1
|
Luo T, Tang Y, Xie W, Ma Z, Gong J, Zhang Y, Yang T, Jia X, Zhou J, Hu Z, Han L, Wang Q, Song Z. Cerium-based nanoplatform for severe acute pancreatitis: Achieving enhanced anti-inflammatory effects through calcium homeostasis restoration and oxidative stress mitigation. Mater Today Bio 2025; 31:101489. [PMID: 39906206 PMCID: PMC11791244 DOI: 10.1016/j.mtbio.2025.101489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2024] [Revised: 01/08/2025] [Accepted: 01/11/2025] [Indexed: 02/06/2025] Open
Abstract
Severe acute pancreatitis (SAP), a life-threatening inflammatory disease of the pancreas, has a high mortality rate (∼40 %). Current therapeutic approaches, including antibiotics, trypsin inhibitors, fasting, rehydration, and even continuous renal replacement therapy, yield limited clinical management efficacy. Abnormally elevated calcium levels and reactive oxygen species (ROS) overproduction by damaged mitochondria are key factors in the inflammatory cascade in SAP. The combination of calcium chelators and cerium-based nanozymes loaded with catalase (MOF808@BA@CAT) was developed to bind intracellular calcium, eliminate excessive ROS, and ameliorate the resulting mitochondrial dysfunction, thereby achieving multiple anti-inflammatory effects on SAP. A single low dose of the nanoplatform (1.5 mg kg-1) significantly reduced pancreatic necrosis in SAP rats, effectively ameliorated oxidative stress in the pancreas, improved mitochondrial dysfunction, reduced the proportion of apoptotic cells, and blocked the systemic inflammatory amplification cascade, resulting in the alleviation of systemic inflammation. Moreover, the nanoplatform restored impaired autophagy and inhibited endoplasmic reticulum stress in pancreatic tissue, preserving injured acinar cells. Mechanistically, the administration of the nanoplatform reversed metabolic abnormalities in pancreatic tissue and inhibited the signaling pathways that promote inflammation progression in SAP. This nanoplatform provides a new strategy for SAP treatment, with clinical translation prospects, through ion homeostasis regulation and pancreatic oxidative stress inhibition.
Collapse
Affiliation(s)
- Tingyi Luo
- Department of Hepatobiliary and Pancreatic Surgery, Shanghai Fourth People's Hospital, School of Medicine, Tongji University, Shanghai, 200434, China
- Department of Hepatobiliary and Pancreatic Surgery, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, 200072, China
| | - Yujing Tang
- School of Chemical Science and Engineering, Tongji University, Shanghai, 200092, China
| | - Wangcheng Xie
- Department of Hepatobiliary and Pancreatic Surgery, Shanghai Fourth People's Hospital, School of Medicine, Tongji University, Shanghai, 200434, China
- Department of Hepatobiliary and Pancreatic Surgery, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, 200072, China
| | - Zhilong Ma
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, 200032, China
| | - Jian Gong
- Department of Hepatobiliary and Pancreatic Surgery, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, 200072, China
| | - Yonggui Zhang
- Department of Critical Care Medicine & Emergency, Shanghai Chest Hospital, Shanghai Jiaotong University, Shanghai, 200030, China
| | - Tingsong Yang
- Department of Hepatobiliary and Pancreatic Surgery, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, 200072, China
| | - Xuyang Jia
- Department of Hepatobiliary and Pancreatic Surgery, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, 200072, China
| | - Jia Zhou
- Department of General Surgery, Tongren Hospital, School of Medicine, Jiaotong University, Shanghai, 200335, China
| | - Zhengyu Hu
- Department of Gastrointestinal and Hernia Surgery, The First Affiliated Hospital of Anhui Medical University, Anhui, 230000, China
| | - Lin Han
- Central Laboratory, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, 200072, China
| | - Qigang Wang
- School of Chemical Science and Engineering, Tongji University, Shanghai, 200092, China
