1
|
Myszczynski K, Szuszkiewicz J, Krawczynski K, Sikora M, Romaniewicz M, Guzewska MM, Zabielski P, Kaczmarek MM. In-Depth Analysis of miRNA Binding Sites Reveals the Complex Response of Uterine Epithelium to miR-26a-5p and miR-125b-5p During Early Pregnancy. Mol Cell Proteomics 2025; 24:100879. [PMID: 39536955 PMCID: PMC11758581 DOI: 10.1016/j.mcpro.2024.100879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Revised: 10/18/2024] [Accepted: 11/05/2024] [Indexed: 11/16/2024] Open
Abstract
Posttranscriptional regulation of gene expression by miRNAs likely makes significant contributions to mRNA abundance at the embryo-maternal interface. In this study, we investigated how miR-26a-5p and miR-125b-5p contribute to molecular changes occurring in the uterine luminal epithelium, which serves as the first site of signal exchange between the mother and the developing embryo. To measure de novo protein synthesis after miRNA delivery to primary uterine luminal epithelial cells, we used pulsed stable isotope labeling by amino acids (pSILACs). We found that both miRNAs alter the proteome of luminal epithelial cells, impacting numerous cellular functions, immune responses, as well as intracellular and second messenger signaling pathways. Additionally, we identified several features of miRNA-mRNA interactions that may influence the targeting efficiency of miR-26a-5p and miR-125b-5p. Overall, our study suggests a complex interaction of miR-26a-5p and miR-125b-5p with their respective targets. However, both appear to cooperatively function in modulating the cellular environment of the luminal epithelium, facilitating the morphological and molecular changes that occur during the intensive communication between the embryo and uterus at pregnancy.
Collapse
Affiliation(s)
- Kamil Myszczynski
- Molecular Biology Laboratory, Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, Olsztyn, Poland
| | - Joanna Szuszkiewicz
- Department of Hormonal Action Mechanisms, Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, Olsztyn, Poland
| | - Kamil Krawczynski
- Department of Hormonal Action Mechanisms, Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, Olsztyn, Poland
| | - Małgorzata Sikora
- Molecular Biology Laboratory, Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, Olsztyn, Poland
| | - Marta Romaniewicz
- Molecular Biology Laboratory, Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, Olsztyn, Poland
| | - Maria M Guzewska
- Department of Hormonal Action Mechanisms, Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, Olsztyn, Poland
| | - Piotr Zabielski
- Department of Medical Biology, Medical University of Bialystok, Poland
| | - Monika M Kaczmarek
- Molecular Biology Laboratory, Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, Olsztyn, Poland; Department of Hormonal Action Mechanisms, Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, Olsztyn, Poland.
| |
Collapse
|
2
|
Tan IL, Modderman R, Stachurska A, Almeida R, de Vries R, Heersema DJ, Gacesa R, Wijmenga C, Jonkers IH, Meilof JF, Withoff S. Potential biomarkers for multiple sclerosis stage from targeted proteomics and microRNA sequencing. Brain Commun 2024; 6:fcae209. [PMID: 38978729 PMCID: PMC11229703 DOI: 10.1093/braincomms/fcae209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 04/08/2024] [Accepted: 06/12/2024] [Indexed: 07/10/2024] Open
Abstract
Multiple sclerosis is a chronic demyelinating disease of the central nervous system. There is a need for new circulating biomarkers for multiple sclerosis, in particular, markers that differentiate multiple sclerosis subtypes (relapsing-remitting, secondary progressive and primary progressive multiple sclerosis), as this can help in making treatment decisions. In this study, we explore two classes of potential multiple sclerosis biomarkers-proteins and microRNAs-circulating in the cerebrospinal fluid and serum. Targeted medium-throughput proteomics (92 proteins) and microRNA sequencing were performed on serum samples collected in a cross-sectional case-control cohort (cohort I, controls n = 30, multiple sclerosis n = 75) and a prospective multiple sclerosis cohort (cohort II, n = 93). For cohort I, we also made these measurements in paired cerebrospinal fluid samples. In the cohort I cerebrospinal fluid, we observed differences between multiple sclerosis and controls for 13 proteins, including some previously described to be markers for multiple sclerosis [e.g. CD27, C-X-C motif chemokine 13 (CXCL13) and interleukin-7 (IL7)]. No microRNAs were significantly differentially expressed between multiple sclerosis and controls in the cerebrospinal fluid. In serum, 10 proteins, including angiopoietin-1 receptor (TIE2), and 16 