1
|
Ramot A, Taschbach FH, Yang YC, Hu Y, Chen Q, Morales BC, Wang XC, Wu A, Tye KM, Benna MK, Komiyama T. Motor learning refines thalamic influence on motor cortex. Nature 2025:10.1038/s41586-025-08962-8. [PMID: 40335698 DOI: 10.1038/s41586-025-08962-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Accepted: 04/01/2025] [Indexed: 05/09/2025]
Abstract
The primary motor cortex (M1) is central for the learning and execution of dexterous motor skills1-3, and its superficial layer (layers 2 and 3; hereafter, L2/3) is a key locus of learning-related plasticity1,4-6. It remains unknown how motor learning shapes the way in which upstream regions activate M1 circuits to execute learned movements. Here, using longitudinal axonal imaging of the main inputs to M1 L2/3 in mice, we show that the motor thalamus is the key input source that encodes learned movements in experts (animals trained for two weeks). We then use optogenetics to identify the subset of M1 L2/3 neurons that are strongly driven by thalamic inputs before and after learning. We find that the thalamic influence on M1 changes with learning, such that the motor thalamus preferentially activates the M1 neurons that encode learned movements in experts. Inactivation of the thalamic inputs to M1 in experts impairs learned movements. Our study shows that motor learning reshapes the thalamic influence on M1 to enable the reliable execution of learned movements.
Collapse
Affiliation(s)
- Assaf Ramot
- Department of Neurobiology, University of California San Diego, La Jolla, CA, USA
- Center for Neural Circuits and Behavior, University of California San Diego, La Jolla, CA, USA
- Department of Neurosciences, University of California San Diego, La Jolla, CA, USA
- Halıcıoğlu Data Science Institute, University of California San Diego, La Jolla, CA, USA
| | - Felix H Taschbach
- Department of Neurobiology, University of California San Diego, La Jolla, CA, USA
- Salk Institute for Biological Studies, Howard Hughes Medical Institute, La Jolla, CA, USA
| | - Yun C Yang
- Department of Neurobiology, University of California San Diego, La Jolla, CA, USA
- Center for Neural Circuits and Behavior, University of California San Diego, La Jolla, CA, USA
- Department of Neurosciences, University of California San Diego, La Jolla, CA, USA
- Halıcıoğlu Data Science Institute, University of California San Diego, La Jolla, CA, USA
| | - Yuxin Hu
- Department of Neurobiology, University of California San Diego, La Jolla, CA, USA
- Center for Neural Circuits and Behavior, University of California San Diego, La Jolla, CA, USA
- Department of Neurosciences, University of California San Diego, La Jolla, CA, USA
- Halıcıoğlu Data Science Institute, University of California San Diego, La Jolla, CA, USA
| | - Qiyu Chen
- Department of Neurobiology, University of California San Diego, La Jolla, CA, USA
- Center for Neural Circuits and Behavior, University of California San Diego, La Jolla, CA, USA
- Department of Neurosciences, University of California San Diego, La Jolla, CA, USA
- Halıcıoğlu Data Science Institute, University of California San Diego, La Jolla, CA, USA
| | - Bobbie C Morales
- Department of Neurobiology, University of California San Diego, La Jolla, CA, USA
- Center for Neural Circuits and Behavior, University of California San Diego, La Jolla, CA, USA
- Department of Neurosciences, University of California San Diego, La Jolla, CA, USA
- Halıcıoğlu Data Science Institute, University of California San Diego, La Jolla, CA, USA
| | - Xinyi C Wang
- Department of Neurobiology, University of California San Diego, La Jolla, CA, USA
- Center for Neural Circuits and Behavior, University of California San Diego, La Jolla, CA, USA
- Department of Neurosciences, University of California San Diego, La Jolla, CA, USA
- Halıcıoğlu Data Science Institute, University of California San Diego, La Jolla, CA, USA
| | - An Wu
- Department of Neurobiology, University of California San Diego, La Jolla, CA, USA
- Center for Neural Circuits and Behavior, University of California San Diego, La Jolla, CA, USA
- Department of Neurosciences, University of California San Diego, La Jolla, CA, USA
- Halıcıoğlu Data Science Institute, University of California San Diego, La Jolla, CA, USA
| | - Kay M Tye
- Salk Institute for Biological Studies, Howard Hughes Medical Institute, La Jolla, CA, USA
- Kavli Institute for the Brain and Mind, La Jolla, CA, USA
| | - Marcus K Benna
- Department of Neurobiology, University of California San Diego, La Jolla, CA, USA.
| | - Takaki Komiyama
- Department of Neurobiology, University of California San Diego, La Jolla, CA, USA.
- Center for Neural Circuits and Behavior, University of California San Diego, La Jolla, CA, USA.
- Department of Neurosciences, University of California San Diego, La Jolla, CA, USA.
- Halıcıoğlu Data Science Institute, University of California San Diego, La Jolla, CA, USA.
- Kavli Institute for the Brain and Mind, La Jolla, CA, USA.
| |
Collapse
|
2
|
Tahedl M, Kleinerova J, Doherty MA, Hengeveld JC, McLaughlin RL, Hardiman O, Tan EL, Bede P. Progressive Thalamo-Cortical Disconnection in Amyotrophic Lateral Sclerosis Genotypes: Structural Degeneration and Network Dysfunction of Thalamus-Relayed Circuits. Eur J Neurol 2025; 32:e70146. [PMID: 40346885 PMCID: PMC12064938 DOI: 10.1111/ene.70146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2025] [Revised: 03/12/2025] [Accepted: 03/27/2025] [Indexed: 05/12/2025]
Abstract
BACKGROUND The thalamus is a key subcortical hub of numerous corticobasal and corticocortical circuits mediating a wealth of cognitive, behavioural, sensory and motor processes. While thalamic pathology is increasingly recognised in amyotrophic lateral sclerosis, its degeneration is often assessed in isolation instead of adopting a network-wise perspective and assessing the integrity of its rich cortical projections. METHODS A prospective imaging study was conducted in a cohort of genetically stratified patients to assess the structural and functional integrity of thalamo-cortical circuits and volumetric alterations longitudinally. RESULTS The white matter integrity of thalamic projections to the anterior cingulate cortex, cerebellum, dorsolateral prefrontal cortex (DLPFC), Heschl's gyrus, medial frontal gyrus (MFG), orbitofrontal cortex, parietal cortex, postcentral gyrus and precentral gyrus (PreCG) is affected at baseline in ALS, which is more marked in C9orf72 hexanucleotide repeat carriers. Precentral gyrus and cerebellar grey matter volumes are also reduced, particularly in C9orf72. Longitudinal analyses capture progressive disconnection between the thalamus and frontal regions (DLPFC and MFG) in both C9orf72 positive and sporadic patients and progressive thalamo-PreCG disconnection in the sporadic C9orf72 negative cohort. Functional connectivity analyses revealed increasing thalamo-cerebellar connectivity in sporadic ALS and increasing thalamo-DLPFC connectivity in intermediate-length CAG repeat expansion carriers in ATXN2 over time. DISCUSSION Our data provide evidence of extensive thalamo-cortical connectivity alterations in ALS. Corticobasal circuits mediating extrapyramidal, somatosensory, cognitive and behavioural functions are increasingly affected as the disease progresses. The degeneration of thalamic projections support the conceptualisation of ALS as a 'network disease' and the notion of 'what wires together degenerates together'.
Collapse
Affiliation(s)
- Marlene Tahedl
- Computational Neuroimaging Group (CNG), School of MedicineTrinity College DublinDublinIreland
| | - Jana Kleinerova
- Computational Neuroimaging Group (CNG), School of MedicineTrinity College DublinDublinIreland
| | - Mark A. Doherty
- Complex Trait Genomics Laboratory, Smurfit Institute of GeneticsTrinity College DublinDublinIreland
| | - Jennifer C. Hengeveld
- Complex Trait Genomics Laboratory, Smurfit Institute of GeneticsTrinity College DublinDublinIreland
| | - Russell L. McLaughlin
- Complex Trait Genomics Laboratory, Smurfit Institute of GeneticsTrinity College DublinDublinIreland
| | - Orla Hardiman
- Computational Neuroimaging Group (CNG), School of MedicineTrinity College DublinDublinIreland
| | - Ee Ling Tan
- Computational Neuroimaging Group (CNG), School of MedicineTrinity College DublinDublinIreland
| | - Peter Bede
- Computational Neuroimaging Group (CNG), School of MedicineTrinity College DublinDublinIreland
- Department of NeurologySt James's HospitalDublinIreland
| |
Collapse
|
3
|
Inácio AR, Lam KC, Zhao Y, Pereira F, Gerfen CR, Lee S. Brain-wide presynaptic networks of functionally distinct cortical neurons. Nature 2025; 641:162-172. [PMID: 40011781 PMCID: PMC12043506 DOI: 10.1038/s41586-025-08631-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Accepted: 01/10/2025] [Indexed: 02/28/2025]
Abstract
Revealing the connectivity of functionally identified individual neurons is necessary to understand how activity patterns emerge and support behaviour. Yet the brain-wide presynaptic wiring rules that lay the foundation for the functional selectivity of individual neurons remain largely unexplored. Cortical neurons, even in primary sensory cortex, are heterogeneous in their selectivity, not only to sensory stimuli but also to multiple aspects of behaviour. Here, to investigate presynaptic connectivity rules underlying the selectivity of pyramidal neurons to behavioural state1-10 in primary somatosensory cortex (S1), we used two-photon calcium imaging, neuropharmacology, single-cell-based monosynaptic input tracing and optogenetics. We show that behavioural state-dependent activity patterns are stable over time. These are minimally affected by direct neuromodulatory inputs and are driven primarily by glutamatergic inputs. Analysis of brain-wide presynaptic networks of individual neurons with distinct behavioural state-dependent activity profiles revealed that although behavioural state-related and behavioural state-unrelated neurons shared a similar pattern of local inputs within S1, their long-range glutamatergic inputs differed. Individual cortical neurons, irrespective of their functional properties, received converging inputs from the main S1-projecting areas. Yet neurons that tracked behavioural state received a smaller proportion of motor cortical inputs and a larger proportion of thalamic inputs. Optogenetic suppression of thalamic inputs reduced behavioural state-dependent activity in S1, but this activity was not externally driven. Our results reveal distinct long-range glutamatergic inputs as a substrate for preconfigured network dynamics associated with behavioural state.