- Shanghai Key Laboratory of Anesthesiology and Brain Functional Modulation, Clinical Research Center for Anesthesiology and Perioperative Medicine, Translational Research Institute of Brain and Brain-Like Intelligence, Shanghai Fourth People's Hospital, School of Medicine, Tongji University, Shanghai, 200434, China
| | - Zhenshun Song
- Department of Hepatobiliary and Pancreatic Surgery, Shanghai Fourth People's Hospital, School of Medicine, Tongji University, Shanghai, 200434, China
| |
Collapse
|
2
|
Shen H, Cui Y, Liang S, Zhou S, Li Y, Wu Y, Song J. A High-Throughput Biosensing Approach for Rapid Screening of Compounds Targeting the hNav1.1 Channel: Marine Toxins as a Case Study. Mar Drugs 2025; 23:119. [PMID: 40137305 PMCID: PMC11943507 DOI: 10.3390/md23030119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2025] [Revised: 03/03/2025] [Accepted: 03/05/2025] [Indexed: 03/27/2025] Open
Abstract
Voltage-gated sodium (Nav) channels play a crucial role in initiating and propagating action potentials throughout the heart, muscles and nervous systems, making them targets for a number of drugs and toxins. While patch-clamp electrophysiology is considered the gold standard for measuring ion channel activity, its labor-intensive and time-consuming nature highlights the need for fast screening strategies to facilitate a preliminary selection of potential drugs or hazards. In this study, a high-throughput and cost-effective biosensing method was developed to rapidly identify specific agonists and inhibitors targeting the human Nav1.1 (hNav1.1) channel. It combines a red fluorescent dye sensitive to transmembrane potentials with CHO cells stably expressing the hNav1.1 α-subunit (hNav1.1-CHO). In the initial screening mode, the tested compounds were mixed with pre-equilibrated hNav1.1-CHO cells and dye to detect potential agonist effects via fluorescence enhancement. In cases where no fluorescence enhancement was observed, the addition of a known agonist veratridine allowed the indication of inhibitor candidates by fluorescence reduction, relative to the veratridine control without test compounds. Potential agonists or inhibitors identified in the initial screening were further evaluated by measuring concentration-response curves to determine EC50/IC50 values, providing semi-quantitative estimates of their binding strength to hNav1.1. This robust, high-throughput biosensing assay was validated through comparisons with the patch-clamp results and tested with 12 marine toxins, yielding consistent results. It holds promise as a low-cost, rapid, and long-term stable approach for drug discovery and non-target screening of neurotoxins.
Collapse
Affiliation(s)
- Huijing Shen
- School of Food and Health, Beijing Technology and Business University, Beijing 100048, China; (H.S.); (Y.W.)
- NHC Key Laboratory of Food Safety Risk Assessment, Food Safety Research Unit (2019RU014) of Chinese Academy of Medical Science, China National Center for Food Safety Risk Assessment, Beijing 100021, China; (S.L.); (S.Z.)
| | - Yuxia Cui
- Department of Cardiology, Center for Cardiovascular Translational Research, Beijing Key Laboratory of Early Prediction and Intervention of Acute Myocardial Infarction, Peking University People’s Hospital, Beijing 100044, China;
| | - Shiyuan Liang
- NHC Key Laboratory of Food Safety Risk Assessment, Food Safety Research Unit (2019RU014) of Chinese Academy of Medical Science, China National Center for Food Safety Risk Assessment, Beijing 100021, China; (S.L.); (S.Z.)
| | - Shuang Zhou
- NHC Key Laboratory of Food Safety Risk Assessment, Food Safety Research Unit (2019RU014) of Chinese Academy of Medical Science, China National Center for Food Safety Risk Assessment, Beijing 100021, China; (S.L.); (S.Z.)
| | - Yingji Li
- ICE Bioscience Inc., Beijing 100176, China;
| | - Yongning Wu
- School of Food and Health, Beijing Technology and Business University, Beijing 100048, China; (H.S.); (Y.W.)
