1
|
Chisholm TS, Hunter CA. Ligands for Protein Fibrils of Amyloid-β, α-Synuclein, and Tau. Chem Rev 2025. [PMID: 40327808 DOI: 10.1021/acs.chemrev.4c00838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/08/2025]
Abstract
Amyloid fibrils are characteristic features of many neurodegenerative diseases, including Alzheimer's disease and Parkinson's disease. The use of small molecule ligands that bind to amyloid fibrils underpins both fundamental research aiming to better understand the pathology of neurodegenerative disease, and clinical research aiming to develop diagnostic tools for these diseases. To date, a large number of amyloid-binding ligands have been reported in the literature, predominantly targeting protein fibrils composed of amyloid-β (Aβ), tau, and α-synuclein (αSyn) fibrils. Fibrils formed by a particular protein can adopt a range of possible morphologies, but protein fibrils formed in vivo possess disease-specific morphologies, highlighting the need for morphology-specific amyloid-binding ligands. This review details the morphologies of Aβ, tau, and αSyn fibril polymorphs that have been reported as a result of structural work and describes a database of amyloid-binding ligands containing 4,288 binding measurements for 2,404 unique compounds targeting Aβ, tau, or αSyn fibrils.
Collapse
Affiliation(s)
- Timothy S Chisholm
- Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge CB2 1EW, U.K
| | - Christopher A Hunter
- Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge CB2 1EW, U.K
| |
Collapse
|
2
|
Ji Y, Chen X, Wang Z, Meek CJ, McLean JL, Yang Y, Yuan C, Rochet JC, Liu F, Xu R. Alzheimer's disease patient brain extracts induce multiple pathologies in novel vascularized neuroimmune organoids for disease modeling and drug discovery. Mol Psychiatry 2025:10.1038/s41380-025-03041-w. [PMID: 40316675 DOI: 10.1038/s41380-025-03041-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 04/10/2025] [Accepted: 04/24/2025] [Indexed: 05/04/2025]
Abstract
Alzheimer's Disease (AD) is the most common cause of dementia, afflicting 55 million individuals worldwide, with limited treatment available. Current AD models mainly focus on familial AD (fAD), which is due to genetic mutations. However, models for studying sporadic AD (sAD), which represents over 95% of AD cases without specific genetic mutations, are severely limited. Moreover, the fundamental species differences between humans and animals might significantly contribute to clinical failures for AD therapeutics that have shown success in animal models, highlighting the urgency to develop more translational human models for studying AD, particularly sAD. In this study, we developed a complex human pluripotent stem cell (hPSC)-based vascularized neuroimmune organoid model, which contains multiple cell types affected in human AD brains, including human neurons, microglia, astrocytes, and blood vessels. Importantly, we demonstrated that brain extracts from individuals with sAD can effectively induce multiple AD pathologies in organoids four weeks post-exposure, including amyloid beta (Aβ) plaque-like aggregates, tau tangle-like aggregates, neuroinflammation, elevated microglial synaptic pruning, synapse/neuronal loss, and impaired neural network activity. Proteomics analysis also revealed disrupted AD-related pathways in our vascularized AD neuroimmune organoids. Furthermore, after treatment with Lecanemab, an FDA-approved antibody drug targeting Aβ, AD brain extracts exposed organoids showed a significant reduction of amyloid burden, along with an elevated vascular inflammation response. Thus, the vascularized neuroimmune organoid model provides a unique opportunity to study AD, particularly sAD, under a pathophysiological relevant three-dimensional (3D) human cell environment. It also holds great promise to facilitate AD drug development, particularly for immunotherapies.
Collapse
Affiliation(s)
- Yanru Ji
- Department of Basic Medical Sciences, College of Veterinary Medicine, Purdue University, West Lafayette, IN, 47907, USA
- Purdue Institute for Integrative Neuroscience (PIIN), Purdue University, West Lafayette, IN, 47907, USA
| | - Xiaoling Chen
- Purdue Institute for Integrative Neuroscience (PIIN), Purdue University, West Lafayette, IN, 47907, USA
- Borch Department of Medicinal Chemistry and Molecular Pharmacology, College of Pharmacy, Purdue University, West Lafayette, IN, 47907, USA
| | - Zhen Wang
- Departments of Structural Biology and Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - Connor Joseph Meek
- Department of Basic Medical Sciences, College of Veterinary Medicine, Purdue University, West Lafayette, IN, 47907, USA
| | - Jenna Lillie McLean
- Department of Basic Medical Sciences, College of Veterinary Medicine, Purdue University, West Lafayette, IN, 47907, USA
| | - Yang Yang
- Purdue Institute for Integrative Neuroscience (PIIN), Purdue University, West Lafayette, IN, 47907, USA
- Borch Department of Medicinal Chemistry and Molecular Pharmacology, College of Pharmacy, Purdue University, West Lafayette, IN, 47907, USA
| | - Chongli Yuan
- Purdue Institute for Integrative Neuroscience (PIIN), Purdue University, West Lafayette, IN, 47907, USA
- Davidson School of Chemical Engineering, Purdue University, West Lafayette, IN, 47907, USA
| | - Jean-Christophe Rochet
- Purdue Institute for Integrative Neuroscience (PIIN), Purdue University, West Lafayette, IN, 47907, USA
- Borch Department of Medicinal Chemistry and Molecular Pharmacology, College of Pharmacy, Purdue University, West Lafayette, IN, 47907, USA
| | - Fei Liu
- Department of Neurochemistry, Inge Grundke-Iqbal Research Floor, New York State Institute for Basic Research in Developmental Disabilities, 1050 Forest Hill Road, Staten Island, NY, 10314, USA
| | - Ranjie Xu
- Department of Basic Medical Sciences, College of Veterinary Medicine, Purdue University, West Lafayette, IN, 47907, USA.
