1
|
Takeda K, Watanabe K, Iijima S, Nagahiro T, Suzuki H, Izumo K, Ikegaya Y, Matsumoto N. Ramelteon coordinates theta and gamma oscillations in the hippocampus for novel object recognition memory in mice. J Pharmacol Sci 2025; 158:121-130. [PMID: 40288822 DOI: 10.1016/j.jphs.2025.03.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2024] [Revised: 03/14/2025] [Accepted: 03/29/2025] [Indexed: 04/29/2025] Open
Abstract
Object recognition memory is an animal's ability to discriminate between novel and familiar items and is supported by neural activities in not only the perirhinal cortex but also the hippocampus and prefrontal cortex. Since we previously demonstrated that ramelteon enhanced object recognition memory in mice, we sought neural correlates of the memory improvement. We recorded neural activity in the hippocampus and prefrontal cortex of mice while they performed a novel object recognition task. We found that theta oscillations in the hippocampus were enhanced when ramelteon-treated mice explored both novel and familiar objects. Moreover, we showed high coherence in phases at low gamma frequencies between the hippocampus and prefrontal cortex. We assume that theta enhancement is indicative of increased cholinergic activity by melatonin receptor activation. High coherence of low gamma oscillations between the hippocampal and prefrontal network in ramelteon-treated mice sampling novel objects suggests better cognitive operations for discrimination between novelty and familiarity. The current study sheds light upon physiological consequences of melatonin receptor activation, further contributing improved cognitive functions.
Collapse
Affiliation(s)
- Kinjiro Takeda
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, 113-0033, Japan
| | - Kisa Watanabe
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, 113-0033, Japan
| | - Sena Iijima
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, 113-0033, Japan
| | - Takeshi Nagahiro
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, 113-0033, Japan
| | - Haruka Suzuki
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, 113-0033, Japan
| | - Kano Izumo
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, 113-0033, Japan
| | - Yuji Ikegaya
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, 113-0033, Japan; Institute for AI and Beyond, The University of Tokyo, Tokyo, 113-0033, Japan; Center for Information and Neural Networks, National Institute of Information and Communications Technology, Suita City, Osaka, 565-0871, Japan
| | - Nobuyoshi Matsumoto
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, 113-0033, Japan; Institute for AI and Beyond, The University of Tokyo, Tokyo, 113-0033, Japan.
| |
Collapse
|
2
|
Gelinas JN, Khodagholy D. Interictal network dysfunction and cognitive impairment in epilepsy. Nat Rev Neurosci 2025:10.1038/s41583-025-00924-3. [PMID: 40295879 DOI: 10.1038/s41583-025-00924-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/28/2025] [Indexed: 04/30/2025]
Abstract
Epilepsy is diagnosed when neural networks become capable of generating excessive or hypersynchronous activity patterns that result in observable seizures. In many cases, epilepsy is associated with cognitive comorbidities that persist between seizures and negatively impact quality of life. Dysregulation of the coordinated physiological network interactions that are required for cognitive function has been implicated in mediating these enduring symptoms, but the causal mechanisms are often elusive. Here, we provide an overview of neural network abnormalities with the potential to contribute to cognitive dysfunction in epilepsy. We examine these pathological interactions across spatial and temporal scales, additionally highlighting the dynamics that arise in response to the brain's intrinsic capacity for plasticity. Understanding these processes will facilitate development of network-level interventions to address cognitive comorbidities that remain undertreated by currently available epilepsy therapeutics.
Collapse
Affiliation(s)
- Jennifer N Gelinas
- Department of Anatomy and Neurobiology, University of California, Irvine, CA, USA.
- Department of Paediatrics, University of California, Irvine, CA, USA.
- Children's Hospital of Orange County, Orange, CA, USA.
| | - Dion Khodagholy
- Department of Anatomy and Neurobiology, University of California, Irvine, CA, USA.
- Department of Electrical Engineering, University of California, Irvine, CA, USA.
- Department of Biomedical Engineering, University of California, Irvine, CA, USA.
- Department of Materials Science and Engineering, University of California, Irvine, CA, USA.
| |
Collapse
|
3
|
Fang W, Jiang X, Chen J, Zhang C, Wang L. Oscillatory control over representational geometry of sequence working memory in macaque frontal cortex. Curr Biol 2025; 35:1495-1507.e5. [PMID: 40086442 DOI: 10.1016/j.cub.2025.02.031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2024] [Revised: 01/27/2025] [Accepted: 02/17/2025] [Indexed: 03/16/2025]
Abstract
To process sequential streams of information, e.g., language, the brain must encode multiple items in sequence working memory (SWM) according to their ordinal relationship. While the geometry of neural states could represent sequential events in the frontal cortex, the control mechanism over these neural states remains unclear. Using high-throughput electrophysiology recording in the macaque frontal cortex, we observed widespread theta responses after each stimulus entry. Crucially, by applying targeted dimensionality reduction to extract task-relevant neural subspaces from both local field potential (LFP) and spike data, we found that theta power transiently encoded each sequentially presented stimulus regardless of its order. At the same time, theta-spike interaction was rank-selectively associated with memory subspaces, thereby potentially supporting the binding of items to appropriate ranks. Furthermore, this putative theta control can generalize to length-variable and error sequences, predicting behavior. Thus, decomposed entry/rank-WM subspaces and theta-spike interactions may underlie the control of SWM.
Collapse
Affiliation(s)
- Wen Fang
- Institute of Neuroscience, Key Laboratory of Brain Cognition and Brain-Inspired Intelligence Technology, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China
| | - Xi Jiang
- Institute of Neuroscience, Key Laboratory of Brain Cognition and Brain-Inspired Intelligence Technology, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China
| | - Jingwen Chen
- Institute of Neuroscience, Key Laboratory of Brain Cognition and Brain-Inspired Intelligence Technology, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China
| | - Cong Zhang
- Institute of Neuroscience, Key Laboratory of Brain Cognition and Brain-Inspired Intelligence Technology, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China
| | - Liping Wang
- Institute of Neuroscience, Key Laboratory of Brain Cognition and Brain-Inspired Intelligence Technology, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China; Shanghai Academy of Natural Sciences (SANS), Fudan University, Shanghai 200031, China.
| |
Collapse
|
4
|
Gemzik ZM, Griffin AL. Medial septal theta stimulation enhances spatial working memory performance in rats. Learn Mem 2025; 32:a054075. [PMID: 40210434 DOI: 10.1101/lm.054075.124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Accepted: 03/06/2025] [Indexed: 04/12/2025]
Abstract
Spatial working memory (SWM) relies on the integrity of the medial septum area (MSA) and its ability to drive theta (4-12 Hz) oscillations in the hippocampus. This study tested the hypothesis that optogenetic theta stimulation of the MSA would enhance choice accuracy on a hippocampus-dependent task in rats. We delivered either excitatory or control theta stimulation during the delay period (10 or 30 sec) of a delayed alternation (DA) task. We show that MSA theta stimulation improved choice accuracy on the 30 sec delay trials, providing strong support for the notion that MSA theta stimulation boosts SWM.
Collapse
Affiliation(s)
- Zachary M Gemzik
- Department of Psychological and Brain Sciences, University of Delaware, Newark, Delaware 19716, USA
| | - Amy L Griffin
- Department of Psychological and Brain Sciences, University of Delaware, Newark, Delaware 19716, USA
| |
Collapse
|
5
|
Alexander GM, Nikolova VD, Stöber TM, Gruzdev A, Moy SS, Dudek SM. Perineuronal Nets on CA2 Pyramidal Cells and Parvalbumin-Expressing Cells Differentially Regulate Hippocampal-Dependent Memory. J Neurosci 2025; 45:e1626242024. [PMID: 39740999 PMCID: PMC11800750 DOI: 10.1523/jneurosci.1626-24.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 11/05/2024] [Accepted: 12/04/2024] [Indexed: 01/02/2025] Open
Abstract
Perineuronal nets (PNNs) are a specialized extracellular matrix that surrounds certain populations of neurons, including (inhibitory) parvalbumin (PV)-expressing interneurons throughout the brain and (excitatory) CA2 pyramidal neurons in hippocampus. PNNs are thought to regulate synaptic plasticity by stabilizing synapses and as such, could regulate learning and memory. Most often, PNN functions are queried using enzymatic degradation with chondroitinase, but that approach does not differentiate PNNs on CA2 neurons from those on adjacent PV cells. To disentangle the specific roles of PNNs on CA2 pyramidal cells and PV neurons in behavior, we generated conditional knock-out mouse strains with the primary protein component of PNNs, aggrecan (Acan), deleted from either CA2 pyramidal cells (Amigo2 Acan KO) or from PV cells (PV Acan KO). Male and female animals of each strain were tested for social, fear, and spatial memory, as well as for reversal learning. We found that Amigo2 Acan KO animals, but not PV Acan KO animals, had impaired social memory and reversal learning. PV Acan KOs, but not Amigo2 Acan KOs, had impaired contextual fear memory. These findings demonstrate independent roles for PNNs on each cell type in regulating hippocampal-dependent memory. We further investigated a potential mechanism of impaired social memory in the Amigo2 Acan KO animals and found reduced input to CA2 from the supramammillary nucleus (SuM), which signals social novelty. Additionally, Amigo2 Acan KOs lacked a social novelty-related local field potential response, suggesting that CA2 PNNs may coordinate functional SuM connections and associated physiological responses to social novelty.