Collapse
Affiliation(s)
- Ana R Inácio
- Unit on Functional Neural Circuits, Systems Neurodevelopment Laboratory, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, USA.
| | - Ka Chun Lam
- Machine Learning Core, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, USA
| | - Yuan Zhao
- Machine Learning Core, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, USA
| | - Francisco Pereira
- Machine Learning Core, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, USA
| | - Charles R Gerfen
- Section on Neuroanatomy, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, USA
| | - Soohyun Lee
- Unit on Functional Neural Circuits, Systems Neurodevelopment Laboratory, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
4
|
Zheng P, Qi Z, Gao B, Yao Y, Chen J, Cong H, Huang Y, Shi FD. SERPINA3 predicts long-term neurological outcomes and mortality in patients with intracerebral hemorrhage. Cell Death Dis 2025; 16:218. [PMID: 40157917 PMCID: PMC11954896 DOI: 10.1038/s41419-025-07551-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2024] [Revised: 02/19/2025] [Accepted: 03/17/2025] [Indexed: 04/01/2025]
Abstract
Intracerebral hemorrhage (ICH) is a severe stroke subtype with high mortality and disability rates, and long-term outcomes among survivors remain unpredictable due to the lack of reliable biomarkers. In this study, spatial transcriptomics was used to analyze molecular profiles in autopsy brain tissues from chronic ICH patients, revealing distinct transcriptomic features in the thalamus and cortex, with common inflammatory characteristics such as gliosis, apoptosis, and immune activation. Serine proteinase inhibitor NA3 (SERPINA3) was significantly upregulated in both regions and co-expressed with astrocytes in the thalamus. Pathological studies in postmortem human tissues and mouse models confirmed elevated SERPINA3 expression, with murine Serpina3n showing a similar pattern in mice. Plasma analysis of 250 ICH patients and 250 healthy controls revealed significantly higher SERPINA3 levels in ICH patients, correlating with hemorrhage severity, National Institutes of Health Stroke Scale (NIHSS), and Glasgow Coma Scale (GCS) scores, and long-term functional outcomes. Higher SERPINA3 levels within 72 hours of hemorrhage onset were independently associated with worse functional recovery (mRS ≥ 3) and increased all-cause mortality at 6 and 12 months. Additionally, SERPINA3 levels at 7 days post-ictus correlated with white matter hyperintensities and poor cognitive performance at 6 months. These findings highlight SERPINA3 as a potential prognostic biomarker for ICH, warranting further investigation into its role in long-term neurological dysfunction and validation in larger prospective cohorts.
Collapse
Affiliation(s)
- Pei Zheng
- Department of Neurology, China National Clinical Research Center of Neurological Diseases, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Zhihui Qi
- Department of Neurology, Tianjin Medical University General Hospital, Tianjin, China
| | - Bin Gao
- Department of Neurology, China National Clinical Research Center of Neurological Diseases, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Yang Yao
- Department of Neurology, Tianjin Medical University General Hospital, Tianjin, China
| | - Jingshan Chen
- Department of Neurology, Tianjin Medical University General Hospital, Tianjin, China
| | - Hengri Cong
- Department of Neurology, China National Clinical Research Center of Neurological Diseases, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Yue Huang
- Tiantan Brain Bank, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Fu-Dong Shi
- Department of Neurology, China National Clinical Research Center of Neurological Diseases, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.
- Department of Neurology, Tianjin Medical University General Hospital, Tianjin, China.
| |
Collapse
|
5
|
McKinnon C, Mo C, Sherman SM. DISRUPTION OF TRANSTHALAMIC CIRCUITRY FROM PRIMARY VISUAL CORTEX IMPAIRS VISUAL DISCRIMINATION IN MICE. J Neurosci 2025; 45:e0002252025. [PMID: 40139804 PMCID: PMC12044039 DOI: 10.1523/jneurosci.0002-25.2025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2025] [Revised: 02/06/2025] [Accepted: 03/01/2025] [Indexed: 03/29/2025] Open
Abstract
Layer 5 (L5) of the cortex provides strong driving input to higher-order thalamic nuclei, such as the pulvinar in the visual system, forming the basis of cortico-thalamo-cortical (transthalamic) circuits. These circuits provide a communication route between cortical areas in parallel to direct corticocortical connections, but their specific role in perception and behavior remains unclear. Using targeted optogenetic inhibition in mice of both sexes performing a visual discrimination task, we selectively suppressed the corticothalamic input from L5 cells in primary visual cortex (V1) at their terminals in pulvinar. This suppresses transthalamic circuits from V1; furthermore, any effect on direct corticocortical projections and local V1 circuitry would thus result from transthalamic inputs (e.g., V1 to pulvinar back to V1 (Miller-Hansen and Sherman, 2022). Such suppression of transthalamic processing during visual stimulus presentation of drifting gratings significantly impaired discrimination performance across different orientations. The impact on behavior was specific to the portion of visual space that retinotopically coincided with the V1 L5 corticothalamic inhibition. These results highlight the importance of incorporating L5-initiated transthalamic circuits into cortical processing frameworks, particularly those addressing how the hierarchical propagation of sensory signals supports perceptual decision-making.Significance statement Appreciation of pathways for transthalamic communication between cortical areas, organized in parallel with direct connections, has transformed our thinking about cortical functioning writ large. Studies of transthalamic pathways initially concentrated on their anatomy and physiology, but there has been a shift towards understanding their importance to cognitive behavior. Here, we have used an optogenetic approach in mice to selectively inhibit the transthalamic pathway from primary visual cortex to other cortical areas and back to itself. We find that such inhibition degrades the animals' ability to discriminate, showing for the first time that specific inhibition of visual transthalamic circuitry reduces visual discrimination. This causal data adds to the growing evidence for the importance of transthalamic signaling in perceptual processing.
Collapse
Affiliation(s)
- Claire McKinnon
- Committee on Computational Neuroscience, University of Chicago, Chicago, Illinois 60637
| | - Christina Mo
- Department of Neurobiology, University of Chicago, Chicago, Illinois 60637
- The Florey Institute of Neuroscience and Mental Health, University of Melbourne, Melbourne, Victoria 3052, Australia
| | - S. Murray Sherman
- Department of Neurobiology, University of Chicago, Chicago, Illinois 60637
| |
Collapse
|
6
|
Hasnain MA, Birnbaum JE, Ugarte Nunez JL, Hartman EK, Chandrasekaran C, Economo MN. Separating cognitive and motor processes in the behaving mouse. Nat Neurosci 2025; 28:640-653. [PMID: 39905210 DOI: 10.1038/s41593-024-01859-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Accepted: 11/21/2024] [Indexed: 02/06/2025]
Abstract
The cognitive processes supporting complex animal behavior are closely associated with movements responsible for critical processes, such as facial expressions or the active sampling of our environments. These movements are strongly related to neural activity across much of the brain and are often highly correlated with ongoing cognitive processes. A fundamental issue for understanding the neural signatures of cognition and movements is whether cognitive processes are separable from related movements or if they are driven by common neural mechanisms. Here we demonstrate how the separability of cognitive and motor processes can be assessed and, when separable, how the neural dynamics associated with each component can be isolated. We designed a behavioral task in mice that involves multiple cognitive processes, and we show that dynamics commonly taken to support cognitive processes are strongly contaminated by movements. When cognitive and motor components are isolated using a novel approach for subspace decomposition, we find that they exhibit distinct dynamical trajectories and are encoded by largely separate populations of cells. Accurately isolating dynamics associated with particular cognitive and motor processes will be essential for developing conceptual and computational models of neural circuit function.
Collapse
Affiliation(s)
- Munib A Hasnain
- Department of Biomedical Engineering, Boston University, Boston, MA, USA
- Center for Neurophotonics, Boston University, Boston, MA, USA
| | - Jaclyn E Birnbaum
- Center for Neurophotonics, Boston University, Boston, MA, USA
- Graduate Program for Neuroscience, Boston University, Boston, MA, USA
| | | | - Emma K Hartman
- Department of Biomedical Engineering, Boston University, Boston, MA, USA
| | - Chandramouli Chandrasekaran
- Department of Psychological and Brain Sciences, Boston University, Boston, MA, USA
- Department of Neurobiology & Anatomy, Boston University, Boston, MA, USA
- Center for Systems Neuroscience, Boston University, Boston, MA, USA
| | - Michael N Economo
- Department of Biomedical Engineering, Boston University, Boston, MA, USA.