microRNAs were significantly different between relapsing-remitting multiple sclerosis and secondary progressive multiple sclerosis after performing a meta-analysis combining both cohorts. In the prospective part of the study, participants with relapsing-remitting multiple sclerosis were followed for around 3 years, during which time 12 participants converted to secondary progressive multiple sclerosis. In these longitudinally collected serum samples, we observed a peak in granzyme B, A and H proteins around the time of conversion. Single-sample enrichment analysis of serum microRNA profiles revealed that the peak in granzyme B levels around conversion coincides with enrichment for microRNAs that are enriched in CD4+, CD8+ and natural killer cells (e.g. miRNA-150). We identified several proteins and microRNAs in serum that represent potential biomarkers for relapsing-remitting and secondary progressive multiple sclerosis. Conversion to secondary progressive disease is marked by a peak in granzyme B levels and enrichment for immune-related microRNAs. This indicates that specific immune cell-driven processes may contribute to the conversion of relapsing-remitting multiple sclerosis to secondary progressive multiple sclerosis.
Collapse
Affiliation(s)
- Ineke L Tan
- Department of Genetics, University of Groningen, University Medical Center Groningen, 9713 GZ Groningen, The Netherlands
- Department of Gastroenterology and Hepatology, University of Groningen, University Medical Center Groningen, 9713 GZ Groningen, The Netherlands
| | - Rutger Modderman
- Department of Genetics, University of Groningen, University Medical Center Groningen, 9713 GZ Groningen, The Netherlands
| | - Anna Stachurska
- Department of Genetics, University of Groningen, University Medical Center Groningen, 9713 GZ Groningen, The Netherlands
| | - Rodrigo Almeida
- Telespazio Belgium S.R.L. for the European Space Agency (ESA), 2200AG Noordwijk, The Netherlands
| | - Riemer de Vries
- Department of Neurology, University of Groningen, University Medical Center Groningen, 9713 GZ Groningen, The Netherlands
| | - Dorothea J Heersema
- Department of Neurology, University of Groningen, University Medical Center Groningen, 9713 GZ Groningen, The Netherlands
- MS Center Noord Nederland, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Ranko Gacesa
- Department of Genetics, University of Groningen, University Medical Center Groningen, 9713 GZ Groningen, The Netherlands
- Department of Gastroenterology and Hepatology, University of Groningen, University Medical Center Groningen, 9713 GZ Groningen, The Netherlands
| | - Cisca Wijmenga
- Department of Genetics, University of Groningen, University Medical Center Groningen, 9713 GZ Groningen, The Netherlands
| | - Iris H Jonkers
- Department of Genetics, University of Groningen, University Medical Center Groningen, 9713 GZ Groningen, The Netherlands
| | - Jan F Meilof
- MS Center Noord Nederland, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
- Department of Biomedical Sciences of Cells and Systems, University Medical Center Groningen, 9713 GZ Groningen, The Netherlands
| | - Sebo Withoff
- Department of Genetics, University of Groningen, University Medical Center Groningen, 9713 GZ Groningen, The Netherlands
| |
Collapse
|
3
|
Nevskaya KV, Pershina AG, Hmelevskaya ES, Efimova LV, Ibragimova MK, Dolgasheva DS, Tsydenova IA, Ufandeev AA, Buyko EE, Perina EA, Gaptulbarova KA, Kravtsova EA, Krivoshchekov SV, Ivanov VV, Guriev AM, Udut EV, Litviakov NV. Prevention of Metastasis by Suppression of Stemness Genes Using a Combination of microRNAs. J Med Chem 2024; 67:5591-5602. [PMID: 38507819 DOI: 10.1021/acs.jmedchem.3c02199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/22/2024]
Abstract
We propose an original strategy for metastasis prevention using a combination of three microRNAs that blocks the dedifferentiation of cancer cells in a metastatic niche owing to the downregulation of stemness genes. Transcriptome microarray analysis was applied to identify the effects of a mixture of microRNAs on the pattern of differentially expressed genes in human breast cancer cell lines. Treatment of differentiated CD44- cancer cells with the microRNA mixture inhibited their ability to form mammospheres in vitro. The combination of these three microRNAs encapsulated into lipid nanoparticles prevented lung metastasis in a mouse model of spontaneous metastasis. The mixture of three microRNAs (miR-195-5p/miR-520a/miR-630) holds promise for the development of an antimetastatic therapeutic that blocks tumor cell dedifferentiation, which occurs at secondary tumor sites and determines the transition of micrometastases to macrometastases.
