1
|
Yao Y, Wang J, Lu F, Li W, Mei B, Zhang L, Yan W, Yuan F, Jiang G, Senanayake SD, Wang X. Suppressing CO x in oxidative dehydrogenation of propane with dual-atom catalysts. Nat Commun 2025; 16:4639. [PMID: 40389398 PMCID: PMC12089319 DOI: 10.1038/s41467-025-59376-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Accepted: 04/16/2025] [Indexed: 05/21/2025] Open
Abstract
Oxidative dehydrogenation of propane (ODHP) is a promising route for propylene production, but achieving high selectivity towards propylene while minimizing COx byproducts remains a significant challenge for conventional metal oxide catalysts. Here we propose a solution to this challenge by employing atomically dispersed dual-atom catalysts (M1M'1-TiO2 DACs). Ni1Fe1-TiO2 DACs exhibit an ultralow COx selectivity of 5.2% at a high propane conversion of 46.1% and 520 °C, with stable performance for over 1000 hours. Mechanistic investigations reveal that these catalysts operate via a cooperative Langmuir-Hinshelwood mechanism, distinct from the Mars-van Krevelen mechanism typical of metal oxides. This cooperative pathway facilitates efficient conversion of propane and oxygen into propylene at the dual-atom interface. The superior selectivity arises from facile olefin desorption from the dual-atom sites and suppressed formation of electrophilic oxygen species, which are preferentially adsorbed on Fe1 sites rather than oxygen vacancies. This work highlights the potential of dual-atom catalysts for highly selective ODHP and provides insights into their unique catalytic mechanism.
Collapse
Affiliation(s)
- Yongbin Yao
- Key Laboratory of Luminescence and Optical Information, Ministry of Education, School of Physical Science and Engineering, Beijing Jiaotong University, Beijing, 100044, P. R. China
- Chemistry and Chemical Engineering Guangdong Laboratory, Shantou, 515031, P. R. China
| | - Jingnan Wang
- Institute of Molecular Engineering Plus, College of Chemistry, Fuzhou University, Fuzhou, 350108, P. R. China
| | - Fei Lu
- College of Physical Science and Technology, Yangzhou University, Yangzhou, 225002, P. R. China
| | - Wenlin Li
- College of Chemistry and Chemical Engineering, State Key Laboratory of Clean and Efficient Coal Utilization, Taiyuan University of Technology, Taiyuan, 030024, P. R. China
| | - Bingbao Mei
- Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai, 201204, P. R. China
| | - Lifeng Zhang
- Institute of Molecular Engineering Plus, College of Chemistry, Fuzhou University, Fuzhou, 350108, P. R. China
| | - Wensheng Yan
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
| | - Fangli Yuan
- State Key Laboratory of Mesoscience and Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Guiyuan Jiang
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum, Beijing, 102249, P. R. China
| | | | - Xi Wang
- Key Laboratory of Luminescence and Optical Information, Ministry of Education, School of Physical Science and Engineering, Beijing Jiaotong University, Beijing, 100044, P. R. China.
- Chemistry and Chemical Engineering Guangdong Laboratory, Shantou, 515031, P. R. China.
| |
Collapse
|
2
|
Karafoulidi-Retsou C, Katz S, Frielingsdorf S, Lenz O, Zebger I, Caserta G. A strong H-bond between a cysteine and the catalytic center of a [NiFe]-hydrogenase. Chem Commun (Camb) 2025; 61:5778-5781. [PMID: 40125578 DOI: 10.1039/d5cc00646e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/25/2025]
Abstract
Infrared spectroscopy at cryogenic temperatures was used to monitor protonation changes on an H+-accepting, nickel-coordinating active site cysteine of the H2/H+-cycling membrane-bound [NiFe]-hydrogenase from Cupriavidus necator. Surprisingly, we identified another cysteine in the outer coordination sphere forming a strong H-bond with a cysteine thiolate coordinating both nickel and iron of the catalytic center.
