024] [Accepted: 10/29/2024] [Indexed: 01/11/2025]
Abstract
Importance As an accessible part of the central nervous system, the retina provides a unique window to study pathophysiological mechanisms of brain disorders in humans. Imaging and electrophysiological studies have revealed retinal alterations across several neuropsychiatric and neurological disorders, but it remains largely unclear which specific cell types and biological mechanisms are involved. Objective To determine whether specific retinal cell types are affected by genomic risk for neuropsychiatric and neurological disorders and to explore the mechanisms through which genomic risk converges in these cell types. Design, Setting, and Participants This genetic association study combined findings from genome-wide association studies in schizophrenia, bipolar disorder, major depressive disorder, multiple sclerosis, Parkinson disease, Alzheimer disease, and stroke with retinal single-cell transcriptomic datasets from humans, macaques, and mice. To identify susceptible cell types, Multi-Marker Analysis of Genomic Annotation (MAGMA) cell-type enrichment analyses were applied and subsequent pathway analyses performed. The cellular top hits were translated to the structural level using retinal optical coherence tomography (acquired between 2009 and 2010) and genotyping data in the large population-based UK Biobank cohort study. Data analysis was conducted between 2022 and 2024. Main Outcomes and Measures Cell type-specific enrichment of genetic risk loading for neuropsychiatric and neurological disorder traits in the gene expression profiles of retinal cells. Results Expression profiles of amacrine cells (interneurons within the retina) were robustly enriched in schizophrenia genetic risk across mammalian species and in different developmental stages. This enrichment was primarily driven by genes involved in synapse biology. Moreover, expression profiles of retinal immune cell populations were enriched in multiple sclerosis genetic risk. No consistent cell-type associations were found for bipolar disorder, major depressive disorder, Parkinson disease, Alzheimer disease, or stroke. On the structural level, higher polygenic risk for schizophrenia was associated with thinning of the ganglion cell inner plexiform layer, which contains dendrites and synaptic connections of amacrine cells (B, -0.09; 95% CI, -0.16 to -0.03; P = .007; n = 36 349; mean [SD] age, 57.50 [8.00] years; 19 859 female [54.63%]). Higher polygenic risk for multiple sclerosis was associated with increased thickness of the retinal nerve fiber layer (B, 0.06; 95% CI, 0.02 to 0.10; P = .007; n = 36 371; mean [SD] age, 57.51 [8.00] years; 19 843 female [54.56%]). Conclusions and Relevance This study provides novel insights into the cellular underpinnings of retinal alterations in neuropsychiatric and neurological disorders and highlights the retina as a potential proxy to study synaptic pathology in schizophrenia.
Collapse
Affiliation(s)
- Emanuel Boudriot
- Max Planck Institute of Psychiatry, Munich, Germany
- Department of Psychiatry and Psychotherapy, Ludwig Maximilian University Hospital, Ludwig Maximilian University Munich, Munich, Germany
| | - Marius Stephan
- Department of Psychiatry and Psychotherapy, Ludwig Maximilian University Hospital, Ludwig Maximilian University Munich, Munich, Germany
- Systasy Bioscience, Munich, Germany
| | - Finn Rabe
- Department of Adult Psychiatry and Psychotherapy, Psychiatric University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Lukasz Smigielski
- Department of Child and Adolescent Psychiatry and Psychotherapy, Psychiatric University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Andrea Schmitt
- Max Planck Institute of Psychiatry, Munich, Germany
- Department of Psychiatry and Psychotherapy, Ludwig Maximilian University Hospital, Ludwig Maximilian University Munich, Munich, Germany
- German Center for Mental Health, Partner Site Munich-Augsburg, Germany
- Laboratory of Neurosciences, Institute of Psychiatry, University of São Paulo, São Paulo, Brazil
| | - Peter Falkai
- Max Planck Institute of Psychiatry, Munich, Germany
- Department of Psychiatry and Psychotherapy, Ludwig Maximilian University Hospital, Ludwig Maximilian University Munich, Munich, Germany
- German Center for Mental Health, Partner Site Munich-Augsburg, Germany
| | - Michael J. Ziller
- Max Planck Institute of Psychiatry, Munich, Germany
- Department of Psychiatry, University of Münster, Münster, Germany
- Center for Soft Nanoscience, University of Münster, Münster, Germany
| | - Moritz J. Rossner
- Department of Psychiatry and Psychotherapy, Ludwig Maximilian University Hospital, Ludwig Maximilian University Munich, Munich, Germany
- Systasy Bioscience, Munich, Germany
| | - Philipp Homan
- Department of Adult Psychiatry and Psychotherapy, Psychiatric University Hospital Zurich, University of Zurich, Zurich, Switzerland
- Neuroscience Center Zurich, University of Zurich and Eidgenössische Technische Hochschule (ETH) Zurich, Zurich, Switzerland
| | - Sergi Papiol
- Max Planck Institute of Psychiatry, Munich, Germany
- Institute of Psychiatric Phenomics and Genomics, Ludwig Maximilian University Munich, Munich, Germany
| | - Florian J. Raabe
- Max Planck Institute of Psychiatry, Munich, Germany
- Department of Psychiatry and Psychotherapy, Ludwig Maximilian University Hospital, Ludwig Maximilian University Munich, Munich, Germany
| |
Collapse
|
23
|
Yousefi P, Ghadirian S, Mobedi M, Jafarzadeh M, Alirezaei A, Gholami A, Tabibzadeh A. Autophagy related genes polymorphisms in Parkinson's Disease; A systematic review of literature. Clin Park Relat Disord 2025; 12:100312. [PMID: 40093192 PMCID: PMC11910361 DOI: 10.1016/j.prdoa.2025.100312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2024] [Revised: 01/12/2025] [Accepted: 02/24/2025] [Indexed: 03/19/2025] Open
Abstract
Background Neurodegenerative diseases are mainly a consequence of degenerated proteins in neurons. Parkinson's disease (PD) is one of the most common neurodegenerative disorders and is characterized by Lewy body deposition. Autophagy is known as one of the cell maintenance mechanisms. Autophagy targets are damaged or degenerated macromolecules and organelles for lysosomal degradation. The role of disrupted autophagy in PD was established earlier. In this regard, the current study aimed to evaluate the frequency and status of the autophagy gene polymorphisms in PD by a systematic review approach. Materials and methods In the current study, electronic databases including Scopus, PubMed, and Science Direct were used for the search. The search was performed by using Parkinson's disease, autophagy, autophagy-related gene, ATG, Single-nucleotide polymorphisms, variant, Sequence variants, and with a date limitation of 2010 to 2023. All original research papers in the English language that evaluate the ATG polymorphisms in PD were included in the study. Results The conducted search leads to 2626 primary studies screened based on the inclusion criteria. After the screening stage, 8 studies were included. ATG7 rs1375206 and ATG5 rs510432, rs573775 and rs17587319 were associated with PD. However, some other polymorphisms in ATGs that were not associated with PD were listed. Conclusion In conclusion, regardless of the critical role of autophagy in PD pathogenesis, it seems that ATG16 and ATG7 polymorphisms are not associated with PD; however, ATG7 rs1375206 needs more evaluation for a clearer conclusion in future studies. ATG5 and ATG12 polymorphisms seem to be more important in PD. More comprehensive studies about all ATG5, 7, 12, and 16 seem to be urgently required for a conclusive judgment about their role in PD or even other neurodegenerative disorders.
Collapse
Affiliation(s)
- Parastoo Yousefi
- Department of Virology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Shahrzad Ghadirian
- Department of Biochemistry and Biophysics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Maryam Mobedi
- Department of Pediatrics Neurology, Arak University of Medical Sciences, Arak, Iran
| | - Mehrzad Jafarzadeh
- Fetal Health Research Center, Hope Generation Foundation, Tehran, Iran
- Endocrine Research Center, Institute of Endocrinology and Metabolism, Iran University of Medical Sciences, Tehran, Iran
| | - Adib Alirezaei
- Department of Medical Laboratory, Arak Branch, Islamic Azad University, Arak, Iran
| | - Ali Gholami
- School of Medicine, Arak University of Medical Sciences, Arak, Iran
| | - Alireza Tabibzadeh
- Department of Medical Laboratory, Arak Branch, Islamic Azad University, Arak, Iran
- Rajaei Clinical Research Development Unit (CRDU) of Shahid Rajaei Hospital, Alborz University of Medical Sciences, Karaj, Iran
| |
Collapse
|
24
|
Lim SY, Toh TS, Hor JW, Lim JL, Lit LC, Ahmad-Annuar A, Tay YW, Foo JN, Ng EY, Muthusamy KA, Mohamed Ibrahim N, Ibrahim KA, Tan LCS, Zulkefli J, Khairul Anuar AN, Black K, Lis P, Xie F, Cen Z, Lim KS, Lohmann K, Padmanabhan S, Alessi DR, Luo W, Tan EK, Sammler E, Tan AH. Clinical and functional evidence for the pathogenicity of the LRRK2 p.Arg1067Gln variant. NPJ Parkinsons Dis 2025; 11:34. [PMID: 39988587 PMCID: PMC11847920 DOI: 10.1038/s41531-025-00884-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Accepted: 02/01/2025] [Indexed: 02/25/2025] Open
Abstract
LRRK2-related Parkinson's disease (LRRK2-PD) is the most frequent form of monogenic PD worldwide, with important therapeutic opportunities, exemplified by the advancement in LRRK2 kinase inhibition studies/trials. However, many LRRK2 variants, especially those found in underrepresented populations, remain classified as variants of uncertain significance (VUS). Leveraging on Malaysian, Singaporean, and mainland Chinese PD datasets (n = 4901), we describe 12 Chinese-ancestry patients harboring the LRRK2 p.Arg1067Gln variant, more than doubling the number of previously reported cases (total n = 23, 87% East Asian, mean age of onset: 53.9 years). We determine that this variant is enriched in East Asian PD patients compared to population controls (OR = 8.0, 95% CI: 3.0-20.9), and provide supportive data for its co-segregation with PD, albeit with incomplete penetrance. Utilizing established experimental workflows, this variant showed increased LRRK2 kinase activity, by ~2-fold compared to wildtype and higher than the p.Gly2019Ser variant. Taken together, p.Arg1067Gln should be reclassified from a VUS to pathogenic for causing LRRK2-PD.
Collapse
Affiliation(s)
- Shen-Yang Lim
- Division of Neurology, Department of Medicine, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
- The Mah Pooi Soo & Tan Chin Nam Centre for Parkinson's & Related Disorders, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Tzi Shin Toh
- The Mah Pooi Soo & Tan Chin Nam Centre for Parkinson's & Related Disorders, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Jia Wei Hor
- The Mah Pooi Soo & Tan Chin Nam Centre for Parkinson's & Related Disorders, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Jia Lun Lim
- Department of Biomedical Science, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Lei Cheng Lit
- Department of Physiology, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Azlina Ahmad-Annuar
- Department of Biomedical Science, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Yi Wen Tay
- Department of Biomedical Science, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Jia Nee Foo
- Lee Kong Chian School of Medicine, Nanyang Technological University Singapore, Singapore, Singapore
- Laboratory of Neurogenetics, Genome Institute of Singapore, A*STAR, Singapore, Singapore
| | - Ebonne Yulin Ng
- Department of Neurology, National Neuroscience Institute, Singapore, Singapore
| | - Kalai Arasu Muthusamy
- Division of Neurosurgery, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Norlinah Mohamed Ibrahim
- Department of Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Khairul Azmi Ibrahim
- Department of Medicine, Hospital Sultanah Nur Zahirah, Kuala Terengganu, Terengganu, Malaysia
| | - Louis Chew Seng Tan
- Department of Neurology, National Neuroscience Institute, Singapore, Singapore
| | - Jannah Zulkefli
- The Mah Pooi Soo & Tan Chin Nam Centre for Parkinson's & Related Disorders, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
- Immunogenetic Unit, Allergy and Immunology Research Centre, Institute for Medical Research, National Institutes of Health Complex, Ministry of Health Malaysia, Setia Alam, Malaysia
| | | | - Kirsten Black
- Medical Research Council Protein Phosphorylation and Ubiquitylation Unit, University of Dundee, Dundee, UK
| | - Pawel Lis
- Medical Research Council Protein Phosphorylation and Ubiquitylation Unit, University of Dundee, Dundee, UK
| | - Fei Xie
- Department of Neurology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, PR China
| | - Zhidong Cen
- Department of Neurology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, PR China
| | - Kai Shi Lim
- Department of Biomedical Science, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Katja Lohmann
- Institute of Neurogenetics, University of Luebeck, Luebeck, Germany
| | | | - Dario R Alessi
- Medical Research Council Protein Phosphorylation and Ubiquitylation Unit, University of Dundee, Dundee, UK
| | - Wei Luo
- Department of Neurology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, PR China
| | - Eng King Tan
- Department of Neurology, National Neuroscience Institute, Singapore, Singapore
| | - Esther Sammler
- Medical Research Council Protein Phosphorylation and Ubiquitylation Unit, University of Dundee, Dundee, UK.
- Division of Neuroscience, School of Medicine, University of Dundee, Dundee, UK.
| | - Ai Huey Tan
- Division of Neurology, Department of Medicine, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia.
- The Mah Pooi Soo & Tan Chin Nam Centre for Parkinson's & Related Disorders, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia.
| |
Collapse
|
25
|
Kishore A, Ashok Kumar Sreelatha A, Tenghe AMM, Borgohain R, Puthanveedu DK, Rajan R, Urulangodi M, Gonzalez-Ricardo LG, Pal PK, Kandadai RM, Khodaee S, Yadav R, Mehta S, Kumar H, Kumar N, Kukkle PL, Desai SD, Shetty K, Wadia P, Aggarwal A, Agarwal P, Abbas MM, Wali GM, Krishnan S, Radhakrishnan DM, Kamble N, Srivastava AK, Lal V, Ferreira TMC, Chacko M, Raghavan CT, Sarma G, Solle J, Fiske B, Thalakkatttu A, Garg D, Krüger J, Lichtner P, Vitale D, Nalls M, Blauwendraat C, Singleton A, Debnath M, Sarkar S, Ansari S, Adukia S, Vidyadharan P, Kanthimathi R, Santhi C, Syed TF, Mohareer S, Sharma M. Deciphering the Genetic Architecture of Parkinson's Disease in India. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2025:2025.02.17.25322132. [PMID: 40034752 PMCID: PMC11875265 DOI: 10.1101/2025.02.17.25322132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/05/2025]
Abstract
The genomic landscape of the Indian population, particularly for age-related disorders like Parkinson's disease (PD) remains underrepresented in global research. Genetic variability in PD has been studied predominantly in European populations, offering limited insights into its role within the Indian population. To address this gap, we conducted the first pan-India genomic survey of PD involving 4,806 cases and 6,364 controls, complemented by a meta-analysis integrating summary statistics from a multi-ancestry PD meta-analysis (N=611,485). We further leveraged RNA-sequencing data from lymphoblastoid cell lines of 731 individuals from the 1000 Genomes project to evaluate the expression of key loci across global populations. Our findings reveal a higher genetic burden of PD in the Indian population compared to Europeans, accounting for ∼30% of the previously unexplained heritability. Thirteen genome-wide significant loci were identified, including two novel loci, with an additional three loci uncovered through meta-analysis. Polygenic risk score analysis showed moderate transferability from European populations. Our results highlight the importance of genetic loci in immune function, lipid metabolism and SNCA aggregation in PD pathogenesis, with gene expression variability emphasizing population-specific differences. We also established South Asia's largest PD biobank, providing a foundation for patient-centric approaches to PD research and treatment in India.