Collapse
Affiliation(s)
- Georgia M Alexander
- Neurobiology Laboratory, National Institute of Environmental Health Sciences, Division of Intramural Research, National Institute of Health, Research Triangle Park, North Carolina 27713
| | - Viktoriya D Nikolova
- Carolina Institute for Developmental Disabilities and Department of Psychiatry, University of North Carolina School of Medicine, Chapel Hill, North Carolina 27599
| | - Tristan M Stöber
- Institute for Neural Computation, Faculty of Computer Science, Ruhr University Bochum, Bochum 44780, Germany
- Department of Neurology, University Hospital Frankfurt, Frankfurt 60590, Germany
| | - Artiom Gruzdev
- Genome Editing and Mouse Model Core Facility, National Institute of Environmental Health Sciences, Division of Intramural Research, National Institute of Health, Research Triangle Park, North Carolina 27713
| | - Sheryl S Moy
- Carolina Institute for Developmental Disabilities and Department of Psychiatry, University of North Carolina School of Medicine, Chapel Hill, North Carolina 27599
| | - Serena M Dudek
- Neurobiology Laboratory, National Institute of Environmental Health Sciences, Division of Intramural Research, National Institute of Health, Research Triangle Park, North Carolina 27713
| |
Collapse
|
6
|
Ahmadi S, Sasaki T, Sabariego M, Leibold C, Leutgeb S, Leutgeb JK. Distinct roles of dentate gyrus and medial entorhinal cortex inputs for phase precession and temporal correlations in the hippocampal CA3 area. Nat Commun 2025; 16:13. [PMID: 39746924 PMCID: PMC11696047 DOI: 10.1038/s41467-024-54943-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Accepted: 11/22/2024] [Indexed: 01/04/2025] Open
Abstract
The hippocampal CA3 subregion is a densely connected recurrent circuit that supports memory by generating and storing sequential neuronal activity patterns that reflect recent experience. While theta phase precession is thought to be critical for generating sequential activity during memory encoding, the circuit mechanisms that support this computation across hippocampal subregions are unknown. By analyzing CA3 network activity in the absence of each of its theta-modulated external excitatory inputs, we show necessary and unique contributions of the dentate gyrus (DG) and the medial entorhinal cortex (MEC) to phase precession. DG inputs are essential for preferential spiking of CA3 cells during late theta phases and for organizing the temporal order of neuronal firing, while MEC inputs sharpen the temporal precision throughout the theta cycle. A computational model that accounts for empirical findings suggests that the unique contribution of DG inputs to theta-related spike timing is supported by targeting precisely timed inhibitory oscillations. Our results thus identify a novel and unique functional role of the DG for sequence coding in the CA3 circuit.
Collapse
Affiliation(s)
- Siavash Ahmadi
- Neurobiology Department, School of Biological Sciences, University of California, San Diego, CA, USA
| | - Takuya Sasaki
- Neurobiology Department, School of Biological Sciences, University of California, San Diego, CA, USA
- Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Japan
| | - Marta Sabariego
- Neurobiology Department, School of Biological Sciences, University of California, San Diego, CA, USA
| | - Christian Leibold
- Fakultät für Biologie & Bernstein Center Freiburg, Albert-Ludwigs-Universität Freiburg, Freiburg, Germany
| | - Stefan Leutgeb
- Neurobiology Department, School of Biological Sciences, University of California, San Diego, CA, USA.
- Kavli Institute for Brain and Mind, University of California, San Diego, CA, USA.
- Institute for Advanced Study, Berlin, Germany.
| | - Jill K Leutgeb
- Neurobiology Department, School of Biological Sciences, University of California, San Diego, CA, USA.
- Institute for Advanced Study, Berlin, Germany.
| |
Collapse
|
7
|
Hasselmo ME. Development of the SPEAR Model: Separate Phases of Encoding and Retrieval Are Necessary for Storing Multiple Overlapping Associative Memories. Hippocampus 2025; 35:e23676. [PMID: 39721980 DOI: 10.1002/hipo.23676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 11/24/2024] [Accepted: 12/03/2024] [Indexed: 12/28/2024]
Abstract
In keeping with the historical focus of this special issue of Hippocampus, this paper reviews the history of my development of the SPEAR model. The SPEAR model proposes that separate phases of encoding and retrieval (SPEAR) allow effective storage of multiple overlapping associative memories in the hippocampal formation and other cortical structures. The separate phases for encoding and retrieval are proposed to occur within different phases of theta rhythm with a cycle time on the order of 125 ms. The same framework applies to the slower transition between encoding and consolidation dynamics regulated by acetylcholine. The review includes description of the experimental data on acetylcholine and theta rhythm that motivated this model, the realization that existing associative memory models require these different dynamics, and the subsequent experimental data supporting these dynamics. The review also includes discussion of my work on the encoding of episodic memories as spatiotemporal trajectories, and some personal description of the episodic memories from my own spatiotemporal trajectory as I worked on this model.
Collapse
Affiliation(s)
- Michael E Hasselmo
- Center for Systems Neuroscience, Boston University, Boston, Massachusetts, USA
| |
Collapse
|
8
|
Alexander GM, Nikolova VD, Stöber TM, Gruzdev A, Moy SS, Dudek SM. Perineuronal nets on CA2 pyramidal cells and parvalbumin-expressing cells differentially regulate hippocampal dependent memory. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.11.07.622463. [PMID: 39574580 PMCID: PMC11581025 DOI: 10.1101/2024.11.07.622463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/30/2024]
Abstract
Perineuronal nets (PNNs) are a specialized extracellular matrix that surround certain populations of neurons, including (inhibitory) parvalbumin (PV) expressing-interneurons throughout the brain and (excitatory) CA2 pyramidal neurons in hippocampus. PNNs are thought to regulate synaptic plasticity by stabilizing synapses and as such, could regulate learning and memory. Most often, PNN functions are queried using enzymatic degradation with chondroitinase, but that approach does not differentiate PNNs on CA2 neurons from those on adjacent PV cells. To disentangle the specific roles of PNNs on CA2 pyramidal cells and PV neurons in behavior, we generated conditional knockout mouse strains with the primary protein component of PNNs, aggrecan (Acan), deleted from either CA2 pyramidal cells (Amigo2 Acan KO) or from PV cells (PV Acan KO). Male and female animals of each strain were tested for social, fear, and spatial memory, as well as for reversal learning. We found that Amigo2 Acan KO animals, but not PV Acan KO animals, had impaired social memory and reversal learning. PV Acan KOs, but not Amigo2 Acan KOs had impaired contextual fear memory. These findings demonstrate independent roles for PNNs on each cell type in regulating hippocampal-dependent memory. We further investigated a potential mechanism of impaired social memory in the Amigo2 Acan KO animals and found reduced input to CA2 from the supramammillary nucleus (SuM), which signals social novelty. Additionally, Amigo2 Acan KOs lacked a social novelty-related local field potential response, suggesting that CA2 PNNs may coordinate functional SuM connections and associated physiological responses to social novelty.