Collapse
Affiliation(s)
- Chara Karafoulidi-Retsou
- Institut für Chemie, Technische Universität Berlin, Straße des 17. Juni 135, 10623 Berlin, Germany.
| | - Sagie Katz
- Institut für Chemie, Technische Universität Berlin, Straße des 17. Juni 135, 10623 Berlin, Germany.
| | - Stefan Frielingsdorf
- Institut für Chemie, Technische Universität Berlin, Straße des 17. Juni 135, 10623 Berlin, Germany.
| | - Oliver Lenz
- Institut für Chemie, Technische Universität Berlin, Straße des 17. Juni 135, 10623 Berlin, Germany.
| | - Ingo Zebger
- Institut für Chemie, Technische Universität Berlin, Straße des 17. Juni 135, 10623 Berlin, Germany.
| | - Giorgio Caserta
- Institut für Chemie, Technische Universität Berlin, Straße des 17. Juni 135, 10623 Berlin, Germany.
| |
Collapse
|
3
|
Asundi AS, Bienenmann RLM, Broere DLJ, Sarangi R. X-ray Spectroscopy Characterization of Electronic Structure and Metal-Metal Bonding in Dicobalt Complexes. Inorg Chem 2025; 64:6378-6388. [PMID: 40106778 DOI: 10.1021/acs.inorgchem.5c00508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/22/2025]
Abstract
Developing multimetallic complexes with tunable metal-metal interactions has long been a target of synthetic inorganic chemistry efforts due to the unique properties that such compounds can exhibit. However, understanding relationships between metal-metal bonding and chemical properties is challenging due to system-dependent factors that influence metal-metal and metal-ligand interactions, including ligand identity, coordination geometry, and metal-metal distance. In this work, we apply X-ray absorption and emission spectroscopy and quantum chemical calculations to describe electronic structure and bonding in a series of dicobalt complexes. The compounds with silane ligands and pseudo-octahedral coordination geometry exhibit Co-Co σ and multicentered bonding character, which we characterize from both the occupied and vacant perspectives via their contributions to the Co X-ray emission and absorption spectra, respectively. In contrast, the dicobalt complexes with a pseudotetrahedral coordination environment do not exhibit Co-Co bonding due to symmetry constraints on orbital overlap. We extend these insights to the theoretical evaluation of related dicobalt complexes to explain how ligand coordination and symmetry dictate the presence or absence of a Co-Co bond. This work highlights how fundamental insights into electronic structure and bonding through X-ray spectroscopy uncover important factors governing metal-metal interactions and guide the rational design of multimetallic complexes with tunable metal-metal bonds.
Collapse
Affiliation(s)
- Arun S Asundi
- Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, Menlo Park, California 94025, United States
| | - Roel L M Bienenmann
- Organic Chemistry and Catalysis, Institute for Sustainable and Circular Chemistry, Faculty of Science, Utrecht University, Universiteitsweg 99, Utrecht 3584 CG, The Netherlands
| | - Daniël L J Broere
- Organic Chemistry and Catalysis, Institute for Sustainable and Circular Chemistry, Faculty of Science, Utrecht University, Universiteitsweg 99, Utrecht 3584 CG, The Netherlands
| | - Ritimukta Sarangi
- Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, Menlo Park, California 94025, United States
| |
Collapse
|
4
|
Kwiatkowski A, Caserta G, Schulz AC, Frielingsdorf S, Pelmenschikov V, Weisser K, Belsom A, Rappsilber J, Sergueev I, Limberg C, Mroginski MA, Zebger I, Lenz O. ATP-Triggered Fe(CN) 2CO Synthon Transfer from the Maturase HypCD to the Active Site of Apo-[NiFe]-Hydrogenase. J Am Chem Soc 2024; 146:30976-30989. [PMID: 39491524 PMCID: PMC11565642 DOI: 10.1021/jacs.4c09791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 10/19/2024] [Accepted: 10/21/2024] [Indexed: 11/05/2024]
Abstract
[NiFe]-hydrogenases catalyze the reversible activation of H2 using a unique NiFe(CN)2CO metal site, which is assembled by a sophisticated multiprotein machinery. The [4Fe-4S] cluster-containing HypCD complex, which possesses an ATPase activity with a hitherto unknown function, serves as the hub for the assembly of the Fe(CN)2CO subfragment. HypCD is also thought to be responsible for the subsequent transfer of the iron fragment to the apo-form of the catalytic hydrogenase subunit, but the underlying mechanism has remained unexplored. Here, we performed a thorough spectroscopic characterization of different HypCD preparations using infrared, Mössbauer, and NRVS spectroscopy, revealing molecular details of the coordination of the Fe(CN)2CO fragment. Moreover, biochemical assays in combination with spectroscopy, AlphaFold structure predictions, protein-ligand docking calculations, and crosslinking MS deciphered unexpected mechanistic aspects of the ATP requirement of HypCD, which we found to actually trigger the transfer of the Fe(CN)2CO fragment to the apo-hydrogenase.