- Purdue Institute for Integrative Neuroscience (PIIN), Purdue University, West Lafayette, IN, 47907, USA.
| |
Collapse
|
3
|
Rodriguez-Lopez A, Esteban D, Domínguez-Romero AN, Gevorkian G. Tg-SwDI transgenic mice: A suitable model for Alzheimer's disease and cerebral amyloid angiopathy basic research and preclinical studies. Exp Neurol 2025; 387:115189. [PMID: 39978567 DOI: 10.1016/j.expneurol.2025.115189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2024] [Revised: 01/17/2025] [Accepted: 02/16/2025] [Indexed: 02/22/2025]
Abstract
Alzheimer's disease (AD) is the most common neurodegenerative disease and the most frequent cause of dementia. Characteristic features observed in the brain of AD patients are the accumulation of amyloid beta peptide (Aβ) aggregates, neurofibrillary tangles (NFT) composed of hyperphosphorylated Tau protein, neuronal and synaptic loss, and elevated levels of oxidative stress and inflammatory markers. Cerebral amyloid angiopathy (CAA) is another common cause of cognitive decline characterized by the accumulation of Aβ in the cerebral vasculature. The precise overlapping pathogenic mechanisms underlying the co-occurrence of AD and CAA are not very well understood. However, vascular dysfunction observed at early stages is considered a key phenomenon. Tg-SwDI transgenic mice expressing human Aβ precursor protein (AβPP) harboring the Swedish K670N/M671L and vasculotropic Dutch/Iowa E693Q/D694N mutations in the brain have been extensively used to study many pathological features observed in AD/CAA patients and to design biomarkers and therapeutic strategies. The present review summarizes studies addressing different features mimicking human disease in Tg-SwDI mice: parenchymal and cerebral vascular amyloid accumulation, neuroinflammation, complement overactivation, cerebrovascular, mitochondrial and GABAergic system dysfunction, altered NO synthesis, circadian rhythm disruptions, lead exposure effect, among others. Also, reports that evaluated anti-Aβ and anti-inflammatory strategies and compounds capable of delaying or reversing vascular dysfunction and the impairment of GABAergic transmission in Tg-SwDI mice are analyzed. This review may help researchers determine this model's appropriateness for future studies of a particular mechanism or a novel treatment protocol.
Collapse
Affiliation(s)
- Adrian Rodriguez-Lopez
- Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México (UNAM), Apartado Postal 70228, Cuidad Universitaria, CDMX, CP 04510, Mexico
| | - Daniel Esteban
- Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México (UNAM), Apartado Postal 70228, Cuidad Universitaria, CDMX, CP 04510, Mexico
| | - Allan Noé Domínguez-Romero
- Facultad de Química, Universidad Nacional Autónoma de México (UNAM), Apartado Postal 70228, Cuidad Universitaria, CDMX, CP 04510, Mexico
| | - Goar Gevorkian
- Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México (UNAM), Apartado Postal 70228, Cuidad Universitaria, CDMX, CP 04510, Mexico.
| |
Collapse
|
4
|
Sun KT, Mok SA. Inducers and modulators of protein aggregation in Alzheimer's disease - Critical tools for understanding the foundations of aggregate structures. Neurotherapeutics 2025; 22:e00512. [PMID: 39755501 PMCID: PMC12047394 DOI: 10.1016/j.neurot.2024.e00512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Revised: 12/02/2024] [Accepted: 12/08/2024] [Indexed: 01/06/2025] Open
Abstract
Amyloidogenic protein aggregation is a pathological hallmark of Alzheimer's Disease (AD). As such, this critical feature of the disease has been instrumental in guiding research on the mechanistic basis of disease, diagnostic biomarkers and preventative and therapeutic treatments. Here we review identified molecular triggers and modulators of aggregation for two of the proteins associated with AD: amyloid beta and tau. We aim to provide an overview of how specific molecular factors can impact aggregation kinetics and aggregate structure to promote disease. Looking toward the future, we highlight some research areas of focus that would accelerate efforts to effectively target protein aggregation in AD.