Collapse
Affiliation(s)
- Georgia M. Alexander
- Neurobiology Laboratory, National Institute of Environmental Health Sciences, Division of Intramural Research, National Institute of Health, Research Triangle Park, North Carolina 27713, USA
| | - Viktoriya D. Nikolova
- Carolina Institute for Developmental Disabilities and Department of Psychiatry, University of North Carolina School of Medicine, Chapel Hill, North Carolina 27599, USA
| | - Tristan M. Stöber
- Institute for Neuroinformatics, Ruhr, University Bochum, Bochum, Germany
- Department of Neurology, University Hospital Frankfurt, Frankfurt, Germany
| | - Artiom Gruzdev
- Genome Editing and Mouse Model Core Facility, National Institute of Environmental Health Sciences, Division of Intramural Research, National Institute of Health, Research Triangle Park, North Carolina 27713, USA
| | - Sheryl S. Moy
- Carolina Institute for Developmental Disabilities and Department of Psychiatry, University of North Carolina School of Medicine, Chapel Hill, North Carolina 27599, USA
| | - Serena M. Dudek
- Neurobiology Laboratory, National Institute of Environmental Health Sciences, Division of Intramural Research, National Institute of Health, Research Triangle Park, North Carolina 27713, USA
| |
Collapse
|
9
|
Robinson JC, Ying J, Hasselmo ME, Brandon MP. Optogenetic silencing of medial septal GABAergic neurons disrupts grid cell spatial and temporal coding in the medial entorhinal cortex. Cell Rep 2024; 43:114590. [PMID: 39163200 DOI: 10.1016/j.celrep.2024.114590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 05/29/2024] [Accepted: 07/21/2024] [Indexed: 08/22/2024] Open
Abstract
The hippocampus and medial entorhinal cortex (MEC) form a cognitive map that facilitates spatial navigation. As part of this map, MEC grid cells fire in a repeating hexagonal pattern across an environment. This grid pattern relies on inputs from the medial septum (MS). The MS, and specifically GABAergic neurons, are essential for theta rhythm oscillations in the entorhinal-hippocampal network; however, the role of this population in grid cell function is unclear. To investigate this, we use optogenetics to inhibit MS-GABAergic neurons and observe that MS-GABAergic inhibition disrupts grid cell spatial periodicity. Grid cell spatial periodicity is disrupted during both optogenetic inhibition periods and short inter-stimulus intervals. In contrast, longer inter-stimulus intervals allow for the recovery of grid cell spatial firing. In addition, grid cell phase precession is also disrupted. These findings highlight the critical role of MS-GABAergic neurons in maintaining grid cell spatial and temporal coding in the MEC.
Collapse
Affiliation(s)
- Jennifer C Robinson
- Center for Systems Neuroscience, Department of Psychological and Brain Sciences, Boston University, Boston, MA, USA.
| | - Johnson Ying
- Department of Psychiatry, Douglas Hospital Research Centre, McGill University, Montreal QC, Canada; Integrated Program in Neuroscience, McGill University, Montreal, QC, Canada
| | - Michael E Hasselmo
- Center for Systems Neuroscience, Department of Psychological and Brain Sciences, Boston University, Boston, MA, USA
| | - Mark P Brandon
- Department of Psychiatry, Douglas Hospital Research Centre, McGill University, Montreal QC, Canada; Integrated Program in Neuroscience, McGill University, Montreal, QC, Canada.
| |
Collapse
|
10
|
Haziza S, Chrapkiewicz R, Zhang Y, Kruzhilin V, Li J, Li J, Delamare G, Swanson R, Buzsáki G, Kannan M, Vasan G, Lin MZ, Zeng H, Daigle TL, Schnitzer MJ. Imaging high-frequency voltage dynamics in multiple neuron classes of behaving mammals. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.15.607428. [PMID: 39185175 PMCID: PMC11343216 DOI: 10.1101/2024.08.15.607428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/27/2024]
Abstract
Fluorescent genetically encoded voltage indicators report transmembrane potentials of targeted cell-types. However, voltage-imaging instrumentation has lacked the sensitivity to track spontaneous or evoked high-frequency voltage oscillations in neural populations. Here we describe two complementary TEMPO voltage-sensing technologies that capture neural oscillations up to ~100 Hz. Fiber-optic TEMPO achieves ~10-fold greater sensitivity than prior photometry systems, allows hour-long recordings, and monitors two neuron-classes per fiber-optic probe in freely moving mice. With it, we uncovered cross-frequency-coupled theta- and gamma-range oscillations and characterized excitatory-inhibitory neural dynamics during hippocampal ripples and visual cortical processing. The TEMPO mesoscope images voltage activity in two cell-classes across a ~8-mm-wide field-of-view in head-fixed animals. In awake mice, it revealed sensory-evoked excitatory-inhibitory neural interactions and traveling gamma and 3-7 Hz waves in the visual cortex, and previously unreported propagation directions for hippocampal theta and beta waves. These technologies have widespread applications probing diverse oscillations and neuron-type interactions in healthy and diseased brains.
Collapse
Affiliation(s)
- Simon Haziza
- James H. Clark Center, Stanford University, Stanford, CA 94305, USA
- CNC Program, Stanford University, Stanford, CA 94305, USA
| | - Radosław Chrapkiewicz
- James H. Clark Center, Stanford University, Stanford, CA 94305, USA
- CNC Program, Stanford University, Stanford, CA 94305, USA
| | - Yanping Zhang
- James H. Clark Center, Stanford University, Stanford, CA 94305, USA
- CNC Program, Stanford University, Stanford, CA 94305, USA
- Howard Hughes Medical Institute, Stanford University, Stanford, CA 94305, USA
| | - Vasily Kruzhilin
- James H. Clark Center, Stanford University, Stanford, CA 94305, USA
- CNC Program, Stanford University, Stanford, CA 94305, USA
| | - Jane Li
- James H. Clark Center, Stanford University, Stanford, CA 94305, USA
- CNC Program, Stanford University, Stanford, CA 94305, USA
| | - Jizhou Li
- Howard Hughes Medical Institute, Stanford University, Stanford, CA 94305, USA
| | | | - Rachel Swanson
- Neuroscience Institute, Langone Medical Center, New York University, New York, NY 10016, USA
| | - György Buzsáki
- Neuroscience Institute, Langone Medical Center, New York University, New York, NY 10016, USA
- Department of Neurology, Langone Medical Center, New York University, New York, NY 10016, USA
| | - Madhuvanthi Kannan
- Department of Neuroscience, University of Minnesota, Minneapolis, MN 55455, USA
| | - Ganesh Vasan
- Department of Neuroscience, University of Minnesota, Minneapolis, MN 55455, USA
| | - Michael Z Lin
- Departments of Bioengineering & Pediatrics, Stanford University, Stanford CA 94305, USA
| | - Hongkui Zeng
- Allen Institute for Brain Science, Seattle, WA 98109, USA
| | - Tanya L Daigle
- Allen Institute for Brain Science, Seattle, WA 98109, USA
| | - Mark J Schnitzer
- James H. Clark Center, Stanford University, Stanford, CA 94305, USA
- CNC Program, Stanford University, Stanford, CA 94305, USA
- Howard Hughes Medical Institute, Stanford University, Stanford, CA 94305, USA
- Lead contact
| |
Collapse
|
11
|
Ruikes TR, Fiorilli J, Lim J, Huis In 't Veld G, Bosman C, Pennartz CMA. Theta Phase Entrainment of Single-Cell Spiking in Rat Somatosensory Barrel Cortex and Secondary Visual Cortex Is Enhanced during Multisensory Discrimination Behavior. eNeuro 2024; 11:ENEURO.0180-23.2024. [PMID: 38621992 PMCID: PMC11055653 DOI: 10.1523/eneuro.0180-23.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2023] [Revised: 02/16/2024] [Accepted: 02/16/2024] [Indexed: 04/17/2024] Open
Abstract
Phase entrainment of cells by theta oscillations is thought to globally coordinate the activity of cell assemblies across different structures, such as the hippocampus and neocortex. This coordination is likely required for optimal processing of sensory input during recognition and decision-making processes. In quadruple-area ensemble recordings from male rats engaged in a multisensory discrimination task, we investigated phase entrainment of cells by theta oscillations in areas along the corticohippocampal hierarchy: somatosensory barrel cortex (S1BF), secondary visual cortex (V2L), perirhinal cortex (PER), and dorsal hippocampus (dHC). Rats discriminated between two 3D objects presented in tactile-only, visual-only, or both tactile and visual modalities. During task engagement, S1BF, V2L, PER, and dHC LFP signals showed coherent theta-band activity. We found phase entrainment of single-cell spiking activity to locally recorded as well as hippocampal theta activity in S1BF, V2L, PER, and dHC. While phase entrainment of hippocampal spikes to local theta oscillations occurred during sustained epochs of task trials and was nonselective for behavior and modality, somatosensory and visual cortical cells were only phase entrained during stimulus presentation, mainly in their preferred modality (S1BF, tactile; V2L, visual), with subsets of cells selectively phase-entrained during cross-modal stimulus presentation (S1BF: visual; V2L: tactile). This effect could not be explained by modulations of firing rate or theta amplitude. Thus, hippocampal cells are phase entrained during prolonged epochs, while sensory and perirhinal neurons are selectively entrained during sensory stimulus presentation, providing a brief time window for coordination of activity.