Collapse
Affiliation(s)
- Anna Kwiatkowski
- Institut
für Chemie, Technische Universität
Berlin, Straße des 17. Juni 135, 10623 Berlin, Germany
| | - Giorgio Caserta
- Institut
für Chemie, Technische Universität
Berlin, Straße des 17. Juni 135, 10623 Berlin, Germany
| | - Anne-Christine Schulz
- Institut
für Chemie, Technische Universität
Berlin, Straße des 17. Juni 135, 10623 Berlin, Germany
| | - Stefan Frielingsdorf
- Institut
für Chemie, Technische Universität
Berlin, Straße des 17. Juni 135, 10623 Berlin, Germany
| | - Vladimir Pelmenschikov
- Institut
für Chemie, Technische Universität
Berlin, Straße des 17. Juni 135, 10623 Berlin, Germany
| | - Kilian Weisser
- Institute
of Chemistry, Humboldt-Universität
zu Berlin, Brook-Taylor-Straße 2, 12489 Berlin, Germany
| | - Adam Belsom
- Institute
of Biotechnology, Chair of Bioanalytics, Technische Universität Berlin, Gustav-Meyer-Allee 25, 13355 Berlin, Germany
| | - Juri Rappsilber
- Institute
of Biotechnology, Chair of Bioanalytics, Technische Universität Berlin, Gustav-Meyer-Allee 25, 13355 Berlin, Germany
- Si-M/‘Der
Simulierte Mensch’, a Science Framework
of Technische Universität Berlin and Charité −
Universitätsmedizin Berlin, 10623 Berlin, Germany
- Wellcome
Centre of Cell Biology, University of Edinburgh, Edinburgh EH9 3BF, U.K.
| | - Ilya Sergueev
- Deutsches
Elektronen-Synchrotron, Notkestraße 85, 22607 Hamburg, Germany
| | - Christian Limberg
- Institute
of Chemistry, Humboldt-Universität
zu Berlin, Brook-Taylor-Straße 2, 12489 Berlin, Germany
| | - Maria-Andrea Mroginski
- Institut
für Chemie, Technische Universität
Berlin, Straße des 17. Juni 135, 10623 Berlin, Germany
| | - Ingo Zebger
- Institut
für Chemie, Technische Universität
Berlin, Straße des 17. Juni 135, 10623 Berlin, Germany
| | - Oliver Lenz
- Institut
für Chemie, Technische Universität
Berlin, Straße des 17. Juni 135, 10623 Berlin, Germany
| |
Collapse
|
5
|
Shomar H, Bokinsky G. Harnessing iron‑sulfur enzymes for synthetic biology. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2024; 1871:119718. [PMID: 38574823 DOI: 10.1016/j.bbamcr.2024.119718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 03/13/2024] [Accepted: 03/25/2024] [Indexed: 04/06/2024]
Abstract
Reactions catalysed by iron-sulfur (Fe-S) enzymes appear in a variety of biosynthetic pathways that produce valuable natural products. Harnessing these biosynthetic pathways by expression in microbial cell factories grown on an industrial scale would yield enormous economic and environmental benefits. However, Fe-S enzymes often become bottlenecks that limits the productivity of engineered pathways. As a consequence, achieving the production metrics required for industrial application remains a distant goal for Fe-S enzyme-dependent pathways. Here, we identify and review three core challenges in harnessing Fe-S enzyme activity, which all stem from the properties of Fe-S clusters: 1) limited Fe-S cluster supply within the host cell, 2) Fe-S cluster instability, and 3) lack of specialized reducing cofactor proteins often required for Fe-S enzyme activity, such as enzyme-specific flavodoxins and ferredoxins. We highlight successful methods developed for a variety of Fe-S enzymes and electron carriers for overcoming these difficulties. We use heterologous nitrogenase expression as a grand case study demonstrating how each of these challenges can be addressed. We predict that recent breakthroughs in protein structure prediction and design will prove well-suited to addressing each of these challenges. A reliable toolkit for harnessing Fe-S enzymes in engineered metabolic pathways will accelerate the development of industry-ready Fe-S enzyme-dependent biosynthesis pathways.