Collapse
Affiliation(s)
- Kerry T Sun
- Department of Biochemistry, University of Alberta, Edmonton, Alberta, T6G 2H7, Canada
| | - Sue-Ann Mok
- Department of Biochemistry, University of Alberta, Edmonton, Alberta, T6G 2H7, Canada.
| |
Collapse
|
5
|
Aubrey LD, Radford SE. How is the Amyloid Fold Built? Polymorphism and the Microscopic Mechanisms of Fibril Assembly. J Mol Biol 2025:169008. [PMID: 39954780 DOI: 10.1016/j.jmb.2025.169008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2024] [Revised: 02/06/2025] [Accepted: 02/11/2025] [Indexed: 02/17/2025]
Abstract
For a given protein sequence, many, up to sometimes hundreds of different amyloid fibril folds, can be formed in vitro. Yet, fibrils extracted from, or found in, human tissue, usually at the end of a long disease process, are often structurally homogeneous. Through monitoring of amyloid assembly reactions in vitro, the scientific community has gained a detailed understanding of the kinetic mechanisms of fibril assembly and the rates at which the different processes involved occur. However, how this kinetic information relates to the structural changes as a protein transforms from its initial, native structure to the canonical cross-β structure of amyloid remain obscure. While cryoEM has yielded a plethora of high-resolution information that portray a vast variety of fibril structures, there remains little knowledge of how and why each particular structure resulted. Recent work has demonstrated that fibril structures can change over an assembly time course, despite the different fibril types having similar thermodynamic stability. This points to kinetic control of the fibrils formed, with structures that initiate or elongate faster becoming the dominant products of assembly. Annotating kinetic assembly mechanisms alongside structural analysis of the fibrils formed is required to truly understand the molecular mechanisms of amyloid formation. However, this is a complicated task. In this review, we discuss how embracing this challenge could open new frontiers in amyloid research and new opportunities for therapy.
Collapse
Affiliation(s)
- Liam D Aubrey
- Astbury Centre for Structural Molecular Biology, School of Molecular and Cellular Biology, Faculty of Biological Science, University of Leeds, Leeds LS2 9JT, United Kingdom
| | - Sheena E Radford
- Astbury Centre for Structural Molecular Biology, School of Molecular and Cellular Biology, Faculty of Biological Science, University of Leeds, Leeds LS2 9JT, United Kingdom.
| |
Collapse
|
6
|
Tartaglia MC, Ingelsson M. Molecular Therapeutics in Development to Treat Alzheimer's Disease. Mol Diagn Ther 2025; 29:9-24. [PMID: 39316339 PMCID: PMC11748464 DOI: 10.1007/s40291-024-00738-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/08/2024] [Indexed: 09/25/2024]
Abstract
Until recently, only symptomatic therapies, in the form of acetylcholine esterase inhibitors and NMDA-receptor antagonists, have been available for the treatment of Alzheimer's disease. However, advancements in our understanding of the amyloid cascade hypothesis have led to a development of disease-modifying therapeutic strategies. These include immunotherapies based on an infusion of monoclonal antibodies against amyloid-β, three of which have been approved for the treatment of Alzheimer's disease in the USA (one of them, lecanemab, has also been approved in several other countries). They all lead to a dramatic reduction of amyloid plaques in the brain, whereas their clinical effects have been more limited. Moreover, they can all lead to side effects in the form of amyloid-related imaging abnormalities. Ongoing developments aim at facilitating their administration, further improving their effects and reducing the risk for amyloid-related imaging abnormalities. Moreover, a number of anti-tau immunotherapies are in clinical trials, but none has so far shown any robust effects on symptoms or pathology. Another line of development is represented by gene therapy. To date, only antisense oligonucleotides against amyloid precursor protein/amyloid-β and tau have reached the clinical trial stage but a variety of gene editing strategies, such as clustered regularly interspaced short palindromic repeats/Cas9-mediated non-homologous end joining, base editing, and prime editing, have all shown promise on preclinical disease models. In addition, a number of other pharmacological compounds targeting a multitude of biochemical processes, believed to be centrally involved in Alzheimer's disease, are currently being evaluated in clinical trials. This article delves into current and future perspectives on the treatment of Alzheimer's disease, with an emphasis on immunotherapeutic and gene therapeutic strategies.
Collapse
Affiliation(s)
- Maria Carmela Tartaglia
- Krembil Brain Institute, University Health Network, 6th Floor, 60 Leonard Ave, Toronto, ON, M5T 0S8, Canada
- Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Toronto, ON, Canada
- Department of Medicine, University of Toronto, Toronto, ON, Canada
| | - Martin Ingelsson
- Krembil Brain Institute, University Health Network, 6th Floor, 60 Leonard Ave, Toronto, ON, M5T 0S8, Canada.
- Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Toronto, ON, Canada.
- Department of Medicine, University of Toronto, Toronto, ON, Canada.
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada.
- Department of Public Health and Caring Sciences, Geriatrics, Uppsala University, Uppsala, Sweden.