Collapse
Affiliation(s)
- Thijs R Ruikes
- Center for Neuroscience, Faculty of Science, Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam 1098 XH, The Netherlands
| | - Julien Fiorilli
- Center for Neuroscience, Faculty of Science, Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam 1098 XH, The Netherlands
| | - Judith Lim
- Center for Neuroscience, Faculty of Science, Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam 1098 XH, The Netherlands
| | - Gerjan Huis In 't Veld
- Center for Neuroscience, Faculty of Science, Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam 1098 XH, The Netherlands
| | - Conrado Bosman
- Center for Neuroscience, Faculty of Science, Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam 1098 XH, The Netherlands
| | - Cyriel M A Pennartz
- Center for Neuroscience, Faculty of Science, Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam 1098 XH, The Netherlands
| |
Collapse
|
12
|
Bai W, Liu Y, Liu A, Xu X, Zheng X, Tian X, Liu T. Hippocampal-prefrontal high-gamma flow during performance of a spatial working memory. Brain Res Bull 2024; 207:110887. [PMID: 38280642 DOI: 10.1016/j.brainresbull.2024.110887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 01/11/2024] [Accepted: 01/22/2024] [Indexed: 01/29/2024]
Abstract
Working memory refers to a system that provides temporary storage and manipulation of the information necessary for complex cognitive tasks. The prefrontal cortex (PFC) and hippocampus (HPC) are major structures contributing to working memory. Accumulating evidence suggests that the HPC-PFC interactions are critical for the successful execution of working memory tasks. Nevertheless, the directional information transmission within the HPC-PFC pathway remains unclear. Using simultaneous multi-electrode recordings, we recorded local field potentials (LFPs) from the medial prefrontal cortex (mPFC) and ventral hippocampus (vHPC) while the rats performed a spatial working memory task in a Y-maze. The directionality of functional interactions between mPFC and vHPC was assessed using the phase-slope index (PSI). Our findings revealed a frequency-specific oscillatory synchrony in the two regions during the spatial working memory task. Furthermore, an increased high-gamma flow from vHPC to mPFC manifested exclusively during correctly performed trials, not observed during incorrect ones. This suggests that the enhanced high-gamma flow reflects behavioral performance in working memory. Consequently, our results indicate an major role of directional frequency-specific communication in the hippocampal-frontal circuit during spatial working memory, providing a potential mechanism for working memory.
Collapse
Affiliation(s)
- Wenwen Bai
- School of Biomedical Engineering and Technology, Tianjin Medical University, Tianjin 300070, China
| | - Yinglong Liu
- School of Biomedical Engineering and Technology, Tianjin Medical University, Tianjin 300070, China
| | - Aili Liu
- School of Basic Medicine, Tianjin Medical University, Tianjin 300070, China
| | - Xinyu Xu
- School of Biomedical Engineering and Technology, Tianjin Medical University, Tianjin 300070, China
| | - Xuyuan Zheng
- School of Biomedical Engineering and Technology, Tianjin Medical University, Tianjin 300070, China
| | - Xin Tian
- School of Biomedical Engineering and Technology, Tianjin Medical University, Tianjin 300070, China
| | - Tiaotiao Liu
- School of Biomedical Engineering and Technology, Tianjin Medical University, Tianjin 300070, China.
| |
Collapse
|
13
|
Robinson JC, Ying J, Hasselmo ME, Brandon MP. Optogenetic Silencing of Medial Septal GABAergic Neurons Disrupts Grid Cell Spatial and Temporal Coding in the Medial Entorhinal Cortex. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.11.08.566228. [PMID: 37986986 PMCID: PMC10659309 DOI: 10.1101/2023.11.08.566228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2023]
Abstract
The hippocampus and medial entorhinal cortex (MEC) form a cognitive map that facilitates spatial navigation. As part of this map, MEC grid cells fire in a repeating hexagonal pattern across an environment. This grid pattern relies on inputs from the medial septum (MS). The MS, and specifically its GABAergic neurons, are essential for theta rhythm oscillations in the entorhinal-hippocampal network, however, it is unknown if this subpopulation is also essential for grid cell function. To investigate this, we used optogenetics to inhibit MS-GABAergic neurons during grid cell recordings. We found that MS-GABAergic inhibition disrupted grid cell spatial periodicity both during optogenetic inhibition and during short 30-second recovery periods. Longer recovery periods of 60 seconds between the optogenetic inhibition periods allowed for the recovery of grid cell spatial firing. Grid cell temporal coding was also disrupted, as observed by a significant attenuation of theta phase precession. Together, these results demonstrate that MS-GABAergic neurons are critical for grid cell spatial and temporal coding in the MEC.
Collapse
|
14
|
Broussard JI, Redell JB, Zhao J, West R, Homma R, Dash PK. Optogenetic Stimulation of CA1 Pyramidal Neurons at Theta Enhances Recognition Memory in Brain Injured Animals. J Neurotrauma 2023; 40:2442-2448. [PMID: 37387400 PMCID: PMC10653071 DOI: 10.1089/neu.2023.0078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/01/2023] Open
Abstract
Abstract The hippocampus plays a prominent role in learning and memory formation. The functional integrity of this structure is often compromised after traumatic brain injury (TBI), resulting in lasting cognitive dysfunction. The activity of hippocampal neurons, particularly place cells, is coordinated by local theta oscillations. Previous studies aimed at examining hippocampal theta oscillations after experimental TBI have reported disparate findings. Using a diffuse brain injury model, the lateral fluid percussion injury (FPI; 2.0 atm), we report a significant reduction in hippocampal theta power that persists for at least three weeks after injury. We questioned whether the behavioral deficit associated with this reduction of theta power can be overcome by optogenetically stimulating CA1 neurons at theta in brain injured rats. Our results show that memory impairments in brain injured animals could be reversed by optogenetically stimulating CA1 pyramidal neurons expressing channelrhodopsin (ChR2) during learning. In contrast, injured animals receiving a control virus (lacking ChR2) did not benefit from optostimulation. These results suggest that direct stimulation of CA1 pyramidal neurons at theta may be a viable option for enhancing memory after TBI.
Collapse
Affiliation(s)
- John I. Broussard
- Department of Neurobiology and Anatomy, The University of Texas McGovern Medical School, Houston, Texas, USA
| | - John B. Redell
- Department of Neurobiology and Anatomy, The University of Texas McGovern Medical School, Houston, Texas, USA
| | - Jing Zhao
- Department of Neurobiology and Anatomy, The University of Texas McGovern Medical School, Houston, Texas, USA
| | - Rebecca West
- Department of Neurobiology and Anatomy, The University of Texas McGovern Medical School, Houston, Texas, USA
| | - Ryota Homma
- Department of Neurobiology and Anatomy, The University of Texas McGovern Medical School, Houston, Texas, USA
| | - Pramod K. Dash
- Department of Neurobiology and Anatomy, The University of Texas McGovern Medical School, Houston, Texas, USA
| |
Collapse
|
15
|
Chen YN, Kostka JK, Bitzenhofer SH, Hanganu-Opatz IL. Olfactory bulb activity shapes the development of entorhinal-hippocampal coupling and associated cognitive abilities. Curr Biol 2023; 33:4353-4366.e5. [PMID: 37729915 PMCID: PMC10617757 DOI: 10.1016/j.cub.2023.08.072] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 08/15/2023] [Accepted: 08/23/2023] [Indexed: 09/22/2023]
Abstract
The interplay between olfaction and higher cognitive processing has been documented in the adult brain; however, its development is poorly understood. In mice, shortly after birth, endogenous and stimulus-evoked activity in the olfactory bulb (OB) boosts the oscillatory entrainment of downstream lateral entorhinal cortex (LEC) and hippocampus (HP). However, it is unclear whether early OB activity has a long-lasting impact on entorhinal-hippocampal function and cognitive processing. Here, we chemogenetically silenced the synaptic outputs of mitral/tufted cells, the main projection neurons in the OB, during postnatal days 8-10. The transient manipulation leads to a long-lasting reduction of oscillatory coupling and weaker responsiveness to stimuli within developing entorhinal-hippocampal circuits accompanied by dendritic sparsification of LEC pyramidal neurons. Moreover, the transient silencing reduces the performance in behavioral tests involving entorhinal-hippocampal circuits later in life. Thus, neonatal OB activity is critical for the functional LEC-HP development and maturation of cognitive abilities.
