1
|
Rubinstein Y, Moshkovitz M, Ottenheimer I, Shapira S, Tiomkin S, Avitan L. A detailed quantification of larval zebrafish behavioral repertoire uncovers principles of hunting behavior. iScience 2025; 28:112213. [PMID: 40235586 PMCID: PMC11999616 DOI: 10.1016/j.isci.2025.112213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Revised: 11/29/2024] [Accepted: 03/10/2025] [Indexed: 04/17/2025] Open
Abstract
During goal-directed behavior, animals select actions from a diverse repertoire of movements. Accurately quantifying this complex and high-dimensional repertoire is essential to uncovering the underlying rules that guide the behavior. Here, we developed a low-dimensional mathematical model that accurately reproduces the complete and continuous repertoire of hunting larval zebrafish. We show that fish position and change in heading angle following a movement are coupled, such that the choice of one of them limits the other. This repertoire structure uncovered fundamental principles of movements, showing that fish rotate around an identified rotation point and then move forward or backward. Moreover, it identified a new guiding rule of the hunt: fish turn to face the prey in each movement and then move forward or backward. These results present the first low-dimensional and continuous description of movements repertoire, uncover guiding behavioral rules, and offer insights into the underlying motor control.
Collapse
Affiliation(s)
- Yoav Rubinstein
- Edmond and Lily Safra Center for Brain Sciences, The Hebrew University of Jerusalem, Jerusalem 9190401, Israel
| | - Maayan Moshkovitz
- Edmond and Lily Safra Center for Brain Sciences, The Hebrew University of Jerusalem, Jerusalem 9190401, Israel
| | - Itay Ottenheimer
- Edmond and Lily Safra Center for Brain Sciences, The Hebrew University of Jerusalem, Jerusalem 9190401, Israel
| | - Sapir Shapira
- Edmond and Lily Safra Center for Brain Sciences, The Hebrew University of Jerusalem, Jerusalem 9190401, Israel
| | - Stas Tiomkin
- Computer Science Department, Whitacre College of Engineering, Texas Tech University, Lubbock, TX 79409, USA
| | - Lilach Avitan
- Edmond and Lily Safra Center for Brain Sciences, The Hebrew University of Jerusalem, Jerusalem 9190401, Israel
| |
Collapse
|
2
|
Boulanger-Weill J, Kämpf F, Schalek RL, Petkova M, Vohra SK, Savaliya JH, Wu Y, Schuhknecht GFP, Naumann H, Eberle M, Kirchberger KN, Rencken S, Bianco IH, Baum D, Del Bene F, Engert F, Lichtman JW, Bahl A. Correlative light and electron microscopy reveals the fine circuit structure underlying evidence accumulation in larval zebrafish. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.03.14.643363. [PMID: 40161766 PMCID: PMC11952533 DOI: 10.1101/2025.03.14.643363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 04/02/2025]
Abstract
Accumulating information is a critical component of most circuit computations in the brain across species, yet its precise implementation at the synaptic level remains poorly understood. Dissecting such neural circuits in vertebrates requires precise knowledge of functional neural properties and the ability to directly correlate neural dynamics with the underlying wiring diagram in the same animal. Here we combine functional calcium imaging with ultrastructural circuit reconstruction, using a visual motion accumulation paradigm in larval zebrafish. Using connectomic analyses of functionally identified cells and computational modeling, we show that bilateral inhibition, disinhibition, and recurrent connectivity are prominent motifs for sensory accumulation within the anterior hindbrain. We also demonstrate that similar insights about the structure-function relationship within this circuit can be obtained through complementary methods involving cell-specific morphological labeling via photo-conversion of functionally identified neuronal response types. We used our unique ground truth datasets to train and test a novel classifier algorithm, allowing us to assign functional labels to neurons from morphological libraries where functional information is lacking. The resulting feature-rich library of neuronal identities and connectomes enabled us to constrain a biophysically realistic network model of the anterior hindbrain that can reproduce observed neuronal dynamics and make testable predictions for future experiments. Our work exemplifies the power of hypothesis-driven electron microscopy paired with functional recordings to gain mechanistic insights into signal processing and provides a framework for dissecting neural computations across vertebrates.