Collapse
Affiliation(s)
- Helena Shomar
- Institut Pasteur, université Paris Cité, Inserm U1284, Diversité moléculaire des microbes (Molecular Diversity of Microbes lab), 75015 Paris, France
| | - Gregory Bokinsky
- Department of Bionanoscience, Kavli Institute of Nanoscience, Delft University of Technology, Delft, the Netherlands.
| |
Collapse
|
6
|
Fasano A, Fourmond V, Léger C. Outer-sphere effects on the O 2 sensitivity, catalytic bias and catalytic reversibility of hydrogenases. Chem Sci 2024; 15:5418-5433. [PMID: 38638217 PMCID: PMC11023054 DOI: 10.1039/d4sc00691g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Accepted: 03/15/2024] [Indexed: 04/20/2024] Open
Abstract
The comparison of homologous metalloenzymes, in which the same inorganic active site is surrounded by a variable protein matrix, has demonstrated that residues that are remote from the active site may have a great influence on catalytic properties. In this review, we summarise recent findings on the diverse molecular mechanisms by which the protein matrix may define the oxygen tolerance, catalytic directionality and catalytic reversibility of hydrogenases, enzymes that catalyse the oxidation and evolution of H2. These mechanisms involve residues in the second coordination sphere of the active site metal ion, more distant residues affecting protein flexibility through their side chains, residues lining the gas channel and even accessory subunits. Such long-distance effects, which contribute to making enzymes efficient, robust and different from one another, are a source of wonder for biochemists and a challenge for synthetic bioinorganic chemists.
Collapse
Affiliation(s)
- Andrea Fasano
- Laboratoire de Bioénergétique et Ingénierie des Protéines, CNRS, Aix Marseille Université, UMR 7281 Marseille France
| | - Vincent Fourmond
- Laboratoire de Bioénergétique et Ingénierie des Protéines, CNRS, Aix Marseille Université, UMR 7281 Marseille France
| | - Christophe Léger
- Laboratoire de Bioénergétique et Ingénierie des Protéines, CNRS, Aix Marseille Université, UMR 7281 Marseille France
| |
Collapse
|
7
|
Greening C, Kropp A, Vincent K, Grinter R. Developing high-affinity, oxygen-insensitive [NiFe]-hydrogenases as biocatalysts for energy conversion. Biochem Soc Trans 2023; 51:1921-1933. [PMID: 37743798 PMCID: PMC10657181 DOI: 10.1042/bst20230120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 09/13/2023] [Accepted: 09/14/2023] [Indexed: 09/26/2023]
Abstract
The splitting of hydrogen (H2) is an energy-yielding process, which is important for both biological systems and as a means of providing green energy. In biology, this reaction is mediated by enzymes called hydrogenases, which utilise complex nickel and iron cofactors to split H2 and transfer the resulting electrons to an electron-acceptor. These [NiFe]-hydrogenases have received considerable attention as catalysts in fuel cells, which utilise H2 to produce electrical current. [NiFe]-hydrogenases are a promising alternative to the platinum-based catalysts that currently predominate in fuel cells due to the abundance of nickel and iron, and the resistance of some family members to inhibition by gases, including carbon monoxide, which rapidly poison platinum-based catalysts. However, the majority of characterised [NiFe]-hydrogenases are inhibited by oxygen (O2), limiting their activity and stability. We recently reported the isolation and characterisation of the [NiFe]-hydrogenase Huc from Mycobacterium smegmatis, which is insensitive to inhibition by O2 and has an extremely high affinity, making it capable of oxidising H2 in air to below atmospheric concentrations. These properties make Huc a promising candidate for the development of enzyme-based fuel cells (EBFCs), which utilise H2 at low concentrations and in impure gas mixtures. In this review, we aim to provide context for the use of Huc for this purpose by discussing the advantages of [NiFe]-hydrogenases as catalysts and their deployment in fuel cells. We also address the challenges associated with using [NiFe]-hydrogenases for this purpose, and how these might be overcome to develop EBFCs that can be deployed at scale.