Collapse
Affiliation(s)
- Yu-Nan Chen
- Institute of Developmental Neurophysiology, Center of Molecular Neurobiology, Hamburg Center of Neuroscience, University Medical Center Hamburg-Eppendorf, 20251 Hamburg, Germany
| | - Johanna K Kostka
- Institute of Developmental Neurophysiology, Center of Molecular Neurobiology, Hamburg Center of Neuroscience, University Medical Center Hamburg-Eppendorf, 20251 Hamburg, Germany
| | - Sebastian H Bitzenhofer
- Institute of Developmental Neurophysiology, Center of Molecular Neurobiology, Hamburg Center of Neuroscience, University Medical Center Hamburg-Eppendorf, 20251 Hamburg, Germany
| | - Ileana L Hanganu-Opatz
- Institute of Developmental Neurophysiology, Center of Molecular Neurobiology, Hamburg Center of Neuroscience, University Medical Center Hamburg-Eppendorf, 20251 Hamburg, Germany.
| |
Collapse
|
16
|
Maoz SLL, Stangl M, Topalovic U, Batista D, Hiller S, Aghajan ZM, Knowlton B, Stern J, Langevin JP, Fried I, Eliashiv D, Suthana N. Dynamic neural representations of memory and space during human ambulatory navigation. Nat Commun 2023; 14:6643. [PMID: 37863929 PMCID: PMC10589239 DOI: 10.1038/s41467-023-42231-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Accepted: 10/03/2023] [Indexed: 10/22/2023] Open
Abstract
Our ability to recall memories of personal experiences is an essential part of daily life. These episodic memories often involve movement through space and thus require continuous encoding of one's position relative to the surrounding environment. The medial temporal lobe (MTL) is thought to be critically involved, based on studies in freely moving rodents and stationary humans. However, it remains unclear if and how the MTL represents both space and memory especially during physical navigation, given challenges associated with deep brain recordings in humans during movement. We recorded intracranial electroencephalographic (iEEG) activity while participants completed an ambulatory spatial memory task within an immersive virtual reality environment. MTL theta activity was modulated by successful memory retrieval or spatial positions within the environment, depending on dynamically changing behavioral goals. Altogether, these results demonstrate how human MTL oscillations can represent both memory and space in a temporally flexible manner during freely moving navigation.
Collapse
Affiliation(s)
- Sabrina L L Maoz
- Department of Bioengineering, University of California, Los Angeles, Los Angeles, CA, 90095, USA
- Medical Scientist Training Program, University of California, Los Angeles, Los Angeles, CA, 90095, USA
- Department of Psychiatry and Biobehavioral Sciences, Jane and Terry Semel Institute for Neuroscience and Human Behavior, University of California, Los Angeles, Los Angeles, CA, 90024, USA
| | - Matthias Stangl
- Department of Psychiatry and Biobehavioral Sciences, Jane and Terry Semel Institute for Neuroscience and Human Behavior, University of California, Los Angeles, Los Angeles, CA, 90024, USA
| | - Uros Topalovic
- Department of Psychiatry and Biobehavioral Sciences, Jane and Terry Semel Institute for Neuroscience and Human Behavior, University of California, Los Angeles, Los Angeles, CA, 90024, USA
| | - Daniel Batista
- Department of Psychiatry and Biobehavioral Sciences, Jane and Terry Semel Institute for Neuroscience and Human Behavior, University of California, Los Angeles, Los Angeles, CA, 90024, USA
| | - Sonja Hiller
- Department of Psychiatry and Biobehavioral Sciences, Jane and Terry Semel Institute for Neuroscience and Human Behavior, University of California, Los Angeles, Los Angeles, CA, 90024, USA
| | - Zahra M Aghajan
- Department of Psychiatry and Biobehavioral Sciences, Jane and Terry Semel Institute for Neuroscience and Human Behavior, University of California, Los Angeles, Los Angeles, CA, 90024, USA
| | - Barbara Knowlton
- Department of Psychology, University of California, Los Angeles, Los Angeles, CA, 90095, USA
| | - John Stern
- Department of Neurology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, 90095, USA
| | - Jean-Philippe Langevin
- Neurosurgery Service, Department of Veterans Affairs Greater Los Angeles Healthcare System, Los Angeles, CA, 90073, USA
- Department of Neurosurgery, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, 90095, USA
| | - Itzhak Fried
- Department of Psychiatry and Biobehavioral Sciences, Jane and Terry Semel Institute for Neuroscience and Human Behavior, University of California, Los Angeles, Los Angeles, CA, 90024, USA
- Department of Neurosurgery, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, 90095, USA
- Faculty of Medicine, Tel-Aviv University, Tel-Aviv, 69978, Israel
| | - Dawn Eliashiv
- Department of Neurology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, 90095, USA
| | - Nanthia Suthana
- Department of Bioengineering, University of California, Los Angeles, Los Angeles, CA, 90095, USA.
- Department of Psychiatry and Biobehavioral Sciences, Jane and Terry Semel Institute for Neuroscience and Human Behavior, University of California, Los Angeles, Los Angeles, CA, 90024, USA.
- Department of Psychology, University of California, Los Angeles, Los Angeles, CA, 90095, USA.
- Department of Neurosurgery, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, 90095, USA.
| |
Collapse
|
17
|
Robinson JC, Wilmot JH, Hasselmo ME. Septo-hippocampal dynamics and the encoding of space and time. Trends Neurosci 2023; 46:712-725. [PMID: 37479632 PMCID: PMC10538955 DOI: 10.1016/j.tins.2023.06.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2023] [Revised: 05/12/2023] [Accepted: 06/27/2023] [Indexed: 07/23/2023]
Abstract
Encoding an event in memory requires neural activity to represent multiple dimensions of behavioral experience in space and time. Recent experiments have explored the influence of neural dynamics regulated by the medial septum on the functional encoding of space and time by neurons in the hippocampus and associated structures. This review addresses these dynamics, focusing on the role of theta rhythm, the differential effects of septal inactivation and activation on the functional coding of space and time by individual neurons, and the influence on phase coding that appears as phase precession. We also discuss data indicating that theta rhythm plays a role in timing the internal dynamics of memory encoding and retrieval, as well as the behavioral influences of these neuronal manipulations with regard to memory function.
Collapse
Affiliation(s)
- Jennifer C Robinson
- Center for Systems Neuroscience, Boston University, 610 Commonwealth Avenue, Boston, MA 02215, USA.
| | - Jacob H Wilmot
- Center for Systems Neuroscience, Boston University, 610 Commonwealth Avenue, Boston, MA 02215, USA.
| | - Michael E Hasselmo
- Center for Systems Neuroscience, Boston University, 610 Commonwealth Avenue, Boston, MA 02215, USA.
| |
Collapse
|
18
|
Etter G, Carmichael JE, Williams S. Linking temporal coordination of hippocampal activity to memory function. Front Cell Neurosci 2023; 17:1233849. [PMID: 37720546 PMCID: PMC10501408 DOI: 10.3389/fncel.2023.1233849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Accepted: 08/01/2023] [Indexed: 09/19/2023] Open
Abstract
Oscillations in neural activity are widespread throughout the brain and can be observed at the population level through the local field potential. These rhythmic patterns are associated with cycles of excitability and are thought to coordinate networks of neurons, in turn facilitating effective communication both within local circuits and across brain regions. In the hippocampus, theta rhythms (4-12 Hz) could contribute to several key physiological mechanisms including long-range synchrony, plasticity, and at the behavioral scale, support memory encoding and retrieval. While neurons in the hippocampus appear to be temporally coordinated by theta oscillations, they also tend to fire in sequences that are developmentally preconfigured. Although loss of theta rhythmicity impairs memory, these sequences of spatiotemporal representations persist in conditions of altered hippocampal oscillations. The focus of this review is to disentangle the relative contribution of hippocampal oscillations from single-neuron activity in learning and memory. We first review cellular, anatomical, and physiological mechanisms underlying the generation and maintenance of hippocampal rhythms and how they contribute to memory function. We propose candidate hypotheses for how septohippocampal oscillations could support memory function while not contributing directly to hippocampal sequences. In particular, we explore how theta rhythms could coordinate the integration of upstream signals in the hippocampus to form future decisions, the relevance of such integration to downstream regions, as well as setting the stage for behavioral timescale synaptic plasticity. Finally, we leverage stimulation-based treatment in Alzheimer's disease conditions as an opportunity to assess the sufficiency of hippocampal oscillations for memory function.