Collapse
Affiliation(s)
- Jonathan Boulanger-Weill
- Department of Molecular and Cellular Biology, Faculty of Arts and Sciences, Harvard University, Cambridge, MA 02138, USA
- Sorbonne Université, CNRS, Inserm, Institut de la Vision, F-75012 Paris, France
- These authors contributed equally: Jonathan Boulanger-Weill, Florian Kämpf
| | - Florian Kämpf
- Centre for the Advanced Study of Collective Behaviour, University of Konstanz, Konstanz, Germany
- These authors contributed equally: Jonathan Boulanger-Weill, Florian Kämpf
| | - Richard L. Schalek
- Department of Molecular and Cellular Biology, Faculty of Arts and Sciences, Harvard University, Cambridge, MA 02138, USA
| | - Mariela Petkova
- Department of Molecular and Cellular Biology, Faculty of Arts and Sciences, Harvard University, Cambridge, MA 02138, USA
| | - Sumit Kumar Vohra
- Department of Visual and Data-Centric Computing, Zuse Institute Berlin (ZIB), Berlin, Germany
| | - Jay H. Savaliya
- Department of Molecular and Cellular Biology, Faculty of Arts and Sciences, Harvard University, Cambridge, MA 02138, USA
| | - Yuelong Wu
- Department of Molecular and Cellular Biology, Faculty of Arts and Sciences, Harvard University, Cambridge, MA 02138, USA
| | - Gregor F. P. Schuhknecht
- Department of Molecular and Cellular Biology, Faculty of Arts and Sciences, Harvard University, Cambridge, MA 02138, USA
| | - Heike Naumann
- Centre for the Advanced Study of Collective Behaviour, University of Konstanz, Konstanz, Germany
| | - Maren Eberle
- Department of Molecular and Cellular Biology, Faculty of Arts and Sciences, Harvard University, Cambridge, MA 02138, USA
| | - Kim N. Kirchberger
- Centre for the Advanced Study of Collective Behaviour, University of Konstanz, Konstanz, Germany
| | - Simone Rencken
- Department of Molecular and Cellular Biology, Faculty of Arts and Sciences, Harvard University, Cambridge, MA 02138, USA
| | - Isaac H. Bianco
- Department of Neuroscience, Physiology & Pharmacology, University College London, London, United Kingdom
| | - Daniel Baum
- Department of Visual and Data-Centric Computing, Zuse Institute Berlin (ZIB), Berlin, Germany
| | - Filippo Del Bene
- Sorbonne Université, CNRS, Inserm, Institut de la Vision, F-75012 Paris, France
- These authors jointly supervised this work: Filippo Del Bene, Florian Engert, Jeff W. Lichtman, Armin Bahl
| | - Florian Engert
- Department of Molecular and Cellular Biology, Faculty of Arts and Sciences, Harvard University, Cambridge, MA 02138, USA
- These authors jointly supervised this work: Filippo Del Bene, Florian Engert, Jeff W. Lichtman, Armin Bahl
| | - Jeff W. Lichtman
- Department of Molecular and Cellular Biology, Faculty of Arts and Sciences, Harvard University, Cambridge, MA 02138, USA
- These authors jointly supervised this work: Filippo Del Bene, Florian Engert, Jeff W. Lichtman, Armin Bahl
| | - Armin Bahl
- Centre for the Advanced Study of Collective Behaviour, University of Konstanz, Konstanz, Germany
- These authors jointly supervised this work: Filippo Del Bene, Florian Engert, Jeff W. Lichtman, Armin Bahl
| |
Collapse
|
3
|
Pjanovic V, Zavatone-Veth J, Masset P, Keemink S, Nardin M. Combining Sampling Methods with Attractor Dynamics in Spiking Models of Head-Direction Systems. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.02.25.640158. [PMID: 40060526 PMCID: PMC11888369 DOI: 10.1101/2025.02.25.640158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 03/15/2025]
Abstract
Uncertainty is a fundamental aspect of the natural environment, requiring the brain to infer and integrate noisy signals to guide behavior effectively. Sampling-based inference has been proposed as a mechanism for dealing with uncertainty, particularly in early sensory processing. However, it is unclear how to reconcile sampling-based methods with operational principles of higher-order brain areas, such as attractor dynamics of persistent neural representations. In this study, we present a spiking neural network model for the head-direction (HD) system that combines sampling-based inference with attractor dynamics. To achieve this, we derive the required spiking neural network dynamics and interactions to perform sampling from a large family of probability distributions-including variables encoded with Poisson noise. We then propose a method that allows the network to update its estimate of the current head direction by integrating angular velocity samples-derived from noisy inputs-with a pull towards a circular manifold, thereby maintaining consistent attractor dynamics. This model makes specific, testable predictions about the HD system that can be examined in future neurophysiological experiments: it predicts correlated subthreshold voltage fluctuations; distinctive short- and long-term firing correlations among neurons; and characteristic statistics of the movement of the neural activity "bump" representing the head direction. Overall, our approach extends previous theories on probabilistic sampling with spiking neurons, offers a novel perspective on the computations responsible for orientation and navigation, and supports the hypothesis that sampling-based methods can be combined with attractor dynamics to provide a viable framework for studying neural dynamics across the brain.