- NHC Key Laboratory of Food Safety Risk Assessment, Food Safety Research Unit (2019RU014) of Chinese Academy of Medical Science, China National Center for Food Safety Risk Assessment, Beijing 100021, China; (S.L.); (S.Z.)
| | - Junxian Song
- Department of Cardiology, Center for Cardiovascular Translational Research, Beijing Key Laboratory of Early Prediction and Intervention of Acute Myocardial Infarction, Peking University People’s Hospital, Beijing 100044, China;
| |
Collapse
|
3
|
Takeuchi S, Imai S, Terai T, Campbell RE. A chemigenetic indicator based on a synthetic chelator and a green fluorescent protein for imaging of intracellular sodium ions. RSC Chem Biol 2025; 6:170-174. [PMID: 39678364 PMCID: PMC11638762 DOI: 10.1039/d4cb00256c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Accepted: 11/27/2024] [Indexed: 12/17/2024] Open
Abstract
A chemigenetic indicator with an affinity suitable for imaging of intracellular sodium ions (Na+) in mammalian cells was developed. The indicator, based on a chimera of green fluorescent protein (GFP) and HaloTag labeled with a synthetic crown ether chelator, was produced by a combination of rational design and directed evolution. In mammalian cells the indicator exhibited an approximately 100% increase in excitation ratio when the cells were treated with 20 mM Na+ and an ionophore.
Collapse
Affiliation(s)
- Shiori Takeuchi
- Department of Chemistry, Graduate School of Science, The University of Tokyo 7-3-1 Hongo Bunkyo-ku Tokyo 113-0033 Japan
| | - Shosei Imai
- Department of Chemistry, Graduate School of Science, The University of Tokyo 7-3-1 Hongo Bunkyo-ku Tokyo 113-0033 Japan
| | - Takuya Terai
- Department of Chemistry, Graduate School of Science, The University of Tokyo 7-3-1 Hongo Bunkyo-ku Tokyo 113-0033 Japan
| | - Robert E Campbell
- Department of Chemistry, Graduate School of Science, The University of Tokyo 7-3-1 Hongo Bunkyo-ku Tokyo 113-0033 Japan
- CERVO Brain Research Center and Department of Biochemistry, Microbiology, and Bioinformatics, Université Laval, Québec Québec G1V 0A6 Canada
| |
Collapse
|
4
|
Tsao KK, Imai S, Chang M, Hario S, Terai T, Campbell RE. The best of both worlds: Chemigenetic fluorescent sensors for biological imaging. Cell Chem Biol 2024; 31:1652-1664. [PMID: 39236713 PMCID: PMC11466441 DOI: 10.1016/j.chembiol.2024.08.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 07/23/2024] [Accepted: 08/05/2024] [Indexed: 09/07/2024]
Abstract
Synthetic-based fluorescent chemosensors and protein-based fluorescent biosensors are two well-established classes of tools for visualizing and monitoring biological processes in living tissues. Chemigenetic sensors, created using a combination of both synthetic parts and protein parts, are an emerging class of tools that aims to combine the strengths, and overcome the drawbacks, of traditional chemosensors and biosensors. This review will survey the landscape of strategies used for fluorescent chemigenetic sensor design. These strategies include: attachment of synthetic elements to proteins using in vitro protein conjugation; attachment of synthetic elements to proteins using autonomous protein labeling; and translational incorporation of unnatural amino acids.
Collapse
Affiliation(s)
- Kelvin K Tsao
- Department of Chemistry, Graduate School of Science, The University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan.
| | - Shosei Imai
- Department of Chemistry, Graduate School of Science, The University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Michael Chang
- Department of Chemistry, Graduate School of Science, The University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Saaya Hario
- Department of Chemistry, Graduate School of Science, The University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Takuya Terai
- Department of Chemistry, Graduate School of Science, The University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan.
| | - Robert E Campbell
- Department of Chemistry, Graduate School of Science, The University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan; CERVO, Brain Research Center and Department of Biochemistry, Microbiology, and Bioinformatics, Université Laval, Québec, QC G1J 2G3, Canada.
| |
Collapse
|
5
|
Minoshima M, Reja SI, Hashimoto R, Iijima K, Kikuchi K. Hybrid Small-Molecule/Protein Fluorescent Probes. Chem Rev 2024; 124:6198-6270. [PMID: 38717865 DOI: 10.1021/acs.chemrev.3c00549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/23/2024]
Abstract
Hybrid small-molecule/protein fluorescent probes are powerful tools for visualizing protein localization and function in living cells. These hybrid probes are constructed by diverse site-specific chemical protein labeling approaches through chemical reactions to exogenous peptide/small protein tags, enzymatic post-translational modifications, bioorthogonal reactions for genetically incorporated unnatural amino acids, and ligand-directed chemical reactions. The hybrid small-molecule/protein fluorescent probes are employed for imaging protein trafficking, conformational changes, and bioanalytes surrounding proteins. In addition, fluorescent hybrid probes facilitate visualization of protein dynamics at the single-molecule level and the defined structure with super-resolution imaging. In this review, we discuss development and the bioimaging applications of fluorescent probes based on small-molecule/protein hybrids.