Collapse
Affiliation(s)
- Kseniya V Nevskaya
- Central Research Laboratory, Siberian State Medical University, Moskovsky Trakt 2, Tomsk 634050, Russia
| | - Alexandra G Pershina
- Central Research Laboratory, Siberian State Medical University, Moskovsky Trakt 2, Tomsk 634050, Russia
- Research School of Chemical and Biomedical Engineering, Tomsk Polytechnic University, Lenin Ave. 30, Tomsk 634050, Russia
| | - Ekaterina S Hmelevskaya
- Central Research Laboratory, Siberian State Medical University, Moskovsky Trakt 2, Tomsk 634050, Russia
| | - Lina V Efimova
- Central Research Laboratory, Siberian State Medical University, Moskovsky Trakt 2, Tomsk 634050, Russia
| | - Marina K Ibragimova
- Central Research Laboratory, Siberian State Medical University, Moskovsky Trakt 2, Tomsk 634050, Russia
- Oncovirology Lab, Cancer Research Institute of Tomsk National Research Medical Center, Russian Academy of Sciences, Pereulok Kooperativnyi 5, Tomsk 634050, Russia
- Tomsk State University, Lenin Ave. 36, Tomsk 634050, Russia
| | - Darya S Dolgasheva
- Oncovirology Lab, Cancer Research Institute of Tomsk National Research Medical Center, Russian Academy of Sciences, Pereulok Kooperativnyi 5, Tomsk 634050, Russia
- Research School of Chemical and Biomedical Engineering, Tomsk Polytechnic University, Lenin Ave. 30, Tomsk 634050, Russia
| | - Irina A Tsydenova
- Oncovirology Lab, Cancer Research Institute of Tomsk National Research Medical Center, Russian Academy of Sciences, Pereulok Kooperativnyi 5, Tomsk 634050, Russia
- Tomsk State University, Lenin Ave. 36, Tomsk 634050, Russia
| | - Alexander A Ufandeev
- Central Research Laboratory, Siberian State Medical University, Moskovsky Trakt 2, Tomsk 634050, Russia
| | - Evgeny E Buyko
- Central Research Laboratory, Siberian State Medical University, Moskovsky Trakt 2, Tomsk 634050, Russia
| | - Ekaterina A Perina
- Central Research Laboratory, Siberian State Medical University, Moskovsky Trakt 2, Tomsk 634050, Russia
| | - Ksenia A Gaptulbarova
- Central Research Laboratory, Siberian State Medical University, Moskovsky Trakt 2, Tomsk 634050, Russia
- Oncovirology Lab, Cancer Research Institute of Tomsk National Research Medical Center, Russian Academy of Sciences, Pereulok Kooperativnyi 5, Tomsk 634050, Russia
- Research School of Chemical and Biomedical Engineering, Tomsk Polytechnic University, Lenin Ave. 30, Tomsk 634050, Russia
| | - Ekaterina A Kravtsova
- Oncovirology Lab, Cancer Research Institute of Tomsk National Research Medical Center, Russian Academy of Sciences, Pereulok Kooperativnyi 5, Tomsk 634050, Russia
- Tomsk State University, Lenin Ave. 36, Tomsk 634050, Russia
| | - Sergei V Krivoshchekov
- Central Research Laboratory, Siberian State Medical University, Moskovsky Trakt 2, Tomsk 634050, Russia
| | - Vladimir V Ivanov
- Central Research Laboratory, Siberian State Medical University, Moskovsky Trakt 2, Tomsk 634050, Russia
| | - Artem M Guriev
- Central Research Laboratory, Siberian State Medical University, Moskovsky Trakt 2, Tomsk 634050, Russia
| | - Elena V Udut
- Central Research Laboratory, Siberian State Medical University, Moskovsky Trakt 2, Tomsk 634050, Russia