Collapse
Affiliation(s)
- Vojko Pjanovic
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, USA
- Department of Machine Learning and Neural Computing, Donders Institute for Brain, Cognition and Behaviour, Radboud University, Netherlands
| | - Jacob Zavatone-Veth
- Society of Fellows and Center for Brain Science, Harvard University, Cambridge, MA, USA
| | - Paul Masset
- Department of Psychology, McGill University, Montréal QC, Canada
| | - Sander Keemink
- Department of Machine Learning and Neural Computing, Donders Institute for Brain, Cognition and Behaviour, Radboud University, Netherlands
| | - Michele Nardin
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, USA
| |
Collapse
|
4
|
Ruffini G, Castaldo F, Vohryzek J. Structured Dynamics in the Algorithmic Agent. ENTROPY (BASEL, SWITZERLAND) 2025; 27:90. [PMID: 39851710 PMCID: PMC11765005 DOI: 10.3390/e27010090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Revised: 01/10/2025] [Accepted: 01/14/2025] [Indexed: 01/26/2025]
Abstract
In the Kolmogorov Theory of Consciousness, algorithmic agents utilize inferred compressive models to track coarse-grained data produced by simplified world models, capturing regularities that structure subjective experience and guide action planning. Here, we study the dynamical aspects of this framework by examining how the requirement of tracking natural data drives the structural and dynamical properties of the agent. We first formalize the notion of a generative model using the language of symmetry from group theory, specifically employing Lie pseudogroups to describe the continuous transformations that characterize invariance in natural data. Then, adopting a generic neural network as a proxy for the agent dynamical system and drawing parallels to Noether's theorem in physics, we demonstrate that data tracking forces the agent to mirror the symmetry properties of the generative world model. This dual constraint on the agent's constitutive parameters and dynamical repertoire enforces a hierarchical organization consistent with the manifold hypothesis in the neural network. Our findings bridge perspectives from algorithmic information theory (Kolmogorov complexity, compressive modeling), symmetry (group theory), and dynamics (conservation laws, reduced manifolds), offering insights into the neural correlates of agenthood and structured experience in natural systems, as well as the design of artificial intelligence and computational models of the brain.
Collapse
Affiliation(s)
- Giulio Ruffini
- Brain Modeling Department, Neuroelectrics, 08035 Barcelona, Spain;
| | | | - Jakub Vohryzek
- Computational Neuroscience Group, Universitat Pompeu Fabra, 08005 Barcelona, Spain;
- Centre for Eudaimonia and Human Flourishing, Linacre College, Oxford OX3 9BX, UK
| |
Collapse
|
5
|
Petrucco L. Investigating heading representation in the zebrafish interpeduncular nucleus (2024 FENS-Kavli network of excellence PhD thesis prize). Eur J Neurosci 2024; 60:6911-6914. [PMID: 39532546 DOI: 10.1111/ejn.16613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Revised: 11/01/2024] [Accepted: 11/02/2024] [Indexed: 11/16/2024]
Abstract
The brain's ability to integrate sensory and motor information allows us to maintain a sense of orientation in space, a process in which head-direction cells play a key role. While these neurons have been studied extensively in mammals, their presence and function in non-mammalian species remain less understood. Here, I summarize the research work for my PhD thesis, where we explore the interpeduncular nucleus (IPN) in zebrafish, a lesser known brain region, using whole-brain electron microscopy and calcium imaging techniques. We identified a novel population of unipolar neurons, with their activity exhibiting a dynamic, rotational pattern during head movements, even in the absence of sensory cues. This population mirrors the functionality of head-direction cells observed in mammals, suggesting a conserved mechanism for spatial orientation across vertebrates. Our findings reveal the potential of the zebrafish IPN as a vertebrate model for studying ring attractor networks, a theoretical framework previously used to explain head-direction cell activity. These results pave the way for future research on how motor and sensory signals converge in the vertebrate brain to maintain spatial orientation.
Collapse
Affiliation(s)
- Luigi Petrucco
- Istituto Italiano di Tecnologia, Center for Neuroscience and Cognitive Systems, Rovereto, Italy
| |
Collapse
|
6
|
Stringer C, Pachitariu M. Analysis methods for large-scale neuronal recordings. Science 2024; 386:eadp7429. [PMID: 39509504 DOI: 10.1126/science.adp7429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2024] [Accepted: 09/27/2024] [Indexed: 11/15/2024]
Abstract
Simultaneous recordings from hundreds or thousands of neurons are becoming routine because of innovations in instrumentation, molecular tools, and data processing software. Such recordings can be analyzed with data science methods, but it is not immediately clear what methods to use or how to adapt them for neuroscience applications. We review, categorize, and illustrate diverse analysis methods for neural population recordings and describe how these methods have been used to make progress on longstanding questions in neuroscience. We review a variety of approaches, ranging from the mathematically simple to the complex, from exploratory to hypothesis-driven, and from recently developed to more established methods. We also illustrate some of the common statistical pitfalls in analyzing large-scale neural data.
Collapse
Affiliation(s)
- Carsen Stringer
- Howard Hughes Medical Institute (HHMI) Janelia Research Campus, Ashburn, VA, USA
| | - Marius Pachitariu
- Howard Hughes Medical Institute (HHMI) Janelia Research Campus, Ashburn, VA, USA
| |
Collapse
|
7
|
Quiroz Monnens S, Peters C, Hesselink LW, Smeets K, Englitz B. The recurrent temporal restricted Boltzmann machine captures neural assembly dynamics in whole-brain activity. eLife 2024; 13:RP98489. [PMID: 39499540 PMCID: PMC11537485 DOI: 10.7554/elife.98489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2024] Open
Abstract
Animal behaviour alternates between stochastic exploration and goal-directed actions, which are generated by the underlying neural dynamics. Previously, we demonstrated that the compositional Restricted Boltzmann Machine (cRBM) can decompose whole-brain activity of larval zebrafish data at the neural level into a small number (∼100-200) of assemblies that can account for the stochasticity of the neural activity (van der Plas et al., eLife, 2023). Here, we advance this representation by extending to a combined stochastic-dynamical representation to account for both aspects using the recurrent temporal RBM (RTRBM) and transfer-learning based on the cRBM estimate. We demonstrate that the functional advantage of the RTRBM is captured in the temporal weights on the hidden units, representing neural assemblies, for both simulated and experimental data. Our results show that the temporal expansion outperforms the stochastic-only cRBM in terms of generalization error and achieves a more accurate representation of the moments in time. Lastly, we demonstrate that we can identify the original time-scale of assembly dynamics by estimating multiple RTRBMs at different temporal resolutions. Together, we propose that RTRBMs are a valuable tool for capturing the combined stochastic and time-predictive dynamics of large-scale data sets.
