1
|
Li X, Hua S, Zhong D, Zhou M, Ding Z. Metal-organic framework-edaravone nanoparticles for radiotherapy-induced brain injury treatment. Biomaterials 2025; 314:122868. [PMID: 39413653 DOI: 10.1016/j.biomaterials.2024.122868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2024] [Revised: 09/10/2024] [Accepted: 09/29/2024] [Indexed: 10/18/2024]
Abstract
Cranial radiotherapy may cause damage to normal brain tissues and induce cognitive dysfunction, so developing an effective strategy to prevent radiotherapy-induced brain injury is essential. Metal-organic frameworks (MOFs) can be used as vectors for the delivery of neuroprotective drugs due to their high drug loading capacity and low toxicity. In this study, we synthesized MIL-53(Cr) nanoparticles, which were used to deliver edaravone, and modified the surface of the nanoparticles with polyethylene glycol and Angiopep-2 (EDA@MIL-53(Cr)-P/A) to improve their oral bioavailability and ability to cross the blood-brain barrier (BBB). We confirmed that MIL-53(Cr)-P/A nanoparticles could achieve the sustained release of edaravone and enhance its ability to cross the BBB. The results of in vitro experiments showed that EDA@MIL-53(Cr)-P/A could exert radioprotective effects on HT22 and BV2 cells. We also demonstrated that EDA@MIL-53(Cr)-P/A could alleviate brain injury and cognitive dysfunction in mice receiving whole-brain irradiation. Mechanistically, EDA@MIL-53(Cr)-P/A alleviated irradiation-induced brain damage by inhibiting oxidative stress, DNA damage, apoptosis and inflammatory reactions. This study provides a new strategy for the protection against radiotherapy-induced brain injury.
Collapse
Affiliation(s)
- Xuejiao Li
- Department of Radiology, Affiliated Hangzhou First People's Hospital, Westlake University School of Medicine, Hangzhou 310006, China; Zhejiang University-Ordos City Etuoke Banner Joint Research Center, Zhejiang University, Haining, 314400, China
| | - Shiyuan Hua
- Eye Center, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China; Institute of Translational Medicine, Zhejiang University, Hangzhou, 310029, China
| | - Danni Zhong
- Eye Center, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China; Institute of Translational Medicine, Zhejiang University, Hangzhou, 310029, China
| | - Min Zhou
- Eye Center, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China; Institute of Translational Medicine, Zhejiang University, Hangzhou, 310029, China; Zhejiang University-University of Edinburgh Institute (ZJU-UoE Institute), Zhejiang University School of Medicine, Zhejiang University, Haining, 314400, China; Zhejiang University-Ordos City Etuoke Banner Joint Research Center, Zhejiang University, Haining, 314400, China; State Key Laboratory of Transvascular Implantation Devices, Zhejiang University, Hangzhou, 310009, China.
| | - Zhongxiang Ding
- Department of Radiology, Affiliated Hangzhou First People's Hospital, Westlake University School of Medicine, Hangzhou 310006, China.
| |
Collapse
|
2
|
Leddy E, Attachaipanich T, Chattipakorn N, Chattipakorn SC. Investigating the effect of metformin on chemobrain: Reports from cells to bedside. Exp Neurol 2025; 385:115129. [PMID: 39733854 DOI: 10.1016/j.expneurol.2024.115129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 12/10/2024] [Accepted: 12/21/2024] [Indexed: 12/31/2024]
Abstract
Chemobrain can be defined as the development of cognitive side effects following chemotherapy, which is increasingly reported in cancer survivor patients. Chemobrain leads to reduced patients' quality of life by causing different symptoms ranging from strokes and seizures to memory loss and mood disorders. Metformin, an antidiabetic drug, has been proposed as a potential treatment to improve the symptoms of chemotherapy-induced cognitive dysfunction. Several benefits of metformin on chemobrain have been suggested, including anti-inflammation, anti-oxidative stress, restoring impaired mitochondrial function, stabilizing apoptosis, ameliorating impairments to dendritic spine density, normalizing brain senescence protein levels, and attenuating reductions in cell viability, along with reversing learning and memory deficits. These benefits occur through various pathways of metformin, including adenosine monophosphate-activated protein kinase (AMPK), TAp73, and phosphatidylinositol 3-kinase/protein kinase B (Akt) pathways. In addition, metformin can exert neuroprotective effects and restore deficits in brain homeostasis caused by chemotherapy. Furthermore, activation of AMPK following metformin therapy promotes autophagy, stimulates energy production, and improves cell survival. Metformin's interaction with Tap73 and Akt pathways allows for regulated cell proliferation in adult neural precursor cells and cell growth, respectively. Although the negative effects on cerebral function induced by chemotherapeutics have been alleviated by metformin in several instances, further studies are required to confirm its beneficial effects. This research is essential as it addresses the pressing issue of chemobrain, which is on the rise alongside global increases in cancer. Exploring metformin's potential as a neuroprotective agent offers a promising avenue for mitigating these cognitive impairments and highlights the need for further studies to validate its therapeutic mechanisms. This review comprehensively summarises evidence from both in vitro and in vivo studies to demonstrate metformin's effects on cognitive function when co-administered with chemotherapy and identifies gaps in knowledge for further investigation.