Collapse
Affiliation(s)
- Masafumi Minoshima
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University, 2-1, Yamadaoka, Suita, Osaka 5650871, Japan
| | - Shahi Imam Reja
- Immunology Frontier Research Center, Osaka University, 2-1, Yamadaoka, Suita, Osaka 5650871, Japan
| | - Ryu Hashimoto
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University, 2-1, Yamadaoka, Suita, Osaka 5650871, Japan
| | - Kohei Iijima
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University, 2-1, Yamadaoka, Suita, Osaka 5650871, Japan
| | - Kazuya Kikuchi
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University, 2-1, Yamadaoka, Suita, Osaka 5650871, Japan
| |
Collapse
|
6
|
Zhao S, Xiong Y, Sunnapu R, Zhang Y, Tian X, Ai HW. Bioluminescence Imaging of Potassium Ion Using a Sensory Luciferin and an Engineered Luciferase. J Am Chem Soc 2024; 146:13406-13416. [PMID: 38698549 PMCID: PMC11100015 DOI: 10.1021/jacs.4c02473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 04/22/2024] [Accepted: 04/23/2024] [Indexed: 05/05/2024]
Abstract
Bioluminescent indicators are power tools for studying dynamic biological processes. In this study, we present the generation of novel bioluminescent indicators by modifying the luciferin molecule with an analyte-binding moiety. Specifically, we have successfully developed the first bioluminescent indicator for potassium ions (K+), which are critical electrolytes in biological systems. Our approach involved the design and synthesis of a K+-binding luciferin named potassiorin. Additionally, we engineered a luciferase enzyme called BRIPO (bioluminescent red indicator for potassium) to work synergistically with potassiorin, resulting in optimized K+-dependent bioluminescence responses. Through extensive validation in cell lines, primary neurons, and live mice, we demonstrated the efficacy of this new tool for detecting K+. Our research demonstrates an innovative concept of incorporating sensory moieties into luciferins to modulate luciferase activity. This approach has great potential for developing a wide range of bioluminescent indicators, advancing bioluminescence imaging (BLI), and enabling the study of various analytes in biological systems.
Collapse
Affiliation(s)
- Shengyu Zhao
- Department
of Molecular Physiology and Biological Physics, University of Virginia School of Medicine, Charlottesville, Virginia 22908, United States
- Center
for Membrane and Cell Physiology, University
of Virginia School of Medicine, Charlottesville, Virginia 22908, United States
- Department
of Chemistry, University of Virginia, Charlottesville, Virginia 22904, United States
| | - Ying Xiong
- Department
of Molecular Physiology and Biological Physics, University of Virginia School of Medicine, Charlottesville, Virginia 22908, United States
- Center
for Membrane and Cell Physiology, University
of Virginia School of Medicine, Charlottesville, Virginia 22908, United States
| | - Ranganayakulu Sunnapu
- Department
of Molecular Physiology and Biological Physics, University of Virginia School of Medicine, Charlottesville, Virginia 22908, United States
- Center
for Membrane and Cell Physiology, University
of Virginia School of Medicine, Charlottesville, Virginia 22908, United States
| | - Yiyu Zhang
- Department
of Molecular Physiology and Biological Physics, University of Virginia School of Medicine, Charlottesville, Virginia 22908, United States
- Center
for Membrane and Cell Physiology, University
of Virginia School of Medicine, Charlottesville, Virginia 22908, United States
| | - Xiaodong Tian
- Department
of Molecular Physiology and Biological Physics, University of Virginia School of Medicine, Charlottesville, Virginia 22908, United States
- Center
for Membrane and Cell Physiology, University
of Virginia School of Medicine, Charlottesville, Virginia 22908, United States
| | - Hui-wang Ai
- Department
of Molecular Physiology and Biological Physics, University of Virginia School of Medicine, Charlottesville, Virginia 22908, United States
- Center
for Membrane and Cell Physiology, University
of Virginia School of Medicine, Charlottesville, Virginia 22908, United States
- Department
of Chemistry, University of Virginia, Charlottesville, Virginia 22904, United States
- The
UVA Comprehensive Cancer Center, University
of Virginia, Charlottesville, Virginia 22908, United States
| |
Collapse
|
7
|
Wang Y, Wang X, Zhang X, Zhang B, Meng X, Qian D, Xu Y, Yu L, Yan X, He Z. Inflammation and Acinar Cell Dual-Targeting Nanomedicines for Synergistic Treatment of Acute Pancreatitis via Ca 2+ Homeostasis Regulation and Pancreas Autodigestion Inhibition. ACS NANO 2024; 18:11778-11803. [PMID: 38652869 DOI: 10.1021/acsnano.4c00218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/25/2024]