- Center for Neurophotonics, Boston University, Boston, MA, USA.
- Center for Systems Neuroscience, Boston University, Boston, MA, USA.
| |
Collapse
|
7
|
McKinnon C, Mo C, Sherman SM. DISRUPTION OF TRANSTHALAMIC CIRCUITRY FROM PRIMARY VISUAL CORTEX IMPAIRS VISUAL DISCRIMINATION IN MICE. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.02.07.637190. [PMID: 39975026 PMCID: PMC11839038 DOI: 10.1101/2025.02.07.637190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 02/21/2025]
Abstract
Layer 5 (L5) of the cortex provides strong driving input to higher-order thalamic nuclei, such as the pulvinar in the visual system, forming the basis of cortico-thalamo-cortical (transthalamic) circuits. These circuits provide a communication route between cortical areas in parallel to direct corticocortical connections, but their specific role in perception and behavior remains unclear. Using targeted optogenetic inhibition in mice performing a visual discrimination task, we selectively suppressed the corticothalamic input from L5 cells in primary visual cortex (V1) at their terminals in pulvinar. This suppresses transthalamic circuits from V1; furthermore, any effect on direct corticocortical projections and local V1 circuitry would thus result from transthalamic inputs (e.g., V1 to pulvinar back to V1 (Miller-Hansen and Sherman, 2022). Such suppression of transthalamic processing during visual stimulus presentation of drifting gratings significantly impaired discrimination performance across different orientations. The impact on behavior was specific to the portion of visual space that retinotopically coincided with the V1 L5 corticothalamic inhibition. These results highlight the importance of incorporating L5-initiated transthalamic circuits into cortical processing frameworks, particularly those addressing how the hierarchical propagation of sensory signals supports perceptual decision-making.
Collapse
Affiliation(s)
- C. McKinnon
- Committee on Computational Neuroscience, University of Chicago, Illinois, USA
| | - C. Mo
- Department of Neurobiology, University of Chicago, Illinois, USA
- The Florey Institute of Neuroscience and Mental Health, University of Melbourne, Victoria, Australia
| | - S. M. Sherman
- Department of Neurobiology, University of Chicago, Illinois, USA
| |
Collapse
|
8
|
Affan RO, Bright IM, Pemberton LN, Cruzado NA, Scott BB, Howard MW. Ramping dynamics in the frontal cortex unfold over multiple timescales during motor planning. J Neurophysiol 2025; 133:625-637. [PMID: 39819250 DOI: 10.1152/jn.00234.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 08/05/2024] [Accepted: 01/08/2025] [Indexed: 01/19/2025] Open
Abstract
Plans are formulated and refined throughout the period leading up to their execution, ensuring that the appropriate behaviors are enacted at the appropriate times. Although existing evidence suggests that memory circuits convey the passage of time through diverse neuronal responses, it remains unclear whether the neural circuits involved in planning exhibit analogous temporal dynamics. Using publicly available data, we analyzed how activity in the mouse frontal motor cortex evolves during motor planning. Individual neurons exhibited diverse ramping activity throughout a delay interval that preceded a planned movement. The collective activity of these neurons was useful for making temporal predictions that became increasingly precise as the movement time approached. This temporal diversity gave rise to a spectrum of encoding patterns, ranging from stable to dynamic representations of the upcoming movement. Our results indicate that ramping activity unfolds over multiple timescales during motor planning, suggesting a shared mechanism in the brain for processing temporal information related to both memories from the past and plans for the future. NEW & NOTEWORTHY Neuronal responses in the cortex are diverse, but the nature and functional consequences of this diversity remain ambiguous. We identified a specific pattern of temporal heterogeneity in the mouse frontal motor cortex, whereby the firing of different neurons ramps up at varying speeds before the execution of a movement. Our decoding analyses reveal that this heterogeneity in ramping dynamics enables precise and reliable encoding of movement plans and time across various timescales.
Collapse
Affiliation(s)
- Rifqi O Affan
- Graduate Program in Neuroscience, Boston University, Boston, Massachusetts, United States
| | - Ian M Bright
- Department of Psychological and Brain Sciences, Boston University, Boston, Massachusetts, United States
| | - Luke N Pemberton
- Department of Psychological and Brain Sciences, Boston University, Boston, Massachusetts, United States
| | - Nathanael A Cruzado
- Department of Psychological and Brain Sciences, Boston University, Boston, Massachusetts, United States
| | - Benjamin B Scott
- Department of Psychological and Brain Sciences, Boston University, Boston, Massachusetts, United States
| | - Marc W Howard
- Department of Psychological and Brain Sciences, Boston University, Boston, Massachusetts, United States
| |
Collapse
|
9
|
Wei X, Ma J, Liu S, Li S, Shi S, Guo X, Liu Z. The effects of sleep deprivation on risky decision making. Psychon Bull Rev 2025; 32:80-96. [PMID: 39080188 DOI: 10.3758/s13423-024-02549-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/11/2024] [Indexed: 02/20/2025]
Abstract
Sleep deprivation stands as a major threat to both physical and mental well-being, disrupting normal work and life. Given the ubiquity of risky decision making, it is crucial to comprehend how individuals make risky decisions when sleep-deprived. Although research on the effects of sleep deprivation on risky decision making has increased in recent years, it remains limited and lacks a unified conclusion. The current review attempted to elucidate the effects of sleep deprivation on risky decision making in healthy adults and clarify the regulatory mechanisms. The review showed that sleep deprivation had complex effects on risky decision making; that is, whether sleep deprivation led to riskier or more conservative decision-making behavior depended on factors such as sex, gain-loss frame, use of psychotropic drugs, time interval of sleep elimination, duration of sleep deprivation, and others. Additionally, the complexity of these effects might partly arise from the use of different tasks to measure risk-taking behavior. The review also discussed some limitations of existing research and put forth practical recommendations for future studies, aiming to resolve inconsistencies in the effects of sleep deprivation on risky decision making and enhance the ecological validity of conclusions.
Collapse
Affiliation(s)
- Xue Wei
- Shaanxi Key Laboratory of Behavior and Cognitive Neuroscience, School of Psychology, Shaanxi Normal University, 199 South Chang'an Road, Xi'an, 710062, China
| | - Junshu Ma
- School of Psychology and Cognitive Science, East China Normal University, Shanghai, China
| | - Sijia Liu
- Fudan Institute On Ageing, Fudan University, Shanghai, China
- MOE Laboratory for National Development and Intelligent Governance, Fudan University, Shanghai, China
| | - Shuang Li
- Department of Mental Health Education for College Students, School of Marxism, Nanjing Forestry University, Nanjing, China
| | - Shenghao Shi
- Shaanxi Key Laboratory of Behavior and Cognitive Neuroscience, School of Psychology, Shaanxi Normal University, 199 South Chang'an Road, Xi'an, 710062, China
| | - Xiuyan Guo
- Fudan Institute On Ageing, Fudan University, Shanghai, China
- MOE Laboratory for National Development and Intelligent Governance, Fudan University, Shanghai, China
| | - Zhiyuan Liu
- Shaanxi Key Laboratory of Behavior and Cognitive Neuroscience, School of Psychology, Shaanxi Normal University, 199 South Chang'an Road, Xi'an, 710062, China.
| |
Collapse
|
10
|
Stringer C, Pachitariu M. Analysis methods for large-scale neuronal recordings. Science 2024; 386:eadp7429. [PMID: 39509504 DOI: 10.1126/science.adp7429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2024] [Accepted: 09/27/2024] [Indexed: 11/15/2024]
Abstract
Simultaneous recordings from hundreds or thousands of neurons are becoming routine because of innovations in instrumentation, molecular tools, and data processing software. Such recordings can be analyzed with data science methods, but it is not immediately clear what methods to use or how to adapt them for neuroscience applications. We review, categorize, and illustrate diverse analysis methods for neural population recordings and describe how these methods have been used to make progress on longstanding questions in neuroscience. We review a variety of approaches, ranging from the mathematically simple to the complex, from exploratory to hypothesis-driven, and from recently developed to more established methods. We also illustrate some of the common statistical pitfalls in analyzing large-scale neural data.
Collapse
Affiliation(s)
- Carsen Stringer
- Howard Hughes Medical Institute (HHMI) Janelia Research Campus, Ashburn, VA, USA
| | - Marius Pachitariu
- Howard Hughes Medical Institute (HHMI) Janelia Research Campus, Ashburn, VA, USA
| |
Collapse
|
11
|
Li L, Flesch T, Ma C, Li J, Chen Y, Chen HT, Erlich JC. Encoding of 2D Self-Centered Plans and World-Centered Positions in the Rat Frontal Orienting Field. J Neurosci 2024; 44:e0018242024. [PMID: 39134418 PMCID: PMC11391499 DOI: 10.1523/jneurosci.0018-24.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 07/30/2024] [Accepted: 07/31/2024] [Indexed: 09/13/2024] Open
Abstract
The neural mechanisms of motor planning have been extensively studied in rodents. Preparatory activity in the frontal cortex predicts upcoming choice, but limitations of typical tasks have made it challenging to determine whether the spatial information is in a self-centered direction reference frame or a world-centered position reference frame. Here, we trained male rats to make delayed visually guided orienting movements to six different directions, with four different target positions for each direction, which allowed us to disentangle direction versus position tuning in neural activity. We recorded single unit activity from the rat frontal orienting field (FOF) in the secondary motor cortex, a region involved in planning orienting movements. Population analyses revealed that the FOF encodes two separate 2D maps of space. First, a 2D map of the planned and ongoing movement in a self-centered direction reference frame. Second, a 2D map of the animal's current position on the port wall in a world-centered reference frame. Thus, preparatory activity in the FOF represents self-centered upcoming movement directions, but FOF neurons multiplex both self- and world-reference frame variables at the level of single neurons. Neural network model comparison supports the view that despite the presence of world-centered representations, the FOF receives the target information as self-centered input and generates self-centered planning signals.