Collapse
Affiliation(s)
- Evelyn Leddy
- School of Biological Sciences, The University of Manchester, Greater Manchester M13 9PL, United Kingdom; Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand; Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai 50200, Thailand; Neurophysiology Unit, Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Tanawat Attachaipanich
- Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand; Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai 50200, Thailand; Neurophysiology Unit, Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Nipon Chattipakorn
- Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand; Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai 50200, Thailand; Cardiac Electrophysiology Research Unit, Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand; The Academy of Science, The Royal Society of Thailand, Bangkok, Thailand
| | - Siriporn C Chattipakorn
- Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand; Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai 50200, Thailand; Neurophysiology Unit, Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand; Department of Oral Biology and Diagnostic Sciences, Faculty of Dentistry, Chiang Mai University, Chiang Mai 50200, Thailand.
| |
Collapse
|
3
|
Gupta K, Perkerson RB, Parsons TM, Angom R, Amerna D, Burgess JD, Ren Y, McLean PJ, Mukhopadhyay D, Vibhute P, Wszolek ZK, Zubair AC, Quiñones-Hinojosa A, Kanekiyo T. Secretome from iPSC-derived MSCs exerts proangiogenic and immunosuppressive effects to alleviate radiation-induced vascular endothelial cell damage. Stem Cell Res Ther 2024; 15:230. [PMID: 39075600 PMCID: PMC11287895 DOI: 10.1186/s13287-024-03847-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Accepted: 07/13/2024] [Indexed: 07/31/2024] Open
Abstract
BACKGROUND Radiation therapy is the standard of care for central nervous system tumours. Despite the success of radiation therapy in reducing tumour mass, irradiation (IR)-induced vasculopathies and neuroinflammation contribute to late-delayed complications, neurodegeneration, and premature ageing in long-term cancer survivors. Mesenchymal stromal cells (MSCs) are adult stem cells that facilitate tissue integrity, homeostasis, and repair. Here, we investigated the potential of the iPSC-derived MSC (iMSC) secretome in immunomodulation and vasculature repair in response to radiation injury utilizing human cell lines. METHODS We generated iPSC-derived iMSC lines and evaluated the potential of their conditioned media (iMSC CM) to treat IR-induced injuries in human monocytes (THP1) and brain vascular endothelial cells (hCMEC/D3). We further assessed factors in the iMSC secretome, their modulation, and the molecular pathways they elicit. RESULTS Increasing doses of IR disturbed endothelial tube and spheroid formation in hCMEC/D3. When IR-injured hCMEC/D3 (IR ≤ 5 Gy) were treated with iMSC CM, endothelial cell viability, adherence, spheroid compactness, and proangiogenic sprout formation were significantly ameliorated, and IR-induced ROS levels were reduced. iMSC CM augmented tube formation in cocultures of hCMEC/D3 and iMSCs. Consistently, iMSC CM facilitated angiogenesis in a zebrafish model in vivo. Furthermore, iMSC CM suppressed IR-induced NFκB activation, TNF-α release, and ROS production in THP1 cells. Additionally, iMSC CM diminished NF-kB activation in THP1 cells cocultured with irradiated hCMEC/D3, iMSCs, or HMC3 microglial lines. The cytokine array revealed that iMSC CM contains the proangiogenic and immunosuppressive factors MCP1/CCL2, IL6, IL8/CXCL8, ANG (Angiogenin), GROα/CXCL1, and RANTES/CCL5. Common promoter regulatory elements were enriched in TF-binding motifs such as androgen receptor (ANDR) and GATA2. hCMEC/D3 phosphokinome profiling revealed increased expression of pro-survival factors, the PI3K/AKT/mTOR modulator PRAS40 and β-catenin in response to CM. The transcriptome analysis revealed increased expression of GATA2 in iMSCs and the enrichment of pathways involved in RNA metabolism, translation, mitochondrial respiration, DNA damage repair, and neurodevelopment. CONCLUSIONS The iMSC secretome is a comodulated composite of proangiogenic and immunosuppressive factors that has the potential to alleviate radiation-induced vascular endothelial cell damage and immune activation.