Abstract
Severe acute pancreatitis (AP) is a life-threatening pancreatic inflammatory disease with a high mortality rate (∼40%). Existing pharmaceutical therapies in development or in clinical trials showed insufficient treatment efficacy due to their single molecular therapeutic target, poor water solubility, short half-life, limited pancreas-targeting specificity, etc. Herein, acid-responsive hollow mesoporous Prussian blue nanoparticles wrapped with neutrophil membranes and surface modified with the N,N-dimethyl-1,3-propanediamine moiety were developed for codelivering membrane-permeable calcium chelator BAPTA-AM (BA) and trypsin activity inhibitor gabexate mesylate (Ga). In the AP mouse model, the formulation exhibited efficient recruitment at the inflammatory endothelium, trans-endothelial migration, and precise acinar cell targeting, resulting in rapid pancreatic localization and higher accumulation. A single low dose of the formulation (BA: 200 μg kg-1, Ga: 0.75 mg kg-1) significantly reduced pancreas function indicators to close to normal levels at 24 h, effectively restored the cell redox status, reduced apoptotic cell proportion, and blocked the systemic inflammatory amplified cascade, resulting in a dramatic increase in the survival rate from 58.3 to even 100%. Mechanistically, the formulation inhibited endoplasmic reticulum stress (IRE1/XBP1 and ATF4/CHOP axis) and restored impaired autophagy (Beclin-1/p62/LC3 axis), thereby preserving dying acinar cells and restoring the cellular "health status". This formulation provides an upstream therapeutic strategy with clinical translation prospects for AP management through synergistic ion homeostasis regulation and pancreatic autodigestion inhibition.
Collapse
Affiliation(s)
- Yanan Wang
- Frontiers Science Center for Deep Ocean Multispheres and Earth Systems, Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education/Sanya Oceanographic Institution, Ocean University of China, Qingdao/Sanya 266003/572024, China
- College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao 266003, China
| | - Xinyuan Wang
- Frontiers Science Center for Deep Ocean Multispheres and Earth Systems, Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education/Sanya Oceanographic Institution, Ocean University of China, Qingdao/Sanya 266003/572024, China
- College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao 266003, China
| | - Xue Zhang
- Frontiers Science Center for Deep Ocean Multispheres and Earth Systems, Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education/Sanya Oceanographic Institution, Ocean University of China, Qingdao/Sanya 266003/572024, China
- College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao 266003, China
| | - Baomei Zhang
- Frontiers Science Center for Deep Ocean Multispheres and Earth Systems, Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education/Sanya Oceanographic Institution, Ocean University of China, Qingdao/Sanya 266003/572024, China
- College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao 266003, China
| | - Xinlei Meng
- Frontiers Science Center for Deep Ocean Multispheres and Earth Systems, Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education/Sanya Oceanographic Institution, Ocean University of China, Qingdao/Sanya 266003/572024, China
- College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao 266003, China
| | - Deyao Qian
- Frontiers Science Center for Deep Ocean Multispheres and Earth Systems, Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education/Sanya Oceanographic Institution, Ocean University of China, Qingdao/Sanya 266003/572024, China
- College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao 266003, China
| | - Yatao Xu
- Frontiers Science Center for Deep Ocean Multispheres and Earth Systems, Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education/Sanya Oceanographic Institution, Ocean University of China, Qingdao/Sanya 266003/572024, China
- College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao 266003, China
| | - Liangmin Yu
- Frontiers Science Center for Deep Ocean Multispheres and Earth Systems, Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education/Sanya Oceanographic Institution, Ocean University of China, Qingdao/Sanya 266003/572024, China
- College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao 266003, China
| | - Xuefeng Yan