Collapse
Affiliation(s)
| | | | - Sylvain Williams
- Department of Psychiatry, Douglas Mental Health Research Institute, McGill University, Montreal, QC, Canada
| |
Collapse
|
19
|
Kloc ML, Chen Y, Daglian JM, Holmes GL, Baram TZ, Barry JM. Spatial learning impairments and discoordination of entorhinal-hippocampal circuit coding following prolonged febrile seizures. Hippocampus 2023; 33:970-992. [PMID: 37096324 PMCID: PMC10529121 DOI: 10.1002/hipo.23541] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 03/30/2023] [Accepted: 04/08/2023] [Indexed: 04/26/2023]
Abstract
How the development and function of neural circuits governing learning and memory are affected by insults in early life remains poorly understood. The goal of this study was to identify putative changes in cortico-hippocampal signaling mechanisms that could lead to learning and memory deficits in a clinically relevant developmental pathophysiological rodent model, Febrile status epilepticus (FSE). FSE in both pediatric cases and the experimental animal model, is associated with enduring physiological alterations of the hippocampal circuit and cognitive impairment. Here, we deconstruct hippocampal circuit throughput by inducing slow theta oscillations in rats under urethane anesthesia and isolating the dendritic compartments of CA1 and dentate gyrus subfields, their reception of medial and lateral entorhinal cortex inputs, and the efficacy of signal propagation to each somatic cell layer. We identify FSE-induced theta-gamma decoupling at cortical synaptic input pathways and altered signal phase coherence along the CA1 and dentate gyrus somatodendritic axes. Moreover, increased DG synaptic activity levels are predictive of poor cognitive outcomes. We propose that these alterations in cortico-hippocampal coordination interfere with the ability of hippocampal dendrites to receive, decode and propagate neocortical inputs. If this frequency-specific syntax is necessary for cortico-hippocampal coordination and spatial learning and memory, its loss could be a mechanism for FSE cognitive comorbidities.
Collapse
Affiliation(s)
- Michelle L. Kloc
- Epilepsy Cognition and Development Group, Department of Neurological Sciences, University of Vermont, Larner College of Medicine, Burlington, Vermont, USA
| | - Yuncai Chen
- Departments of Pediatrics, University California-Irvine, Irvine, California, USA
- Departments of Anatomy/Neurobiology, University California-Irvine, Irvine, California, USA
| | - Jennifer M. Daglian
- Departments of Pediatrics, University California-Irvine, Irvine, California, USA
| | - Gregory L. Holmes
- Epilepsy Cognition and Development Group, Department of Neurological Sciences, University of Vermont, Larner College of Medicine, Burlington, Vermont, USA
| | - Tallie Z. Baram
- Departments of Pediatrics, University California-Irvine, Irvine, California, USA
- Departments of Anatomy/Neurobiology, University California-Irvine, Irvine, California, USA
- Departments of Neurology, University California-Irvine, Irvine, California, USA
| | - Jeremy M. Barry
- Epilepsy Cognition and Development Group, Department of Neurological Sciences, University of Vermont, Larner College of Medicine, Burlington, Vermont, USA
| |
Collapse
|
20
|
Aoki Y, Yokoi T, Morikawa S, Kuga N, Ikegaya Y, Sasaki T. Effects of theta phase precessing optogenetic intervention on hippocampal neuronal reactivation and spatial maps. iScience 2023; 26:107233. [PMID: 37534136 PMCID: PMC10392074 DOI: 10.1016/j.isci.2023.107233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 06/04/2023] [Accepted: 06/23/2023] [Indexed: 08/04/2023] Open
Abstract
As animals explore environments, hippocampal place cells sequentially fire at progressively earlier phases of theta oscillations in hippocampal local field potentials. In this study, we evaluated the network-level significance of theta phase-entrained neuronal activity in organizing place cell spike patterns. A closed-loop system was developed in which optogenetic stimulation with a temporal pattern replicating theta phase precession is delivered to hippocampal CA1 neurons when rats traversed a particular region on a linear track. Place cells that had place fields during phase precessing stimulation, but not random phase stimulation, showed stronger reactivation during hippocampal sharp-wave ripples in a subsequent rest period. After the rest period, place cells with place fields that emerged during phase precessing stimulation showed more stable place fields. These results imply that neuronal reactivation and stability of spatial maps are mediated by theta phase precession in the hippocampus.
Collapse
Affiliation(s)
- Yuki Aoki
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Taiki Yokoi
- Department of Pharmacology, Graduate School of Pharmaceutical Sciences, Tohoku University, 6-3 Aramaki-Aoba, Aoba-Ku, Sendai 980-8578, Japan
| | - Shota Morikawa
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
- Institute for AI and Beyond, The University of Tokyo, Tokyo 113-0033, Japan
| | - Nahoko Kuga
- Department of Pharmacology, Graduate School of Pharmaceutical Sciences, Tohoku University, 6-3 Aramaki-Aoba, Aoba-Ku, Sendai 980-8578, Japan
| | - Yuji Ikegaya
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
- Institute for AI and Beyond, The University of Tokyo, Tokyo 113-0033, Japan
- Center for Information and Neural Networks, 1-4 Yamadaoka, Suita City, Osaka 565-0871, Japan
| | - Takuya Sasaki
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
- Department of Pharmacology, Graduate School of Pharmaceutical Sciences, Tohoku University, 6-3 Aramaki-Aoba, Aoba-Ku, Sendai 980-8578, Japan
| |
Collapse
|
21
|
Wang C, Lee H, Rao G, Doreswamy Y, Savelli F, Knierim JJ. Superficial-layer versus deep-layer lateral entorhinal cortex: Coding of allocentric space, egocentric space, speed, boundaries, and corners. Hippocampus 2023; 33:448-464. [PMID: 36965194 PMCID: PMC11717144 DOI: 10.1002/hipo.23528] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 02/06/2023] [Accepted: 03/08/2023] [Indexed: 03/27/2023]
Abstract
Entorhinal cortex is the major gateway between the neocortex and the hippocampus and thus plays an essential role in subserving episodic memory and spatial navigation. It can be divided into the medial entorhinal cortex (MEC) and the lateral entorhinal cortex (LEC), which are commonly theorized to be critical for spatial (context) and non-spatial (content) inputs, respectively. Consistent with this theory, LEC neurons are found to carry little information about allocentric self-location, even in cue-rich environments, but they exhibit egocentric spatial information about external items in the environment. The superficial and deep layers of LEC are believed to mediate the input to and output from the hippocampus, respectively. As earlier studies mainly examined the spatial firing properties of superficial-layer LEC neurons, here we characterized the deep-layer LEC neurons and made direct comparisons with their superficial counterparts in single unit recordings from behaving rats. Because deep-layer LEC cells received inputs from hippocampal regions, which have strong selectivity for self-location, we hypothesized that deep-layer LEC neurons would be more informative about allocentric position than superficial-layer LEC neurons. We found that deep-layer LEC cells showed only slightly more allocentric spatial information and higher spatial consistency than superficial-layer LEC cells. Egocentric coding properties were comparable between these two subregions. In addition, LEC neurons demonstrated preferential firing at lower speeds, as well as at the boundary or corners of the environment. These results suggest that allocentric spatial outputs from the hippocampus are transformed in deep-layer LEC into the egocentric coding dimensions of LEC, rather than maintaining the allocentric spatial tuning of the CA1 place fields.