Collapse
Affiliation(s)
- Liujunli Li
- New York University-East China Normal University Institute of Brain and Cognitive Science at New York University Shanghai 200062, Shanghai, China
- New York University Shanghai, Shanghai 200124, China
- Shanghai Key Laboratory of Brain Functional Genomics (Ministry of Education), East China Normal University, Shanghai 200062, China
| | - Timo Flesch
- Oxford University, Oxford OX1 2JD, United Kingdom
| | - Ce Ma
- New York University-East China Normal University Institute of Brain and Cognitive Science at New York University Shanghai 200062, Shanghai, China
- New York University Shanghai, Shanghai 200124, China
| | - Jingjie Li
- New York University-East China Normal University Institute of Brain and Cognitive Science at New York University Shanghai 200062, Shanghai, China
- New York University Shanghai, Shanghai 200124, China
- Sainsbury Wellcome Centre, University College London, London W1T 4JG, United Kingdom
| | - Yizhou Chen
- New York University-East China Normal University Institute of Brain and Cognitive Science at New York University Shanghai 200062, Shanghai, China
- New York University Shanghai, Shanghai 200124, China
| | - Hung-Tu Chen
- New York University-East China Normal University Institute of Brain and Cognitive Science at New York University Shanghai 200062, Shanghai, China
- New York University Shanghai, Shanghai 200124, China
| | - Jeffrey C Erlich
- New York University-East China Normal University Institute of Brain and Cognitive Science at New York University Shanghai 200062, Shanghai, China
- New York University Shanghai, Shanghai 200124, China
- Shanghai Key Laboratory of Brain Functional Genomics (Ministry of Education), East China Normal University, Shanghai 200062, China
- Sainsbury Wellcome Centre, University College London, London W1T 4JG, United Kingdom
| |
Collapse
|
12
|
West SL, Gerhart ML, Ebner TJ. Wide-field calcium imaging of cortical activation and functional connectivity in externally- and internally-driven locomotion. Nat Commun 2024; 15:7792. [PMID: 39242572 PMCID: PMC11379880 DOI: 10.1038/s41467-024-51816-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Accepted: 08/15/2024] [Indexed: 09/09/2024] Open
Abstract
The role of the cerebral cortex in self-initiated versus sensory-driven movements is central to understanding volitional action. Whether the differences in these two movement classes are due to specific cortical areas versus more cortex-wide engagement is debated. Using wide-field Ca2+ imaging, we compared neural dynamics during spontaneous and motorized treadmill locomotion, determining the similarities and differences in cortex-wide activation and functional connectivity (FC). During motorized locomotion, the cortex exhibits greater activation globally prior to and during locomotion starting compared to spontaneous and less during steady-state walking, during stopping, and after termination. Both conditions are characterized by FC increases in anterior secondary motor cortex (M2) nodes and decreases in all other regions. There are also cortex-wide differences; most notably, M2 decreases in FC with all other nodes during motorized stopping and after termination. Therefore, both internally- and externally-generated movements widely engage the cortex, with differences represented in cortex-wide activation and FC patterns.
Collapse
Affiliation(s)
- Sarah L West
- Department of Neuroscience, University of Minnesota, Minneapolis, MN, USA
- Graduate Program in Neuroscience, University of Minnesota, Minneapolis, MN, USA
| | - Morgan L Gerhart
- Department of Neuroscience, University of Minnesota, Minneapolis, MN, USA
| | - Timothy J Ebner
- Department of Neuroscience, University of Minnesota, Minneapolis, MN, USA.
- Graduate Program in Neuroscience, University of Minnesota, Minneapolis, MN, USA.
| |
Collapse
|
13
|
Mo C, McKinnon C, Murray Sherman S. A transthalamic pathway crucial for perception. Nat Commun 2024; 15:6300. [PMID: 39060240 PMCID: PMC11282105 DOI: 10.1038/s41467-024-50163-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Accepted: 06/28/2024] [Indexed: 07/28/2024] Open
Abstract
Perception is largely supported by cortical processing that involves communication among multiple areas, typically starting with primary sensory cortex and then involving higher order cortices. This communication is served in part by transthalamic (cortico-thalamo-cortical) pathways, which ubiquitously parallel direct corticocortical pathways, but their role in sensory processing has largely remained unexplored. Here, we suggest that transthalamic processing propagates task-relevant information required for correct sensory decisions. Using optogenetics, we specifically inhibited the pathway at its synapse in higher order somatosensory thalamus of mice performing a texture-based discrimination task. We concurrently monitored the cellular effects of inhibition in primary or secondary cortex using two-photon calcium imaging. Inhibition severely impaired performance despite intact direct corticocortical projections, thus challenging the purely corticocentric map of perception. Interestingly, the inhibition did not reduce overall cell responsiveness to texture stimulation in somatosensory cortex, but rather disrupted the texture selectivity of cells, a discriminability that develops over task learning. This discriminability was more disrupted in the secondary than primary somatosensory cortex, emphasizing the feedforward influence of the transthalamic route. Transthalamic pathways may therefore act to deliver performance-relevant information to higher order cortex and are underappreciated hierarchical pathways in perceptual decision-making.
Collapse
Affiliation(s)
- Christina Mo
- The Florey Institute of Neuroscience and Mental Health, University of Melbourne, Melbourne, Victoria, Australia.
- Department of Neurobiology, University of Chicago, Chicago, Illinois, USA.
| | - Claire McKinnon
- Department of Neurobiology, University of Chicago, Chicago, Illinois, USA
| | - S Murray Sherman
- Department of Neurobiology, University of Chicago, Chicago, Illinois, USA.
| |
Collapse
|
14
|
Ostojic S, Fusi S. Computational role of structure in neural activity and connectivity. Trends Cogn Sci 2024; 28:677-690. [PMID: 38553340 DOI: 10.1016/j.tics.2024.03.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 02/29/2024] [Accepted: 03/07/2024] [Indexed: 07/05/2024]
Abstract
One major challenge of neuroscience is identifying structure in seemingly disorganized neural activity. Different types of structure have different computational implications that can help neuroscientists understand the functional role of a particular brain area. Here, we outline a unified approach to characterize structure by inspecting the representational geometry and the modularity properties of the recorded activity and show that a similar approach can also reveal structure in connectivity. We start by setting up a general framework for determining geometry and modularity in activity and connectivity and relating these properties with computations performed by the network. We then use this framework to review the types of structure found in recent studies of model networks performing three classes of computations.
Collapse
Affiliation(s)
- Srdjan Ostojic
- Laboratoire de Neurosciences Cognitives et Computationnelles, INSERM U960, Ecole Normale Superieure - PSL Research University, 75005 Paris, France.
| | - Stefano Fusi
- Center for Theoretical Neuroscience, Columbia University, New York, NY, USA; Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY, USA; Department of Neuroscience, Columbia University, New York, NY, USA; Kavli Institute for Brain Science, Columbia University, New York, NY, USA
| |
Collapse
|
15
|
Chang YT, Finkel EA, Xu D, O'Connor DH. Rule-based modulation of a sensorimotor transformation across cortical areas. eLife 2024; 12:RP92620. [PMID: 38842277 PMCID: PMC11156468 DOI: 10.7554/elife.92620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/07/2024] Open
Abstract
Flexible responses to sensory stimuli based on changing rules are critical for adapting to a dynamic environment. However, it remains unclear how the brain encodes and uses rule information to guide behavior. Here, we made single-unit recordings while head-fixed mice performed a cross-modal sensory selection task where they switched between two rules: licking in response to tactile stimuli while rejecting visual stimuli, or vice versa. Along a cortical sensorimotor processing stream including the primary (S1) and secondary (S2) somatosensory areas, and the medial (MM) and anterolateral (ALM) motor areas, single-neuron activity distinguished between the two rules both prior to and in response to the tactile stimulus. We hypothesized that neural populations in these areas would show rule-dependent preparatory states, which would shape the subsequent sensory processing and behavior. This hypothesis was supported for the motor cortical areas (MM and ALM) by findings that (1) the current task rule could be decoded from pre-stimulus population activity; (2) neural subspaces containing the population activity differed between the two rules; and (3) optogenetic disruption of pre-stimulus states impaired task performance. Our findings indicate that flexible action selection in response to sensory input can occur via configuration of preparatory states in the motor cortex.