| | - Nikolai V Litviakov
- Central Research Laboratory, Siberian State Medical University, Moskovsky Trakt 2, Tomsk 634050, Russia
- Oncovirology Lab, Cancer Research Institute of Tomsk National Research Medical Center, Russian Academy of Sciences, Pereulok Kooperativnyi 5, Tomsk 634050, Russia
- Research School of Chemical and Biomedical Engineering, Tomsk Polytechnic University, Lenin Ave. 30, Tomsk 634050, Russia
| |
Collapse
|
4
|
Pershina AG, Nevskaya KV, Morozov KR, Litviakov NV. Methods for assessing the effect of microRNA on stemness genes. BULLETIN OF SIBERIAN MEDICINE 2023. [DOI: 10.20538/1682-0363-2022-4-170-182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
According to the latest concepts, for micrometastasis to develop into macrometastasis, differentiated cancer cells must revert to a dedifferentiated state. Activation of stemness genes plays a key role in this transition. Suppression of stemness gene expression using microRNAs can become the basis for the development of effective anti-metastatic drugs. This article provides an overview of the existing methods for assessing the effect of microRNAs on stemness genes and cancer cell dedifferentiation.
Collapse
Affiliation(s)
| | | | | | - N. V. Litviakov
- Siberian State Medical University;
Cancer Research Institute, Tomsk National Research Medical Center (NRMC), Russian Academy of Sciences
| |
Collapse
|
5
|
Szuszkiewicz J, Myszczynski K, Reliszko ZP, Heifetz Y, Kaczmarek MM. Early steps of embryo implantation are regulated by exchange of extracellular vesicles between the embryo and the endometrium. FASEB J 2022; 36:e22450. [PMID: 35848638 DOI: 10.1096/fj.202200677r] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 06/12/2022] [Accepted: 06/30/2022] [Indexed: 11/11/2022]
Abstract
In early pregnancy, as the embryo arrives in the uterus, intensive communication between the embryo and uterus begins. Hundreds of molecules are known to be involved, but despite numerous findings, full understanding of the complexity of the embryo-maternal dialog remains elusive. Recently, extracellular vesicles, nanoparticles able to transfer functionally active cargo between cells, have emerged as important players in cell-cell communication, and as such, they have gained great attention over the past decade also in reproductive biology. Here, we use a domestic animal model (Sus scrofa) with an epitheliochorial, superficial type of placentation because of its advantage in studding uterine luminal fluid extracellular vesicles. We show that during early pregnancy, the uterine lumen is abundant with extracellular vesicles that carry a plethora of miRNAs able to target genes involved in embryonic and organismal development. These extracellular vesicles, upon the delivery to primary trophoblast cells, affect genes governing development as well as cell-to-cell signaling and interactions, consequently having an impact on trophoblast cell proliferation, migration, and invasion. We conclude that the exchange of a unique population of extracellular vesicles and their molecular cargo at the maternal-embryo interface is the key to the success of embryo implantation and pregnancy.