- Frontiers Science Center for Deep Ocean Multispheres and Earth Systems, Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education/Sanya Oceanographic Institution, Ocean University of China, Qingdao/Sanya 266003/572024, China
- College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao 266003, China
| | - Zhiyu He
- Frontiers Science Center for Deep Ocean Multispheres and Earth Systems, Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education/Sanya Oceanographic Institution, Ocean University of China, Qingdao/Sanya 266003/572024, China
- College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao 266003, China
| |
Collapse
|
8
|
Jensen GC, Janis MK, Nguyen HN, David OW, Zastrow ML. Fluorescent Protein-Based Sensors for Detecting Essential Metal Ions across the Tree of Life. ACS Sens 2024; 9:1622-1643. [PMID: 38587931 PMCID: PMC11073808 DOI: 10.1021/acssensors.3c02695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/10/2024]
Abstract
Genetically encoded fluorescent metal ion sensors are powerful tools for elucidating metal dynamics in living systems. Over the last 25 years since the first examples of genetically encoded fluorescent protein-based calcium indicators, this toolbox of probes has expanded to include other essential and non-essential metal ions. Collectively, these tools have illuminated fundamental aspects of metal homeostasis and trafficking that are crucial to fields ranging from neurobiology to human nutrition. Despite these advances, much of the application of metal ion sensors remains limited to mammalian cells and tissues and a limited number of essential metals. Applications beyond mammalian systems and in vivo applications in living organisms have primarily used genetically encoded calcium ion sensors. The aim of this Perspective is to provide, with the support of historical and recent literature, an updated and critical view of the design and use of fluorescent protein-based sensors for detecting essential metal ions in various organisms. We highlight the historical progress and achievements with calcium sensors and discuss more recent advances and opportunities for the detection of other essential metal ions. We also discuss outstanding challenges in the field and directions for future studies, including detecting a wider variety of metal ions, developing and implementing a broader spectral range of sensors for multiplexing experiments, and applying sensors to a wider range of single- and multi-species biological systems.
Collapse
Affiliation(s)
- Gary C Jensen
- Department of Chemistry, University of Houston, Houston, Texas 77204, United States
| | - Makena K Janis
- Department of Chemistry, University of Houston, Houston, Texas 77204, United States
| | - Hazel N Nguyen
- Department of Chemistry, University of Houston, Houston, Texas 77204, United States
| | - Ogonna W David
- Department of Chemistry, University of Houston, Houston, Texas 77204, United States
| | - Melissa L Zastrow
- Department of Chemistry, University of Houston, Houston, Texas 77204, United States
| |
Collapse
|
9
|
Zhao S, Xiong Y, Sunnapu R, Zhang Y, Tian X, Ai HW. Bioluminescence Imaging of Potassium Ion Using a Sensory Luciferin and an Engineered Luciferase. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.13.581057. [PMID: 38559024 PMCID: PMC10980066 DOI: 10.1101/2024.03.13.581057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
Bioluminescent indicators are power tools for studying dynamic biological processes. In this study, we present the generation of novel bioluminescent indicators by modifying the luciferin molecule with an analyte-binding moiety. Specifically, we have successfully developed the first bioluminescent indicator for potassium ions (K+), which are critical electrolytes in biological systems. Our approach involved the design and synthesis of a K+-binding luciferin named potassiorin. Additionally, we engineered a luciferase enzyme called BRIPO (bioluminescent red indicator for potassium) to work synergistically with potassiorin, resulting in optimized K+-dependent bioluminescence responses. Through extensive validation in cell lines, primary neurons, and live mice, we demonstrated the efficacy of this new tool for detecting K+. Our research demonstrates an innovative concept of incorporating sensory moieties into luciferins to modulate luciferase activity. This approach has great potential for developing a wide range of bioluminescent indicators, advancing bioluminescence imaging (BLI), and enabling the study of various analytes in biological systems.