| |
Collapse
|
7
|
Klingstedt T, Shirani H, Parvin F, Nyström S, Hammarström P, Graff C, Ingelsson M, Vidal R, Ghetti B, Sehlin D, Syvänen S, Nilsson KPR. Dual-ligand fluorescence microscopy enables chronological and spatial histological assignment of distinct amyloid-β deposits. J Biol Chem 2025; 301:108032. [PMID: 39615691 PMCID: PMC11731580 DOI: 10.1016/j.jbc.2024.108032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 10/25/2024] [Accepted: 11/21/2024] [Indexed: 12/23/2024] Open
Abstract
Different types of deposits comprised of amyloid-β (Aβ) peptides are one of the pathological hallmarks of Alzheimer's disease (AD) and novel methods that enable identification of a diversity of Aβ deposits during the AD continuum are essential for understanding the role of these aggregates during the pathogenesis. Herein, different combinations of five fluorescent thiophene-based ligands were used for detection of Aβ deposits in brain tissue sections from transgenic mouse models with aggregated Aβ pathology, as well as brain tissue sections from patients affected by sporadic or dominantly inherited AD. When analyzing the sections with fluorescence microscopy, distinct ligand staining patterns related to the transgenic mouse model or to the age of the mice were observed. Likewise, specific staining patterns of different Aβ deposits were revealed for sporadic versus dominantly inherited AD, as well as for distinct brain regions in sporadic AD. Thus, by using dual-staining protocols with multiple combinations of fluorescent ligands, a chronological and spatial histological designation of different Aβ deposits could be achieved. This study demonstrates the potential of our approach for resolving the role and presence of distinct Aβ aggregates during the AD continuum and pinpoints the necessity of using multiple ligands to obtain an accurate assignment of different Aβ deposits in the neuropathological evaluation of AD, as well as when evaluating therapeutic strategies targeting Aβ aggregates.
Collapse
Affiliation(s)
- Therése Klingstedt
- Department of Physics, Chemistry and Biology, Linköping University, Linköping, Sweden
| | - Hamid Shirani
- Department of Physics, Chemistry and Biology, Linköping University, Linköping, Sweden
| | - Farjana Parvin
- Department of Physics, Chemistry and Biology, Linköping University, Linköping, Sweden
| | - Sofie Nyström
- Department of Physics, Chemistry and Biology, Linköping University, Linköping, Sweden
| | - Per Hammarström
- Department of Physics, Chemistry and Biology, Linköping University, Linköping, Sweden
| | - Caroline Graff
- Department of Neurobiology, Care Sciences and Society, Karolinska Institute, Stockholm, Sweden
| | - Martin Ingelsson
- Krembil Brain Institute, University Health Network, Toronto, Ontario, Canada; Tanz Centre for Research in Neurodegenerative Diseases, Department of Medicine and Laboratory Medicine & Pathobiology, University of Toronto, Toronto, Ontario, Canada; Molecular Geriatrics, Department of Public Health and Caring Sciences, Uppsala University, Uppsala, Sweden
| | - Ruben Vidal
- Department of Pathology and Laboratory Medicine, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Bernardino Ghetti
- Department of Pathology and Laboratory Medicine, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Dag Sehlin
- Molecular Geriatrics, Department of Public Health and Caring Sciences, Uppsala University, Uppsala, Sweden
| | - Stina Syvänen
- Molecular Geriatrics, Department of Public Health and Caring Sciences, Uppsala University, Uppsala, Sweden
| | - K Peter R Nilsson
- Department of Physics, Chemistry and Biology, Linköping University, Linköping, Sweden.
| |
Collapse
|
8
|
Wu X, Shirani H, Vidal R, Ghetti B, Ingelsson M, Klingstedt T, Nilsson KPR. Distinct Chemical Determinants are Essential for Achieving Ligands for Superior Optical Detection of Specific Amyloid-β Deposits in Alzheimer's Disease. ChemistryOpen 2024; 13:e202400186. [PMID: 39508558 PMCID: PMC11625938 DOI: 10.1002/open.202400186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 09/23/2024] [Indexed: 11/15/2024] Open
Abstract
Aggregated forms of different proteins are common hallmarks for several neurodegenerative diseases, including Alzheimer's disease, and ligands that selectively detect specific protein aggregates are vital. Herein, we investigate the molecular requirements of thiophene-vinyl-benzothiazole based ligands to detect a specific type of Aβ deposits found in individuals with dominantly inherited Alzheimer's disease caused by the Arctic APP E693G mutation. The staining of these Aβ deposits was alternated when switching the terminal heterocyclic moiety attached to the thiophene-vinyl-benzothiazole scaffold. The most prevalent staining was observed for ligands having a terminal 3-methyl-1H-indazole moiety or a terminal 1,2-dimethoxybenzene moiety, verifying that specific molecular interactions between these ligands and the aggregates were necessary. The synthesis of additional thiophene-vinyl-benzothiazole ligands aided in pinpointing additional crucial chemical determinants, such as positioning of nitrogen atoms and methyl substituents, for achieving optimal staining of Aβ aggregates. When combining the optimized thiophene-vinyl-benzothiazole based ligands with a conventional ligand, CN-PiB, distinct staining patterns were observed for sporadic Alzheimer's disease versus dominantly inherited Alzheimer's disease caused by the Arctic APP E693G mutation. Our findings provide chemical insights for developing novel ligands that allow for a more precise assignment of Aβ deposits, and might also aid in creating novel agents for clinical imaging of distinct Aβ aggregates in AD.