Collapse
Affiliation(s)
- Sebastian Quiroz Monnens
- Computational Neuroscience Lab, Donders Center for Neuroscience, Radboud UniversityNijmegenNetherlands
| | - Casper Peters
- Computational Neuroscience Lab, Donders Center for Neuroscience, Radboud UniversityNijmegenNetherlands
| | - Luuk Willem Hesselink
- Computational Neuroscience Lab, Donders Center for Neuroscience, Radboud UniversityNijmegenNetherlands
| | - Kasper Smeets
- Computational Neuroscience Lab, Donders Center for Neuroscience, Radboud UniversityNijmegenNetherlands
| | - Bernhard Englitz
- Computational Neuroscience Lab, Donders Center for Neuroscience, Radboud UniversityNijmegenNetherlands
| |
Collapse
|
8
|
Basu J, Nagel K. Neural circuits for goal-directed navigation across species. Trends Neurosci 2024; 47:904-917. [PMID: 39393938 PMCID: PMC11563880 DOI: 10.1016/j.tins.2024.09.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 08/26/2024] [Accepted: 09/17/2024] [Indexed: 10/13/2024]
Abstract
Across species, navigation is crucial for finding both resources and shelter. In vertebrates, the hippocampus supports memory-guided goal-directed navigation, whereas in arthropods the central complex supports similar functions. A growing literature is revealing similarities and differences in the organization and function of these brain regions. We review current knowledge about how each structure supports goal-directed navigation by building internal representations of the position or orientation of an animal in space, and of the location or direction of potential goals. We describe input pathways to each structure - medial and lateral entorhinal cortex in vertebrates, and columnar and tangential neurons in insects - that primarily encode spatial and non-spatial information, respectively. Finally, we highlight similarities and differences in spatial encoding across clades and suggest experimental approaches to compare coding principles and behavioral capabilities across species. Such a comparative approach can provide new insights into the neural basis of spatial navigation and neural computation.
Collapse
Affiliation(s)
- Jayeeta Basu
- Neuroscience Institute, New York University Langone Health, New York, NY 10016, USA; Department of Neuroscience and Physiology, New York University Grossman School of Medicine, New York, NY 10016, USA; Department of Psychiatry, New York University Grossman School of Medicine, New York, NY 10016, USA; Center for Neural Science, New York University, New York, NY 10003, USA.
| | - Katherine Nagel
- Neuroscience Institute, New York University Langone Health, New York, NY 10016, USA; Department of Neuroscience and Physiology, New York University Grossman School of Medicine, New York, NY 10016, USA; Center for Neural Science, New York University, New York, NY 10003, USA.
| |
Collapse
|
9
|
Noorman M, Hulse BK, Jayaraman V, Romani S, Hermundstad AM. Maintaining and updating accurate internal representations of continuous variables with a handful of neurons. Nat Neurosci 2024; 27:2207-2217. [PMID: 39363052 PMCID: PMC11537979 DOI: 10.1038/s41593-024-01766-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Accepted: 08/14/2024] [Indexed: 10/05/2024]
Abstract
Many animals rely on persistent internal representations of continuous variables for working memory, navigation, and motor control. Existing theories typically assume that large networks of neurons are required to maintain such representations accurately; networks with few neurons are thought to generate discrete representations. However, analysis of two-photon calcium imaging data from tethered flies walking in darkness suggests that their small head-direction system can maintain a surprisingly continuous and accurate representation. We thus ask whether it is possible for a small network to generate a continuous, rather than discrete, representation of such a variable. We show analytically that even very small networks can be tuned to maintain continuous internal representations, but this comes at the cost of sensitivity to noise and variations in tuning. This work expands the computational repertoire of small networks, and raises the possibility that larger networks could represent more and higher-dimensional variables than previously thought.