Collapse
Affiliation(s)
- Shengyu Zhao
- Department of Molecular Physiology and Biological Physics, University of Virginia School of Medicine, Charlottesville, Virginia 22908, USA
- Center for Membrane and Cell Physiology, University of Virginia School of Medicine, Charlottesville, Virginia 22908, USA
- Department of Chemistry, University of Virginia, Charlottesville, Virginia 22904, USA
| | - Ying Xiong
- Department of Molecular Physiology and Biological Physics, University of Virginia School of Medicine, Charlottesville, Virginia 22908, USA
- Center for Membrane and Cell Physiology, University of Virginia School of Medicine, Charlottesville, Virginia 22908, USA
| | - Ranganayakulu Sunnapu
- Department of Molecular Physiology and Biological Physics, University of Virginia School of Medicine, Charlottesville, Virginia 22908, USA
- Center for Membrane and Cell Physiology, University of Virginia School of Medicine, Charlottesville, Virginia 22908, USA
| | - Yiyu Zhang
- Department of Molecular Physiology and Biological Physics, University of Virginia School of Medicine, Charlottesville, Virginia 22908, USA
- Center for Membrane and Cell Physiology, University of Virginia School of Medicine, Charlottesville, Virginia 22908, USA
| | - Xiaodong Tian
- Department of Molecular Physiology and Biological Physics, University of Virginia School of Medicine, Charlottesville, Virginia 22908, USA
- Center for Membrane and Cell Physiology, University of Virginia School of Medicine, Charlottesville, Virginia 22908, USA
| | - Hui-Wang Ai
- Department of Molecular Physiology and Biological Physics, University of Virginia School of Medicine, Charlottesville, Virginia 22908, USA
- Center for Membrane and Cell Physiology, University of Virginia School of Medicine, Charlottesville, Virginia 22908, USA
- Department of Chemistry, University of Virginia, Charlottesville, Virginia 22904, USA
- The UVA Comprehensive Cancer Center, University of Virginia, Charlottesville, Virginia 22908, USA
| |
Collapse
|
10
|
Chai F, Cheng D, Nasu Y, Terai T, Campbell RE. Maximizing the performance of protein-based fluorescent biosensors. Biochem Soc Trans 2023; 51:1585-1595. [PMID: 37431791 PMCID: PMC10586770 DOI: 10.1042/bst20221413] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Revised: 06/22/2023] [Accepted: 06/26/2023] [Indexed: 07/12/2023]
Abstract
Fluorescent protein (FP)-based biosensors are genetically encoded tools that enable the imaging of biological processes in the context of cells, tissues, or live animals. Though widely used in biological research, practically all existing biosensors are far from ideal in terms of their performance, properties, and applicability for multiplexed imaging. These limitations have inspired researchers to explore an increasing number of innovative and creative ways to improve and maximize biosensor performance. Such strategies include new molecular biology methods to develop promising biosensor prototypes, high throughput microfluidics-based directed evolution screening strategies, and improved ways to perform multiplexed imaging. Yet another approach is to effectively replace components of biosensors with self-labeling proteins, such as HaloTag, that enable the biocompatible incorporation of synthetic fluorophores or other ligands in cells or tissues. This mini-review will summarize and highlight recent innovations and strategies for enhancing the performance of FP-based biosensors for multiplexed imaging to advance the frontiers of research.