Collapse
|
26
|
Adewale Q, Khan AF, Lin SJ, Baumeister TR, Zeighami Y, Carbonell F, Ferreira D, Iturria-Medina Y. Patient-centered brain transcriptomic and multimodal imaging determinants of clinical progression, physical activity, and treatment needs in Parkinson's disease. NPJ Parkinsons Dis 2025; 11:29. [PMID: 39952947 PMCID: PMC11828931 DOI: 10.1038/s41531-025-00878-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Accepted: 01/23/2025] [Indexed: 02/17/2025] Open
Abstract
We continue to lack a clear understanding on how the biological and clinical complexity of Parkinson's disease emerges from molecular to macroscopic brain interactions. Here, we use personalized multiscale spatiotemporal computational brain models to characterize for the first time the synergistic links between genes, several multimodal neuroimaging-derived biological factors, clinical profiles, and therapeutic needs in PD. We identified genes modulating PD-caused brain reorganization in dopamine transporter level, neuronal activity integrity, microstructure, dendrite density and tissue atrophy. Inter-individual heterogeneity in the identified gene-mediated biological mechanisms was associated with five distinct configurations of PD motor and non-motor symptoms. Notably, the protein-protein interaction networks underlying both brain phenotypic and symptom configurations in PD revealed distinct hub genes including MYC, CCNA2, CCDK1, SRC, STAT3 and PSMD4. We also studied the biological mechanisms associated with physical activities performance, observing that leisure and work activities are strongly related to neurotypical cholesterol homeostasis and inflammatory response processes, respectively. Finally, patient-tailored in silico gene perturbations revealed a set of putative disease-modifying drugs with potential to effectively treat PD across different biological levels, most of which are associated with dopamine reuptake and anti-inflammation. Our study constitutes the first self-contained multiscale spatiotemporal computational approach providing comprehensive insights into the complex multifactorial pathogenesis of PD, unraveling key biological modulators of physical and clinical deterioration, and serving as a blueprint for optimum drug selection at personalized level.
Collapse
Grants
- This research was undertaken thanks in part to funding from: the Parkinson Canada and Fonds de recherche du Québec – Santé (FRQS) Graduate Partnership Fellowship awarded to QA, the Canada First Research Excellence Fund, awarded to McGill University for the Healthy Brains for Healthy Lives Initiative, the Canada Research Chair tier-2, Fonds de la recherche en santé du Québec (FRQS) Junior 1 Scholarship, Natural Sciences and Engineering Research Council of Canada (NSERC) Discovery Grant, and Weston Brain Institute awards to YIM, the Brain Canada Foundation and Health Canada support to the McConnell Brain Imaging Center at the Montreal Neurological Institute, and the European Union’s Horizon 2020 Framework Programme for Research and Innovation under the Specific Grant Agreements 785907 (Human Brain Project SGA2) and 945539 (Human Brain Project SGA3) awarded to NPG and KZ. Multimodal imaging and clinical data collection and sharing for this project was funded by PPMI. A public-private partnership, PPMI is funded by the Michael J. Fox Foundation for Parkinson’s Research and funding partners, including AbbVie, Allergan, Amathus Therapeutics, Avid Radiopharmaceuticals, Biogen, BioLegend, Bristol Myers Squibb, Celgene, Denali Therapeutics, GE Healthcare, Genentech, GlaxoSmithKline plc., Golub Capital, Handl Therapeutics, Insitro, Janssen Neuroscience, Eli Lilly and Company, Lundbeck, Merck Sharp & Dohme Corp., Meso Scale Discovery, Neurocrine Biosciences, Pfizer Inc., Piramal Group, Prevail Therapeutics, Roche, Sanofi Genzyme, Servier Laboratories, Takeda Pharmaceutical Company Limited, Teva Pharmaceutical Industries Ltd., UCB, Verily Life Sciences, and Voyager Therapeutics Inc.
Collapse
Affiliation(s)
- Quadri Adewale
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, QC, Canada
- McConnell Brain Imaging Center, Montreal Neurological Institute, Montreal, QC, Canada
- Ludmer Centre for Neuroinformatics & Mental Health, Montreal, QC, Canada
| | - Ahmed Faraz Khan
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, QC, Canada
- McConnell Brain Imaging Center, Montreal Neurological Institute, Montreal, QC, Canada
- Ludmer Centre for Neuroinformatics & Mental Health, Montreal, QC, Canada
| | - Sue-Jin Lin
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, QC, Canada
- McConnell Brain Imaging Center, Montreal Neurological Institute, Montreal, QC, Canada
- Ludmer Centre for Neuroinformatics & Mental Health, Montreal, QC, Canada
| | - Tobias R Baumeister
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, QC, Canada
- McConnell Brain Imaging Center, Montreal Neurological Institute, Montreal, QC, Canada
- Ludmer Centre for Neuroinformatics & Mental Health, Montreal, QC, Canada
| | - Yashar Zeighami
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, QC, Canada
- Douglas Research Centre, Department of Psychiatry, McGill University, Montreal, QC, Canada
| | | | - Daniel Ferreira
- Division of Clinical Geriatrics, Center for Alzheimer Research, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Stockholm, Sweden
| | - Yasser Iturria-Medina
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, QC, Canada.
- McConnell Brain Imaging Center, Montreal Neurological Institute, Montreal, QC, Canada.
- Ludmer Centre for Neuroinformatics & Mental Health, Montreal, QC, Canada.
| |
Collapse
|
27
|
Gonzalez-Lozano MA, Schmid EW, Whelan EM, Jiang Y, Paulo JA, Walter JC, Harper JW. EndoMAP.v1, a Structural Protein Complex Landscape of Human Endosomes. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.02.07.636106. [PMID: 39975243 PMCID: PMC11839024 DOI: 10.1101/2025.02.07.636106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/21/2025]
Abstract
Early/sorting endosomes are dynamic organelles that play key roles in proteome control by triaging plasma membrane proteins for either recycling or degradation in the lysosome1,2,3. These events are coordinated by numerous transiently-associated regulatory complexes and integral membrane components that contribute to organelle identity during endosome maturation4. While a subset of the several hundred protein components and cargoes known to associate with endosomes have been studied at the biochemical and/or structural level, interaction partners and higher order molecular assemblies for many endosomal components remain unknown. Here, we combine cross-linking and native gel mass spectrometry5-8 of purified early endosomes with AlphaFold9,10 and computational analysis to create a systematic human endosomal structural interactome. We present dozens of structural models for endosomal protein pairs and higher order assemblies supported by experimental cross-links from their native subcellular context, suggesting structural mechanisms for previously reported regulatory processes. Using induced neurons, we validate two candidate complexes whose interactions are supported by crosslinks and structural predictions: TMEM230 as a subunit of ATP8/11 lipid flippases11 and TMEM9/9B as subunits of CLCN3/4/5 chloride-proton antiporters12. This resource and its accompanying structural network viewer provide an experimental framework for understanding organellar structural interactomes and large-scale validation of structural predictions.
Collapse
Affiliation(s)
- Miguel A Gonzalez-Lozano
- Department of Cell Biology, Harvard Medical School, Boston MA, USA
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD 20815, USA
| | - Ernst W Schmid
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston MA, USA
| | - Enya Miguel Whelan
- Department of Cell Biology, Harvard Medical School, Boston MA, USA
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD 20815, USA
| | - Yizhi Jiang
- Department of Cell Biology, Harvard Medical School, Boston MA, USA
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD 20815, USA
- Initiative in Trafficking and Neurogeneration, Department of Cell Biology, Harvard Medical School, Boston MA, USA
| | - Joao A Paulo
- Department of Cell Biology, Harvard Medical School, Boston MA, USA
| | - Johannes C Walter
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston MA, USA
- Howard Hughes Medical Institute, Boston, MA, USA
| | - J Wade Harper
- Department of Cell Biology, Harvard Medical School, Boston MA, USA
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD 20815, USA
| |
Collapse
|
28
|
Tan MM, Iwaki H, Bandres-Ciga S, Sosero Y, Shoai M, Brockmann K, Williams NM, Alcalay RN, Maple-Grødem J, Alves G, Tysnes OB, Auinger P, Eberly S, Heutink P, Simon DK, Kieburtz K, Hardy J, Williams-Gray CH, Grosset DG, Corvol JC, Gan-Or Z, Toft M, Pihlstrøm L. Polygenic scores for disease risk are not associated with clinical outcomes in Parkinson's disease. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2025:2025.01.31.25321395. [PMID: 39974079 PMCID: PMC11838632 DOI: 10.1101/2025.01.31.25321395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/21/2025]
Abstract
Polygenic risk scores (PRS) in Parkinson's disease (PD) are associated with disease risk. Recently, pathway-specific PRS have been created to take advantage of annotations inking variants to biological pathways or cell types. Here, we investigated 8 biological pathways or regions of open chromatin using pathway-specific PRS: alpha-synuclein pathway, adaptive immunity, innate immunity, lysosomal pathway1, endocytic membrane-trafficking pathway, mitochondrial pathway, microglial open chromatin single nucleotide polymorphisms (SNPs), and monocyte open chromatin SNPs. We analysed 7,402 PD patients across 18 'in-person' PD cohorts, and 6,717 patients from the online Fox Insight study. We did not find any significant associations between the 8 pathway-specific PRSs and 8 clinical outcomes in PD. Though this may be due to a lack of statistical power and limited sample size, it may also suggest that the genetic architecture of sporadic PD risk is different from the genetics of PD progression and clinical outcomes.
Collapse
Affiliation(s)
- Manuela Mx Tan
- Department of Neurology, Oslo University Hospital, Oslo, Norway
| | - Hirotaka Iwaki
- Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, Maryland, USA
- Data Tecnica International, Washington, DC, USA
- Center for Alzheimer's and Related Dementias, National Institutes of Health, Bethesda, MD, USA
| | - Sara Bandres-Ciga
- Center for Alzheimer's and Related Dementias, National Institutes of Health, Bethesda, MD, USA
| | - Yuri Sosero
- Montreal Neurological Institute, McGill University, Montréal, Québec, Canada
- Department of Human Genetics, McGill University, Montréal, Québec, Canada
| | - Maryam Shoai
- Department of Neurodegenerative Diseases, Queen Square Institute of Neurology, University College London, London, UK
- Reta Lila Weston Institute, UCL Queen Square Institute of Neurology, London, UK
| | - Kathrin Brockmann
- Center of Neurology, Department of Neurodegeneration and Hertie-Institute for Clinical Brain Research, University of Tuebingen, Germany
- German Center for Neurodegenerative Diseases, University of Tuebingen, Tuebingen, Germany
| | - Nigel M Williams
- Institute of Psychological Medicine and Clinical Neurosciences, MRC Centre for Neuropsychiatric Genetics and Genomics, Cardiff University, Cardiff, UK
| | - Roy N Alcalay
- Department of Neurology, Columbia University Irving Medical Center, New York, NY 10032, USA
- Movement Disorders Division, Neurological Institute, Tel Aviv Sourasky Medical Centre, Tel Aviv School of Medicine, Sagol School of Neurosciences, Tel Aviv University, Tel Aviv, Israel
| | - Jodi Maple-Grødem
- Centre for Movement Disorders, Stavanger University Hospital, Stavanger, Norway
- Department of Chemistry, Bioscience and Environmental Engineering, University in Stavanger, Stavanger, Norway
| | - Guido Alves
- Centre for Movement Disorders, Stavanger University Hospital, Stavanger, Norway
- Department of Chemistry, Bioscience and Environmental Engineering, University in Stavanger, Stavanger, Norway
- Department of Neurology, Stavanger University Hospital, Stavanger, Norway
| | - Ole-Bjørn Tysnes
- Department of Clinical Medicine, University of Bergen, Bergen, Norway
- Department of Neurology, Haukeland University Hospital, Bergen, Norway
| | - Peggy Auinger
- Department of Neurology, Center for Health + Technology, University of Rochester, Rochester, New York, USA
| | - Shirley Eberly
- Department of Biostatistics and Computational Biology, University of Rochester, Rochester, New York, USA
| | - Peter Heutink
- German Center for Neurodegenerative Diseases-Tubingen, Tuebingen, Germany
- HIH Tuebingen, Tubingen, Tuebingen, Germany
| | - David K Simon
- Department of Neurology, Beth Israel Deaconess Medical Center, Boston, Massachusetts, USA
- Harvard Medical School, Boston, Massachusetts, USA
| | - Karl Kieburtz
- Department of Neurology, Center for Health + Technology, University of Rochester, Rochester, New York, USA
| | - John Hardy
- UCL Movement Disorders Centre, University College London, London, UK
- Department of Neurodegenerative Diseases, Queen Square Institute of Neurology, University College London, London, UK
- Reta Lila Weston Institute, UCL Queen Square Institute of Neurology, London, UK
- UK Dementia Research Institute, University College London, London, UK
- National Institute for Health Research (NIHR) University College London Hospitals Biomedical Research Centre, London, UK
- Institute for Advanced Study, The Hong Kong University of Science and Technology, Hong Kong SAR, China
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, 20815
| | - Caroline H Williams-Gray
- John Van Geest Centre for Brain Repair, Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
| | - Donald G Grosset
- School of Neuroscience and Psychology, University of Glasgow, Glasgow, UK
| | - Jean-Christophe Corvol
- Sorbonne University, Paris Brain Institute - ICM, Inserm, CNRS, Assistance Publique Hôpitaux de Paris, Departement of Neurology, Hôpital Pitié-Salpêtrière, Paris, France
| | - Ziv Gan-Or
- Montreal Neurological Institute, McGill University, Montréal, Québec, Canada
- Department of Human Genetics, McGill University, Montréal, Québec, Canada
- Department of Neurology and Neurosurgery, McGill University, Montréal, Québec, Canada
| | - Mathias Toft
- Department of Neurology, Oslo University Hospital, Oslo, Norway
- Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Lasse Pihlstrøm
- Department of Neurology, Oslo University Hospital, Oslo, Norway
| |
Collapse
|
29
|
Nakatsuka N, Adler D, Jiang L, Hartman A, Cheng E, Klann E, Satija R. A Reproducibility Focused Meta-Analysis Method for Single-Cell Transcriptomic Case-Control Studies Uncovers Robust Differentially Expressed Genes. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2024.10.15.618577. [PMID: 39463993 PMCID: PMC11507907 DOI: 10.1101/2024.10.15.618577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 10/29/2024]
Abstract
We assessed the reproducibility of differentially expressed genes (DEGs) in previously published Alzheimer's (AD), Parkinson's (PD), Schizophrenia (SCZ), and COVID-19 scRNA-seq studies. While transcriptional scores from DEGs of individual PD and COVID-19 datasets had moderate predictive power for case-control status of other datasets (AUC=0.77 and 0.75), genes from individual AD and SCZ datasets had poor predictive power (AUC=0.68 and 0.55). We developed a non-parametric meta-analysis method, SumRank, based on reproducibility of relative differential expression ranks across datasets, and found DEGs with improved predictive power (AUC=0.88, 0.91, 0.78, and 0.62). By multiple other metrics, specificity and sensitivity of these genes were substantially higher than those discovered by dataset merging and inverse variance weighted p-value aggregation methods. The DEGs revealed known and novel biological pathways, and we validate BCAT1 as down-regulated in AD mouse oligodendrocytes. Lastly, we evaluate factors influencing reproducibility of individual studies as a prospective guide for experimental design.