Collapse
Affiliation(s)
- Yi-Ting Chang
- Solomon H. Snyder Department of Neuroscience, Kavli Neuroscience Discovery Institute, Brain Science Institute, Johns Hopkins University School of MedicineBaltimoreUnited States
- Zanvyl Krieger Mind/Brain Institute, Johns Hopkins UniversityBaltimoreUnited States
| | - Eric A Finkel
- Solomon H. Snyder Department of Neuroscience, Kavli Neuroscience Discovery Institute, Brain Science Institute, Johns Hopkins University School of MedicineBaltimoreUnited States
| | - Duo Xu
- Solomon H. Snyder Department of Neuroscience, Kavli Neuroscience Discovery Institute, Brain Science Institute, Johns Hopkins University School of MedicineBaltimoreUnited States
- Zanvyl Krieger Mind/Brain Institute, Johns Hopkins UniversityBaltimoreUnited States
| | - Daniel H O'Connor
- Solomon H. Snyder Department of Neuroscience, Kavli Neuroscience Discovery Institute, Brain Science Institute, Johns Hopkins University School of MedicineBaltimoreUnited States
- Zanvyl Krieger Mind/Brain Institute, Johns Hopkins UniversityBaltimoreUnited States
| |
Collapse
|
16
|
Kim JH, Daie K, Li N. A combinatorial neural code for long-term motor memory. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.05.597627. [PMID: 38895416 PMCID: PMC11185691 DOI: 10.1101/2024.06.05.597627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/21/2024]
Abstract
Motor skill repertoire can be stably retained over long periods, but the neural mechanism underlying stable memory storage remains poorly understood. Moreover, it is unknown how existing motor memories are maintained as new motor skills are continuously acquired. Here we tracked neural representation of learned actions throughout a significant portion of a mouse's lifespan, and we show that learned actions are stably retained in motor memory in combination with context, which protects existing memories from erasure during new motor learning. We used automated home-cage training to establish a continual learning paradigm in which mice learned to perform directional licking in different task contexts. We combined this paradigm with chronic two-photon imaging of motor cortex activity for up to 6 months. Within the same task context, activity driving directional licking was stable over time with little representational drift. When learning new task contexts, new preparatory activity emerged to drive the same licking actions. Learning created parallel new motor memories while retaining the previous memories. Re-learning to make the same actions in the previous task context re-activated the previous preparatory activity, even months later. At the same time, continual learning of new task contexts kept creating new preparatory activity patterns. Context-specific memories, as we observed in the motor system, may provide a solution for stable memory storage throughout continual learning. Learning in new contexts produces parallel new representations instead of modifying existing representations, thus protecting existing motor repertoire from erasure.
Collapse
|
17
|
Steinfeld R, Tacão-Monteiro A, Renart A. Differential representation of sensory information and behavioral choice across layers of the mouse auditory cortex. Curr Biol 2024; 34:2200-2211.e6. [PMID: 38733991 DOI: 10.1016/j.cub.2024.04.040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 03/22/2024] [Accepted: 04/18/2024] [Indexed: 05/13/2024]
Abstract
The activity of neurons in sensory areas sometimes covaries with upcoming choices in decision-making tasks. However, the prevalence, causal origin, and functional role of choice-related activity remain controversial. Understanding the circuit-logic of decision signals in sensory areas will require understanding their laminar specificity, but simultaneous recordings of neural activity across the cortical layers in forced-choice discrimination tasks have not yet been performed. Here, we describe neural activity from such recordings in the auditory cortex of mice during a frequency discrimination task with delayed report, which, as we show, requires the auditory cortex. Stimulus-related information was widely distributed across layers but disappeared very quickly after stimulus offset. Choice selectivity emerged toward the end of the delay period-suggesting a top-down origin-but only in the deep layers. Early stimulus-selective and late choice-selective deep neural ensembles were correlated, suggesting that the choice-selective signal fed back to the auditory cortex is not just action specific but develops as a consequence of the sensory-motor contingency imposed by the task.
Collapse
Affiliation(s)
- Raphael Steinfeld
- Champalimaud Research, Champalimaud Foundation, Avenida Brasília, 1400-038 Lisbon, Portugal.
| | - André Tacão-Monteiro
- Champalimaud Research, Champalimaud Foundation, Avenida Brasília, 1400-038 Lisbon, Portugal
| | - Alfonso Renart
- Champalimaud Research, Champalimaud Foundation, Avenida Brasília, 1400-038 Lisbon, Portugal.
| |
Collapse
|
18
|
Hasnain MA, Birnbaum JE, Nunez JLU, Hartman EK, Chandrasekaran C, Economo MN. Separating cognitive and motor processes in the behaving mouse. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.08.23.554474. [PMID: 37662199 PMCID: PMC10473744 DOI: 10.1101/2023.08.23.554474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/05/2023]
Abstract
The cognitive processes supporting complex animal behavior are closely associated with ubiquitous movements responsible for our posture, facial expressions, ability to actively sample our sensory environments, and other critical processes. These movements are strongly related to neural activity across much of the brain and are often highly correlated with ongoing cognitive processes, making it challenging to dissociate the neural dynamics that support cognitive processes from those supporting related movements. In such cases, a critical issue is whether cognitive processes are separable from related movements, or if they are driven by common neural mechanisms. Here, we demonstrate how the separability of cognitive and motor processes can be assessed, and, when separable, how the neural dynamics associated with each component can be isolated. We establish a novel two-context behavioral task in mice that involves multiple cognitive processes and show that commonly observed dynamics taken to support cognitive processes are strongly contaminated by movements. When cognitive and motor components are isolated using a novel approach for subspace decomposition, we find that they exhibit distinct dynamical trajectories. Further, properly accounting for movement revealed that largely separate populations of cells encode cognitive and motor variables, in contrast to the 'mixed selectivity' often reported. Accurately isolating the dynamics associated with particular cognitive and motor processes will be essential for developing conceptual and computational models of neural circuit function and evaluating the function of the cell types of which neural circuits are composed.
Collapse
Affiliation(s)
- Munib A. Hasnain
- Department of Biomedical Engineering, Boston University, Boston, MA
- Center for Neurophotonics, Boston University, Boston, MA
| | - Jaclyn E. Birnbaum
- Graduate Program for Neuroscience, Boston University, Boston, MA
- Center for Neurophotonics, Boston University, Boston, MA
| | | | - Emma K. Hartman
- Department of Biomedical Engineering, Boston University, Boston, MA
| | - Chandramouli Chandrasekaran
- Department of Psychological and Brain Sciences, Boston University, Boston, MA
- Department of Neurobiology & Anatomy, Boston University, Boston, MA
- Center for Systems Neuroscience, Boston University, Boston, MA
| | - Michael N. Economo
- Department of Biomedical Engineering, Boston University, Boston, MA
- Center for Neurophotonics, Boston University, Boston, MA
- Center for Systems Neuroscience, Boston University, Boston, MA
| |
Collapse
|
19
|
Chang YT, Finkel EA, Xu D, O'Connor DH. Rule-based modulation of a sensorimotor transformation across cortical areas. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.08.21.554194. [PMID: 37662301 PMCID: PMC10473613 DOI: 10.1101/2023.08.21.554194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/05/2023]
Abstract
Flexible responses to sensory stimuli based on changing rules are critical for adapting to a dynamic environment. However, it remains unclear how the brain encodes rule information and uses this information to guide behavioral responses to sensory stimuli. Here, we made single-unit recordings while head-fixed mice performed a cross-modal sensory selection task in which they switched between two rules in different blocks of trials: licking in response to tactile stimuli applied to a whisker while rejecting visual stimuli, or licking to visual stimuli while rejecting the tactile stimuli. Along a cortical sensorimotor processing stream including the primary (S1) and secondary (S2) somatosensory areas, and the medial (MM) and anterolateral (ALM) motor areas, the single-trial activity of individual neurons distinguished between the two rules both prior to and in response to the tactile stimulus. Variable rule-dependent responses to identical stimuli could in principle occur via appropriate configuration of pre-stimulus preparatory states of a neural population, which would shape the subsequent response. We hypothesized that neural populations in S1, S2, MM and ALM would show preparatory activity states that were set in a rule-dependent manner to cause processing of sensory information according to the current rule. This hypothesis was supported for the motor cortical areas by findings that (1) the current task rule could be decoded from pre-stimulus population activity in ALM and MM; (2) neural subspaces containing the population activity differed between the two rules; and (3) optogenetic disruption of pre-stimulus states within ALM and MM impaired task performance. Our findings indicate that flexible selection of an appropriate action in response to a sensory input can occur via configuration of preparatory states in the motor cortex.
Collapse
|
20
|
Chae S, Sohn JW, Kim SP. Differential Formation of Motor Cortical Dynamics during Movement Preparation According to the Predictability of Go Timing. J Neurosci 2024; 44:e1353232024. [PMID: 38233217 PMCID: PMC10883619 DOI: 10.1523/jneurosci.1353-23.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 12/10/2023] [Accepted: 01/08/2024] [Indexed: 01/19/2024] Open
Abstract
The motor cortex not only executes but also prepares movement, as motor cortical neurons exhibit preparatory activity that predicts upcoming movements. In movement preparation, animals adopt different strategies in response to uncertainties existing in nature such as the unknown timing of when a predator will attack-an environmental cue informing "go." However, how motor cortical neurons cope with such uncertainties is less understood. In this study, we aim to investigate whether and how preparatory activity is altered depending on the predictability of "go" timing. We analyze firing activities of the anterior lateral motor cortex in male mice during two auditory delayed-response tasks each with predictable or unpredictable go timing. When go timing is unpredictable, preparatory activities immediately reach and stay in a neural state capable of producing movement anytime to a sudden go cue. When go timing is predictable, preparation activity reaches the movement-producible state more gradually, to secure more accurate decisions. Surprisingly, this preparation process entails a longer reaction time. We find that as preparatory activity increases in accuracy, it takes longer for a neural state to transition from the end of preparation to the start of movement. Our results suggest that the motor cortex fine-tunes preparatory activity for more accurate movement using the predictability of go timing.