Collapse
Affiliation(s)
- Kshama Gupta
- Department of Neuroscience, Mayo Clinic, 4500 San Pablo Road South, Jacksonville, FL, 32224, USA.
- Department of Cancer Biology, Mayo Clinic, 4500 San Pablo Road South, Jacksonville, FL, 32224, USA.
| | - Ralph B Perkerson
- Center of Regenerative Biotherapeutics, Mayo Clinic, 4500 San Pablo Road South, Jacksonville, FL, 32224, USA
| | - Tammee M Parsons
- Department of Neuroscience, Mayo Clinic, 4500 San Pablo Road South, Jacksonville, FL, 32224, USA
- Center of Regenerative Biotherapeutics, Mayo Clinic, 4500 San Pablo Road South, Jacksonville, FL, 32224, USA
| | - Ramacharan Angom
- Department of Cancer Biology, Mayo Clinic, 4500 San Pablo Road South, Jacksonville, FL, 32224, USA
| | - Danilyn Amerna
- Department of Neuroscience, Mayo Clinic, 4500 San Pablo Road South, Jacksonville, FL, 32224, USA
| | - Jeremy D Burgess
- Department of Neuroscience, Mayo Clinic, 4500 San Pablo Road South, Jacksonville, FL, 32224, USA
| | - Yingxue Ren
- Department of Quantitative Health Sciences, Mayo Clinic, 4500 San Pablo Road South, Jacksonville, FL, 32224, USA
| | - Pamela J McLean
- Department of Neuroscience, Mayo Clinic, 4500 San Pablo Road South, Jacksonville, FL, 32224, USA
| | - Debabrata Mukhopadhyay
- Department of Cancer Biology, Mayo Clinic, 4500 San Pablo Road South, Jacksonville, FL, 32224, USA
| | - Prasanna Vibhute
- Department of Radiology, Mayo Clinic, 4500 San Pablo Road South, Jacksonville, FL, 32224, USA
| | - Zbigniew K Wszolek
- Department of Neurology, Mayo Clinic, 4500 San Pablo Road South, Jacksonville, FL, 32224, USA
| | - Abba C Zubair
- Center of Regenerative Biotherapeutics, Mayo Clinic, 4500 San Pablo Road South, Jacksonville, FL, 32224, USA
| | - Alfredo Quiñones-Hinojosa
- Department of Cancer Biology, Mayo Clinic, 4500 San Pablo Road South, Jacksonville, FL, 32224, USA
- Department of Neurosurgery, Mayo Clinic, 4500 San Pablo Road South, Jacksonville, FL, 32224, USA
| | - Takahisa Kanekiyo
- Department of Neuroscience, Mayo Clinic, 4500 San Pablo Road South, Jacksonville, FL, 32224, USA.