Collapse
Affiliation(s)
- Cheng Wang
- Guangdong Provincial Key Laboratory of Brain Connectome and Behavior, CAS Key Laboratory of Brain Connectome and Manipulation, the Brain Cognition and Brain Disease Institute (BCBDI), Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
- Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen, 518055, China
- Zanvyl Krieger Mind/Brain Institute, Johns Hopkins University, Baltimore, Maryland, USA
| | - Heekyung Lee
- Zanvyl Krieger Mind/Brain Institute, Johns Hopkins University, Baltimore, Maryland, USA
| | - Geeta Rao
- Zanvyl Krieger Mind/Brain Institute, Johns Hopkins University, Baltimore, Maryland, USA
| | - Yoganarasimha Doreswamy
- Department of Neurobiology and Anatomy, University of Texas Medical School at Houston, Houston, Texas, USA
| | - Francesco Savelli
- Zanvyl Krieger Mind/Brain Institute, Johns Hopkins University, Baltimore, Maryland, USA
| | - James J Knierim
- Zanvyl Krieger Mind/Brain Institute, Johns Hopkins University, Baltimore, Maryland, USA
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University, Baltimore, Maryland, USA
- Kavli Neuroscience Discovery Institute, Johns Hopkins University, Baltimore, Maryland, USA
| |
Collapse
|
22
|
Hines M, Poulter S, Douchamps V, Pibiri F, McGregor A, Lever C. Frequency matters: how changes in hippocampal theta frequency can influence temporal coding, anxiety-reduction, and memory. Front Syst Neurosci 2023; 16:998116. [PMID: 36817946 PMCID: PMC9936826 DOI: 10.3389/fnsys.2022.998116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Accepted: 12/30/2022] [Indexed: 02/05/2023] Open
Abstract
Hippocampal theta frequency is a somewhat neglected topic relative to theta power, phase, coherence, and cross-frequency coupling. Accordingly, here we review and present new data on variation in hippocampal theta frequency, focusing on functional associations (temporal coding, anxiety reduction, learning, and memory). Taking the rodent hippocampal theta frequency to running-speed relationship as a model, we identify two doubly-dissociable frequency components: (a) the slope component of the theta frequency-to-stimulus-rate relationship ("theta slope"); and (b) its y-intercept frequency ("theta intercept"). We identify three tonic determinants of hippocampal theta frequency. (1) Hotter temperatures increase theta frequency, potentially consistent with time intervals being judged as shorter when hot. Initial evidence suggests this occurs via the "theta slope" component. (2) Anxiolytic drugs with widely-different post-synaptic and pre-synaptic primary targets share the effect of reducing the "theta intercept" component, supporting notions of a final common pathway in anxiety reduction involving the hippocampus. (3) Novelty reliably decreases, and familiarity increases, theta frequency, acting upon the "theta slope" component. The reliability of this latter finding, and the special status of novelty for learning, prompts us to propose a Novelty Elicits Slowing of Theta frequency (NEST) hypothesis, involving the following elements: (1) Theta frequency slowing in the hippocampal formation is a generalised response to novelty of different types and modalities; (2) Novelty-elicited theta slowing is a hippocampal-formation-wide adaptive response functioning to accommodate the additional need for learning entailed by novelty; (3) Lengthening the theta cycle enhances associativity; (4) Even part-cycle lengthening may boost associativity; and (5) Artificial theta stimulation aimed at enhancing learning should employ low-end theta frequencies.
Collapse
|
23
|
Gut Prevotellaceae-GABAergic septohippocampal pathway mediates spatial memory impairment in high-fat diet-fed ovariectomized mice. Neurobiol Dis 2023; 177:105993. [PMID: 36627028 DOI: 10.1016/j.nbd.2023.105993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 10/09/2022] [Accepted: 01/05/2023] [Indexed: 01/09/2023] Open
Abstract
Clarifying the risk factors and mechanisms that contribute to the onset of cognitive impairment following estrogen depletion is essential for improving the quality of life of older females. In the current study, using behavioral tests, 16S rDNA sequencing, in vivo and in vitro electrophysiology, optogenetics and chemogenetics, we found that high-fat diet (HFD)-accelerated impairment of hippocampus-dependent memory, gut microbiota, and hippocampal theta rhythmogenesis in ovariectomized (OVX) mice and fecal microbiota transplantation rescued these phenomena. The identification of fasting-activated medial septal neurons showed that PV+ GABAergic neurons in the medial septal area (MSA) respond to gut sensory signals. Optogenetic activation of septohippocampal PV+ GABAergic fibers (but not cholinergic fibers) significantly rescued hippocampal theta rhythmogenesis and spatial memory in HFD-fed OVX mice. Resistant starch supplementation (RSHFD) rectified the gut Prevotellaceae and considerably alleviated reduced septal gut-responsive neurons, decreased hippocampal theta rhythm, and impaired hippocampus-dependent memory in HFD-fed OVX mice. Furthermore, chemogenetic inhibition of septal PV+ GABAergic neurons reversed the neuroprotective effects of resistant starch supplementation. These findings highlight the notable gut-sensory nature of medial septal PV+ GABAergic neurons. A HFD accelerates estrogen deficiency-induced cognitive impairment by disrupting the gut Prevotellaceae-septo-hippocampal pathway. This study contributes to a better understanding of the precise gut-brain control of cognition and cognitive impairment in postmenopausal females.
Collapse
|
24
|
Etter G, van der Veldt S, Choi J, Williams S. Optogenetic frequency scrambling of hippocampal theta oscillations dissociates working memory retrieval from hippocampal spatiotemporal codes. Nat Commun 2023; 14:410. [PMID: 36697399 PMCID: PMC9877037 DOI: 10.1038/s41467-023-35825-5] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Accepted: 01/03/2023] [Indexed: 01/26/2023] Open
Abstract
The precise temporal coordination of activity in the brain is thought to be fundamental for memory function. Inhibitory neurons in the medial septum provide a prominent source of innervation to the hippocampus and play a major role in controlling hippocampal theta (~8 Hz) oscillations. While pharmacological inhibition of medial septal neurons is known to disrupt memory, the exact role of septal inhibitory neurons in regulating hippocampal representations and memory is not fully understood. Here, we dissociate the role of theta rhythms in spatiotemporal coding and memory using an all-optical interrogation and recording approach. We find that optogenetic frequency scrambling stimulations abolish theta oscillations and modulate a portion of neurons in the hippocampus. Such stimulation decreased episodic and working memory retrieval while leaving hippocampal spatiotemporal codes intact. Our study suggests that theta rhythms play an essential role in memory but may not be necessary for hippocampal spatiotemporal codes.
Collapse
Affiliation(s)
- Guillaume Etter
- McGill University & Douglas Mental Health University Institute, Montreal, Canada.
| | | | - Jisoo Choi
- McGill University & Douglas Mental Health University Institute, Montreal, Canada
| | - Sylvain Williams
- McGill University & Douglas Mental Health University Institute, Montreal, Canada.
| |
Collapse
|
25
|
Zheng Y, Liu XL, Nishiyama S, Ranganath C, O’Reilly RC. Correcting the hebbian mistake: Toward a fully error-driven hippocampus. PLoS Comput Biol 2022; 18:e1010589. [PMID: 36219613 PMCID: PMC9586412 DOI: 10.1371/journal.pcbi.1010589] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 10/21/2022] [Accepted: 09/19/2022] [Indexed: 11/18/2022] Open
Abstract
The hippocampus plays a critical role in the rapid learning of new episodic memories. Many computational models propose that the hippocampus is an autoassociator that relies on Hebbian learning (i.e., "cells that fire together, wire together"). However, Hebbian learning is computationally suboptimal as it does not learn in a way that is driven toward, and limited by, the objective of achieving effective retrieval. Thus, Hebbian learning results in more interference and a lower overall capacity. Our previous computational models have utilized a powerful, biologically plausible form of error-driven learning in hippocampal CA1 and entorhinal cortex (EC) (functioning as a sparse autoencoder) by contrasting local activity states at different phases in the theta cycle. Based on specific neural data and a recent abstract computational model, we propose a new model called Theremin (Total Hippocampal ERror MINimization) that extends error-driven learning to area CA3-the mnemonic heart of the hippocampal system. In the model, CA3 responds to the EC monosynaptic input prior to the EC disynaptic input through dentate gyrus (DG), giving rise to a temporal difference between these two activation states, which drives error-driven learning in the EC→CA3 and CA3↔CA3 projections. In effect, DG serves as a teacher to CA3, correcting its patterns into more pattern-separated ones, thereby reducing interference. Results showed that Theremin, compared with our original Hebbian-based model, has significantly increased capacity and learning speed. The model makes several novel predictions that can be tested in future studies.