Collapse
Affiliation(s)
- Soyoung Chae
- Ulsan National Institute of Science and Technology, Ulsan 44929, South Korea
| | - Jeong-Woo Sohn
- Catholic Kwandong University, Gangwon-do 25601, South Korea
| | - Sung-Phil Kim
- Ulsan National Institute of Science and Technology, Ulsan 44929, South Korea
| |
Collapse
|
21
|
Do J, Jung MW, Lee D. Automating licking bias correction in a two-choice delayed match-to-sample task to accelerate learning. Sci Rep 2023; 13:22768. [PMID: 38123637 PMCID: PMC10733387 DOI: 10.1038/s41598-023-49862-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Accepted: 12/12/2023] [Indexed: 12/23/2023] Open
Abstract
Animals often display choice bias, or a preference for one option over the others, which can significantly impede learning new tasks. Delayed match-to-sample (DMS) tasks with two-alternative choices of lickports on the left and right have been widely used to study sensory processing, working memory, and associative memory in head-fixed animals. However, extensive training time, primarily due to the animals' biased licking responses, limits their practical utility. Here, we present the implementation of an automated side bias correction system in an olfactory DMS task, where the lickport positions and the ratio of left- and right-rewarded trials are dynamically adjusted to counterbalance mouse's biased licking responses during training. The correction algorithm moves the preferred lickport farther away from the mouse's mouth and the non-preferred lickport closer, while also increasing the proportion of non-preferred side trials when biased licking occurs. We found that adjusting lickport distances and the proportions of left- versus right-rewarded trials effectively reduces the mouse's side bias. Further analyses reveal that these adjustments also correlate with subsequent improvements in behavioral performance. Our findings suggest that the automated side bias correction system is a valuable tool for enhancing the applicability of behavioral tasks involving two-alternative lickport choices.
Collapse
Affiliation(s)
- Jongrok Do
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon, 34141, Republic of Korea
- Center for Cognition and Sociality, Institute for Basic Science, Daejeon, 34126, Republic of Korea
| | - Min Whan Jung
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon, 34141, Republic of Korea.
- Center for Synaptic Brain Dysfunctions, Institute for Basic Science, Daejeon, 34141, Republic of Korea.
| | - Doyun Lee
- Center for Cognition and Sociality, Institute for Basic Science, Daejeon, 34126, Republic of Korea.
| |
Collapse
|
22
|
Thomas A, Yang W, Wang C, Tipparaju SL, Chen G, Sullivan B, Swiekatowski K, Tatam M, Gerfen C, Li N. Superior colliculus bidirectionally modulates choice activity in frontal cortex. Nat Commun 2023; 14:7358. [PMID: 37963894 PMCID: PMC10645979 DOI: 10.1038/s41467-023-43252-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2023] [Accepted: 11/03/2023] [Indexed: 11/16/2023] Open
Abstract
Action selection occurs through competition between potential choice options. Neural correlates of choice competition are observed across frontal cortex and downstream superior colliculus (SC) during decision-making, yet how these regions interact to mediate choice competition remains unresolved. Here we report that SC can bidirectionally modulate choice competition and drive choice activity in frontal cortex. In the mouse, topographically matched regions of frontal cortex and SC formed a descending motor pathway for directional licking and a re-entrant loop via the thalamus. During decision-making, distinct neuronal populations in both frontal cortex and SC encoded opposing lick directions and exhibited competitive interactions. SC GABAergic neurons encoded ipsilateral choice and locally inhibited glutamatergic neurons that encoded contralateral choice. Activating or suppressing these cell types could bidirectionally drive choice activity in frontal cortex. These results thus identify SC as a major locus to modulate choice competition within the broader action selection network.
Collapse
Affiliation(s)
- Alyse Thomas
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, USA
| | - Weiguo Yang
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, USA
| | - Catherine Wang
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, USA
| | | | - Guang Chen
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, USA
| | - Brennan Sullivan
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, USA
| | - Kylie Swiekatowski
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, USA
| | - Mahima Tatam
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, USA
| | - Charles Gerfen
- Section on Neuroanatomy, National Institute of Mental Health, Bethesda, MD, USA
| | - Nuo Li
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, USA.
| |
Collapse
|
23
|
Maristany de Las Casas E, Takahashi N. Synaptic crossroads: navigating the circuits of movement. Trends Neurosci 2023; 46:895-897. [PMID: 37690954 PMCID: PMC10591950 DOI: 10.1016/j.tins.2023.08.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Accepted: 08/17/2023] [Indexed: 09/12/2023]
Abstract
The anterior lateral motor area (ALM) is crucial in preparing and executing voluntary movements through its diverse neuronal subpopulations that target different subcortical areas. A recent study by Xu et al. utilized an elaborate viral tracing strategy in mice to provide comprehensive whole-brain maps of monosynaptic inputs to the major descending pathways of ALM.
Collapse
Affiliation(s)
| | - Naoya Takahashi
- University of Bordeaux, CNRS, Interdisciplinary Institute for Neuroscience, IINS, UMR 5297, 33000 Bordeaux, France.
| |
Collapse
|
24
|
Zhu J, Hasanbegović H, Liu LD, Gao Z, Li N. Activity map of a cortico-cerebellar loop underlying motor planning. Nat Neurosci 2023; 26:1916-1928. [PMID: 37814026 PMCID: PMC10620095 DOI: 10.1038/s41593-023-01453-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Accepted: 09/06/2023] [Indexed: 10/11/2023]
Abstract
The neocortex and cerebellum interact to mediate cognitive functions. It remains unknown how the two structures organize into functional networks to mediate specific behaviors. Here we delineate activity supporting motor planning in relation to the mesoscale cortico-cerebellar connectome. In mice planning directional licking based on short-term memory, preparatory activity instructing future movement depends on the anterior lateral motor cortex (ALM) and the cerebellum. Transneuronal tracing revealed divergent and largely open-loop connectivity between the ALM and distributed regions of the cerebellum. A cerebellum-wide survey of neuronal activity revealed enriched preparatory activity in hotspot regions with conjunctive input-output connectivity to the ALM. Perturbation experiments show that the conjunction regions were required for maintaining preparatory activity and correct subsequent movement. Other cerebellar regions contributed little to motor planning despite input or output connectivity to the ALM. These results identify a functional cortico-cerebellar loop and suggest the cerebellar cortex selectively establishes reciprocal cortico-cerebellar communications to orchestrate motor planning.
Collapse
Affiliation(s)
- Jia Zhu
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, USA
| | | | - Liu D Liu
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, USA
| | - Zhenyu Gao
- Department of Neuroscience, Erasmus MC, Rotterdam, the Netherlands.
| | - Nuo Li
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, USA.
| |
Collapse
|
25
|
Dubey A, Markowitz DA, Pesaran B. Top-down control of exogenous attentional selection is mediated by beta coherence in prefrontal cortex. Neuron 2023; 111:3321-3334.e5. [PMID: 37499660 PMCID: PMC10935562 DOI: 10.1016/j.neuron.2023.06.025] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 11/30/2022] [Accepted: 06/26/2023] [Indexed: 07/29/2023]
Abstract
Salience-driven exogenous and goal-driven endogenous attentional selection are two distinct forms of attention that guide selection of task-irrelevant and task-relevant targets in primates. Top-down attentional control mechanisms enable selection of the task-relevant target by limiting the influence of sensory information. Although the lateral prefrontal cortex (LPFC) is known to mediate top-down control, the neuronal mechanisms of top-down control of attentional selection are poorly understood. Here, we trained two rhesus monkeys on a two-target, free-choice luminance-reward selection task. We demonstrate that visual-movement (VM) neurons and nonvisual neurons or movement neurons encode exogenous and endogenous selection. We then show that coherent beta activity selectively modulates mechanisms of exogenous selection specifically during conflict and consequently may support top-down control. These results reveal the VM-neuron-specific network mechanisms of attentional selection and suggest a functional role for beta-frequency coherent neural dynamics in the modulation of sensory communication channels for the top-down control of attentional selection.