Collapse
|
30
|
Cornelis MC, Fazlollahi A, Bennett DA, Schneider JA, Ayton S. Genetic Markers of Postmortem Brain Iron. J Neurochem 2025; 169:e16309. [PMID: 39918201 PMCID: PMC11804167 DOI: 10.1111/jnc.16309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Revised: 12/26/2024] [Accepted: 01/02/2025] [Indexed: 02/11/2025]
Abstract
Brain iron (Fe) dyshomeostasis is implicated in neurodegenerative diseases. Genome-wide association studies (GWAS) have identified plausible loci correlated with peripheral levels of Fe. Systemic organs and the brain share several Fe regulatory proteins but there likely exist different homeostatic pathways. We performed the first GWAS of inductively coupled plasma mass spectrometry measures of postmortem brain Fe from 635 Rush Memory and Aging Project (MAP) participants. Sixteen single nucleotide polymorphisms (SNPs) associated with Fe in at least one of four brain regions were measured (p < 5 × 10-8). Promising SNPs (p < 5 × 10-6) were followed up for replication in published GWAS of blood, spleen, and brain imaging Fe traits and mapped to candidate genes for targeted cortical transcriptomic and epigenetic analysis of postmortem Fe in MAP. Results for SNPs previously associated with other Fe traits were also examined. Ninety-eight SNPs associated with postmortem brain Fe were at least nominally (p < 0.05) associated with one or more related Fe traits. Most novel loci identified had no direct links to Fe regulatory pathways but rather endoplasmic reticulum-Golgi trafficking (SORL1, SORCS2, MARCH1, CLTC), heparan sulfate (HS3ST4, HS3ST1), and coenzyme A (SLC5A6, PANK3); supported by nearest gene function and omic analyses. We replicated (p < 0.05) several previously published Fe loci mapping to candidate genes in cellular and systemic Fe regulation. Finally, novel loci (BMAL, COQ5, SLC25A11) and replication of prior loci (PINK1, PPIF, LONP1) lend support to the role of circadian rhythms and mitochondria function in Fe regulation more generally. In summary, we provide support for novel loci linked to pathways that may have greater relevance to brain Fe accumulation; some of which are implicated in neurodegeneration. However, replication of a subset of prior loci for blood Fe suggests that genetic determinants or biological pathways underlying Fe accumulation in the brain are not completely distinct from those of Fe circulating in the periphery.
Collapse
Affiliation(s)
- Marilyn C. Cornelis
- Department of Preventive MedicineNorthwestern University Feinberg School of MedicineChicagoIllinoisUSA
| | - Amir Fazlollahi
- Department of Radiology, Royal Melbourne HospitalUniversity of MelbourneMelbourneVictoriaAustralia
- Queensland Brain InstituteThe University of QueenslandBrisbaneQueenslandAustralia
| | | | | | - Scott Ayton
- The Florey Institute of Neuroscience and Mental HealthMelbourneVictoriaAustralia
- Florey Department of Neuroscience and Mental HealthThe University of MelbourneMelbourneVictoriaAustralia
| |
Collapse
|
31
|
Chew EG, Liu Z, Li Z, Chung SJ, Lian MM, Tandiono M, Heng YJ, Ng EY, Tan LC, Chng WL, Tan TJ, Peh EK, Ho YS, Chen XY, Lim EY, Chang CH, Leong JJ, Peh TX, Chan LL, Chao Y, Au WL, Prakash KM, Lim JL, Tay YW, Mok V, Chan AY, Lin JJ, Jeon BS, Song K, Tham CC, Pang CP, Ahn J, Park KH, Wiggs JL, Aung T, Tan AH, Ahmad Annuar A, Makarious MB, Blauwendraat C, Nalls MA, Robak LA, Alcalay RN, Gan-Or Z, Reynolds R, Lim SY, Xia Y, Khor CC, Tan EK, Wang Z, Foo JN. Exome sequencing in Asian populations identifies low-frequency and rare coding variation influencing Parkinson's disease risk. NATURE AGING 2025; 5:205-218. [PMID: 39572736 PMCID: PMC11839463 DOI: 10.1038/s43587-024-00760-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Accepted: 10/24/2024] [Indexed: 02/21/2025]
Abstract
Parkinson's disease (PD) is an incurable, progressive and common movement disorder that is increasing in incidence globally because of population aging. We hypothesized that the landscape of rare, protein-altering variants could provide further insights into disease pathogenesis. Here we performed whole-exome sequencing followed by gene-based tests on 4,298 PD cases and 5,512 controls of Asian ancestry. We showed that GBA1 and SMPD1 were significantly associated with PD risk, with replication in a further 5,585 PD cases and 5,642 controls. We further refined variant classification using in vitro assays and showed that SMPD1 variants with reduced enzymatic activity display the strongest association (<44% activity, odds ratio (OR) = 2.24, P = 1.25 × 10-15) with PD risk. Moreover, 80.5% of SMPD1 carriers harbored the Asian-specific p.Pro332Arg variant (OR = 2.16; P = 4.47 × 10-8). Our findings highlight the utility of performing exome sequencing in diverse ancestry groups to identify rare protein-altering variants in genes previously unassociated with disease.
Collapse
Grants
- MOE-T2EP30220-0008 Ministry of Education - Singapore (MOE)
- MOH-000435 MOH | National Medical Research Council (NMRC)
- MOH-001110 MOH | National Medical Research Council (NMRC)
- OT2 OD032100 NIH HHS
- OT2 OD027060 NIH HHS
- MOH-000207 MOH | National Medical Research Council (NMRC)
- R01 EY015473 NEI NIH HHS
- MOH-001329 Ministry of Health -Singapore (MOH)
- MOH-001110 Ministry of Health -Singapore (MOH)
- MOE-MOET32020-0004 Ministry of Education - Singapore (MOE)
- MOH-001072 MOH | National Medical Research Council (NMRC)
- MOH-000559 MOH | National Medical Research Council (NMRC)
- OT2 OD027852 NIH HHS
- MOE-T2EP30220-0005 Ministry of Education - Singapore (MOE)
- P30 EY014104 NEI NIH HHS
- MOH-001214 MOH | National Medical Research Council (NMRC)
- Agency for Science, Technology and Research (A*STAR)
- University of Malaya Parkinson’s Disease and Movement Disorders Research Program (PV035-2017)
- Intramural Research Program of the NIH, National Institute on Aging, National Institutes of Health, Department of Health and Human Services; project number ZO1 AG000534, the National Institute of Neurological Disorders and Stroke, the Office of Intramural research, Office of the director NIH, and utilized the computational resources of the NIH STRIDES Initiative (https://cloud.nih.gov) through the Other Transaction agreement - Azure: OT2OD032100, Google Cloud Platform: OT2OD027060, Amazon Web Services: OT2OD027852, and the NIH HPC Biowulf cluster (https://hpc.nih.gov).
- Michael J. Fox Foundation for Parkinson's Research (Michael J. Fox Foundation)
- Parkinson's Foundation (Parkinson's Foundation, Inc.)
- Silverstein Foundation
- Singapore National Research Foundation (NRF-NRFI2018-01)
Collapse
Affiliation(s)
- Elaine Gy Chew
- Lee Kong Chian School of Medicine, Nanyang Technological University Singapore, Singapore, Singapore
| | - Zhehao Liu
- Duke-National University of Singapore Medical School, Singapore, Singapore
- Genome Institute of Singapore, Agency for Science, Technology and Research, Singapore, Singapore
| | - Zheng Li
- Genome Institute of Singapore, Agency for Science, Technology and Research, Singapore, Singapore
| | - Sun Ju Chung
- Department of Neurology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, South Korea
| | - Michelle M Lian
- Lee Kong Chian School of Medicine, Nanyang Technological University Singapore, Singapore, Singapore
| | - Moses Tandiono
- Lee Kong Chian School of Medicine, Nanyang Technological University Singapore, Singapore, Singapore
| | - Yue Jing Heng
- Lee Kong Chian School of Medicine, Nanyang Technological University Singapore, Singapore, Singapore
| | - Ebonne Y Ng
- Department of Neurology, National Neuroscience Institute, Singapore General Hospital, Singapore, Singapore
| | - Louis Cs Tan
- Department of Neurology, National Neuroscience Institute, Singapore, Singapore
| | - Wee Ling Chng
- Duke-National University of Singapore Medical School, Singapore, Singapore
| | - Tiak Ju Tan
- Genome Institute of Singapore, Agency for Science, Technology and Research, Singapore, Singapore
| | - Esther Kl Peh
- Bioprocessing Technology Institute, Agency for Science, Technology and Research, Singapore, Singapore
| | - Ying Swan Ho
- Bioprocessing Technology Institute, Agency for Science, Technology and Research, Singapore, Singapore
| | - Xiao Yin Chen
- Genome Institute of Singapore, Agency for Science, Technology and Research, Singapore, Singapore
| | - Erin Yt Lim
- Genome Institute of Singapore, Agency for Science, Technology and Research, Singapore, Singapore
| | - Chu Hua Chang
- Lee Kong Chian School of Medicine, Nanyang Technological University Singapore, Singapore, Singapore
| | - Jonavan J Leong
- Lee Kong Chian School of Medicine, Nanyang Technological University Singapore, Singapore, Singapore
| | - Ting Xuan Peh
- Genome Institute of Singapore, Agency for Science, Technology and Research, Singapore, Singapore
| | - Ling Ling Chan
- Duke-National University of Singapore Medical School, Singapore, Singapore
- Department of Neuroradiology, Singapore General Hospital, Singapore, Singapore
| | - Yinxia Chao
- Duke-National University of Singapore Medical School, Singapore, Singapore
- Department of Neurology, National Neuroscience Institute, Singapore General Hospital, Singapore, Singapore
| | - Wing-Lok Au
- Department of Neurology, National Neuroscience Institute, Singapore, Singapore
| | - Kumar M Prakash
- Duke-National University of Singapore Medical School, Singapore, Singapore
- Department of Neurology, National Neuroscience Institute, Singapore General Hospital, Singapore, Singapore
| | - Jia Lun Lim
- Department of Biomedical Science, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Yi Wen Tay
- Department of Biomedical Science, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Vincent Mok
- Department of Medicine and Therapeutics, Division of Neurology, Margaret K.L. Cheung Research Centre for Management of Parkinsonism, Lui Che Woo Institute of Innovative Medicine, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong, China
- Gerald Choa Neuroscience Institute, Li Ka Shing Institute of Health Sciences, Hong Kong, China
| | - Anne Yy Chan
- Department of Medicine and Therapeutics, Division of Neurology, Margaret K.L. Cheung Research Centre for Management of Parkinsonism, Lui Che Woo Institute of Innovative Medicine, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong, China
| | - Juei-Jueng Lin
- Department of Neurology, Chushang Show-Chwan Hospital, Nantou, Taiwan
| | - Beom S Jeon
- Department of Neurology, Seoul National University Hospital, Seoul, South Korea
| | - Kyuyoung Song
- Department of Biochemistry and Molecular Biology, University of Ulsan College of Medicine, Seoul, South Korea
| | - Clement C Tham
- Department of Ophthalmology and Visual Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | - Chi Pui Pang
- Department of Ophthalmology and Visual Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | - Jeeyun Ahn
- Department of Ophthalmology, Seoul Metropolitan Government, Seoul National University Boramae Medical Center, Seoul, South Korea
- Department of Ophthalmology, Seoul National University Hospital, Seoul, Korea
| | - Kyu Hyung Park
- Department of Ophthalmology, Seoul National University Hospital, Seoul, Korea
| | - Janey L Wiggs
- Department of Ophthalmology, Massachusetts Eye and Ear Infirmary, Harvard Medical School, Boston, MA, USA
| | - Tin Aung
- Duke-National University of Singapore Medical School, Singapore, Singapore
- Singapore Eye Research Institute, Singapore, Singapore
| | - Ai Huey Tan
- Division of Neurology, Department of Medicine, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Azlina Ahmad Annuar
- Department of Biomedical Science, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Mary B Makarious
- Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, MD, USA
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, London, UK
- UCL Movement Disorders Centre, University College London, London, UK
| | - Cornelis Blauwendraat
- Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, MD, USA
- Center for Alzheimer's and Related Dementias, National Institute on Aging, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| | - Mike A Nalls
- Center for Alzheimer's and Related Dementias, National Institute on Aging, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
- Data Tecnica International, LLC, Bethesda, MD, USA
| | - Laurie A Robak
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
- Jan and Dan Duncan Neurologic Research Institute, Texas Children's Hospital, Houston, TX, USA
| | - Roy N Alcalay
- Tel Aviv Sourasky Medical Center, Tel Aviv, Israel
- Columbia University Irving Medical Center, New York, NY, USA
| | - Ziv Gan-Or
- The Neuro (Montréal Neurological Institute-Hospital), McGill University, Montréal, QC, Canada
- Department of Human Genetics, McGill University, Montréal, QC, Canada
- Department of Neurology and Neurosurgery, McGill University, Montréal, QC, Canada
| | - Richard Reynolds
- Lee Kong Chian School of Medicine, Nanyang Technological University Singapore, Singapore, Singapore
- Department of Brain Sciences, Faculty of Medicine, Imperial College London, London, UK
| | - Shen-Yang Lim
- Division of Neurology, Department of Medicine, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Yun Xia
- Lee Kong Chian School of Medicine, Nanyang Technological University Singapore, Singapore, Singapore
| | - Chiea Chuen Khor
- Duke-National University of Singapore Medical School, Singapore, Singapore.
- Genome Institute of Singapore, Agency for Science, Technology and Research, Singapore, Singapore.
- Singapore Eye Research Institute, Singapore, Singapore.
| | - Eng-King Tan
- Duke-National University of Singapore Medical School, Singapore, Singapore.
- Department of Neurology, National Neuroscience Institute, Singapore General Hospital, Singapore, Singapore.
| | - Zhenxun Wang
- Duke-National University of Singapore Medical School, Singapore, Singapore.
- Genome Institute of Singapore, Agency for Science, Technology and Research, Singapore, Singapore.
| | - Jia Nee Foo
- Lee Kong Chian School of Medicine, Nanyang Technological University Singapore, Singapore, Singapore.