- Center of Regenerative Biotherapeutics, Mayo Clinic, 4500 San Pablo Road South, Jacksonville, FL, 32224, USA.
| |
Collapse
|
4
|
Lee TH, Devaki M, Formolo DA, Rosa JM, Cheng ASK, Yau SY. Effects of Voluntary Wheel Running Exercise on Chemotherapy-Impaired Cognitive and Motor Performance in Mice. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2023; 20:5371. [PMID: 37047984 PMCID: PMC10094707 DOI: 10.3390/ijerph20075371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 03/28/2023] [Accepted: 03/29/2023] [Indexed: 06/19/2023]
Abstract
Chemotherapy-induced cognitive impairment (chemobrain) and muscle wasting (cachexia) are persisting side effects which adversely affect the quality of life of cancer survivors. We therefore investigated the efficacy of physical exercise as a non-pharmacological intervention to reverse the adverse effects of chemotherapy. We examined whether physical exercise in terms of voluntary wheel running could prevent chemotherapy-induced cognitive and motor impairments in mice treated with the multi-kinase inhibitor sorafenib. Adult male BALB/c mice were subdivided into runner and non-runner groups and orally administered with sorafenib (60 mg/kg) or vehicle continuously for four weeks. Mice could freely access the running wheel anytime during sorafenib or vehicle treatment. We found that sorafenib treatment reduced body weight gain (% of change, vehicle: 3.28 ± 3.29, sorafenib: -9.24 ± 1.52, p = 0.0004), impaired hippocampal-dependent spatial memory in the Y maze (exploration index, vehicle: 35.57 ± 11.38%, sorafenib: -29.62 ± 7.90%, p < 0.0001), increased anhedonia-like behaviour in the sucrose preference test (sucrose preference, vehicle: 66.57 ± 3.52%, sorafenib: 44.54 ± 4.25%, p = 0.0005) and impaired motor skill acquisition in rotarod test (latency to fall on day 1: 37.87 ± 8.05 and day 2: 37.22 ± 12.26 s, p > 0.05) but did not induce muscle wasting or reduce grip strength. Concomitant voluntary running reduced anhedonia-like behaviour (sucrose preference, sedentary: 44.54 ± 4.25%, runners: 59.33 ± 4.02%, p = 0.0357), restored impairment in motor skill acquisition (latency to fall on day 1: 50.85 ± 15.45 and day 2: 168.50 ± 37.08 s, p = 0.0004), but failed to rescue spatial memory deficit. Immunostaining results revealed that sorafenib treatment did not affect the number of proliferating cells and immature neurons in the hippocampal dentate gyrus (DG), whereas running significantly increased cell proliferation in both vehicle- (total Ki-67+ cells, sedentary: 16,687.34 ± 72.63, exercise: 3320.03 ± 182.57, p < 0.0001) and sorafenib-treated mice (Ki-67+ cells in the ventral DG, sedentary: 688.82.34 ± 38.16, exercise: 979.53 ± 73.88, p < 0.0400). Our results suggest that spatial memory impairment and anhedonia-like behaviour precede the presence of muscle wasting, and these behavioural deficits are independent of the changes in adult hippocampal neurogenesis. Running effectively prevents body weight loss, improves motor skill acquisition and reduces anhedonia-like behaviour associated with increased proliferating cells and immature neurons in DG. Taken together, they support physical exercise rehabilitation as an effective strategy to prevent chemotherapy side effects in terms of mood dysregulation and motor deficit.
Collapse
Affiliation(s)
- Thomas H. Lee
- Department of Rehabilitation Sciences, Hong Kong Polytechnic University, Hung Hom, Hong Kong; (T.H.L.); (M.D.); (D.A.F.); (J.M.R.)
| | - Malegaddi Devaki
- Department of Rehabilitation Sciences, Hong Kong Polytechnic University, Hung Hom, Hong Kong; (T.H.L.); (M.D.); (D.A.F.); (J.M.R.)
- Mental Health Research Center (MHRC), Hong Kong Polytechnic University, Hung Hom, Hong Kong
- Research Institute for Smart Aging (RISA), Hong Kong Polytechnic University, Hung Hom, Hong Kong
| | - Douglas A. Formolo
- Department of Rehabilitation Sciences, Hong Kong Polytechnic University, Hung Hom, Hong Kong; (T.H.L.); (M.D.); (D.A.F.); (J.M.R.)