Collapse
Affiliation(s)
- Marcella Noorman
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, USA.
| | - Brad K Hulse
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, USA
| | - Vivek Jayaraman
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, USA
| | - Sandro Romani
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, USA
| | - Ann M Hermundstad
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, USA.
| |
Collapse
|
10
|
Yang C, Mammen L, Kim B, Li M, Robson DN, Li JM. A population code for spatial representation in the zebrafish telencephalon. Nature 2024; 634:397-406. [PMID: 39198641 PMCID: PMC11464381 DOI: 10.1038/s41586-024-07867-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Accepted: 07/23/2024] [Indexed: 09/01/2024]
Abstract
Spatial learning in teleost fish requires an intact telencephalon1, a brain region that contains putative analogues to components of the mammalian limbic system (for example, hippocampus)2-4. However, cells fundamental to spatial cognition in mammals-for example, place cells (PCs)5,6-have yet to be established in any fish species. In this study, using tracking microscopy to record brain-wide calcium activity in freely swimming larval zebrafish7, we compute the spatial information content8 of each neuron across the brain. Strikingly, in every recorded animal, cells with the highest spatial specificity were enriched in the zebrafish telencephalon. These PCs form a population code of space from which we can decode the animal's spatial location across time. By continuous recording of population-level activity, we found that the activity manifold of PCs refines and untangles over time. Through systematic manipulation of allothetic and idiothetic cues, we demonstrate that zebrafish PCs integrate multiple sources of information and can flexibly remap to form distinct spatial maps. Using analysis of neighbourhood distance between PCs across environments, we found evidence for a weakly preconfigured network in the telencephalon. The discovery of zebrafish PCs represents a step forward in our understanding of spatial cognition across species and the functional role of the early vertebrate telencephalon.
Collapse
Affiliation(s)
- Chuyu Yang
- Max Planck Institute for Biological Cybernetics, Tuebingen, Germany
- University of Tuebingen, Tuebingen, Germany
| | - Lorenz Mammen
- Max Planck Institute for Biological Cybernetics, Tuebingen, Germany
- University of Tuebingen, Tuebingen, Germany
- Department of Neurobiology and Behavior, Cornell University, Ithaca, NY, USA
| | - Byoungsoo Kim
- Max Planck Institute for Biological Cybernetics, Tuebingen, Germany
- University of Tuebingen, Tuebingen, Germany
| | - Meng Li
- Max Planck Institute for Biological Cybernetics, Tuebingen, Germany
- Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai, China
- INSIDE Institute for Biological and Artificial Intelligence, Shanghai, China
| | - Drew N Robson
- Max Planck Institute for Biological Cybernetics, Tuebingen, Germany.
| | - Jennifer M Li
- Max Planck Institute for Biological Cybernetics, Tuebingen, Germany.
| |
Collapse
|
11
|
Asinof SK, Card GM. Neural Control of Naturalistic Behavior Choices. Annu Rev Neurosci 2024; 47:369-388. [PMID: 38724026 DOI: 10.1146/annurev-neuro-111020-094019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/09/2024]
Abstract
In the natural world, animals make decisions on an ongoing basis, continuously selecting which action to undertake next. In the lab, however, the neural bases of decision processes have mostly been studied using artificial trial structures. New experimental tools based on the genetic toolkit of model organisms now make it experimentally feasible to monitor and manipulate neural activity in small subsets of neurons during naturalistic behaviors. We thus propose a new approach to investigating decision processes, termed reverse neuroethology. In this approach, experimenters select animal models based on experimental accessibility and then utilize cutting-edge tools such as connectomes and genetically encoded reagents to analyze the flow of information through an animal's nervous system during naturalistic choice behaviors. We describe how the reverse neuroethology strategy has been applied to understand the neural underpinnings of innate, rapid decision making, with a focus on defensive behavioral choices in the vinegar fly Drosophila melanogaster.
Collapse
Affiliation(s)
- Samuel K Asinof
- Laboratory of Molecular Biology, National Institute of Mental Health, Bethesda, Maryland, USA
- Janelia Research Campus, Ashburn, Virginia, USA
| | - Gwyneth M Card
- Howard Hughes Medical Institute, Department of Neuroscience, and Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY, USA;
- Janelia Research Campus, Ashburn, Virginia, USA
| |
Collapse
|
12
|
Zylbertal A, Bianco IH. Mirror-assisted light-sheet microscopy: a simple upgrade to enable bi-directional sample excitation. NEUROPHOTONICS 2024; 11:035006. [PMID: 39114857 PMCID: PMC11304984 DOI: 10.1117/1.nph.11.3.035006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 07/12/2024] [Accepted: 07/19/2024] [Indexed: 08/10/2024]
Abstract
Significance Light-sheet microscopy is a powerful imaging technique that achieves optical sectioning via selective illumination of individual sample planes. However, when the sample contains opaque or scattering tissues, the incident light sheet may not be able to uniformly excite the entire sample. For example, in the context of larval zebrafish whole-brain imaging, occlusion by the eyes prevents access to a significant portion of the brain during common implementations using unidirectional illumination. Aim We introduce mirror-assisted light-sheet microscopy (mLSM), a simple inexpensive method that can be implemented on existing digitally scanned light-sheet setups by adding a single optical element-a mirrored micro-prism. The prism is placed near the sample to generate a second excitation path for accessing previously obstructed regions. Approach Scanning the laser beam onto the mirror generates a second, reflected illumination path that circumvents the occlusion. Online tuning of the scanning and laser power waveforms enables near uniform sample excitation with dual illumination. Results mLSM produces cellular-resolution images of zebrafish brain regions inaccessible to unidirectional illumination. The imaging quality in regions illuminated by the direct or reflected sheet is adjustable by translating the excitation objective. The prism does not interfere with visually guided behavior. Conclusions mLSM presents an easy-to-implement, cost-effective way to upgrade an existing light-sheet system to obtain more imaging data from a biological sample.