Collapse
Affiliation(s)
- Xiongyu Wu
- Department of Physics, Chemistry and BiologyLinköping UniversitySE-581 83LinköpingSweden
| | - Hamid Shirani
- Department of Physics, Chemistry and BiologyLinköping UniversitySE-581 83LinköpingSweden
| | - Ruben Vidal
- Department of Pathology and Laboratory MedicineIndiana University School of Medicine46202Indianapolis, IndianaUSA
| | - Bernardino Ghetti
- Department of Pathology and Laboratory MedicineIndiana University School of Medicine46202Indianapolis, IndianaUSA
| | - Martin Ingelsson
- Krembil Brain InstituteUniversity Health NetworkM5T 1 M8Toronto, OntarioCanada
- Tanz Centre for Research in Neurodegenerative DiseasesDepartments of Medicine and Laboratory Medicine & PathobiologyUniversity of TorontoM5T 0S8Toronto, OntarioCanada
- Molecular GeriatricsDepartment of Public Health and Caring SciencesUppsala UniversitySE-751 85UppsalaSweden
| | - Therése Klingstedt
- Department of Physics, Chemistry and BiologyLinköping UniversitySE-581 83LinköpingSweden
| | - K. Peter R. Nilsson
- Department of Physics, Chemistry and BiologyLinköping UniversitySE-581 83LinköpingSweden
| |
Collapse
|
9
|
Tenchov R, Sasso JM, Zhou QA. Alzheimer's Disease: Exploring the Landscape of Cognitive Decline. ACS Chem Neurosci 2024; 15:3800-3827. [PMID: 39392435 PMCID: PMC11587518 DOI: 10.1021/acschemneuro.4c00339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 09/26/2024] [Accepted: 10/04/2024] [Indexed: 10/12/2024] Open
Abstract
Alzheimer's disease (AD) is a progressive neurodegenerative disorder characterized by cognitive decline, memory loss, and impaired daily functioning. The pathology of AD is marked by the accumulation of amyloid beta plaques and tau protein tangles in the brain, along with neuroinflammation and synaptic dysfunction. Genetic factors, such as mutations in APP, PSEN1, and PSEN2 genes, as well as the APOE ε4 allele, contribute to increased risk of acquiring AD. Currently available treatments provide symptomatic relief but do not halt disease progression. Research efforts are focused on developing disease-modifying therapies that target the underlying pathological mechanisms of AD. Advances in identification and validation of reliable biomarkers for AD hold great promise for enhancing early diagnosis, monitoring disease progression, and assessing treatment response in clinical practice in effort to alleviate the burden of this devastating disease. In this paper, we analyze data from the CAS Content Collection to summarize the research progress in Alzheimer's disease. We examine the publication landscape in effort to provide insights into current knowledge advances and developments. We also review the most discussed and emerging concepts and assess the strategies to combat the disease. We explore the genetic risk factors, pharmacological targets, and comorbid diseases. Finally, we inspect clinical applications of products against AD with their development pipelines and efforts for drug repurposing. The objective of this review is to provide a broad overview of the evolving landscape of current knowledge regarding AD, to outline challenges, and to evaluate growth opportunities to further efforts in combating the disease.
Collapse
Affiliation(s)
- Rumiana Tenchov
- CAS, a division of the American Chemical
Society, Columbus Ohio 43210, United States
| | - Janet M. Sasso
- CAS, a division of the American Chemical
Society, Columbus Ohio 43210, United States
| | | |
Collapse
|
10
|
Xiong M, Dahlén A, Roshanbin S, Wik E, Aguilar X, Eriksson J, Sehlin D, Syvänen S. Antibody engagement with amyloid-beta does not inhibit [ 11C]PiB binding for PET imaging. J Neurochem 2024; 168:2601-2610. [PMID: 38721627 DOI: 10.1111/jnc.16127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 04/17/2024] [Accepted: 04/28/2024] [Indexed: 10/04/2024]
Abstract
The elimination of amyloid-beta (Aβ) plaques in Alzheimer's disease patients after treatment with anti-Aβ antibodies such as lecanemab and aducanumab is supported by a substantially decreased signal in amyloid positron emission tomography (PET) imaging. However, this decreased PET signal has not been matched by a similar substantial effect on cognitive function. There may be several reasons for this, including short treatment duration and advanced disease stages among the patients. However, one aspect that has not been investigated, and the subject of this study, is whether antibody engagement with amyloid plaques inhibits the binding of amyloid-PET ligands, leading to a false impression of Aβ removal from the brain. In the present study, tg-ArcSwe mice received three injections of RmAb158, the murine version of lecanemab or phosphate-buffered saline (PBS) before the administration of the amyloid-PET radioligand [11C]PiB, followed by isolation of brain tissue. Autoradiography showed that RmAb158- and PBS-treated mice displayed similar [11C]PiB binding. Moreover, the total Aβ1-40 levels, representing the major Aβ species of plaques in the tg-ArcSwe model, as well as soluble triggering receptor on myeloid cells 2 (sTREM2) levels, were similar in both groups. Interestingly, the concentration of soluble Aβ aggregates was decreased in the RmAb158-treated group, along with a small but significant decrease in the total Aβ1-42 levels. In conclusion, this study indicates that the binding of [11C]PiB to Aβ accurately mirrors the load of Aβ plaques in the brain, aligning with how amyloid-PET is interpreted in clinical studies of anti-Aβ antibodies. However, early treatment effects on soluble Aβ aggregates and Aβ1-42 levels were not detected.