Collapse
Affiliation(s)
- Joanna Szuszkiewicz
- Department of Hormonal Action Mechanisms, Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, Olsztyn, Poland
| | - Kamil Myszczynski
- Molecular Biology Laboratory, Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, Olsztyn, Poland
| | - Zaneta P Reliszko
- Department of Hormonal Action Mechanisms, Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, Olsztyn, Poland
| | - Yael Heifetz
- Department of Entomology, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Monika M Kaczmarek
- Department of Hormonal Action Mechanisms, Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, Olsztyn, Poland.,Molecular Biology Laboratory, Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, Olsztyn, Poland
| |
Collapse
|
6
|
Chirichella M, Bianchi N, Džafo E, Foli E, Gualdrini F, Kenyon A, Natoli G, Monticelli S. RFX transcription factors control a miR-150/PDAP1 axis that restrains the proliferation of human T cells. PLoS Biol 2022; 20:e3001538. [PMID: 35143476 PMCID: PMC8865640 DOI: 10.1371/journal.pbio.3001538] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 02/23/2022] [Accepted: 01/13/2022] [Indexed: 01/11/2023] Open
Abstract
Within the immune system, microRNAs (miRNAs) exert key regulatory functions. However, what are the mRNA targets regulated by miRNAs and how miRNAs are transcriptionally regulated themselves remain for the most part unknown. We found that in primary human memory T helper lymphocytes, miR-150 was the most abundantly expressed miRNA, and its expression decreased drastically upon activation, suggesting regulatory roles. Constitutive MIR150 gene expression required the RFX family of transcription factors, and its activation-induced down-regulation was linked to their reduced expression. By performing miRNA pull-down and sequencing experiments, we identified PDGFA-associated protein 1 (PDAP1) as one main target of miR-150 in human T lymphocytes. PDAP1 acted as an RNA-binding protein (RBP), and its CRISPR/Cas-9–mediated deletion revealed that it prominently contributed to the regulation of T-cell proliferation. Overall, using an integrated approach involving quantitative analysis, unbiased genomics, and genome editing, we identified RFX factors, miR-150, and the PDAP1 RBP as the components of a regulatory axis that restrains proliferation of primary human T lymphocytes. MicroRNAs exert key regulatory functions in the immune system, but their targets are largely unknown. This study shows that the ability of primary human T lymphocytes to proliferate in response to T cell receptor activation is modulated by a network comprising miR-150, transcription factors of the RFX family, and the RNA-binding protein PDAP1.
Collapse
Affiliation(s)
- Michele Chirichella
- Institute for Research in Biomedicine (IRB), Università della Svizzera italiana (USI), Bellinzona, Switzerland
| | - Niccolò Bianchi
- Institute for Research in Biomedicine (IRB), Università della Svizzera italiana (USI), Bellinzona, Switzerland
- Graduate School for Cellular and Biomedical Sciences, University of Bern, Bern, Switzerland
| | - Emina Džafo
- Institute for Research in Biomedicine (IRB), Università della Svizzera italiana (USI), Bellinzona, Switzerland
| | - Elena Foli
- Institute for Research in Biomedicine (IRB), Università della Svizzera italiana (USI), Bellinzona, Switzerland
| | - Francesco Gualdrini
- IEO, European Institute of Oncology IRCCS, Department of Experimental Oncology, Milan, Italy
- Humanitas University, Milan, Italy
| | - Amy Kenyon
- IEO, European Institute of Oncology IRCCS, Department of Experimental Oncology, Milan, Italy
| | - Gioacchino Natoli
- IEO, European Institute of Oncology IRCCS, Department of Experimental Oncology, Milan, Italy
- Humanitas University, Milan, Italy
| | - Silvia Monticelli
- Institute for Research in Biomedicine (IRB), Università della Svizzera italiana (USI), Bellinzona, Switzerland
| |
Collapse
|
7
|
Tan IL, Barisani D, Panceri R, Modderman R, Visschedijk M, Weersma RK, Wijmenga C, Jonkers I, Coutinho de Almeida R, Withoff S. A Combined mRNA- and miRNA-Sequencing Approach Reveals miRNAs as Potential Regulators of the Small Intestinal Transcriptome in Celiac Disease. Int J Mol Sci 2021; 22:11382. [PMID: 34768815 PMCID: PMC8583991 DOI: 10.3390/ijms222111382] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2021] [Revised: 10/14/2021] [Accepted: 10/17/2021] [Indexed: 12/14/2022] Open
Abstract
Celiac disease (CeD) is triggered by gluten and results in inflammation and villous atrophy of the small intestine. We aimed to explore the role of miRNA-mediated deregulation of the transcriptome in CeD. Duodenal biopsies of CeD patients (n = 33) and control subjects (n = 10) were available for miRNA-sequencing, with RNA-sequencing also available for controls (n = 5) and CeD (n = 6). Differential expression analysis was performed to select CeD-associated miRNAs and genes. MiRNA‒target transcript pairs selected from public databases that also displayed a strong negative expression correlation in the current dataset (R < -0.7) were used to construct a CeD miRNA‒target transcript interaction network. The network includes 2030 miRNA‒target transcript interactions, including 423 experimentally validated pairs. Pathway analysis found that interactions are involved in immune-related pathways (e.g., interferon signaling) and metabolic pathways (e.g., lipid metabolism). The network includes 13 genes previously prioritized to be causally deregulated by CeD-associated genomic variants, including STAT1. CeD-associated miRNAs might play a role in promoting inflammation and decreasing lipid metabolism in the small intestine, thereby contributing unbalanced cell turnover in the intestinal crypt. Some CeD-associated miRNAs deregulate genes that are also affected by genomic CeD-risk variants, adding an additional layer of complexity to the deregulated transcriptome in CeD.