- Mental Health Research Center (MHRC), Hong Kong Polytechnic University, Hung Hom, Hong Kong
- Research Institute for Smart Aging (RISA), Hong Kong Polytechnic University, Hung Hom, Hong Kong
| | - Julia M. Rosa
- Department of Rehabilitation Sciences, Hong Kong Polytechnic University, Hung Hom, Hong Kong; (T.H.L.); (M.D.); (D.A.F.); (J.M.R.)
- Mental Health Research Center (MHRC), Hong Kong Polytechnic University, Hung Hom, Hong Kong
- Research Institute for Smart Aging (RISA), Hong Kong Polytechnic University, Hung Hom, Hong Kong
| | - Andy S. K. Cheng
- Department of Rehabilitation Sciences, Hong Kong Polytechnic University, Hung Hom, Hong Kong; (T.H.L.); (M.D.); (D.A.F.); (J.M.R.)
| | - Suk-Yu Yau
- Department of Rehabilitation Sciences, Hong Kong Polytechnic University, Hung Hom, Hong Kong; (T.H.L.); (M.D.); (D.A.F.); (J.M.R.)
- Mental Health Research Center (MHRC), Hong Kong Polytechnic University, Hung Hom, Hong Kong
- Research Institute for Smart Aging (RISA), Hong Kong Polytechnic University, Hung Hom, Hong Kong
| |
Collapse
|
5
|
Wang D, Wang T, Zhu M, Sun J, Zhou Z, Chen J, Teng L. A Preliminary Study on the Relationship between Serum Heparan Sulfate and Cancer-Related Cognitive Impairment: The Moderating Role of Oxidative Stress in Patients with Colorectal Cancer. Curr Oncol 2022; 29:2681-2694. [PMID: 35448193 PMCID: PMC9025203 DOI: 10.3390/curroncol29040219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 03/29/2022] [Accepted: 04/04/2022] [Indexed: 11/16/2022] Open
Abstract
Cancer-related cognitive impairment (CRCI) has been frequently reported in colorectal cancer survivors. Heparan sulfate (HS) was gradually considered to be related to cognitive disorders. The effect and potential mechanism of HS on CRCI in colorectal cancer patients were unexplored. In this study, all participants were divided into a cognitive impaired group and a cognitive normal group. The concentrations of oxidative stress factors and HS in serum were detected. Associations among HS, oxidative stress factors and CRCI were evaluated. Participants with cognitive impairment exhibited increased levels of HS, GSH, SOD and MDA, compared to the patients with normal cognitive performance. The independent significant association was found between HS and CRCI after controlling for various covariates. The higher concentrations of HS were related to the decreased cognitive performance among survivors who reported higher levels of GSH (β = 0.080, p = 0.002). Moreover, the nonlinear association between the level of HS and cognitive scores was confirmed using the restricted cubic splines (p < 0.001). These results indicated that the increased concentrations of circulating HS had a nonlinear negative connection with cognitive performance in colorectal cancer survivors, which was moderated by GSH. HS might be a new biomolecule for the identification and management of patients with CRCI.
Collapse
Affiliation(s)
- Danhui Wang
- Wuxi School of Medicine, Jiangnan University, Wuxi 214122, China; (D.W.); (M.Z.); (J.S.); (Z.Z.)
| | - Teng Wang
- Department of Oncology, Affiliated Hospital of Jiangnan University, Wuxi 214122, China;
| | - Min Zhu
- Wuxi School of Medicine, Jiangnan University, Wuxi 214122, China; (D.W.); (M.Z.); (J.S.); (Z.Z.)
| | - Jun Sun
- Wuxi School of Medicine, Jiangnan University, Wuxi 214122, China; (D.W.); (M.Z.); (J.S.); (Z.Z.)
| | - Zhou Zhou
- Wuxi School of Medicine, Jiangnan University, Wuxi 214122, China; (D.W.); (M.Z.); (J.S.); (Z.Z.)
| | - Jinghua Chen
- School of Pharmaceutical Sciences, Jiangnan University, Wuxi 214122, China;
| | - Liping Teng
- Wuxi School of Medicine, Jiangnan University, Wuxi 214122, China; (D.W.); (M.Z.); (J.S.); (Z.Z.)
- Correspondence:
| |
Collapse
|