Collapse
Affiliation(s)
- Asaph Zylbertal
- University College London, Department of Neuroscience, Physiology & Pharmacology, London, United Kingdom
| | - Isaac H. Bianco
- University College London, Department of Neuroscience, Physiology & Pharmacology, London, United Kingdom
| |
Collapse
|
13
|
Spikol ED, Cheng J, Macurak M, Subedi A, Halpern ME. Genetically defined nucleus incertus neurons differ in connectivity and function. eLife 2024; 12:RP89516. [PMID: 38819436 PMCID: PMC11142643 DOI: 10.7554/elife.89516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/01/2024] Open
Abstract
The nucleus incertus (NI), a conserved hindbrain structure implicated in the stress response, arousal, and memory, is a major site for production of the neuropeptide relaxin-3. On the basis of goosecoid homeobox 2 (gsc2) expression, we identified a neuronal cluster that lies adjacent to relaxin 3a (rln3a) neurons in the zebrafish analogue of the NI. To delineate the characteristics of the gsc2 and rln3a NI neurons, we used CRISPR/Cas9 targeted integration to drive gene expression specifically in each neuronal group, and found that they differ in their efferent and afferent connectivity, spontaneous activity, and functional properties. gsc2 and rln3a NI neurons have widely divergent projection patterns and innervate distinct subregions of the midbrain interpeduncular nucleus (IPN). Whereas gsc2 neurons are activated more robustly by electric shock, rln3a neurons exhibit spontaneous fluctuations in calcium signaling and regulate locomotor activity. Our findings define heterogeneous neurons in the NI and provide new tools to probe its diverse functions.
Collapse
Affiliation(s)
- Emma D Spikol
- Department of Molecular and Systems Biology, Geisel School of Medicine at DartmouthHanoverUnited States
- Department of Neuroscience, Johns Hopkins University School of MedicineBaltimoreUnited States
| | - Ji Cheng
- Department of Molecular and Systems Biology, Geisel School of Medicine at DartmouthHanoverUnited States
- Department of Biology, Johns Hopkins UniversityBaltimoreUnited States
| | - Michelle Macurak
- Department of Biology, Johns Hopkins UniversityBaltimoreUnited States
| | - Abhignya Subedi
- Department of Biology, Johns Hopkins UniversityBaltimoreUnited States
| | - Marnie E Halpern
- Department of Molecular and Systems Biology, Geisel School of Medicine at DartmouthHanoverUnited States
- Department of Neuroscience, Johns Hopkins University School of MedicineBaltimoreUnited States
- Department of Biology, Johns Hopkins UniversityBaltimoreUnited States
| |
Collapse
|
14
|
Palieri V, Paoli E, Wu YK, Haesemeyer M, Grunwald Kadow IC, Portugues R. The preoptic area and dorsal habenula jointly support homeostatic navigation in larval zebrafish. Curr Biol 2024; 34:489-504.e7. [PMID: 38211586 PMCID: PMC10849091 DOI: 10.1016/j.cub.2023.12.030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 11/22/2023] [Accepted: 12/11/2023] [Indexed: 01/13/2024]
Abstract
Animals must maintain physiological processes within an optimal temperature range despite changes in their environment. Through behavioral assays, whole-brain functional imaging, and neural ablations, we show that larval zebrafish, an ectothermic vertebrate, achieves thermoregulation through homeostatic navigation-non-directional and directional movements toward the temperature closest to its physiological setpoint. A brain-wide circuit encompassing several brain regions enables this behavior. We identified the preoptic area of the hypothalamus (PoA) as a key brain structure in triggering non-directional reorientation when thermal conditions are worsening. This result shows an evolutionary conserved role of the PoA as principal thermoregulator of the brain also in ectotherms. We further show that the habenula (Hb)-interpeduncular nucleus (IPN) circuit retains a short-term memory of the sensory history to support the generation of coherent directed movements even in the absence of continuous sensory cues. We finally provide evidence that this circuit may not be exclusive for temperature but may convey a more abstract representation of relative valence of physiologically meaningful stimuli regardless of their specific identity to enable homeostatic navigation.
Collapse
Affiliation(s)
- Virginia Palieri
- Institute of Neuroscience, Technical University of Munich, Biedersteiner Strasse 29, 80802 Munich, Germany; School of Life Sciences, Technical University of Munich, Freising, Germany
| | - Emanuele Paoli
- Institute of Neuroscience, Technical University of Munich, Biedersteiner Strasse 29, 80802 Munich, Germany
| | - You Kure Wu
- Institute of Neuroscience, Technical University of Munich, Biedersteiner Strasse 29, 80802 Munich, Germany
| | - Martin Haesemeyer
- Department of Neuroscience, The Ohio State University College of Medicine, Columbus, OH 43210, USA
| | - Ilona C Grunwald Kadow
- School of Life Sciences, Technical University of Munich, Freising, Germany; Institute of Physiology II, University of Bonn, Medical Faculty (UKB), Nussallee 11, 53115 Bonn, Germany.