Collapse
Affiliation(s)
- Mengfei Xiong
- Molecular Geriatrics, Department of Public Health and Caring Sciences, Uppsala University, Uppsala, Sweden
| | - Amelia Dahlén
- Molecular Geriatrics, Department of Public Health and Caring Sciences, Uppsala University, Uppsala, Sweden
| | - Sahar Roshanbin
- Molecular Geriatrics, Department of Public Health and Caring Sciences, Uppsala University, Uppsala, Sweden
| | - Elin Wik
- Molecular Geriatrics, Department of Public Health and Caring Sciences, Uppsala University, Uppsala, Sweden
| | - Ximena Aguilar
- Molecular Geriatrics, Department of Public Health and Caring Sciences, Uppsala University, Uppsala, Sweden
| | - Jonas Eriksson
- Department of Medicinal Chemistry, Uppsala University, Uppsala, Sweden
- PET Centre, Uppsala University Hospital, Uppsala, Sweden
| | - Dag Sehlin
- Molecular Geriatrics, Department of Public Health and Caring Sciences, Uppsala University, Uppsala, Sweden
| | - Stina Syvänen
- Molecular Geriatrics, Department of Public Health and Caring Sciences, Uppsala University, Uppsala, Sweden
| |
Collapse
|
11
|
Baek Y, Lee M. Exploring the complexity of amyloid-beta fibrils: structural polymorphisms and molecular interactions. Biochem Soc Trans 2024; 52:1631-1646. [PMID: 39034652 DOI: 10.1042/bst20230854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 07/09/2024] [Accepted: 07/12/2024] [Indexed: 07/23/2024]
Abstract
The aggregation of amyloid-beta (Aβ) peptides into cross-β structures forms a variety of distinct fibril conformations, potentially correlating with variations in neurodegenerative disease progression. Recent advances in techniques such as X-ray crystallography, solid-state NMR, and cryo-electron microscopy have enabled the development of high-resolution molecular structures of these polymorphic amyloid fibrils, which are either grown in vitro or isolated from human and transgenic mouse brain tissues. This article reviews our current understanding of the structural polymorphisms in amyloid fibrils formed by Aβ40 and Aβ42, as well as disease-associated mutants of Aβ peptides. The aim is to enhance our understanding of various molecular interactions, including hydrophobic and ionic interactions, within and among cross-β structures.
Collapse
Affiliation(s)
- Yoongyeong Baek
- Department of Chemistry, Drexel University, Philadelphia, PA 19104, U.S.A
| | - Myungwoon Lee
- Department of Chemistry, Drexel University, Philadelphia, PA 19104, U.S.A
| |
Collapse
|
12
|
Hoq MR, Fernandez A, Vago FS, Hallinan GI, Bharath SR, Li D, Ozcan KA, Garringer HJ, Jiang W, Vidal R, Ghetti B. Cryo-EM structures of cotton wool plaques' amyloid β and of tau filaments in dominantly inherited Alzheimer disease. Acta Neuropathol 2024; 148:20. [PMID: 39147931 PMCID: PMC11327195 DOI: 10.1007/s00401-024-02786-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 08/08/2024] [Accepted: 08/09/2024] [Indexed: 08/17/2024]
Abstract
Cotton wool plaques (CWPs) have been described as features of the neuropathologic phenotype of dominantly inherited Alzheimer disease (DIAD) caused by some missense and deletion mutations in the presenilin 1 (PSEN1) gene. CWPs are round, eosinophilic amyloid-β (Aβ) plaques that lack an amyloid core and are recognizable, but not fluorescent, in Thioflavin S (ThS) preparations. Amino-terminally truncated and post-translationally modified Aβ peptide species are the main component of CWPs. Tau immunopositive neurites may be present in CWPs. In addition, neurofibrillary tangles coexist with CWPs. Herein, we report the structure of Aβ and tau filaments isolated from brain tissue of individuals affected by DIAD caused by the PSEN1 V261I and A431E mutations, with the CWP neuropathologic phenotype. CWPs are predominantly composed of type I Aβ filaments present in two novel arrangements, type Ic and type Id; additionally, CWPs contain type I and type Ib Aβ filaments. Tau filaments have the AD fold, which has been previously reported in sporadic AD and DIAD. The formation of type Ic and type Id Aβ filaments may be the basis for the phenotype of CWPs. Our data are relevant for the development of PET imaging methodologies to best detect CWPs in DIAD.
Collapse
Affiliation(s)
- Md Rejaul Hoq
- Department of Biological Sciences, Markey Center for Structural Biology, Purdue University, West Lafayette, IN, 47906, USA
| | - Anllely Fernandez
- Department of Pathology and Laboratory Medicine, Indiana University School of Medicine, 635 Barnhill Dr., MSB A136, Indianapolis, IN, 46202, USA
| | - Frank S Vago
- Department of Biological Sciences, Markey Center for Structural Biology, Purdue University, West Lafayette, IN, 47906, USA
| | - Grace I Hallinan
- Department of Pathology and Laboratory Medicine, Indiana University School of Medicine, 635 Barnhill Dr., MSB A136, Indianapolis, IN, 46202, USA
| | - Sakshibeedu R Bharath
- Department of Biological Sciences, Markey Center for Structural Biology, Purdue University, West Lafayette, IN, 47906, USA
| | - Daoyi Li
- Department of Biological Sciences, Markey Center for Structural Biology, Purdue University, West Lafayette, IN, 47906, USA
| | - Kadir A Ozcan
- Department of Biological Sciences, Markey Center for Structural Biology, Purdue University, West Lafayette, IN, 47906, USA
| | - Holly J Garringer
- Department of Pathology and Laboratory Medicine, Indiana University School of Medicine, 635 Barnhill Dr., MSB A136, Indianapolis, IN, 46202, USA
| | - Wen Jiang
- Department of Biological Sciences, Markey Center for Structural Biology, Purdue University, West Lafayette, IN, 47906, USA.
| | - Ruben Vidal
- Department of Pathology and Laboratory Medicine, Indiana University School of Medicine, 635 Barnhill Dr., MSB A136, Indianapolis, IN, 46202, USA.
- Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, USA.
| | - Bernardino Ghetti
- Department of Pathology and Laboratory Medicine, Indiana University School of Medicine, 635 Barnhill Dr., MSB A136, Indianapolis, IN, 46202, USA.
| |
Collapse
|
13
|
Todd TW, Islam NN, Cook CN, Caulfield TR, Petrucelli L. Cryo-EM structures of pathogenic fibrils and their impact on neurodegenerative disease research. Neuron 2024; 112:2269-2288. [PMID: 38834068 PMCID: PMC11257806 DOI: 10.1016/j.neuron.2024.05.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 03/13/2024] [Accepted: 05/09/2024] [Indexed: 06/06/2024]
Abstract
Neurodegenerative diseases are commonly associated with the formation of aberrant protein aggregates within the brain, and ultrastructural analyses have revealed that the proteins within these inclusions often assemble into amyloid filaments. Cryoelectron microscopy (cryo-EM) has emerged as an effective method for determining the near-atomic structure of these disease-associated filamentous proteins, and the resulting structures have revolutionized the way we think about aberrant protein aggregation and propagation during disease progression. These structures have also revealed that individual fibril conformations may dictate different disease conditions, and this newfound knowledge has improved disease modeling in the lab and advanced the ongoing pursuit of clinical tools capable of distinguishing and targeting different pathogenic entities within living patients. In this review, we summarize some of the recently developed cryo-EM structures of ex vivo α-synuclein, tau, β-amyloid (Aβ), TAR DNA-binding protein 43 (TDP-43), and transmembrane protein 106B (TMEM106B) fibrils and discuss how these structures are being leveraged toward mechanistic research and therapeutic development.
Collapse
Affiliation(s)
- Tiffany W Todd
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL 32224, USA
| | - Naeyma N Islam
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL 32224, USA
| | - Casey N Cook
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL 32224, USA; Neurobiology of Disease Graduate Program, Mayo Graduate School, Mayo Clinic College of Medicine, Rochester, MN 55905, USA
| | | | - Leonard Petrucelli
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL 32224, USA; Neurobiology of Disease Graduate Program, Mayo Graduate School, Mayo Clinic College of Medicine, Rochester, MN 55905, USA.
| |
Collapse
|
14
|
Im D, Choi TS. Distinctive contribution of two additional residues in protein aggregation of Aβ42 and Aβ40 isoforms. BMB Rep 2024; 57:263-272. [PMID: 38835114 PMCID: PMC11214890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 04/16/2024] [Accepted: 04/26/2024] [Indexed: 06/06/2024] Open
Abstract
Amyloid-β (Aβ) is one of the amyloidogenic intrinsically disordered proteins (IDPs) that self-assemble to protein aggregates, incurring cell malfunction and cytotoxicity. While Aβ has been known to regulate multiple physiological functions, such as enhancing synaptic functions, aiding in the recovery of the blood-brain barrier/brain injury, and exhibiting tumor suppression/antimicrobial activities, the hydrophobicity of the primary structure promotes pathological aggregations that are closely associated with the onset of Alzheimer's disease (AD). Aβ proteins consist of multiple isoforms with 37-43 amino acid residues that are produced by the cleavage of amyloid-β precursor protein (APP). The hydrolytic products of APP are secreted to the extracellular regions of neuronal cells. Aβ 1-42 (Aβ42) and Aβ 1-40 (Aβ40) are dominant isoforms whose significance in AD pathogenesis has been highlighted in numerous studies to understand the molecular mechanism and develop AD diagnosis and therapeutic strategies. In this review, we focus on the differences between Aβ42 and Aβ40 in the molecular mechanism of amyloid aggregations mediated by the two additional residues (Ile41 and Ala42) of Aβ42. The current comprehension of Aβ42 and Aβ40 in AD progression is outlined, together with the structural features of Aβ42/Aβ40 amyloid fibrils, and the aggregation mechanisms of Aβ42/Aβ40. Furthermore, the impact of the heterogeneous distribution of Aβ isoforms during amyloid aggregations is discussed in the system mimicking the coexistence of Aβ42 and Aβ40 in human cerebrospinal fluid (CSF) and plasma. [BMB Reports 2024; 57(6): 263-272].