- Genome Institute of Singapore, Agency for Science, Technology and Research, Singapore, Singapore.
| |
Collapse
|
32
|
Chang CH, Chew EGY, Lian MM, Tandiono M, Li Z, Chung SJ, Tan LC, Au WL, Prakash KM, Ahmad-Annuar A, Tan AH, Mok V, Chan AY, Lin JJ, Jeon BS, Khor CC, Lim SY, Tan EK, Foo JN. Rare SV2C coding variants in Parkinson's disease risk. JOURNAL OF PARKINSON'S DISEASE 2025; 15:66-71. [PMID: 39973496 DOI: 10.1177/1877718x241300298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/21/2025]
Abstract
Genome-wide association studies have identified SV2C as a Parkinson's disease (PD) risk locus, with a common missense variant p.Asp543Asn in the synaptic vesicle glycoprotein 2C (SV2C) protein significantly associated with PD. We examined if other rare SV2C variants also influence PD risk. We analyzed sequencing data of 9810 East Asian individuals comprising 4298 patients and 5512 controls and identified 55 rare nonsynonymous variants. There was no significant association of rare nonsynonymous or loss-of-function variants with PD. Our findings show that besides p.Asp543Asn, other rare coding variants in SV2C do not play a major role in PD susceptibility in East Asia.
Collapse
Affiliation(s)
- Chu Hua Chang
- Lee Kong Chian School of Medicine, Nanyang Technological University Singapore, Singapore, Singapore
- Interdisciplinary Graduate Programme (IGP-Neuroscience), Nanyang Technological University, Singapore, Singapore
| | - Elaine Guo Yan Chew
- Lee Kong Chian School of Medicine, Nanyang Technological University Singapore, Singapore, Singapore
| | - Michelle Mulan Lian
- Lee Kong Chian School of Medicine, Nanyang Technological University Singapore, Singapore, Singapore
| | - Moses Tandiono
- Lee Kong Chian School of Medicine, Nanyang Technological University Singapore, Singapore, Singapore
| | - Zheng Li
- Genome Institute of Singapore, Agency for Science, Technology and Research, A*STAR, Singapore, Singapore
| | - Sun Ju Chung
- Department of Neurology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, South Korea
| | - Louis Cs Tan
- Department of Neurology, National Neuroscience Institute, Singapore, Singapore
| | - Wing-Lok Au
- Department of Neurology, National Neuroscience Institute, Singapore, Singapore
| | - Kumar M Prakash
- Department of Neurology, National Neuroscience Institute, Singapore General Hospital, Singapore, Singapore
- Duke-National University of Singapore Medical School, Singapore, Singapore
| | - Azlina Ahmad-Annuar
- Department of Biomedical Science, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Ai Huey Tan
- Division of Neurology, Department of Medicine, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Vincent Mok
- Margaret K.L. Cheung Research Centre for Management of Parkinsonism, Lui Che Woo Institute of Innovative Medicine, Division of Neurology, Department of Medicine and Therapeutics, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong, Hong Kong SAR, People's Republic of China
- Gerald Choa Neuroscience Institute, Li Ka Shing Institute of Health Sciences, Hong Kong, Hong Kong SAR, People's Republic of China
| | - Anne Yy Chan
- Margaret K.L. Cheung Research Centre for Management of Parkinsonism, Lui Che Woo Institute of Innovative Medicine, Division of Neurology, Department of Medicine and Therapeutics, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong, Hong Kong SAR, People's Republic of China
| | - Juei-Jueng Lin
- Department of Neurology, Chushang Show-Chwan Hospital, Nantou, Taiwan
| | - Beom S Jeon
- Department of Neurology, Seoul National University Hospital, Seoul, South Korea
| | - Chiea Chuen Khor
- Genome Institute of Singapore, Agency for Science, Technology and Research, A*STAR, Singapore, Singapore
- Duke-National University of Singapore Medical School, Singapore, Singapore
- Singapore Eye Research Institute, Singapore, Singapore
| | - Shen-Yang Lim
- Division of Neurology, Department of Medicine, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Eng-King Tan
- Department of Neurology, National Neuroscience Institute, Singapore General Hospital, Singapore, Singapore
- Duke-National University of Singapore Medical School, Singapore, Singapore
| | - Jia Nee Foo
- Lee Kong Chian School of Medicine, Nanyang Technological University Singapore, Singapore, Singapore
- Genome Institute of Singapore, Agency for Science, Technology and Research, A*STAR, Singapore, Singapore
| |
Collapse
|
33
|
Zhang M, Su W, Deng J, Zhai B, Zhu G, Gao R, Zeng Q, Qiu J, Bian Z, Xiao H, Luan G, Wang R. Multi-ancestry genome-wide meta-analysis with 472,819 individuals identifies 32 novel risk loci for psoriasis. J Transl Med 2025; 23:133. [PMID: 39885523 PMCID: PMC11783861 DOI: 10.1186/s12967-024-06015-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Accepted: 12/20/2024] [Indexed: 02/01/2025] Open
Abstract
BACKGROUND Psoriasis is a common chronic, recurrent, immune-mediated disease involved in the skin or joints or both. However, deeper insight into the genetic susceptibility of psoriasis is still unclear. METHODS Here we performed the largest multi-ancestry meta-analysis of genome-wide association study including 28,869 psoriasis cases and 443,950 healthy controls. RESULTS We identified 74 genome-wide significant loci for psoriasis. Of 74 loci, 32 were novel psoriasis risk loci. Across 74 loci, 801 likely causal genes are indicated and 164 causal genes are prioritized. SNP-based heritability analyses demonstrated that common variants explain 15% of genetic risk for psoriasis. Gene-set analyses and the genetic correlation revealed that psoriasis-related genes have the positive correlations with autoimmune diseases such as ulcerative colitis, inflammatory bowel diseases, and Crohn's disease. Gene-drug interaction analysis suggested that psoriasis-associated genes overlapped with targets of current medications for psoriasis. Finally, we used the multi-ancestry meta-analysis to explore drug repurposing and the potential targets for psoriasis. CONCLUSIONS We identified 74 genome-wide significant loci for psoriasis. Based on 74 loci, we provided new biological insights to the etiology of psoriasis. Of clinical interest, we gave some hints for 76 potential targets and drug repurposing for psoriasis.
Collapse
Affiliation(s)
- Min Zhang
- Beijing Institute of Brain Disorders, Laboratory of Brain Disorders, Ministry of Science and Technology, Collaborative Innovation Center for Brain Disorders, Capital Medical University, Beijing, China
- Laboratory for Clinical Medicine, Capital Medical University, Beijing, China
| | - Wenting Su
- Beijing Institute of Brain Disorders, Laboratory of Brain Disorders, Ministry of Science and Technology, Collaborative Innovation Center for Brain Disorders, Capital Medical University, Beijing, China
- Laboratory for Clinical Medicine, Capital Medical University, Beijing, China
| | - Jiahui Deng
- Department of Neurosurgery, SanBo Brain Hospital, Capital Medical University, Beijing, China
- Laboratory for Clinical Medicine, Capital Medical University, Beijing, China
- Beijing Key Laboratory of Epilepsy, Department of Brain Institute, Center of Epilepsy, Beijing Institute for Brain Disorders, SanBo Brain Hospital, Capital Medical University, Beijing, China
| | - Bin Zhai
- Department of Hematology, The Second Medical Center & National Clinical Research Center for Geriatric Diseases, Chinese PLA General Hospital, Beijing, China
| | - Gaizhi Zhu
- Beijing Institute of Brain Disorders, Laboratory of Brain Disorders, Ministry of Science and Technology, Collaborative Innovation Center for Brain Disorders, Capital Medical University, Beijing, China
- Laboratory for Clinical Medicine, Capital Medical University, Beijing, China
| | - Ran Gao
- Beijing Institute of Brain Disorders, Laboratory of Brain Disorders, Ministry of Science and Technology, Collaborative Innovation Center for Brain Disorders, Capital Medical University, Beijing, China
- Laboratory for Clinical Medicine, Capital Medical University, Beijing, China
| | - Qi Zeng
- Beijing Institute of Brain Disorders, Laboratory of Brain Disorders, Ministry of Science and Technology, Collaborative Innovation Center for Brain Disorders, Capital Medical University, Beijing, China
- Laboratory for Clinical Medicine, Capital Medical University, Beijing, China
| | - Jinming Qiu
- Beijing Institute of Brain Disorders, Laboratory of Brain Disorders, Ministry of Science and Technology, Collaborative Innovation Center for Brain Disorders, Capital Medical University, Beijing, China
- Laboratory for Clinical Medicine, Capital Medical University, Beijing, China
| | - Ziqing Bian
- Beijing Institute of Brain Disorders, Laboratory of Brain Disorders, Ministry of Science and Technology, Collaborative Innovation Center for Brain Disorders, Capital Medical University, Beijing, China
- Laboratory for Clinical Medicine, Capital Medical University, Beijing, China
| | - He Xiao
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing, China
| | - Guoming Luan
- Department of Neurosurgery, SanBo Brain Hospital, Capital Medical University, Beijing, China.
- Laboratory for Clinical Medicine, Capital Medical University, Beijing, China.
- Beijing Key Laboratory of Epilepsy, Department of Brain Institute, Center of Epilepsy, Beijing Institute for Brain Disorders, SanBo Brain Hospital, Capital Medical University, Beijing, China.
| | - Renxi Wang
- Beijing Institute of Brain Disorders, Laboratory of Brain Disorders, Ministry of Science and Technology, Collaborative Innovation Center for Brain Disorders, Capital Medical University, Beijing, China.
- Laboratory for Clinical Medicine, Capital Medical University, Beijing, China.
| |
Collapse
|
34
|
Dou L, Xu Z, Xu J, Zang C, Su C, Pieper AA, Leverenz JB, Wang F, Zhu X, Cummings J, Cheng F. A network-based systems genetics framework identifies pathobiology and drug repurposing in Parkinson's disease. NPJ Parkinsons Dis 2025; 11:22. [PMID: 39837893 PMCID: PMC11751448 DOI: 10.1038/s41531-025-00870-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Accepted: 01/06/2025] [Indexed: 01/23/2025] Open
Abstract
Parkinson's disease (PD) is the second most prevalent neurodegenerative disorder. However, current treatments only manage symptoms and lack the ability to slow or prevent disease progression. We utilized a systems genetics approach to identify potential risk genes and repurposable drugs for PD. First, we leveraged non-coding genome-wide association studies (GWAS) loci effects on five types of brain-specific quantitative trait loci (xQTLs, including expression, protein, splicing, methylation and histone acetylation) under the protein-protein interactome (PPI) network. We then prioritized 175 PD likely risk genes (pdRGs), such as SNCA, CTSB, LRRK2, DGKQ, and CD44, which are enriched in druggable targets and differentially expressed genes across multiple human brain-specific cell types. Integrating network proximity-based drug repurposing and patient electronic health record (EHR) data observations, we identified Simvastatin as being significantly associated with reduced incidence of PD (hazard ratio (HR) = 0.91 for fall outcome, 95% confidence interval (CI): 0.87-0.94; HR = 0.88 for dementia outcome, 95% CI: 0.86-0.89) after adjusting for 267 covariates. In summary, our network-based systems genetics framework identifies potential risk genes and repurposable drugs for PD and other neurodegenerative diseases if broadly applied.
Collapse
Affiliation(s)
- Lijun Dou
- Cleveland Clinic Genome Center, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, 44195, USA
- Genomic Medicine Institute, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, 44195, USA
| | - Zhenxing Xu
- Department of Population Health Sciences, Weill Cornell Medical College, Cornell University, New York, NY, 10065, USA
| | - Jielin Xu
- Cleveland Clinic Genome Center, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, 44195, USA
- Genomic Medicine Institute, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, 44195, USA
| | - Chengxi Zang
- Department of Population Health Sciences, Weill Cornell Medical College, Cornell University, New York, NY, 10065, USA
| | - Chang Su
- Department of Population Health Sciences, Weill Cornell Medical College, Cornell University, New York, NY, 10065, USA
| | - Andrew A Pieper
- Department of Psychiatry, Case Western Reserve University, Cleveland, OH, USA
- Brain Health Medicines Center, Harrington Discovery Institute, University Hospitals Cleveland Medical Center, Cleveland, OH, 44106, USA
- Geriatric Psychiatry, GRECC, Louis Stokes Cleveland VA Medical Center, Cleveland, OH, 44106, USA
- Institute for Transformative Molecular Medicine, School of Medicine, Case Western Reserve University, Cleveland, OH, 44106, USA
- Department of Neurosciences, Case Western Reserve University, School of Medicine, Cleveland, OH, 44106, USA
- Department of Pathology, Case Western Reserve University, School of Medicine, Cleveland, OH, 44106, USA
| | - James B Leverenz
- Department of Molecular Medicine, Cleveland Clinic Lerner College of Medicine, Case Western Reserve University, Cleveland, OH, 44195, USA
- Lou Ruvo Center for Brain Health, Neurological Institute, Cleveland Clinic, Cleveland, OH, 44195, USA
| | - Fei Wang
- Department of Population Health Sciences, Weill Cornell Medical College, Cornell University, New York, NY, 10065, USA
| | - Xiongwei Zhu
- Department of Pathology, Case Western Reserve University, School of Medicine, Cleveland, OH, 44106, USA
| | - Jeffrey Cummings
- Chambers-Grundy Center for Transformative Neuroscience, Department of Brain Health, Kirk Kerkorian School of Medicine, UNLV, Las Vegas, NV, 89154, USA
| | - Feixiong Cheng
- Cleveland Clinic Genome Center, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, 44195, USA.
- Genomic Medicine Institute, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, 44195, USA.