| | - Ruben Portugues
- Institute of Neuroscience, Technical University of Munich, Biedersteiner Strasse 29, 80802 Munich, Germany; Munich Cluster of Systems Neurology (SyNergy), Feodor-Lynen-Str. 17, 81377 Munich, Germany.
| |
Collapse
|
15
|
Mussells Pires P, Zhang L, Parache V, Abbott LF, Maimon G. Converting an allocentric goal into an egocentric steering signal. Nature 2024; 626:808-818. [PMID: 38326612 PMCID: PMC10881393 DOI: 10.1038/s41586-023-07006-3] [Citation(s) in RCA: 17] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Accepted: 12/19/2023] [Indexed: 02/09/2024]
Abstract
Neuronal signals that are relevant for spatial navigation have been described in many species1-10. However, a circuit-level understanding of how such signals interact to guide navigational behaviour is lacking. Here we characterize a neuronal circuit in the Drosophila central complex that compares internally generated estimates of the heading and goal angles of the fly-both of which are encoded in world-centred (allocentric) coordinates-to generate a body-centred (egocentric) steering signal. Past work has suggested that the activity of EPG neurons represents the fly's moment-to-moment angular orientation, or heading angle, during navigation2,11. An animal's moment-to-moment heading angle, however, is not always aligned with its goal angle-that is, the allocentric direction in which it wishes to progress forward. We describe FC2 cells12, a second set of neurons in the Drosophila brain with activity that correlates with the fly's goal angle. Focal optogenetic activation of FC2 neurons induces flies to orient along experimenter-defined directions as they walk forward. EPG and FC2 neurons connect monosynaptically to a third neuronal class, PFL3 cells12,13. We found that individual PFL3 cells show conjunctive, spike-rate tuning to both the heading angle and the goal angle during goal-directed navigation. Informed by the anatomy and physiology of these three cell classes, we develop a model that explains how this circuit compares allocentric heading and goal angles to build an egocentric steering signal in the PFL3 output terminals. Quantitative analyses and optogenetic manipulations of PFL3 activity support the model. Finally, using a new navigational memory task, we show that flies expressing disruptors of synaptic transmission in subsets of PFL3 cells have a reduced ability to orient along arbitrary goal directions, with an effect size in quantitative accordance with the prediction of our model. The biological circuit described here reveals how two population-level allocentric signals are compared in the brain to produce an egocentric output signal that is appropriate for motor control.
Collapse
Affiliation(s)
- Peter Mussells Pires
- Laboratory of Integrative Brain Function and Howard Hughes Medical Institute, The Rockefeller University, New York, NY, USA
| | - Lingwei Zhang
- Laboratory of Integrative Brain Function and Howard Hughes Medical Institute, The Rockefeller University, New York, NY, USA
| | - Victoria Parache
- Laboratory of Integrative Brain Function and Howard Hughes Medical Institute, The Rockefeller University, New York, NY, USA
| | - L F Abbott
- Mortimer B. Zuckerman Mind Brain Behavior Institute, Department of Neuroscience, Columbia University, New York, NY, USA
| | - Gaby Maimon
- Laboratory of Integrative Brain Function and Howard Hughes Medical Institute, The Rockefeller University, New York, NY, USA.
| |
Collapse
|
16
|
Lee TJ, Briggman KL. Visually guided and context-dependent spatial navigation in the translucent fish Danionella cerebrum. Curr Biol 2023; 33:5467-5477.e4. [PMID: 38070503 DOI: 10.1016/j.cub.2023.11.030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 10/06/2023] [Accepted: 11/14/2023] [Indexed: 12/21/2023]
Abstract
Danionella cerebrum (DC) is a promising vertebrate animal model for systems neuroscience due to its small adult brain volume and inherent optical transparency, but the scope of their cognitive abilities remains an area of active research. In this work, we established a behavioral paradigm to study visual spatial navigation in DC and investigate their navigational capabilities and strategies. We initially observed that adult DC exhibit strong negative phototaxis in groups but less so as individuals. Using their dark preference as a motivator, we designed a spatial navigation task inspired by the Morris water maze. Through a series of environmental cue manipulations, we found that DC utilize visual cues to anticipate a reward location and found evidence for landmark-based navigational strategies wherein DC could use both proximal and distal visual cues. When subsets of proximal visual cues were occluded, DC were capable of using distant contextual visual information to solve the task, providing evidence for allocentric spatial navigation. Without proximal visual cues, DC tended to seek out a direct line of sight with at least one distal visual cue while maintaining a positional bias toward the reward location. In total, our behavioral results suggest that DC can be used to study the neural mechanisms underlying spatial navigation with cellular resolution imaging across an adult vertebrate brain.