Collapse
Affiliation(s)
- Yicong Zheng
- Department of Psychology, University of California, Davis, California, United States of America
- Center for Neuroscience, University of California, Davis, California, United States of America
| | - Xiaonan L. Liu
- Department of Psychology, The Chinese University of Hong Kong, Hong Kong, People’s Republic of China
| | - Satoru Nishiyama
- Graduate School of Education, Kyoto University, Kyoto, Japan
- Japan Society for the Promotion of Science, Tokyo, Japan
| | - Charan Ranganath
- Department of Psychology, University of California, Davis, California, United States of America
- Center for Neuroscience, University of California, Davis, California, United States of America
| | - Randall C. O’Reilly
- Department of Psychology, University of California, Davis, California, United States of America
- Center for Neuroscience, University of California, Davis, California, United States of America
- Department of Computer Science, University of California, Davis, California, United States of America
- * E-mail:
| |
Collapse
|
26
|
Gu Z, Yakel JL. Cholinergic Regulation of Hippocampal Theta Rhythm. Biomedicines 2022; 10:biomedicines10040745. [PMID: 35453495 PMCID: PMC9027244 DOI: 10.3390/biomedicines10040745] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 03/21/2022] [Accepted: 03/22/2022] [Indexed: 11/16/2022] Open
Abstract
Cholinergic regulation of hippocampal theta rhythm has been proposed as one of the central mechanisms underlying hippocampal functions including spatial memory encoding. However, cholinergic transmission has been traditionally associated with atropine-sensitive type II hippocampal theta oscillations that occur during alert immobility or in urethane-anesthetized animals. The role of cholinergic regulation of type I theta oscillations in behaving animals is much less clear. Recent studies strongly suggest that both cholinergic muscarinic and nicotinic receptors do actively regulate type I hippocampal theta oscillations and thus provide the cholinergic mechanism for theta-associated hippocampal learning. Septal cholinergic activation can regulate hippocampal circuit and theta expression either through direct septohippocampal cholinergic projections, or through septal glutamatergic and GABAergic neurons, that can precisely entrain hippocampal theta rhythmicity.
Collapse
|
27
|
Cheron G, Ristori D, Petieau M, Simar C, Zarka D, Cebolla AM. Effects of Pulsed-Wave Chromotherapy and Guided Relaxation on the Theta-Alpha Oscillation During Arrest Reaction. Front Psychol 2022; 13:792872. [PMID: 35310269 PMCID: PMC8929400 DOI: 10.3389/fpsyg.2022.792872] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Accepted: 01/13/2022] [Indexed: 12/31/2022] Open
Abstract
The search for the best wellness practice has promoted the development of devices integrating different technologies and guided meditation. However, the final effects on the electrical activity of the brain remain relatively sparse. Here, we have analyzed of the alpha and theta electroencephalographic oscillations during the realization of the arrest reaction (AR; eyes close/eyes open transition) when a chromotherapy session performed in a dedicated room [Rebalance (RB) device], with an ergonomic bed integrating pulsed-wave light (PWL) stimulation, guided breathing, and body scan exercises. We demonstrated that the PWL induced an evoked-related potential characterized by the N2-P3 components maximally recorded on the fronto-central areas and accompanied by an event-related synchronization (ERS) of the delta–theta–alpha oscillations. The power of the alpha and theta oscillations was analyzed during repeated ARs testing realized along with the whole RB session. We showed that the power of the alpha and theta oscillations was significantly increased during the session in comparison to their values recorded before. Of the 14 participants, 11 and 6 showed a significant power increase of the alpha and theta oscillations, respectively. These increased powers were not observed in two different control groups (n = 28) who stayed passively outside or inside the RB room but without any type of stimulation. These preliminary results suggest that PWL chromotherapy and guided relaxation induce measurable electrical brain changes that could be beneficial under neuropsychiatric perspectives.
Collapse
Affiliation(s)
- Guy Cheron
- Laboratory of Neurophysiology and Movement Biomechanics, Université Libre de Bruxelles, Brussels, Belgium.,ULB Neuroscience Institute, Université Libre de Bruxelles, Brussels, Belgium.,Laboratory of Neuroscience, Université de Mons, Mons, Belgium
| | - Dominique Ristori
- Laboratory of Neurophysiology and Movement Biomechanics, Université Libre de Bruxelles, Brussels, Belgium.,ULB Neuroscience Institute, Université Libre de Bruxelles, Brussels, Belgium
| | - Mathieu Petieau
- Laboratory of Neurophysiology and Movement Biomechanics, Université Libre de Bruxelles, Brussels, Belgium.,ULB Neuroscience Institute, Université Libre de Bruxelles, Brussels, Belgium
| | - Cédric Simar
- Laboratory of Neurophysiology and Movement Biomechanics, Université Libre de Bruxelles, Brussels, Belgium.,ULB Neuroscience Institute, Université Libre de Bruxelles, Brussels, Belgium.,Machine Learning Group, Computer Science Department, Université Libre de Bruxelles, Brussels, Belgium
| | - David Zarka
- Laboratory of Neurophysiology and Movement Biomechanics, Université Libre de Bruxelles, Brussels, Belgium.,ULB Neuroscience Institute, Université Libre de Bruxelles, Brussels, Belgium
| | - Ana-Maria Cebolla
- Laboratory of Neurophysiology and Movement Biomechanics, Université Libre de Bruxelles, Brussels, Belgium.,ULB Neuroscience Institute, Université Libre de Bruxelles, Brussels, Belgium
| |
Collapse
|
28
|
Rezayat E, Clark K, Dehaqani MRA, Noudoost B. Dependence of Working Memory on Coordinated Activity Across Brain Areas. Front Syst Neurosci 2022; 15:787316. [PMID: 35095433 PMCID: PMC8792503 DOI: 10.3389/fnsys.2021.787316] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 12/06/2021] [Indexed: 11/15/2022] Open
Abstract
Neural signatures of working memory (WM) have been reported in numerous brain areas, suggesting a distributed neural substrate for memory maintenance. In the current manuscript we provide an updated review of the literature focusing on intracranial neurophysiological recordings during WM in primates. Such signatures of WM include changes in firing rate or local oscillatory power within an area, along with measures of coordinated activity between areas based on synchronization between oscillations. In comparing the ability of various neural signatures in any brain area to predict behavioral performance, we observe that synchrony between areas is more frequently and robustly correlated with WM performance than any of the within-area neural signatures. We further review the evidence for alteration of inter-areal synchrony in brain disorders, consistent with an important role for such synchrony during behavior. Additionally, results of causal studies indicate that manipulating synchrony across areas is especially effective at influencing WM task performance. Each of these lines of research supports the critical role of inter-areal synchrony in WM. Finally, we propose a framework for interactions between prefrontal and sensory areas during WM, incorporating a range of experimental findings and offering an explanation for the observed link between intra-areal measures and WM performance.
Collapse
Affiliation(s)
- Ehsan Rezayat
- School of Cognitive Sciences, Institute for Research in Fundamental Sciences (IPM), Tehran, Iran
| | - Kelsey Clark
- Department of Ophthalmology and Visual Sciences, University of Utah, Salt Lake City, UT, United States
| | - Mohammad-Reza A. Dehaqani
- School of Cognitive Sciences, Institute for Research in Fundamental Sciences (IPM), Tehran, Iran
- Cognitive Systems Laboratory, Control and Intelligent Processing Center of Excellence (CIPCE), School of Electrical and Computer Engineering, College of Engineering, University of Tehran, Tehran, Iran
| | - Behrad Noudoost
- Department of Ophthalmology and Visual Sciences, University of Utah, Salt Lake City, UT, United States
- *Correspondence: Behrad Noudoost,
| |
Collapse
|