- Department of Pathology, Case Western Reserve University, School of Medicine, Cleveland, OH, 44106, USA.
| |
Collapse
|
35
|
Akçimen F, Paquette K, Crea PW, Saffie-Awad P, Achoru C, Taiwo F, Ozomma S, Onwuegbuzie G, Khani M, Grant S, Owolabi L, Okereke C, Oshinaike O, Iwuozo E, Lee PS, Oyakhire S, Osemwegie N, Daida K, Abubakar S, Olusanya A, Isayan M, Traurig R, Ogunmodede A, Samuel S, Makarious MB, Sa’ad F, Olanigan R, Levine K, Ogbimi EM, Vitale D, Odiase F, Koretsky MJ, Ojini F, Odeniyi O, Fang ZH, Obianozie N, Hall DA, Nwazor E, Xie T, Nwaokorie F, Padmanaban M, Nwani P, Shamim EA, Nnama A, Standaert D, Komolafe M, Dean M, Osaigbovo G, Disbrow E, Ishola I, Rawls A, Imarhiagbe F, Chandra S, Erameh C, Hinson V, Louie N, Idowu A, Solle J, Norris SA, Ibrahim A, Kilbane C, Sukumar G, Shulman LM, Ezuduemoih D, Staisch J, Breaux S, Dalgard C, Foster ER, Bello A, Ameri A, Real R, Ikwenu E, Morris HR, Anyanwu R, Stimming EF, Billingsley K, Alaofin W, Jerez PA, Agabi O, Hernandez DG, Akinyemi R, Arepalli S, Malik L, Owolabi R, Nyandaiti Y, Leonard HL, Wahab K, Step K, Abiodun O, Hernandez CF, Abdulai F, Iwaki H, Bardien S, Klein C, Hardy J, Houlden H, Galvelis KG, Nalls MA, Dahodwala N, Aamodt W, et alAkçimen F, Paquette K, Crea PW, Saffie-Awad P, Achoru C, Taiwo F, Ozomma S, Onwuegbuzie G, Khani M, Grant S, Owolabi L, Okereke C, Oshinaike O, Iwuozo E, Lee PS, Oyakhire S, Osemwegie N, Daida K, Abubakar S, Olusanya A, Isayan M, Traurig R, Ogunmodede A, Samuel S, Makarious MB, Sa’ad F, Olanigan R, Levine K, Ogbimi EM, Vitale D, Odiase F, Koretsky MJ, Ojini F, Odeniyi O, Fang ZH, Obianozie N, Hall DA, Nwazor E, Xie T, Nwaokorie F, Padmanaban M, Nwani P, Shamim EA, Nnama A, Standaert D, Komolafe M, Dean M, Osaigbovo G, Disbrow E, Ishola I, Rawls A, Imarhiagbe F, Chandra S, Erameh C, Hinson V, Louie N, Idowu A, Solle J, Norris SA, Ibrahim A, Kilbane C, Sukumar G, Shulman LM, Ezuduemoih D, Staisch J, Breaux S, Dalgard C, Foster ER, Bello A, Ameri A, Real R, Ikwenu E, Morris HR, Anyanwu R, Stimming EF, Billingsley K, Alaofin W, Jerez PA, Agabi O, Hernandez DG, Akinyemi R, Arepalli S, Malik L, Owolabi R, Nyandaiti Y, Leonard HL, Wahab K, Step K, Abiodun O, Hernandez CF, Abdulai F, Iwaki H, Bardien S, Klein C, Hardy J, Houlden H, Galvelis KG, Nalls MA, Dahodwala N, Aamodt W, Hill E, Espay A, Factor S, Branson C, Blauwendraat C, Singleton AB, Ojo O, Chahine LM, Okubadejo N, Bandres-Ciga S. Large-scale genetic characterization of Parkinson's disease in the African and African admixed populations. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2025:2025.01.14.25320205. [PMID: 39867380 PMCID: PMC11759243 DOI: 10.1101/2025.01.14.25320205] [Show More Authors] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2025]
Abstract
Elucidating the genetic contributions to Parkinson's disease (PD) etiology across diverse ancestries is a critical priority for the development of targeted therapies in a global context. We conducted the largest sequencing characterization of potentially disease-causing, protein-altering and splicing mutations in 710 cases and 11,827 controls from genetically predicted African or African admixed ancestries. We explored copy number variants (CNVs) and runs of homozygosity (ROHs) in prioritized early onset and familial cases. Our study identified rare GBA1 coding variants to be the most frequent mutations among PD patients, with a frequency of 4% in our case cohort. Out of the 18 GBA1 variants identified, ten were previously classified as pathogenic or likely pathogenic, four were novel, and four were reported as of uncertain clinical significance. The most common known disease-associated GBA1 variants in the Ashkenazi Jewish and European populations, p.Asn409Ser, p.Leu483Pro, p.Thr408Met, and p.Glu365Lys, were not identified among the screened PD cases of African and African admixed ancestry. Similarly, the European and Asian LRRK2 disease-causing mutational spectrum, including LRRK2 p.Gly2019Ser and p.Gly2385Arg genetic risk factors, did not appear to play a major role in PD etiology among West African-ancestry populations. However, we found three heterozygous novel missense LRRK2 variants of uncertain significance overrepresented in cases, two of which - p.Glu268Ala and p.Arg1538Cys - had a higher prevalence in the African ancestry population reference datasets. Structural variant analyses revealed the presence of PRKN CNVs with a frequency of 0.7% in African and African admixed cases, with 66% of CNVs detected being compound heterozygous or homozygous in early-onset cases, providing further insights into the genetic underpinnings in early-onset juvenile PD in these populations. Novel genetic variation overrepresented in cases versus controls among screened genes warrants further replication and functional prioritization to unravel their pathogenic potential. Here, we created the most comprehensive genetic catalog of both known and novel coding and splicing variants potentially linked to PD etiology in an underserved population. Our study has the potential to guide the development of targeted therapies in the emerging era of precision medicine. By expanding genetics research to involve underrepresented populations, we hope that future PD treatments are not only effective but also inclusive, addressing the needs of diverse ancestral groups.
Collapse
Affiliation(s)
- Fulya Akçimen
- Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, MD, USA
| | - Kimberly Paquette
- Center for Alzheimer’s and Related Dementias, National Institute on Aging and National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| | - Peter Wild Crea
- Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, MD, USA
- Center for Alzheimer’s and Related Dementias, National Institute on Aging and National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| | - Paula Saffie-Awad
- Programa de Pós-Graduação em Ciências Médicas, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
- Clínica Santa María, Santiago, Chile
| | - Charles Achoru
- Jos University Teaching Hospital, Jos, Plateau State, Nigeria
| | | | - Simon Ozomma
- University of Calabar Teaching Hospital, Calabar, Cross River State, Nigeria
| | | | - Marzieh Khani
- Center for Alzheimer’s and Related Dementias, National Institute on Aging and National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| | - Spencer Grant
- Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, MD, USA
- Center for Alzheimer’s and Related Dementias, National Institute on Aging and National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| | | | - Chiamaka Okereke
- University of Nigeria Teaching Hospital, Ituku-Ozalla, Enugu State, Nigeria
| | | | | | - Paul Suhwan Lee
- Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, MD, USA
| | | | | | - Kensuke Daida
- Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, MD, USA
- Center for Alzheimer’s and Related Dementias, National Institute on Aging and National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
- Department of Neurology, Faculty of Medicine, Juntendo University, Tokyo, Japan
| | - Sani Abubakar
- Ahmadu Bello University, Zaria, Kaduna State, Nigeria
| | - Adedunni Olusanya
- College of Medicine, University of Lagos, Idi-araba, Lagos State, Nigeria
- R-Jolad Hospital, Gbagada, Lagos, Nigeria
| | - Mariam Isayan
- Department of Neurology and Neurosurgery, National Institute of Health, Yerevan, Armenia
| | - Rami Traurig
- Center for Alzheimer’s and Related Dementias, National Institute on Aging and National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| | | | - Sarah Samuel
- University of Maiduguri Teaching Hospital, Maiduguri, Borno State
| | - Mary B. Makarious
- Center for Alzheimer’s and Related Dementias, National Institute on Aging and National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
- DataTecnica LLC, Washington, DC, USA
| | | | - Rashidat Olanigan
- Lagos State University Teaching Hospital, Ikeja, Lagos State, Nigeria
| | - Kristin Levine
- Center for Alzheimer’s and Related Dementias, National Institute on Aging and National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
- DataTecnica LLC, Washington, DC, USA
| | | | - Dan Vitale
- Center for Alzheimer’s and Related Dementias, National Institute on Aging and National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
- DataTecnica LLC, Washington, DC, USA
| | | | - Mathew J. Koretsky
- Center for Alzheimer’s and Related Dementias, National Institute on Aging and National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
- DataTecnica LLC, Washington, DC, USA
| | - Francis Ojini
- College of Medicine, University of Lagos, Idi-araba, Lagos State, Nigeria
- Lagos University Teaching Hospital, Idi-araba, Lagos State, Nigeria
| | | | - Zih-Hua Fang
- German Center for Neurodegenerative Diseases, DZNE, Tübingen, Germany
| | - Nkechi Obianozie
- University of Abuja Teaching Hospital, Gwagwalada, Federal Capital Territory, Nigeria
| | - Deborah A. Hall
- Department of Neurological Sciences, Rush University Medical Center, Chicago, USA
| | - Ernest Nwazor
- Rivers State University Teaching Hospital, Port Harcourt, Rivers State, Nigeria
| | - Tao Xie
- University of Chicago Medicine, Department of Neurology, Chicago, USA
| | | | - Mahesh Padmanaban
- University of Chicago Medicine, Department of Neurology, Chicago, USA
| | - Paul Nwani
- Nnamdi Azikiwe University Teaching Hospital, Nnewi, Anambra State, Nigeria
| | - Ejaz A. Shamim
- National Institute of Neurological Disorders and Stroke, Bethesda, MD, USA
- Mid-Atlantic Permanente Medical Group, Department of Neurology, Largo, MD, USA
- Kaiser Permanente, MidAtlantic Permanente Research Institute, Washington, DC, USA
| | - Alero Nnama
- University of Port Harcourt Teaching Hospital, Rivers State, Nigeria
| | - David Standaert
- University of Alabama at Birmingham, Department of Neurology, Birmingham, USA
| | | | - Marissa Dean
- University of Alabama at Birmingham, Department of Neurology, Birmingham, USA
| | | | - Elizabeth Disbrow
- Department of Neurology, LSU Health Shreveport, LSU Health Shreveport Center for Brain Health, Shreveport, USA
| | - Ismaila Ishola
- College of Medicine, University of Lagos, Idi-araba, Lagos State, Nigeria
| | - Ashley Rawls
- University of Florida Norman Fixel Institute for Neurological Diseases, Neurology Movement Disorders, Gainesville, USA
| | | | - Shivika Chandra
- The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Cyril Erameh
- Irrua Specialist Teaching Hospital, Irrua, Edo State, Nigeria
| | - Vanessa Hinson
- Medical University of South Carolina, Charleston, SC, USA
| | - Naomi Louie
- Michael J. Fox Foundation for Parkinson’s Research, Department of Clinical Research, New York, USA
| | - Ahmed Idowu
- Obafemi Awolowo University Teaching Hospitals Complex, Ile-Ife, Osun State, Nigeria
| | - J Solle
- Michael J. Fox Foundation for Parkinson’s Research, Department of Clinical Research, New York, USA
| | | | - Abdullahi Ibrahim
- Federal University of Health Sciences Teaching Hospital, Azare, Bauchi State, Nigeria
| | - Camilla Kilbane
- University Hospital in Cleveland Medical Center/Case Western Reserve University (UH)
| | - Gauthaman Sukumar
- Department of Anatomy, Physiology and Genetics, School of Medicine, Uniformed Services
- University of the Health Sciences, 4301 Jones Bridge Rd, Bethesda, MD, 20814, USA
| | | | | | | | | | - Clifton Dalgard
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
- The American Genome Center, Collaborative Health Initiative Research Program, Uniformed Services University of the Health Sciences, Bethesda, MD 20814, USA
| | | | - Abiodun Bello
- University of Ilorin Teaching Hospital, Ilorin, Kwara State, Nigeria
| | - Andrew Ameri
- Medical University of South Carolina, Charleston, SC, USA
| | - Raquel Real
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, London WC1N 3BG, UK
- UCL Movement Disorders Centre, University College London, London WC1N 3BG, UK
| | - Erica Ikwenu
- Lagos University Teaching Hospital, Idi-araba, Lagos State, Nigeria
| | - Huw R Morris
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, London WC1N 3BG, UK
- National Hospital for Neurology and Neurosurgery, London, UK
- Department of Neurology, Royal Free Hospital, London, UK
| | - Roosevelt Anyanwu
- College of Medicine, University of Lagos, Idi-araba, Lagos State, Nigeria
| | - Erin Furr Stimming
- The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Kimberley Billingsley
- Center for Alzheimer’s and Related Dementias, National Institute on Aging and National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| | | | - Pilar Alvarez Jerez
- Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, MD, USA
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, London WC1N 3BG, UK
| | - Osigwe Agabi
- College of Medicine, University of Lagos, Idi-araba, Lagos State, Nigeria
- Lagos University Teaching Hospital, Idi-araba, Lagos State, Nigeria
| | - Dena G. Hernandez
- Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, MD, USA
| | - Rufus Akinyemi
- Neuroscience and Ageing Research Unit, Institute for Advanced Medical Research and Training, College of Medicine, University of Ibadan, Ibadan, Oyo State, Nigeria
| | - Sampath Arepalli
- Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, MD, USA
| | - Laksh Malik
- Center for Alzheimer’s and Related Dementias, National Institute on Aging and National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| | | | - Yakub Nyandaiti
- University of Maiduguri Teaching Hospital, Maiduguri, Borno State
| | - Hampton L. Leonard
- Center for Alzheimer’s and Related Dementias, National Institute on Aging and National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
- DataTecnica LLC, Washington, DC, USA
| | | | - Kathryn Step
- Department of Biomedical Sciences, Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| | | | - Carlos F. Hernandez
- Universidad del Desarrollo, Centro de Genética y Genómica, Facultad de Medicina Clínica Alemana, Santiago 7610658, Chile
| | - Fatima Abdulai
- University of Abuja Teaching Hospital, Gwagwalada, Federal Capital Territory, Nigeria
| | - Hirotaka Iwaki
- Center for Alzheimer’s and Related Dementias, National Institute on Aging and National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
- DataTecnica LLC, Washington, DC, USA
| | - Soraya Bardien
- Department of Biomedical Sciences, Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| | - Christine Klein
- Institute of Neurogenetics and Department of Neurology, University of Lübeck and University Hospital Schleswig-Holstein, Lübeck, Germany
| | - John Hardy
- Reta Lila Weston Institute, University College London Institute of Neurology, Queen Square, London, UK
| | - Henry Houlden
- Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, London, UK
| | | | - Mike A. Nalls
- Center for Alzheimer’s and Related Dementias, National Institute on Aging and National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
- DataTecnica LLC, Washington, DC, USA
| | | | | | - Emily Hill
- University of Cincinnati, Cincinnati, Ohio
| | | | | | | | - Cornelis Blauwendraat
- Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, MD, USA
- Center for Alzheimer’s and Related Dementias, National Institute on Aging and National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| | - Andrew B. Singleton
- Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, MD, USA
- Center for Alzheimer’s and Related Dementias, National Institute on Aging and National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| | - Oluwadamilola Ojo
- College of Medicine, University of Lagos, Idi-araba, Lagos State, Nigeria
- Lagos University Teaching Hospital, Idi-araba, Lagos State, Nigeria
| | - Lana M. Chahine
- University of Pittsburgh, 3471 Fifth Avenue, Pittsburgh, PA, 15213, USA
| | | | | | | | | | - Njideka Okubadejo
- College of Medicine, University of Lagos, Idi-araba, Lagos State, Nigeria
- Lagos University Teaching Hospital, Idi-araba, Lagos State, Nigeria
| | - Sara Bandres-Ciga
- Center for Alzheimer’s and Related Dementias, National Institute on Aging and National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
36
|
Nazeen S, Wang X, Morrow A, Strom R, Ethier E, Ritter D, Henderson A, Afroz J, Stitziel NO, Gupta RM, Luk K, Studer L, Khurana V, Sunyaev SR. NERINE reveals rare variant associations in gene networks across multiple phenotypes and implicates an SNCA-PRL-LRRK2 subnetwork in Parkinson's disease. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.01.07.631688. [PMID: 39829934 PMCID: PMC11741352 DOI: 10.1101/2025.01.07.631688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 01/22/2025]
Abstract
Gene networks encapsulate biological knowledge, often linked to polygenic diseases. While model system experiments generate many plausible gene networks, validating their role in human phenotypes requires evidence from human genetics. Rare variants provide the most straightforward path for such validation. While single-gene analyses often lack power due to rare variant sparsity, expanding the unit of association to networks offers a powerful alternative, provided it integrates network connections. Here, we introduce NERINE, a hierarchical model-based association test that integrates gene interactions that integrates gene interactions while remaining robust to network inaccuracies. Applied to biobanks, NERINE uncovers compelling network associations for breast cancer, cardiovascular diseases, and type II diabetes, undetected by single-gene tests. For Parkinson's disease (PD), NERINE newly substantiates several GWAS candidate loci with rare variant signal and synergizes human genetics with experimental screens targeting cardinal PD pathologies: dopaminergic neuron survival and alpha-synuclein pathobiology. CRISPRi-screening in human neurons and NERINE converge on PRL, revealing an intraneuronal α-synuclein/prolactin stress response that may impact resilience to PD pathologies.