Collapse
Affiliation(s)
- Timothy J Lee
- Max Planck Institute for Neurobiology of Behavior - caesar, Department of Computational Neuroethology, Ludwig-Erhard-Allee 2, Bonn, 53175 North Rhine-Westphalia, Germany.
| | - Kevin L Briggman
- Max Planck Institute for Neurobiology of Behavior - caesar, Department of Computational Neuroethology, Ludwig-Erhard-Allee 2, Bonn, 53175 North Rhine-Westphalia, Germany.
| |
Collapse
|
17
|
|
18
|
Moroz LL, Romanova DY. Chemical cognition: chemoconnectomics and convergent evolution of integrative systems in animals. Anim Cogn 2023; 26:1851-1864. [PMID: 38015282 PMCID: PMC11106658 DOI: 10.1007/s10071-023-01833-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/16/2023] [Indexed: 11/29/2023]
Abstract
Neurons underpin cognition in animals. However, the roots of animal cognition are elusive from both mechanistic and evolutionary standpoints. Two conceptual frameworks both highlight and promise to address these challenges. First, we discuss evidence that animal neural and other integrative systems evolved more than once (convergent evolution) within basal metazoan lineages, giving us unique experiments by Nature for future studies. The most remarkable examples are neural systems in ctenophores and neuroid-like systems in placozoans and sponges. Second, in addition to classical synaptic wiring, a chemical connectome mediated by hundreds of signal molecules operates in tandem with neurons and is the most information-rich source of emerging properties and adaptability. The major gap-dynamic, multifunctional chemical micro-environments in nervous systems-is not understood well. Thus, novel tools and information are needed to establish mechanistic links between orchestrated, yet cell-specific, volume transmission and behaviors. Uniting what we call chemoconnectomics and analyses of the cellular bases of behavior in basal metazoan lineages arguably would form the foundation for deciphering the origins and early evolution of elementary cognition and intelligence.
Collapse
Affiliation(s)
- Leonid L Moroz
- Department of Neuroscience, University of Florida, Gainesville, USA.
- Whitney Laboratory for Marine Bioscience, University of Florida, Saint Augustine, USA.
| | - Daria Y Romanova
- Institute of Higher Nervous Activity and Neurophysiology of RAS, Moscow, Russia
| |
Collapse
|
19
|
Liu Z, Bagnall MW. Organization of vestibular circuits for postural control in zebrafish. Curr Opin Neurobiol 2023; 82:102776. [PMID: 37634321 PMCID: PMC11528713 DOI: 10.1016/j.conb.2023.102776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Revised: 07/28/2023] [Accepted: 08/01/2023] [Indexed: 08/29/2023]
Abstract
Most animals begin controlling their posture, or orientation with respect to gravity, at an early stage in life. Posture is vital for locomotor function. Even animals like fish, which are capable of swimming upside-down, must actively control their orientation to coordinate behaviors such as capturing prey near the water's surface. Here we review recent research from multiple laboratories investigating the organization and function of the vestibular circuits underlying postural control in zebrafish. Some findings in zebrafish strongly align with prior observations in mammals, reinforcing our understanding of homologies between systems. In other instances, the unique transparency and accessibility of zebrafish has enabled new analyses of several neural circuit components that remain challenging to study in mammalian systems. These new results demonstrate topographical and circuit features in postural control.
Collapse
Affiliation(s)
- Zhikai Liu
- Department of Neuroscience, Washington University in St. Louis, 660 S. Euclid Ave., St. Louis MO 63108, USA; Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA. https://twitter.com/zhikai_liu
| | - Martha W Bagnall
- Department of Neuroscience, Washington University in St. Louis, 660 S. Euclid Ave., St. Louis MO 63108, USA.
| |
Collapse
|
20
|
Beetz MJ, Kraus C, El Jundi B. Neural representation of goal direction in the monarch butterfly brain. Nat Commun 2023; 14:5859. [PMID: 37730704 PMCID: PMC10511513 DOI: 10.1038/s41467-023-41526-w] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Accepted: 09/04/2023] [Indexed: 09/22/2023] Open
Abstract
Neural processing of a desired moving direction requires the continuous comparison between the current heading and the goal direction. While the neural basis underlying the current heading is well-studied, the coding of the goal direction remains unclear in insects. Here, we used tetrode recordings in tethered flying monarch butterflies to unravel how a goal direction is represented in the insect brain. While recording, the butterflies maintained robust goal directions relative to a virtual sun. By resetting their goal directions, we found neurons whose spatial tuning was tightly linked to the goal directions. Importantly, their tuning was unaffected when the butterflies changed their heading after compass perturbations, showing that these neurons specifically encode the goal direction. Overall, we here discovered invertebrate goal-direction neurons that share functional similarities to goal-direction cells reported in mammals. Our results give insights into the evolutionarily conserved principles of goal-directed spatial orientation in animals.
Collapse
Affiliation(s)
- M Jerome Beetz
- Zoology II, Biocenter, University of Würzburg, Würzburg, Germany.
| | - Christian Kraus
- Zoology II, Biocenter, University of Würzburg, Würzburg, Germany
- Animal Physiology, Department of Biology, Norwegian University of Science and Technology, Trondheim, Norway
| | - Basil El Jundi
- Zoology II, Biocenter, University of Würzburg, Würzburg, Germany
- Animal Physiology, Department of Biology, Norwegian University of Science and Technology, Trondheim, Norway
| |
Collapse
|
21
|
Abstract
Using functional imaging and neural circuit reconstructions, a recent study reveals head direction neurons in the anterior hindbrain of zebrafish that resemble insect head-direction cells to a surprising degree.
Collapse
Affiliation(s)
- Stanley Heinze
- Lund University, Lund Vision Group and NanoLund, Lund, Sweden.
| |
Collapse
|