Collapse
Affiliation(s)
- Agrita Dubey
- Center for Neural Science, New York University, New York, NY 10003, USA
| | - David A Markowitz
- Center for Neural Science, New York University, New York, NY 10003, USA
| | - Bijan Pesaran
- Center for Neural Science, New York University, New York, NY 10003, USA; Departments of Neurosurgery, Neuroscience, and Bioengineering, University of Pennsylvania, Philadelphia, PA 19104, USA.
| |
Collapse
|
26
|
Howell AM, Warrington S, Fonteneau C, Cho YT, Sotiropoulos SN, Murray JD, Anticevic A. The spatial extent of anatomical connections within the thalamus varies across the cortical hierarchy in humans and macaques. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.07.22.550168. [PMID: 37546767 PMCID: PMC10401924 DOI: 10.1101/2023.07.22.550168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/08/2023]
Abstract
Each cortical area has a distinct pattern of anatomical connections within the thalamus, a central subcortical structure composed of functionally and structurally distinct nuclei. Previous studies have suggested that certain cortical areas may have more extensive anatomical connections that target multiple thalamic nuclei, which potentially allows them to modulate distributed information flow. However, there is a lack of quantitative investigations into anatomical connectivity patterns within the thalamus. Consequently, it remains unknown if cortical areas exhibit systematic differences in the extent of their anatomical connections within the thalamus. To address this knowledge gap, we used diffusion magnetic resonance imaging (dMRI) to perform brain-wide probabilistic tractography for 828 healthy adults from the Human Connectome Project. We then developed a framework to quantify the spatial extent of each cortical area's anatomical connections within the thalamus. Additionally, we leveraged resting-state functional MRI, cortical myelin, and human neural gene expression data to test if the extent of anatomical connections within the thalamus varied along the cortical hierarchy. Our results revealed two distinct corticothalamic tractography motifs: 1) a sensorimotor cortical motif characterized by focal thalamic connections targeting posterolateral thalamus, associated with fast, feed-forward information flow; and 2) an associative cortical motif characterized by diffuse thalamic connections targeting anteromedial thalamus, associated with slow, feed-back information flow. These findings were consistent across human subjects and were also observed in macaques, indicating cross-species generalizability. Overall, our study demonstrates that sensorimotor and association cortical areas exhibit differences in the spatial extent of their anatomical connections within the thalamus, which may support functionally-distinct cortico-thalamic information flow.
Collapse
Affiliation(s)
- Amber M Howell
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT 06511, USA
- Division of Neurocognition, Neurocomputation, & Neurogenetics (N3), Yale University School of Medicine, New Haven, Connecticut, 06511, USA
- Interdepartmental Neuroscience Program, Yale University, New Haven, Connecticut, 06511, USA
| | - Shaun Warrington
- Sir Peter Mansfield Imaging Centre, School of Medicine, University of Nottingham, Nottingham, UK
| | - Clara Fonteneau
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT 06511, USA
- Division of Neurocognition, Neurocomputation, & Neurogenetics (N3), Yale University School of Medicine, New Haven, Connecticut, 06511, USA
| | - Youngsun T Cho
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT 06511, USA
- Division of Neurocognition, Neurocomputation, & Neurogenetics (N3), Yale University School of Medicine, New Haven, Connecticut, 06511, USA
| | - Stamatios N Sotiropoulos
- Sir Peter Mansfield Imaging Centre, School of Medicine, University of Nottingham, Nottingham, UK
- Wellcome Centre for Integrative Neuroimaging, University of Oxford, Oxford, UK
- National Institute for Health Research (NIHR) Nottingham Biomedical Research Centre, Queens Medical Centre, Nottingham, UK
| | - John D Murray
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT 06511, USA
- Division of Neurocognition, Neurocomputation, & Neurogenetics (N3), Yale University School of Medicine, New Haven, Connecticut, 06511, USA
- Interdepartmental Neuroscience Program, Yale University, New Haven, Connecticut, 06511, USA
- Physics, Yale University, New Haven, Connecticut, 06511, USA
| | - Alan Anticevic
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT 06511, USA
- Division of Neurocognition, Neurocomputation, & Neurogenetics (N3), Yale University School of Medicine, New Haven, Connecticut, 06511, USA
- Interdepartmental Neuroscience Program, Yale University, New Haven, Connecticut, 06511, USA
- Department of Psychology, Yale University, New Haven, Connecticut, 06511, USA
| |
Collapse
|
27
|
Mangin EN, Chen J, Lin J, Li N. Behavioral measurements of motor readiness in mice. Curr Biol 2023; 33:3610-3624.e4. [PMID: 37582373 PMCID: PMC10529875 DOI: 10.1016/j.cub.2023.07.029] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2023] [Revised: 05/09/2023] [Accepted: 07/18/2023] [Indexed: 08/17/2023]
Abstract
Motor planning facilitates rapid and precise execution of volitional movements. Although motor planning has been classically studied in humans and monkeys, the mouse has become an increasingly popular model system to study neural mechanisms of motor planning. It remains yet untested whether mice and primates share common behavioral features of motor planning. We combined videography and a delayed response task paradigm in an autonomous behavioral system to measure motor planning in non-body-restrained mice. Motor planning resulted in both reaction time (RT) savings and increased movement accuracy, replicating classic effects in primates. We found that motor planning was reflected in task-relevant body features. Both the specific actions prepared and the degree of motor readiness could be read out online during motor planning. The online readout further revealed behavioral evidence of simultaneous preparation for multiple actions under uncertain conditions. These results validate the mouse as a model to study motor planning, demonstrate body feature movements as a powerful real-time readout of motor readiness, and offer behavioral evidence that motor planning can be a parallel process that permits rapid selection of multiple prepared actions.
Collapse
Affiliation(s)
- Elise N Mangin
- Department of Neuroscience, Baylor College of Medicine, Houston, TX 77030, USA
| | - Jian Chen
- Department of Neuroscience, Baylor College of Medicine, Houston, TX 77030, USA
| | - Jing Lin
- Department of Neuroscience, Baylor College of Medicine, Houston, TX 77030, USA
| | - Nuo Li
- Department of Neuroscience, Baylor College of Medicine, Houston, TX 77030, USA.
| |
Collapse
|
28
|
Chae S, Sihn D, Kim SP. Bias in Prestimulus Motor Cortical Activity Determines Decision-making Error in Rodents. Exp Neurobiol 2023; 32:271-284. [PMID: 37749928 PMCID: PMC10569143 DOI: 10.5607/en23020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 08/23/2023] [Accepted: 08/30/2023] [Indexed: 09/27/2023] Open
Abstract
Decision-making is a complex process that involves the integration and interpretation of sensory information to guide actions. The rodent motor cortex, which is generally involved in motor planning and execution, also plays a critical role in decision-making processes. In perceptual delayed-response tasks, the rodent motor cortex can represent sensory cues, as well as the decision of where to move. However, it remains unclear whether erroneous decisions arise from incorrect encoding of sensory information or improper utilization of the collected sensory information in the motor cortex. In this study, we analyzed the rodent anterior lateral motor cortex (ALM) while the mice performed perceptual delayed-response tasks. We divided population activities into sensory and choice signals to separately examine the encoding and utilization of sensory information. We found that the encoding of sensory information in the error trials was similar to that in the hit trials, whereas choice signals evolved differently between the error and hit trials. In error trials, choice signals displayed an offset in the opposite direction of instructed licking even before stimulus presentation, and this tendency gradually increased after stimulus onset, leading to incorrect licking. These findings suggest that decision errors are caused by biases in choice-related activities rather than by incorrect sensory encoding. Our study elaborates on the understanding of decision-making processes by providing neural substrates for erroneous decisions.
Collapse
Affiliation(s)
- Soyoung Chae
- Department of Biomedical Engineering, Ulsan National Institute of Science and Technology, Ulsan 44919, Korea
| | - Duho Sihn
- Department of Biomedical Engineering, Ulsan National Institute of Science and Technology, Ulsan 44919, Korea
| | - Sung-Phil Kim
- Department of Biomedical Engineering, Ulsan National Institute of Science and Technology, Ulsan 44919, Korea
| |
Collapse
|
29
|
Taub DG, Jiang Q, Pietrafesa F, Su J, Greene C, Blanchard MR, Jain A, El-Rifai M, Callen A, Yager K, Chung C, He Z, Chen C, Woolf CJ. The Secondary Somatosensory Cortex Gates Mechanical and Thermal Sensitivity. RESEARCH SQUARE 2023:rs.3.rs-2976953. [PMID: 37461707 PMCID: PMC10350168 DOI: 10.21203/rs.3.rs-2976953/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/23/2023]
Abstract
The cerebral cortex is vital for the perception and processing of sensory stimuli. In the somatosensory axis, information is received by two distinct regions, the primary (S1) and secondary (S2) somatosensory cortices. Top-down circuits stemming from S1 can modulate mechanical and cooling but not heat stimuli such that circuit inhibition causes blunted mechanical and cooling perception. Using optogenetics and chemogenetics, we find that in contrast to S1, an inhibition of S2 output increases mechanical and heat, but not cooling sensitivity. Combining 2-photon anatomical reconstruction with chemogenetic inhibition of specific S2 circuits, we discover that S2 projections to the secondary motor cortex (M2) govern mechanical and thermal sensitivity without affecting motor or cognitive function. This suggests that while S2, like S1, encodes specific sensory information, that S2 operates through quite distinct neural substrates to modulate responsiveness to particular somatosensory stimuli and that somatosensory cortical encoding occurs in a largely parallel fashion.