Collapse
Affiliation(s)
- Sumaiya Nazeen
- Department of Biomedical Informatics, Harvard Medical School, Boston, MA, USA
- Division of Genetics, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
- Division of Movement Disorders, Department of Neurology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Xinyuan Wang
- Division of Movement Disorders, Department of Neurology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Autumn Morrow
- Department of Biomedical Informatics, Harvard Medical School, Boston, MA, USA
- Division of Movement Disorders, Department of Neurology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Ronya Strom
- Division of Movement Disorders, Department of Neurology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Elizabeth Ethier
- Division of Movement Disorders, Department of Neurology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Dylan Ritter
- The Center for Stem Cell Biology, Sloan-Kettering Institute for Cancer Research, New York, NY, USA
| | | | - Jalwa Afroz
- The Center for Stem Cell Biology, Sloan-Kettering Institute for Cancer Research, New York, NY, USA
| | - Nathan O Stitziel
- Cardiovascular Division, John T. Milliken Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
- Department of Genetics, Washington University School of Medicine, St. Louis, MO, USA
| | - Rajat M Gupta
- Division of Genetics, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
- Division of Cardiovascular Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Kelvin Luk
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine at the University of Pennsylvania, PA, USA
| | - Lorenz Studer
- The Center for Stem Cell Biology, Sloan-Kettering Institute for Cancer Research, New York, NY, USA
| | - Vikram Khurana
- Department of Biomedical Informatics, Harvard Medical School, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Harvard Stem Cell Institute, Cambridge, MA, USA
| | - Shamil R Sunyaev
- Department of Biomedical Informatics, Harvard Medical School, Boston, MA, USA
- Division of Genetics, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| |
Collapse
|
37
|
Liu Q, Jiang M, Wang Z, Meng J, Jia H, Li J, Lin J, Guo L, Gao L. SENP1 inhibits aerobic glycolysis in Aβ 1-42-incubated astrocytes by promoting PUM2 deSUMOylation. Cell Biol Toxicol 2025; 41:28. [PMID: 39794619 PMCID: PMC11723902 DOI: 10.1007/s10565-025-09986-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Accepted: 01/03/2025] [Indexed: 01/13/2025]
Abstract
Alzheimer's disease (AD), the most prevalent form of dementia in the elderly, involves critical changes such as reduced aerobic glycolysis in astrocytes and increased neuronal apoptosis, both of which are significant in the disease's pathology. In our study, astrocytes treated with amyloid β1-42 (Aβ1-42) to simulate AD conditions exhibited upregulated expressions of small ubiquitin-like modifier (SUMO)-specific protease 1 (SENP1) and Pumilio RNA Binding Family Member 2 (PUM2), alongside decreased levels of Nuclear factor erythroid 2-related factor 2 (NRF2). SENP1 is notably the most upregulated SUMOylation enzyme in Aβ1-42-exposed astrocytes. Functional assays including Ni2+-Nitrilotriacetic acid (NTA) agarose bead pull-down and co-immunoprecipitation (Co-IP) confirmed SENP1's role in actively deSUMOylating PUM2, thereby enhancing its stability and expression. The interaction between PUM2 and the 3' untranslated region (3'UTR) of NRF2 mRNA reduces NRF2 levels, subsequently diminishing the transcriptional activation of critical glycolytic enzymes, Hexokinase 1 (HK1) and Glucose Transporter 1 (GLUT1). These changes contribute to the observed reduction in glycolytic function in astrocytes, exacerbating neuronal apoptosis. Targeted interventions, such as knockdown of Senp1 or Pum2 or overexpression of NRF2 in APPswe/PSEN1dE9 (APP/PS1) transgenic mice, effectively increased HK1 and GLUT1 levels, decreased apoptosis, and alleviated cognitive impairment. These findings highlight the important roles of the SENP1/PUM2/NRF2 pathway in influencing glucose metabolism in astrocytes, presenting new potential therapeutic targets for AD.
Collapse
Affiliation(s)
- Qianshuo Liu
- Department of Neurology, The Fourth Affiliated Hospital of China Medical University, Shenyang, China
| | - Meixi Jiang
- Department of Neurology, The Fourth Affiliated Hospital of China Medical University, Shenyang, China
| | - Zhengze Wang
- Department of Neurology, The Fourth Affiliated Hospital of China Medical University, Shenyang, China
| | - Jihong Meng
- Department of Neurosurgery, Shengjing Hospital of China Medical University, Shenyang, China
| | - Hui Jia
- Department of Medical Administration, The Fourth Affiliated Hospital of China Medical University, Shenyang, China
| | - Jing Li
- Department of Neurology, The Fourth Affiliated Hospital of China Medical University, Shenyang, China
| | - Jiacai Lin
- Department of Neurology, Hainan Hospital of Chinese PLA General Hospital, Sanya, China.
| | - Libin Guo
- The Second Cardiovascular Endocrine Department, Shenyang Ninth People's Hospital, Shenyang, China.
| | - Lianbo Gao
- Department of Neurology, The Fourth Affiliated Hospital of China Medical University, Shenyang, China.
| |
Collapse
|
38
|
Palmer JE, Wilson N, Son SM, Obrocki P, Wrobel L, Rob M, Takla M, Korolchuk VI, Rubinsztein DC. Autophagy, aging, and age-related neurodegeneration. Neuron 2025; 113:29-48. [PMID: 39406236 DOI: 10.1016/j.neuron.2024.09.015] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 09/09/2024] [Accepted: 09/17/2024] [Indexed: 01/11/2025]
Abstract
Autophagy is a conserved mechanism that degrades damaged or superfluous cellular contents and enables nutrient recycling under starvation conditions. Many neurodegeneration-associated proteins are autophagy substrates, and autophagy upregulation ameliorates disease in many animal models of neurodegeneration by enhancing the clearance of toxic proteins, proinflammatory molecules, and dysfunctional organelles. Autophagy inhibition also induces neuronal and glial senescence, a phenomenon that occurs with increasing age in non-diseased brains as well as in response to neurodegeneration-associated stresses. However, aging and many neurodegeneration-associated proteins and mutations impair autophagy. This creates a potentially detrimental feedback loop whereby the accumulation of these disease-associated proteins impairs their autophagic clearance, facilitating their further accumulation and aggregation. Thus, understanding how autophagy interacts with aging, senescence, and neurodegenerative diseases in a temporal, cellular, and genetic context is important for the future clinical application of autophagy-modulating therapies in aging and neurodegeneration.
Collapse
Affiliation(s)
- Jennifer E Palmer
- Cambridge Institute for Medical Research, Department of Medical Genetics, University of Cambridge, Cambridge Biomedical Campus, The Keith Peters Building, Hills Road, Cambridge CB2 0XY, UK; UK Dementia Research Institute, University of Cambridge, Cambridge Biomedical Campus, The Keith Peters Building, Hills Road, Cambridge CB2 0XY, UK
| | - Niall Wilson
- Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne NE4 5PL, UK
| | - Sung Min Son
- Cambridge Institute for Medical Research, Department of Medical Genetics, University of Cambridge, Cambridge Biomedical Campus, The Keith Peters Building, Hills Road, Cambridge CB2 0XY, UK; UK Dementia Research Institute, University of Cambridge, Cambridge Biomedical Campus, The Keith Peters Building, Hills Road, Cambridge CB2 0XY, UK
| | - Pawel Obrocki
- Cambridge Institute for Medical Research, Department of Medical Genetics, University of Cambridge, Cambridge Biomedical Campus, The Keith Peters Building, Hills Road, Cambridge CB2 0XY, UK; UK Dementia Research Institute, University of Cambridge, Cambridge Biomedical Campus, The Keith Peters Building, Hills Road, Cambridge CB2 0XY, UK
| | - Lidia Wrobel
- Cambridge Institute for Medical Research, Department of Medical Genetics, University of Cambridge, Cambridge Biomedical Campus, The Keith Peters Building, Hills Road, Cambridge CB2 0XY, UK; UK Dementia Research Institute, University of Cambridge, Cambridge Biomedical Campus, The Keith Peters Building, Hills Road, Cambridge CB2 0XY, UK
| | - Matea Rob
- Cambridge Institute for Medical Research, Department of Medical Genetics, University of Cambridge, Cambridge Biomedical Campus, The Keith Peters Building, Hills Road, Cambridge CB2 0XY, UK; UK Dementia Research Institute, University of Cambridge, Cambridge Biomedical Campus, The Keith Peters Building, Hills Road, Cambridge CB2 0XY, UK
| | - Michael Takla
- Cambridge Institute for Medical Research, Department of Medical Genetics, University of Cambridge, Cambridge Biomedical Campus, The Keith Peters Building, Hills Road, Cambridge CB2 0XY, UK; UK Dementia Research Institute, University of Cambridge, Cambridge Biomedical Campus, The Keith Peters Building, Hills Road, Cambridge CB2 0XY, UK
| | - Viktor I Korolchuk
- Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne NE4 5PL, UK
| | - David C Rubinsztein
- Cambridge Institute for Medical Research, Department of Medical Genetics, University of Cambridge, Cambridge Biomedical Campus, The Keith Peters Building, Hills Road, Cambridge CB2 0XY, UK; UK Dementia Research Institute, University of Cambridge, Cambridge Biomedical Campus, The Keith Peters Building, Hills Road, Cambridge CB2 0XY, UK.
| |
Collapse
|
39
|
Teng WB, Deng HW, Lv BH, Zhou SD, Li BR, Hu RT. Exploring and validating key genetic biomarkers for diagnosis of Parkinson's disease. Brain Res Bull 2025; 220:111165. [PMID: 39667505 DOI: 10.1016/j.brainresbull.2024.111165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Revised: 12/02/2024] [Accepted: 12/06/2024] [Indexed: 12/14/2024]
Abstract
BACKGROUND Parkinson's disease (PD) is a neurological condition characterized by complex genetic basic, and the reliable diagnosis of PD remained limited. OBJECTIVE To identify genes crucial to PD and assess their potential as diagnostic markers. METHODS Differentially expressed genes (DEGs) were screened from the PD tissue dataset and blood dataset. Two machine learning methods were used to identify key PD-related genes. The genes were validated in an independent dataset. Further validation using 120 peripheral blood mononuclear cells (PBMCs) from PD patients. The clinical significance and the diagnostic value of the genes was determined. The function of genes was analyzed and verified by cells experiments. RESULTS Thirteen common upregulated genes were identified between PD tissue dataset and blood dataset. Two machine learning methods identify three key PD-related genes (GPX2, CR1, ZNF556). An independent dataset and PBMCs samples results showed increased expression in PD patients. Clinical analysis showed that GPX2 and CR1 expression correlated with early-stage PD. The validated dataset of blood samples revealed each three gene showed moderate diagnostic potential for PD, with combined analysis outperforming individual gene analysis (AUC:0.701). The PBMCs samples showed similar diagnostic value of each gene, and the combination of the three genes presented better diagnostic value (AUC:0.801). Functional studies highlighted the involvement of these genes in key pathways in PD pathology. The results of SH-SY5Y cells showed that these three genes increased from PD cell model. CONCLUSIONS GPX2, CR1, ZNF556 were critical to the development of PD and might serve as diagnostic markers for PD.
Collapse
Affiliation(s)
- Wen-Bin Teng
- Department of Neurology, Minzu Hospital of Guangxi Zhuang Autonomous Region, Nanning 530001, China
| | - Hao-Wei Deng
- Department of Neurology, the First Affiliated Hospital of Guangxi Medical University, Nanning 530021, China
| | - Bing-Hua Lv
- Department of Neurology, the First Affiliated Hospital of Guangxi Medical University, Nanning 530021, China
| | - Shao-Dan Zhou
- Department of Neurology, Minzu Hospital of Guangxi Zhuang Autonomous Region, Nanning 530001, China
| | - Bin-Ru Li
- Department of Neurology, Minzu Hospital of Guangxi Zhuang Autonomous Region, Nanning 530001, China.
| | - Rui-Ting Hu
- Department of Neurology, Minzu Hospital of Guangxi Zhuang Autonomous Region, Nanning 530001, China.
| |
Collapse
|
40
|
Duarte RRR, Nixon DF, Powell TR. Ancient viral DNA in the human genome linked to neurodegenerative diseases. Brain Behav Immun 2025; 123:765-770. [PMID: 39401554 PMCID: PMC11870845 DOI: 10.1016/j.bbi.2024.10.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 09/25/2024] [Accepted: 10/11/2024] [Indexed: 10/28/2024] Open
Abstract
BACKGROUND Human endogenous retroviruses (HERVs) are sequences in the human genome that originated from infections with ancient retroviruses during our evolution. Previous studies have linked HERVs to neurodegenerative diseases, but defining their role in aetiology has been challenging. Here, we used a retrotranscriptome-wide association study (rTWAS) approach to assess the relationships between genetic risk for neurodegenerative diseases and HERV expression in the brain, calculated with genomic precision. METHODS We analysed genetic association statistics pertaining to Alzheimer's disease, amyotrophic lateral sclerosis, multiple sclerosis, and Parkinson's disease, using HERV expression models calculated from 792 cortical samples. Robust risk factors were considered those that survived multiple testing correction in the primary analysis, which were also significant in conditional and joint analyses, and that had a posterior inclusion probability above 0.5 in fine-mapping analyses. RESULTS The primary analysis identified 12 HERV expression signatures associated with neurodegenerative disease susceptibility. We found one HERV expression signature robustly associated with amyotrophic lateral sclerosis on chromosome 12q14 (MER61_12q14.2) and one robustly associated with multiple sclerosis on chromosome 1p36 (ERVLE_1p36.32a). A co-expression analysis suggested that these HERVs are involved in homophilic cell adhesion via plasma membrane adhesion molecules. CONCLUSIONS We found HERV expression profiles robustly associated with amyotrophic lateral sclerosis and multiple sclerosis susceptibility, highlighting novel risk mechanisms underlying neurodegenerative disease, and offering potential new targets for therapeutic intervention.