Collapse
Affiliation(s)
- Fu Chai
- Department of Chemistry, Graduate School of Science, The University of Tokyo, Tokyo 113-0033, Japan
| | - Dazhou Cheng
- Department of Chemistry, Graduate School of Science, The University of Tokyo, Tokyo 113-0033, Japan
| | - Yusuke Nasu
- Department of Chemistry, Graduate School of Science, The University of Tokyo, Tokyo 113-0033, Japan
- PRESTO, Japan Science and Technology Agency, Chiyoda-ku, Tokyo 102-0075, Japan
| | - Takuya Terai
- Department of Chemistry, Graduate School of Science, The University of Tokyo, Tokyo 113-0033, Japan
| | - Robert E. Campbell
- Department of Chemistry, Graduate School of Science, The University of Tokyo, Tokyo 113-0033, Japan
- Department of Chemistry, University of Alberta, Edmonton, Alberta T6G 2G2, Canada
| |
Collapse
|
11
|
Subach OM, Varfolomeeva L, Vlaskina AV, Agapova YK, Nikolaeva AY, Piatkevich KD, Patrushev MV, Boyko KM, Subach FV. FNCaMP, ratiometric green calcium indicator based on mNeonGreen protein. Biochem Biophys Res Commun 2023; 665:169-177. [PMID: 37163937 DOI: 10.1016/j.bbrc.2023.04.108] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 04/28/2023] [Accepted: 04/28/2023] [Indexed: 05/12/2023]
Abstract
Neurobiologists widely use green genetically encoded calcium indicators (GECIs) for visualization of neuronal activity. Among them, ratiometric GECIs allow imaging of both active and non-active neuronal populations. However, they are not popular, since their properties are inferior to intensiometric GCaMP series of GECIs. The most characterized and developed ratiometric green GECI is FGCaMP7. However, the dynamic range and sensitivity of its large Stock's shift green (LSS-Green) form is significantly lower than its Green form and its molecular design is not optimal. To address these drawbacks, we engineered a ratiometric green calcium indicator, called FNCaMP, which is based on bright mNeonGreen protein and calmodulin from A. niger and has optimal NTnC-like design. We compared the properties of the FNCaMP and FGCaMP7 indicators in vitro, in mammalian cells, and in neuronal cultures. Finally, we obtained and analyzed X-ray structure of the FNCaMP indicator.
Collapse
Affiliation(s)
- Oksana M Subach
- Complex of NBICS Technologies, National Research Center "Kurchatov Institute", Moscow, 123182, Russia.
| | - Larisa Varfolomeeva
- Bach Institute of Biochemistry, Research Centre of Biotechnology of the Russian Academy of Sciences, Moscow, 119071, Russia.
| | - Anna V Vlaskina
- Complex of NBICS Technologies, National Research Center "Kurchatov Institute", Moscow, 123182, Russia.
| | - Yulia K Agapova
- Complex of NBICS Technologies, National Research Center "Kurchatov Institute", Moscow, 123182, Russia.
| | - Alena Y Nikolaeva
- Complex of NBICS Technologies, National Research Center "Kurchatov Institute", Moscow, 123182, Russia; Bach Institute of Biochemistry, Research Centre of Biotechnology of the Russian Academy of Sciences, Moscow, 119071, Russia.
| | - Kiryl D Piatkevich
- School of Life Sciences, Westlake University, Hangzhou, 310024, China; Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, 310024, China; Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou, 310024, China.
| | - Maxim V Patrushev
- Complex of NBICS Technologies, National Research Center "Kurchatov Institute", Moscow, 123182, Russia.
| | - Konstantin M Boyko
- Bach Institute of Biochemistry, Research Centre of Biotechnology of the Russian Academy of Sciences, Moscow, 119071, Russia.
| | - Fedor V Subach
- Complex of NBICS Technologies, National Research Center "Kurchatov Institute", Moscow, 123182, Russia.
| |
Collapse
|
12
|
Shi Y, Zhang W, Xue Y, Zhang J. Fluorescent Sensors for Detecting and Imaging Metal Ions in Biological Systems: Recent Advances and Future Perspectives. CHEMOSENSORS 2023; 11:226. [DOI: 10.3390/chemosensors11040226] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
Abstract
Metal ions play a crucial role in many biochemical processes, and when in a state of scarcity or surplus, they can lead to various diseases. Therefore, the development of a selective, sensitive, cost-effective, and fast-responding sensor to detect metal ions is critical for in vitro medical diagnostics. In recent years, fluorescent sensors have been extensively investigated as potent kits for the effective assessment of metal ions in living systems due to their high sensitivity, selectivity, ability to perform real-time, non-invasive monitoring, and versatility. This review is an overview of recent advances in fluorescent sensors for the detection and imaging of metal ions in biosystems from 2018 to date. Specifically, we discuss their application in detecting essential metal ions and non-essential metal ions for in vitro diagnostics, living cell imaging, and in vivo imaging. Finally, we summarize remaining challenges and offer a future outlook on the above topics.
Collapse
Affiliation(s)
- Yang Shi
- Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Wenxian Zhang
- Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Yi Xue
- Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Jingjing Zhang
- Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
- Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University, Nanjing 210023, China
| |
Collapse
|