Collapse
Affiliation(s)
- Daniel G. Taub
- F. M. Kirby Neurobiology Center and Department of Neurology, Boston Children’s Hospital, Boston, MA, USA
- Department of Neurology, Harvard Medical School, Boston, MA, USA
| | - Qiufen Jiang
- F. M. Kirby Neurobiology Center and Department of Neurology, Boston Children’s Hospital, Boston, MA, USA
- Department of Neurology, Harvard Medical School, Boston, MA, USA
| | - Francesca Pietrafesa
- F. M. Kirby Neurobiology Center and Department of Neurology, Boston Children’s Hospital, Boston, MA, USA
- Department of Neurology, Harvard Medical School, Boston, MA, USA
| | - Junfeng Su
- F. M. Kirby Neurobiology Center and Department of Neurology, Boston Children’s Hospital, Boston, MA, USA
- Department of Neurology, Harvard Medical School, Boston, MA, USA
| | - Caitlin Greene
- F. M. Kirby Neurobiology Center and Department of Neurology, Boston Children’s Hospital, Boston, MA, USA
- Department of Neurology, Harvard Medical School, Boston, MA, USA
| | | | - Aakanksha Jain
- F. M. Kirby Neurobiology Center and Department of Neurology, Boston Children’s Hospital, Boston, MA, USA
- Department of Neurology, Harvard Medical School, Boston, MA, USA
| | - Mahmoud El-Rifai
- Department of Neurology, Harvard Medical School, Boston, MA, USA
| | - Alexis Callen
- Morrissey College of Arts and Sciences, Boston College, Chestnut Hill, MA, USA
| | - Katherine Yager
- Morrissey College of Arts and Sciences, Boston College, Chestnut Hill, MA, USA
| | - Clara Chung
- Department of Neuroscience, Boston University, Boston, MA, USA
| | - Zhigang He
- F. M. Kirby Neurobiology Center and Department of Neurology, Boston Children’s Hospital, Boston, MA, USA
- Department of Neurology, Harvard Medical School, Boston, MA, USA
| | - Chinfei Chen
- F. M. Kirby Neurobiology Center and Department of Neurology, Boston Children’s Hospital, Boston, MA, USA
- Department of Neurology, Harvard Medical School, Boston, MA, USA
| | - Clifford J. Woolf
- F. M. Kirby Neurobiology Center and Department of Neurology, Boston Children’s Hospital, Boston, MA, USA
- Department of Neurology, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
30
|
Mo C, McKinnon C, Sherman SM. A transthalamic pathway crucial for perception. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.30.533323. [PMID: 37034798 PMCID: PMC10081228 DOI: 10.1101/2023.03.30.533323] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Perception arises from activity between cortical areas, first primary cortex and then higher order cortices. This communication is served in part by transthalamic (cortico-thalamo-cortical) pathways, which ubiquitously parallel direct corticocortical pathways, but their role in sensory processing has largely remained unexplored. Here, we show that the transthalamic pathway linking somatosensory cortices propagates task-relevant information required for correct sensory decisions. Using optogenetics, we specifically inhibited the pathway at its synapse in higher order somatosensory thalamus of mice performing a texture-based discrimination task. We concurrently monitored the cellular effects of inhibition in primary or secondary cortex using two-photon calcium imaging. Inhibition severely impaired performance despite intact direct corticocortical projections, thus challenging the purely corticocentric map of perception. Interestingly, the inhibition did not reduce overall cell responsiveness to texture stimulation in somatosensory cortex, but rather disrupted the texture selectivity of cells, a discriminability that develops over task learning. This discriminability was more disrupted in the secondary than primary somatosensory cortex, emphasizing the feedforward influence of the transthalamic route. Transthalamic pathways thus appear critical in delivering performance-relevant information to higher order cortex and are critical hierarchical pathways in perceptual decision-making.
Collapse
|
31
|
Taub DG, Jiang Q, Pietrafesa F, Su J, Greene C, Blanchard MR, Jain A, El-Rifai M, Callen A, Yager K, Chung C, He Z, Chen C, Woolf CJ. The Secondary Somatosensory Cortex Gates Mechanical and Thermal Sensitivity. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.19.541449. [PMID: 37293011 PMCID: PMC10245795 DOI: 10.1101/2023.05.19.541449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
The cerebral cortex is vital for the perception and processing of sensory stimuli. In the somatosensory axis, information is received by two distinct regions, the primary (S1) and secondary (S2) somatosensory cortices. Top-down circuits stemming from S1 can modulate mechanical and cooling but not heat stimuli such that circuit inhibition causes blunted mechanical and cooling perception. Using optogenetics and chemogenetics, we find that in contrast to S1, an inhibition of S2 output increases mechanical and heat, but not cooling sensitivity. Combining 2-photon anatomical reconstruction with chemogenetic inhibition of specific S2 circuits, we discover that S2 projections to the secondary motor cortex (M2) govern mechanical and thermal sensitivity without affecting motor or cognitive function. This suggests that while S2, like S1, encodes specific sensory information, that S2 operates through quite distinct neural substrates to modulate responsiveness to particular somatosensory stimuli and that somatosensory cortical encoding occurs in a largely parallel fashion.
Collapse
|
32
|
Thomas A, Yang W, Wang C, Tipparaju SL, Chen G, Sullivan B, Swiekatowski K, Tatam M, Gerfen C, Li N. Superior colliculus cell types bidirectionally modulate choice activity in frontal cortex. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.04.22.537884. [PMID: 37162880 PMCID: PMC10168218 DOI: 10.1101/2023.04.22.537884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Action selection occurs through competition between potential choice options. Neural correlates of choice competition are observed across frontal cortex and downstream superior colliculus (SC) during decision-making, yet how these regions interact to mediate choice competition remains unresolved. Here we report that cell types within SC can bidirectionally modulate choice competition and drive choice activity in frontal cortex. In the mouse, topographically matched regions of frontal cortex and SC formed a descending motor pathway for directional licking and a re-entrant loop via the thalamus. During decision-making, distinct neuronal populations in both frontal cortex and SC encoded opposing lick directions and exhibited push-pull dynamics. SC GABAergic neurons encoded ipsilateral choice and glutamatergic neurons encoded contralateral choice, and activating or suppressing these cell types could bidirectionally drive push-pull choice activity in frontal cortex. These results thus identify SC as a major locus to modulate choice competition within the broader action selection network.
Collapse
Affiliation(s)
- Alyse Thomas
- Department of Neuroscience, Baylor College of Medicine, Houston, TX
| | - Weiguo Yang
- Department of Neuroscience, Baylor College of Medicine, Houston, TX
| | - Catherine Wang
- Department of Neuroscience, Baylor College of Medicine, Houston, TX
| | | | - Guang Chen
- Department of Neuroscience, Baylor College of Medicine, Houston, TX
| | - Brennan Sullivan
- Department of Neuroscience, Baylor College of Medicine, Houston, TX
| | | | - Mahima Tatam
- Department of Neuroscience, Baylor College of Medicine, Houston, TX
| | - Charles Gerfen
- Section on Neuroanatomy, National Institute of Mental Health, Bethesda, MD
| | - Nuo Li
- Department of Neuroscience, Baylor College of Medicine, Houston, TX
| |
Collapse
|
33
|
Mastrogiuseppe F, Hiratani N, Latham P. Evolution of neural activity in circuits bridging sensory and abstract knowledge. eLife 2023; 12:e79908. [PMID: 36881019 PMCID: PMC9991064 DOI: 10.7554/elife.79908] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Accepted: 01/06/2023] [Indexed: 03/08/2023] Open
Abstract
The ability to associate sensory stimuli with abstract classes is critical for survival. How are these associations implemented in brain circuits? And what governs how neural activity evolves during abstract knowledge acquisition? To investigate these questions, we consider a circuit model that learns to map sensory input to abstract classes via gradient-descent synaptic plasticity. We focus on typical neuroscience tasks (simple, and context-dependent, categorization), and study how both synaptic connectivity and neural activity evolve during learning. To make contact with the current generation of experiments, we analyze activity via standard measures such as selectivity, correlations, and tuning symmetry. We find that the model is able to recapitulate experimental observations, including seemingly disparate ones. We determine how, in the model, the behaviour of these measures depends on details of the circuit and the task. These dependencies make experimentally testable predictions about the circuitry supporting abstract knowledge acquisition in the brain.
Collapse
Affiliation(s)
| | - Naoki Hiratani
- Center for Brain Science, Harvard UniversityHarvardUnited States
| | - Peter Latham
- Gatsby Computational Neuroscience Unit, University College LondonLondonUnited Kingdom
| |
Collapse
|
34
|
Mangin EN, Chen J, Lin J, Li N. Behavioral measurements of motor readiness in mice. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.02.03.527054. [PMID: 36778494 PMCID: PMC9915731 DOI: 10.1101/2023.02.03.527054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Motor planning facilitates rapid and precise execution of volitional movements. Although motor planning has been classically studied in humans and monkeys, the mouse has become an increasingly popular model system to study neural mechanisms of motor planning. It remains yet untested whether mice and primates share common behavioral features of motor planning. We combined videography and a delayed response task paradigm in an autonomous behavioral system to measure motor planning in non-body- restrained mice. Motor planning resulted in both reaction time savings and increased movement accuracy, replicating classic effects in primates. We found that motor planning was reflected in task-relevant body features. Both the specific actions prepared and the degree of motor readiness could be read out online during motor planning. The online readout further revealed behavioral evidence of simultaneous preparation for multiple actions under uncertain conditions. These results validate the mouse as a model to study motor planning, demonstrate body feature movements as a powerful real-time readout of motor readiness, and offer behavioral evidence that motor planning can be a parallel process that permits rapid selection of multiple prepared actions.
Collapse
Affiliation(s)
| | - Jian Chen
- Department of Neuroscience, Baylor College of Medicine
| | - Jing Lin
- Department of Neuroscience, Baylor College of Medicine
| | - Nuo Li
- Department of Neuroscience, Baylor College of Medicine
| |
Collapse
|