Collapse
Affiliation(s)
- Rodrigo R R Duarte
- Social, Genetic & Developmental Psychiatry Centre, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, United Kingdom; Division of Infectious Diseases, Weill Cornell Medicine, Cornell University, New York, NY, the United States of America.
| | - Douglas F Nixon
- Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY, the United States of America
| | - Timothy R Powell
- Social, Genetic & Developmental Psychiatry Centre, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, United Kingdom; Division of Infectious Diseases, Weill Cornell Medicine, Cornell University, New York, NY, the United States of America.
| |
Collapse
|
41
|
Cocoș R, Popescu BO. Scrutinizing neurodegenerative diseases: decoding the complex genetic architectures through a multi-omics lens. Hum Genomics 2024; 18:141. [PMID: 39736681 DOI: 10.1186/s40246-024-00704-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2024] [Accepted: 12/10/2024] [Indexed: 01/01/2025] Open
Abstract
Neurodegenerative diseases present complex genetic architectures, reflecting a continuum from monogenic to oligogenic and polygenic models. Recent advances in multi-omics data, coupled with systems genetics, have significantly refined our understanding of how these data impact neurodegenerative disease mechanisms. To contextualize these genetic discoveries, we provide a comprehensive critical overview of genetic architecture concepts, from Mendelian inheritance to the latest insights from oligogenic and omnigenic models. We explore the roles of common and rare genetic variants, gene-gene and gene-environment interactions, and epigenetic influences in shaping disease phenotypes. Additionally, we emphasize the importance of multi-omics layers including genomic, transcriptomic, proteomic, epigenetic, and metabolomic data in elucidating the molecular mechanisms underlying neurodegeneration. Special attention is given to missing heritability and the contribution of rare variants, particularly in the context of pleiotropy and network pleiotropy. We examine the application of single-cell omics technologies, transcriptome-wide association studies, and epigenome-wide association studies as key approaches for dissecting disease mechanisms at tissue- and cell-type levels. Our review introduces the OmicPeak Disease Trajectory Model, a conceptual framework for understanding the genetic architecture of neurodegenerative disease progression, which integrates multi-omics data across biological layers and time points. This review highlights the critical importance of adopting a systems genetics approach to unravel the complex genetic architecture of neurodegenerative diseases. Finally, this emerging holistic understanding of multi-omics data and the exploration of the intricate genetic landscape aim to provide a foundation for establishing more refined genetic architectures of these diseases, enhancing diagnostic precision, predicting disease progression, elucidating pathogenic mechanisms, and refining therapeutic strategies for neurodegenerative conditions.
Collapse
Affiliation(s)
- Relu Cocoș
- Department of Medical Genetics, 'Carol Davila' University of Medicine and Pharmacy, Bucharest, Romania.
- Genomics Research and Development Institute, Bucharest, Romania.
| | - Bogdan Ovidiu Popescu
- Department of Clinical Neurosciences, 'Carol Davila' University of Medicine and Pharmacy, Bucharest, Romania.
| |
Collapse
|
42
|
Chaudhry F, Kim TW, Elemento O, Betel D. Machine learning analysis of population-wide plasma proteins identifies hormonal biomarkers of Parkinson's Disease. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.12.21.24313256. [PMID: 39763525 PMCID: PMC11703317 DOI: 10.1101/2024.12.21.24313256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/11/2025]
Abstract
As the number of Parkinson's patients is expected to increase with the growth of the aging population there is a growing need to identify new diagnostic markers that can be used cheaply and routinely to monitor the population, stratify patients towards treatment paths and provide new therapeutic leads. Genetic predisposition and familial forms account for only around 10% of PD cases [1] leaving a large fraction of the population with minimal effective markers for identifying high risk individuals. The establishment of population-wide omics and longitudinal health monitoring studies provides an opportunity to apply machine learning approaches on these unbiased cohorts to identify novel PD markers. Here we present the application of three machine learning models to identify protein plasma biomarkers of PD using plasma proteomics measurements from 43,408 UK Biobank subjects as the training and test set and an additional 103 samples from Parkinson's Progression Markers Initiative (PPMI) as external validation. We identified a group of highly predictive plasma protein markers including known markers such as DDC and CALB2 as well as new markers involved in the JAK-STAT, PI3K-AKT pathways and hormonal signaling. We further demonstrate that these features are well correlated with UPDRS severity scores and stratify these to protective and adversarial features that potentially contribute to the pathogenesis of PD.
Collapse
Affiliation(s)
- Fayzan Chaudhry
- Tri-Institutional PhD program in Computational Biology, New York, NY, USA
- Institute for Computational Biomedicine, Weill Cornell Medicine, New York, NY, USA
| | - Tae Wan Kim
- Department of Interdisciplinary Engineering, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu 42988, Republic of Korea Division of Hematology
| | - Olivier Elemento
- Institute for Computational Biomedicine, Weill Cornell Medicine, New York, NY, USA
- Caryl and Israel Englander Institute for Precision Medicine, Weill Cornell Medicine, New York, NY, USA
| | - Doron Betel
- Institute for Computational Biomedicine, Weill Cornell Medicine, New York, NY, USA
- Division of Hematology and Medical Oncology, Department of Medicine, Weill Cornell Medicine, New York, NY, USA
| |
Collapse
|
43
|
Shwab EK, Man Z, Gingerich DC, Gamache J, Garrett ME, Serrano GE, Beach TG, Crawford GE, Ashley-Koch AE, Chiba-Falek O. Comparative mapping of single-cell transcriptomic landscapes in neurodegenerative diseases. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.12.13.628436. [PMID: 39764045 PMCID: PMC11702568 DOI: 10.1101/2024.12.13.628436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/11/2025]
Abstract
INTRODUCTION Alzheimer's disease (AD), Dementia with Lewy bodies (DLB), and Parkinson's disease (PD) represent a spectrum of neurodegenerative disorders (NDDs). Here, we performed the first direct comparison of their transcriptomic landscapes. METHODS We profiled the whole transcriptomes of NDD cortical tissue by snRNA-seq. We used computational analyses to identify common and distinct differentially expressed genes (DEGs), biological pathways, vulnerable and disease-driver cell subtypes, and alteration in cell-to-cell interactions. RESULTS The same vulnerable inhibitory neuron subtype was depleted in both AD and DLB. Potentially disease-driving neuronal cell subtypes were present in both PD and DLB. Cell-cell communication was predicted to be increased in AD but decreased in DLB and PD. DEGs were most commonly shared across NDDs within inhibitory neuron subtypes. Overall, we observed the greatest transcriptomic divergence between AD and PD, while DLB exhibited an intermediate transcriptomic signature. DISCUSSION These results help explain the clinicopathological spectrum of this group of NDDs and provide unique insights into the shared and distinct molecular mechanisms underlying the pathogenesis of NDDs.
Collapse
Affiliation(s)
- E. Keats Shwab
- Division of Translational Brain Sciences, Department of Neurology, Duke University Medical Center, Durham, NC, 27710, USA
- Center for Genomic and Computational Biology, Duke University Medical Center, Durham, NC, 27708, USA
| | - Zhaohui Man
- Division of Translational Brain Sciences, Department of Neurology, Duke University Medical Center, Durham, NC, 27710, USA
- Center for Genomic and Computational Biology, Duke University Medical Center, Durham, NC, 27708, USA
| | - Daniel C. Gingerich
- Division of Translational Brain Sciences, Department of Neurology, Duke University Medical Center, Durham, NC, 27710, USA
- Center for Genomic and Computational Biology, Duke University Medical Center, Durham, NC, 27708, USA
| | - Julia Gamache
- Division of Translational Brain Sciences, Department of Neurology, Duke University Medical Center, Durham, NC, 27710, USA
- Center for Genomic and Computational Biology, Duke University Medical Center, Durham, NC, 27708, USA
| | - Melanie E. Garrett
- Duke Molecular Physiology Institute, Duke University Medical Center, Durham, NC, 27701, USA
| | - Geidy E. Serrano
- Banner Sun Health Research Institute, Sun City, Arizona, 85351, USA
| | - Thomas G. Beach
- Banner Sun Health Research Institute, Sun City, Arizona, 85351, USA
| | - Gregory E. Crawford
- Center for Genomic and Computational Biology, Duke University Medical Center, Durham, NC, 27708, USA
- Department of Pediatrics, Division of Medical Genetics, Duke University Medical Center, Durham, NC, 27708, USA
- Center for Advanced Genomic Technologies, Duke University Medical Center, Durham, NC, 27708, USA
| | - Allison E. Ashley-Koch
- Duke Molecular Physiology Institute, Duke University Medical Center, Durham, NC, 27701, USA
- Department of Medicine, Duke University Medical Center, Durham, NC, 27708, USA
| | - Ornit Chiba-Falek
- Division of Translational Brain Sciences, Department of Neurology, Duke University Medical Center, Durham, NC, 27710, USA
- Center for Genomic and Computational Biology, Duke University Medical Center, Durham, NC, 27708, USA
| |
Collapse
|
44
|
Lange LM, Cerquera-Cleves C, Schipper M, Panagiotaropoulou G, Braun A, Kraft J, Awasthi S, Bell N, Posthuma D, Ripke S, Blauwendraat C, Heilbron K. Prioritizing Parkinson's disease risk genes in genome-wide association loci. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.12.13.24318996. [PMID: 39711693 PMCID: PMC11661345 DOI: 10.1101/2024.12.13.24318996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2024]
Abstract
Recent advancements in Parkinson's disease (PD) drug development have been significantly driven by genetic research. Importantly, drugs supported by genetic evidence are more likely to be approved. While genome-wide association studies (GWAS) are a powerful tool to nominate genomic regions associated with certain traits or diseases, pinpointing the causal biologically relevant gene is often challenging. Our aim was to prioritize genes underlying PD GWAS signals. The polygenic priority score (PoPS) is a similarity-based gene prioritization method that integrates genome-wide information from MAGMA gene-level association tests and more than 57,000 gene-level features, including gene expression, biological pathways, and protein-protein interactions. We applied PoPS to data from the largest published PD GWAS in East Asian- and European-ancestries. We identified 120 independent associations with P < 5×10-8 and prioritized 46 PD genes across these loci based on their PoPS scores, distance to the GWAS signal, and presence of non-synonymous variants in the credible set. Alongside well-established PD genes (e.g., TMEM175 and VPS13C), some of which are targeted in ongoing clinical trials (i.e., SNCA, LRRK2, and GBA1), we prioritized genes with a plausible mechanistic link to PD pathogenesis (e.g., RIT2, BAG3, and SCARB2). Many of these genes hold potential for drug repurposing or novel therapeutic developments for PD (i.e., FYN, DYRK1A, NOD2, CTSB, SV2C, and ITPKB). Additionally, we prioritized potentially druggable genes that are relatively unexplored in PD (XPO1, PIK3CA, EP300, MAP4K4, CAMK2D, NCOR1, and WDR43). We prioritized a high-confidence list of genes with strong links to PD pathogenesis that may represent our next-best candidates for disease-modifying therapeutics. We hope our findings stimulate further investigations and preclinical work to facilitate PD drug development programs.
Collapse
Affiliation(s)
- Lara M. Lange
- Institute of Neurogenetics, University of Luebeck, Luebeck, Germany
- Laboratory of Neurogenetics, National Institute on Aging, Bethesda, Maryland, USA
| | - Catalina Cerquera-Cleves
- Neurology Unit, Department of Neurosciences, Hospital Universitario San Ignacio, Bogotá, Colombia
- CHU de Québec Research Center, Axe Neurosciences, Laval University, Quebec City, Quebec, Canada
| | | | - Georgia Panagiotaropoulou
- Department of Psychiatry and Psychotherapy, Charité – Universitätsmedizin Berlin, Berlin, Germany
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
- German Center for Mental Health (DZPG), partner site Berlin/Potsdam, Berlin, Germany
| | - Alice Braun
- Department of Psychiatry and Psychotherapy, Charité – Universitätsmedizin Berlin, Berlin, Germany
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
- German Center for Mental Health (DZPG), partner site Berlin/Potsdam, Berlin, Germany
| | - Julia Kraft
- Department of Psychiatry and Psychotherapy, Charité – Universitätsmedizin Berlin, Berlin, Germany
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
- German Center for Mental Health (DZPG), partner site Berlin/Potsdam, Berlin, Germany
| | - Swapnil Awasthi
- Department of Psychiatry and Psychotherapy, Charité – Universitätsmedizin Berlin, Berlin, Germany
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
- German Center for Mental Health (DZPG), partner site Berlin/Potsdam, Berlin, Germany
| | - Nathaniel Bell
- Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Danielle Posthuma
- Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
- Department of Child and Adolescent Psychiatry and Pediatric Psychology, Section Complex Trait Genetics, Amsterdam Neuroscience, Vrije Universiteit Medical Center, Amsterdam, The Netherlands
| | - Stephan Ripke
- Department of Psychiatry and Psychotherapy, Charité – Universitätsmedizin Berlin, Berlin, Germany
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
- German Center for Mental Health (DZPG), partner site Berlin/Potsdam, Berlin, Germany
| | - Cornelis Blauwendraat
- Laboratory of Neurogenetics, National Institute on Aging, Bethesda, Maryland, USA
- Center for Alzheimer’s and Related Dementias, National Institute on Aging and National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| | - Karl Heilbron
- Department of Psychiatry and Psychotherapy, Charité – Universitätsmedizin Berlin, Berlin, Germany
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
- German Center for Mental Health (DZPG), partner site Berlin/Potsdam, Berlin, Germany
- Current address: Bayer AG, Research & Development, Pharmaceuticals, Berlin, Germany
| |
Collapse
|
45
|
Dilliott AA, Costanzo MC, Bandres-Ciga S, Blauwendraat C, Casey B, Hoang Q, Iwaki H, Jang D, Kim JJ, Leonard HL, Levine KS, Makarious M, Nguyen TT, Rouleau GA, Singleton AB, Smadbeck P, Solle J, Vitale D, Nalls MA, Flannick J, Burtt NP, Farhan SM. The Neurodegenerative Disease Knowledge Portal: Propelling Discovery Through the Sharing of Neurodegenerative Disease Genomic Resources. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.05.27.24307990. [PMID: 38853922 PMCID: PMC11160810 DOI: 10.1101/2024.05.27.24307990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2024]
Abstract
Although large-scale genetic association studies have proven useful for the delineation of neurodegenerative disease processes, we still lack a full understanding of the pathological mechanisms of these diseases, resulting in few appropriate treatment options and diagnostic challenges. To mitigate these gaps, the Neurodegenerative Disease Knowledge Portal (NDKP) was created as an open-science initiative with the aim to aggregate, enable analysis, and display all available genomic datasets of neurodegenerative disease, while protecting the integrity and confidentiality of the underlying datasets. The portal contains 218 genomic datasets, including genotyping and sequencing studies, of individuals across ten different phenotypic groups, including neurological conditions such as Alzheimer's disease, amyotrophic lateral sclerosis, Lewy body dementia, and Parkinson's disease. In addition to securely hosting large genomic datasets, the NDKP provides accessible workflows and tools to effectively utilize the datasets and assist in the facilitation of customized genomic analyses. Here, we summarize the genomic datasets currently included within the portal, the bioinformatics processing of the datasets, and the variety of phenotypes captured. We also present example use-cases of the various user interfaces and integrated analytic tools to demonstrate their extensive utility in enabling the extraction of high-quality results at the source, for both genomics experts and those in other disciplines. Overall, the NDKP promotes open-science and collaboration, maximizing the potential for discovery from the large-scale datasets researchers and consortia are expending immense resources to produce and resulting in reproducible conclusions to improve diagnostic and therapeutic care for neurodegenerative disease patients.