Collapse
Affiliation(s)
- Ineke Luise Tan
- Department of Genetics, University Medical Center Groningen, University of Groningen, 9700 RB Groningen, The Netherlands; (I.L.T.); (R.M.); (C.W.); (I.J.)
- Department of Gastroenterology and Hepatology, University Medical Center Groningen, University of Groningen, 9700 RB Groningen, The Netherlands; (M.V.); (R.K.W.)
| | - Donatella Barisani
- School of Medicine and Surgery, University of Milano-Bicocca, 20900 Monza, Italy;
| | | | - Rutger Modderman
- Department of Genetics, University Medical Center Groningen, University of Groningen, 9700 RB Groningen, The Netherlands; (I.L.T.); (R.M.); (C.W.); (I.J.)
| | - Marijn Visschedijk
- Department of Gastroenterology and Hepatology, University Medical Center Groningen, University of Groningen, 9700 RB Groningen, The Netherlands; (M.V.); (R.K.W.)
| | - Rinse K. Weersma
- Department of Gastroenterology and Hepatology, University Medical Center Groningen, University of Groningen, 9700 RB Groningen, The Netherlands; (M.V.); (R.K.W.)
| | - Cisca Wijmenga
- Department of Genetics, University Medical Center Groningen, University of Groningen, 9700 RB Groningen, The Netherlands; (I.L.T.); (R.M.); (C.W.); (I.J.)
| | - Iris Jonkers
- Department of Genetics, University Medical Center Groningen, University of Groningen, 9700 RB Groningen, The Netherlands; (I.L.T.); (R.M.); (C.W.); (I.J.)
| | - Rodrigo Coutinho de Almeida
- Section Molecular Epidemiology, Department of Biomedical Data Sciences, Leiden University Medical Center, 2300 RC Leiden, The Netherlands;
| | - Sebo Withoff
- Department of Genetics, University Medical Center Groningen, University of Groningen, 9700 RB Groningen, The Netherlands; (I.L.T.); (R.M.); (C.W.); (I.J.)
| |
Collapse
|
8
|
MicroRNAs as Guardians of the Prostate: Those Who Stand before Cancer. What Do We Really Know about the Role of microRNAs in Prostate Biology? Int J Mol Sci 2020; 21:ijms21134796. [PMID: 32645914 PMCID: PMC7370012 DOI: 10.3390/ijms21134796] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Revised: 06/29/2020] [Accepted: 07/02/2020] [Indexed: 12/17/2022] Open
Abstract
Prostate cancer is the second leading cause of cancer-related deaths of men in the Western world. Despite recent advancement in genomics, transcriptomics and proteomics to understand prostate cancer biology and disease progression, castration resistant metastatic prostate cancer remains a major clinical challenge and often becomes incurable. MicroRNAs (miRNAs), about 22-nucleotide-long non-coding RNAs, are a group of regulatory molecules that mainly work through post-transcriptional gene silencing via translational repression. Expression analysis studies have revealed that miRNAs are aberrantly expressed in cancers and have been recognized as regulators of prostate cancer progression. In this critical review, we provide an analysis of reported miRNA functions and conflicting studies as they relate to expression levels of specific miRNAs and prostate cancer progression; oncogenic and/or tumor suppressor roles; androgen receptor signaling; epithelial plasticity; and the current status of diagnostic and therapeutic applications. This review focuses on select miRNAs, highly expressed in normal and cancer tissue, to emphasize the current obstacles faced in utilizing miRNA data for significant impacts on prostate cancer therapeutics.
Collapse
|