Collapse
Affiliation(s)
- Chris Greening
- Department of Microbiology, Biomedicine Discovery Institute, Monash University, Clayton, VIC 3800, Australia
- Securing Antarctica's Environmental Future, Monash University, Clayton, VIC 3800, Australia
- Centre to Impact AMR, Monash University, Clayton, VIC 3800, Australia
- ARC Research Hub for Carbon Utilisation and Recycling, Monash University, Clayton, VIC 3800, Australia
| | - Ashleigh Kropp
- Department of Microbiology, Biomedicine Discovery Institute, Monash University, Clayton, VIC 3800, Australia
| | - Kylie Vincent
- Department of Chemistry, University of Oxford, Inorganic Chemistry Laboratory, Oxford OX1 3QR, U.K
| | - Rhys Grinter
- Department of Microbiology, Biomedicine Discovery Institute, Monash University, Clayton, VIC 3800, Australia
- Centre for Electron Microscopy of Membrane Proteins, Monash Institute of Pharmaceutical Sciences, Parkville, Victoria 3052, Australia
| |
Collapse
|
8
|
Frielingsdorf S, Pinske C, Valetti F, Greening C. Editorial: Hydrogenase: structure, function, maturation, and application. Front Microbiol 2023; 14:1284540. [PMID: 37808289 PMCID: PMC10556730 DOI: 10.3389/fmicb.2023.1284540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Accepted: 09/12/2023] [Indexed: 10/10/2023] Open
Affiliation(s)
- Stefan Frielingsdorf
- Institute of Chemistry, Biophysical Chemistry, Technische Universität Berlin, Berlin, Germany
| | - Constanze Pinske
- Institute for Biology, Microbiology, Martin-Luther University Halle-Wittenberg, Halle (Saale), Germany
| | - Francesca Valetti
- Department of Life Sciences and Systems Biology, University of Torino, Turin, Italy
| | - Chris Greening
- Department of Microbiology, Monash University, Clayton, VIC, Australia
| |
Collapse
|
9
|
T Waffo AF, Lorent C, Katz S, Schoknecht J, Lenz O, Zebger I, Caserta G. Structural Determinants of the Catalytic Ni a-L Intermediate of [NiFe]-Hydrogenase. J Am Chem Soc 2023. [PMID: 37328284 DOI: 10.1021/jacs.3c01625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
[NiFe]-hydrogenases catalyze the reversible cleavage of H2 into two protons and two electrons at the inorganic heterobimetallic NiFe center of the enzyme. Their catalytic cycle involves at least four intermediates, some of which are still under debate. While the core reaction, including H2/H- binding, takes place at the inorganic cofactor, a major challenge lies in identifying those amino acid residues that contribute to the reactivity and how they stabilize (short-lived) intermediate states. Using cryogenic infrared and electron paramagnetic resonance spectroscopy on the regulatory [NiFe]-hydrogenase from Cupriavidus necator, a model enzyme for the analysis of catalytic intermediates, we deciphered the structural basis of the hitherto elusive Nia-L intermediates. We unveiled the protonation states of a proton-accepting glutamate and a Ni-bound cysteine residue in the Nia-L1, Nia-L2, and the hydride-binding Nia-C intermediates as well as previously unknown conformational changes of amino acid residues in proximity of the bimetallic active site. As such, this study unravels the complexity of the Nia-L intermediate and reveals the importance of the protein scaffold in fine-tuning proton and electron dynamics in [NiFe]-hydrogenase.
Collapse
Affiliation(s)
- Armel F T Waffo
- Institut für Chemie, Technische Universität Berlin, Straße des 17. Juni 135, 10623 Berlin, Germany
| | - Christian Lorent
- Institut für Chemie, Technische Universität Berlin, Straße des 17. Juni 135, 10623 Berlin, Germany
| | - Sagie Katz
- Institut für Chemie, Technische Universität Berlin, Straße des 17. Juni 135, 10623 Berlin, Germany
| | - Janna Schoknecht
- Institut für Chemie, Technische Universität Berlin, Straße des 17. Juni 135, 10623 Berlin, Germany
| | - Oliver Lenz
- Institut für Chemie, Technische Universität Berlin, Straße des 17. Juni 135, 10623 Berlin, Germany
| | - Ingo Zebger
- Institut für Chemie, Technische Universität Berlin, Straße des 17. Juni 135, 10623 Berlin, Germany
| | - Giorgio Caserta
- Institut für Chemie, Technische Universität Berlin, Straße des 17. Juni 135, 10623 Berlin, Germany
| |
Collapse
|