Collapse
Affiliation(s)
- Allison A. Dilliott
- Department of Neurology and Neurosurgery, McGill University, Montreal, QC, Canada
- Montreal Neurological Institute-Hospital, McGill University, Montreal, QC, Canada
| | - Maria C. Costanzo
- Programs in Metabolism and Medical & Population Genetics, The Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Sara Bandres-Ciga
- Center for Alzheimer's and Related Dementias, NIH, Bethesda, MD USA
- Laboratory of Neurogenetics, NIH, Bethesda, MD, USA
| | - Cornelis Blauwendraat
- Center for Alzheimer's and Related Dementias, NIH, Bethesda, MD USA
- Laboratory of Neurogenetics, NIH, Bethesda, MD, USA
| | - Bradford Casey
- Michael J. Fox Foundation for Parkinson’s Research, NY, NY USA
| | - Quy Hoang
- Programs in Metabolism and Medical & Population Genetics, The Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Hirotaka Iwaki
- Center for Alzheimer's and Related Dementias, NIH, Bethesda, MD USA
- DataTecnica LLC, Washington, DC, USA
| | - Dongkeun Jang
- Programs in Metabolism and Medical & Population Genetics, The Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Jonggeol Jeffrey Kim
- Center for Alzheimer's and Related Dementias, NIH, Bethesda, MD USA
- Laboratory of Neurogenetics, NIH, Bethesda, MD, USA
| | - Hampton L. Leonard
- Center for Alzheimer's and Related Dementias, NIH, Bethesda, MD USA
- DataTecnica LLC, Washington, DC, USA
| | - Kristin S. Levine
- Center for Alzheimer's and Related Dementias, NIH, Bethesda, MD USA
- DataTecnica LLC, Washington, DC, USA
| | - Mary Makarious
- Center for Alzheimer's and Related Dementias, NIH, Bethesda, MD USA
- Laboratory of Neurogenetics, NIH, Bethesda, MD, USA
| | - Trang T. Nguyen
- Programs in Metabolism and Medical & Population Genetics, The Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Guy A. Rouleau
- Department of Neurology and Neurosurgery, McGill University, Montreal, QC, Canada
- Montreal Neurological Institute-Hospital, McGill University, Montreal, QC, Canada
- Department of Human Genetics, McGill University, Montreal, QC, Canada
| | - Andrew B. Singleton
- Center for Alzheimer's and Related Dementias, NIH, Bethesda, MD USA
- Laboratory of Neurogenetics, NIH, Bethesda, MD, USA
| | - Patrick Smadbeck
- Programs in Metabolism and Medical & Population Genetics, The Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - J Solle
- Michael J. Fox Foundation for Parkinson’s Research, NY, NY USA
| | - Dan Vitale
- Center for Alzheimer's and Related Dementias, NIH, Bethesda, MD USA
- DataTecnica LLC, Washington, DC, USA
| | - Mike A. Nalls
- Center for Alzheimer's and Related Dementias, NIH, Bethesda, MD USA
- Laboratory of Neurogenetics, NIH, Bethesda, MD, USA
- DataTecnica LLC, Washington, DC, USA
| | - Jason Flannick
- Programs in Metabolism and Medical & Population Genetics, The Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Pediatrics, Boston Children’s Hospital, Boston, MA, USA
- Department of Pediatrics, Harvard Medical School, Boston, MA, USA
| | - Noël P. Burtt
- Programs in Metabolism and Medical & Population Genetics, The Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Sali M.K. Farhan
- Department of Neurology and Neurosurgery, McGill University, Montreal, QC, Canada
- Montreal Neurological Institute-Hospital, McGill University, Montreal, QC, Canada
- Department of Human Genetics, McGill University, Montreal, QC, Canada
| |
Collapse
|
46
|
Rajan R, Holla VV, Kamble N, Yadav R, Pal PK. Genetic heterogeneity of early onset Parkinson disease: The dilemma of clinico-genetic correlation. Parkinsonism Relat Disord 2024; 129:107146. [PMID: 39313403 DOI: 10.1016/j.parkreldis.2024.107146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 09/05/2024] [Accepted: 09/08/2024] [Indexed: 09/25/2024]
Abstract
With advances in genetic testing increasing proportion of early onset Parkinson disease (EOPD) are being identified to have an underlying genetic aetiology. This is can be in the form of either highly penetrant genes associated with phenotypes with monogenic or mendelian inheritance patterns or those genes known as risk factor genes which confer an increased risk of PD in an individual. Both of them can modify the phenotypic manifestation in a patient with PD. This improved knowledge has helped in deciphering the intricate role of various cellular pathways in the pathophysiology of PD including both early and late and even sporadic PD. However, the phenotypic and genotypic heterogeneity is a major challenge. Different deleterious alterations in a same gene can result in a spectrum of presentation spanning from juvenile to late onset and typical to atypical parkinsonism manifestation. Similarly, a single phenotype can occur due to abnormality in two or more different genes. This conundrum poses a dilemma in the clinical approach and in understanding the clinico-genetic correlation. Understanding the clinico-genetic correlation carries even more importance especially when genetic testing is either not accessible or affordable or in many regions both. In this narrative review, we aim to discuss briefly the approach to various PARK gene related EOPD and describe in detail the clinico-genetic correlation of individual type of PARK gene related genetic EOPD with respect to their classical clinical presentation, pathophysiology, investigation findings and treatment response to medication and surgery.
Collapse
Affiliation(s)
- Roopa Rajan
- Department of Neurology, All India Institute of Medical Sciences, New Delhi, India
| | - Vikram V Holla
- Department of Neurology, National Institute of Mental Health and Neurosciences, Bengaluru, India
| | - Nitish Kamble
- Department of Neurology, National Institute of Mental Health and Neurosciences, Bengaluru, India
| | - Ravi Yadav
- Department of Neurology, National Institute of Mental Health and Neurosciences, Bengaluru, India
| | - Pramod Kumar Pal
- Department of Neurology, National Institute of Mental Health and Neurosciences, Bengaluru, India.
| |
Collapse
|
47
|
Gasser T. The global dimension of Parkinson's disease genetics. Lancet Neurol 2024; 23:1178-1179. [PMID: 39447589 DOI: 10.1016/s1474-4422(24)00435-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Accepted: 10/17/2024] [Indexed: 10/26/2024]
|
48
|
Fox AS, Shackman AJ. An Honest Reckoning With the Amygdala and Mental Illness. Am J Psychiatry 2024; 181:1059-1075. [PMID: 39616453 PMCID: PMC11611071 DOI: 10.1176/appi.ajp.20240941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2024]
Abstract
Anxiety disorders are a leading source of human misery, morbidity, and premature mortality. Existing treatments are far from curative for many, underscoring the need to clarify the underlying neural mechanisms. Although many brain regions contribute, the amygdala has received the most intense scientific attention. Over the past several decades, this scrutiny has yielded a detailed understanding of amygdala function, but it has failed to produce new clinical assays, biomarkers, or cures. Rising to this urgent public health challenge demands an honest reckoning with the functional-neuroanatomical complexity of the amygdala and a shift from theories anchored on "the amygdala" to models centered on specific amygdala nuclei and cell types. This review begins by examining evidence from studies of rodents, monkeys, and humans for the "canonical model," the idea that the amygdala plays a central role in fear- and anxiety-related states, traits, and disorders. Next, the authors selectively highlight work indicating that the canonical model, while true, is overly simplistic and fails to adequately capture the actual state of the evidentiary record, the breadth of amygdala-associated functions and illnesses, or the complexity of the amygdala's functional architecture. The authors describe the implications of these facts for basic and clinical neuroimaging research. The review concludes with some general recommendations for grappling with the complexity of the amygdala and accelerating efforts to understand and more effectively treat amygdala-related psychopathology.
Collapse
Affiliation(s)
- Andrew S. Fox
- Department of Psychology, University of California, Davis, CA 95616 USA
- California National Primate Research Center, University of California, Davis, CA 95616 USA
| | - Alexander J. Shackman
- Department of Psychology, University of Maryland, College Park, MD 20742 USA
- Department of Neuroscience and Cognitive Science Program, University of Maryland, College Park, MD 20742 USA
- Department of Maryland Neuroimaging Center, University of Maryland, College Park, MD 20742 USA
| |
Collapse
|
49
|
Wagen AZ, Reynolds RH, Foo JN, Fairbrother-Browne A, Gustavsson EK, Galgiano-Turin S, Wood NW, Blauwendraat C, Gandhi S, Ryten M. Ancestry-specific gene expression in peripheral monocytes mediates risk of neurodegenerative disease. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.11.20.624489. [PMID: 39803567 PMCID: PMC11722246 DOI: 10.1101/2024.11.20.624489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/23/2025]
Abstract
It is hypothesised that peripheral immune states responding to regional environmental triggers contribute to central neurodegeneration. Region-specific genetic selection pressures require this hypothesis to be assessed in an ancestry specific manner. Here we utilise genome-wide association studies and expression quantitative trait loci from African, East Asian and European ancestries to show that genes causing neurodegeneration are preferentially expressed in innate rather than adaptive immune cells, and that expression of these genes mediates the risk of neurodegenerative disease in monocytes in an ancestry-specific manner.
Collapse
Affiliation(s)
- Aaron Z Wagen
- Department of Genetics and Genomic Medicine, Great Ormond Street Institute of Child Health, University College London, London, UK
- The Francis Crick Institute, 1 Midland Road, London, UK
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, Queen Square, London, UK
- Center for Alzheimer's and Related Dementias, National Institute on Aging and National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD 20815, USA
| | - Regina H Reynolds
- Department of Genetics and Genomic Medicine, Great Ormond Street Institute of Child Health, University College London, London, UK
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD 20815, USA
| | - Jia Nee Foo
- Lee Kong Chian School of Medicine, Nanyang Technological University Singapore, 11 Mandalay Road, Singapore 308232, Singapore
| | - Aine Fairbrother-Browne
- Department of Genetics and Genomic Medicine, Great Ormond Street Institute of Child Health, University College London, London, UK
- The Francis Crick Institute, 1 Midland Road, London, UK
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, Queen Square, London, UK
- Center for Alzheimer's and Related Dementias, National Institute on Aging and National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD 20815, USA
- Lee Kong Chian School of Medicine, Nanyang Technological University Singapore, 11 Mandalay Road, Singapore 308232, Singapore
- Dementia Research Institute, Department of Clinical Neuroscience, Cambridge University, Cambridge UK
| | - Emil K Gustavsson
- Department of Genetics and Genomic Medicine, Great Ormond Street Institute of Child Health, University College London, London, UK
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD 20815, USA
| | - Sarah Galgiano-Turin
- Department of Genetics and Genomic Medicine, Great Ormond Street Institute of Child Health, University College London, London, UK
- The Francis Crick Institute, 1 Midland Road, London, UK
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, Queen Square, London, UK
- Center for Alzheimer's and Related Dementias, National Institute on Aging and National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD 20815, USA
- Lee Kong Chian School of Medicine, Nanyang Technological University Singapore, 11 Mandalay Road, Singapore 308232, Singapore
- Dementia Research Institute, Department of Clinical Neuroscience, Cambridge University, Cambridge UK
| | - Nicholas W Wood
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, Queen Square, London, UK
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD 20815, USA
| | - Cornelis Blauwendraat
- Center for Alzheimer's and Related Dementias, National Institute on Aging and National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| | - Sonia Gandhi
- Department of Genetics and Genomic Medicine, Great Ormond Street Institute of Child Health, University College London, London, UK
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, Queen Square, London, UK
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD 20815, USA
| | - Mina Ryten
- Department of Genetics and Genomic Medicine, Great Ormond Street Institute of Child Health, University College London, London, UK
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD 20815, USA
- Dementia Research Institute, Department of Clinical Neuroscience, Cambridge University, Cambridge UK
| |
Collapse
|
50
|
Lázaro-Figueroa A, Hernández-Medrano AJ, Ramírez-Pineda DB, Cadavid AN, Makarious MB, Foo JN, Alvarado CX, Bandres-Ciga S, Periñan MT. Is SH3GL2 p.G276V the Causal Functional Variant Underlying Parkinson's Disease Risk at this Locus? Mov Disord 2024; 39:2117-2119. [PMID: 39133574 PMCID: PMC11568960 DOI: 10.1002/mds.29719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 12/22/2023] [Accepted: 01/02/2024] [Indexed: 11/17/2024] Open
Affiliation(s)
- Alejandra Lázaro-Figueroa
- Laboratorio de Neurogenómica Cognitiva, Unidad de Investigación en Psicobiología y Neurociencias, Coordinación de Psicobiología y Neurociencias, Facultad de Psicología, Universidad Nacional Autónoma de México (UNAM), Mexico City, Mexico
| | - Ana Jimena Hernández-Medrano
- Laboratorio Clínico de Enfermedades Neurodegenerativas, Instituto Nacional de Neurología y Neurocirugía Manuel Velasco Suárez, Mexico City, Mexico
| | - Diana Berenice Ramírez-Pineda
- Laboratorio de Regulación Genómica y Bioinformática, del Laboratorio Internacional de Investigación sobre el Genoma Humano. Universidad Nacional Autónoma de México (UNAM) campus Juriquilla, Queretaro, Mexico
| | | | - Mary B Makarious
- Laboratory of Neurogenetics, National Institute on Aging, Bethesda, MD, USA
| | - Jia Nee Foo
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore
| | - Chelsea X Alvarado
- Center for Alzheimer’s and Related Dementias (CARD), National Institute on Aging and National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
- Data Tecnica International, Washington, DC, USA
| | - Sara Bandres-Ciga
- Center for Alzheimer’s and Related Dementias (CARD), National Institute on Aging and National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| | - Maria Teresa Periñan
- Unidad de Trastornos del Movimiento, Servicio de Neurología y Neurofisiología Clínica, Instituto de Biomedicina de Sevilla, Hospital Universitario Virgen del Rocío/Consejo Superior de Investigaciones Científicas (CSIC)/Universidad de Sevilla, Seville, Spain
- Centre for Preventive Neurology, Wolfson Institute of Population Health, Queen Mary University of London, London, United Kingdom
| | | |
Collapse
|