Collapse
Affiliation(s)
- Dongjoon Im
- Department of Life Sciences, Korea University, Seoul 02841, Korea
| | - Tae Su Choi
- Department of Life Sciences, Korea University, Seoul 02841, Korea
| |
Collapse
|
15
|
Parvin F, Haglund S, Wegenast-Braun B, Jucker M, Saito T, Saido TC, Nilsson KPR, Nilsson P, Nyström S, Hammarström P. Divergent Age-Dependent Conformational Rearrangement within Aβ Amyloid Deposits in APP23, APPPS1, and AppNL-F Mice. ACS Chem Neurosci 2024; 15:2058-2069. [PMID: 38652895 PMCID: PMC11099915 DOI: 10.1021/acschemneuro.4c00104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 03/28/2024] [Accepted: 04/03/2024] [Indexed: 04/25/2024] Open
Abstract
Amyloid plaques composed of fibrils of misfolded Aβ peptides are pathological hallmarks of Alzheimer's disease (AD). Aβ fibrils are polymorphic in their tertiary and quaternary molecular structures. This structural polymorphism may carry different pathologic potencies and can putatively contribute to clinical phenotypes of AD. Therefore, mapping of structural polymorphism of Aβ fibrils and structural evolution over time is valuable to understanding disease mechanisms. Here, we investigated how Aβ fibril structures in situ differ in Aβ plaque of different mouse models expressing familial mutations in the AβPP gene. We imaged frozen brains with a combination of conformation-sensitive luminescent conjugated oligothiophene (LCO) ligands and Aβ-specific antibodies. LCO fluorescence mapping revealed that mouse models APP23, APPPS1, and AppNL-F have different fibril structures within Aβ-amyloid plaques depending on the AβPP-processing genotype. Co-staining with Aβ-specific antibodies showed that individual plaques from APP23 mice expressing AβPP Swedish mutation have two distinct fibril polymorph regions of core and corona. The plaque core is predominantly composed of compact Aβ40 fibrils, and the corona region is dominated by diffusely packed Aβ40 fibrils. Conversely, the AβPP knock-in mouse AppNL-F, expressing the AβPP Iberian mutation along with Swedish mutation has tiny, cored plaques consisting mainly of compact Aβ42 fibrils, vastly different from APP23 even at elevated age up to 21 months. Age-dependent polymorph rearrangement of plaque cores observed for APP23 and APPPS1 mice >12 months, appears strongly promoted by Aβ40 and was hence minuscule in AppNL-F. These structural studies of amyloid plaques in situ can map disease-relevant fibril polymorph distributions to guide the design of diagnostic and therapeutic molecules.
Collapse
Affiliation(s)
- Farjana Parvin
- Department
of Physics, Chemistry and Biology (IFM), Linköping University, 58183 Linköping, Sweden
| | - Samuel Haglund
- Department
of Physics, Chemistry and Biology (IFM), Linköping University, 58183 Linköping, Sweden
| | - Bettina Wegenast-Braun
- German
Center for Neurodegenerative Diseases (DZNE), University of Tübingen, 72076 Tübingen, Germany
- Hertie
Institute for Clinical Brain Research, University
of Tübingen, 72076 Tübingen, Germany
| | - Mathias Jucker
- German
Center for Neurodegenerative Diseases (DZNE), University of Tübingen, 72076 Tübingen, Germany
- Hertie
Institute for Clinical Brain Research, University
of Tübingen, 72076 Tübingen, Germany
| | - Takashi Saito
- Laboratory
for Proteolytic Neuroscience, RIKEN Center
for Brain Science, Wako 351-0198, Saitama, Japan
- Department
of Neurocognitive Science, Nagoya City University
Graduate School of Medical Sciences, Nagoya 467-8601, Aichi, Japan
| | - Takaomi C. Saido
- Laboratory
for Proteolytic Neuroscience, RIKEN Center
for Brain Science, Wako 351-0198, Saitama, Japan
| | - K. Peter R. Nilsson
- Department
of Physics, Chemistry and Biology (IFM), Linköping University, 58183 Linköping, Sweden
| | - Per Nilsson
- Department
of Neurobiology, Care Sciences and Society, Division of Neurogeriatrics, Karolinska Institutet, 17177 Solna, Sweden
| | - Sofie Nyström
- Department
of Physics, Chemistry and Biology (IFM), Linköping University, 58183 Linköping, Sweden
| | - Per Hammarström
- Department
of Physics, Chemistry and Biology (IFM), Linköping University, 58183 Linköping, Sweden
| |
Collapse
|
16
|
Pagnon de la Vega M, Syvänen S, Giedraitis V, Hooley M, Konstantinidis E, Meier SR, Rokka J, Eriksson J, Aguilar X, Spires-Jones TL, Lannfelt L, Nilsson LNG, Erlandsson A, Hultqvist G, Ingelsson M, Sehlin D. Altered amyloid-β structure markedly reduces gliosis in the brain of mice harboring the Uppsala APP deletion. Acta Neuropathol Commun 2024; 12:22. [PMID: 38317196 PMCID: PMC10845526 DOI: 10.1186/s40478-024-01734-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Accepted: 01/14/2024] [Indexed: 02/07/2024] Open
Abstract
Deposition of amyloid beta (Aβ) into plaques is a major hallmark of Alzheimer's disease (AD). Different amyloid precursor protein (APP) mutations cause early-onset AD by altering the production or aggregation properties of Aβ. We recently identified the Uppsala APP mutation (APPUpp), which causes Aβ pathology by a triple mechanism: increased β-secretase and altered α-secretase APP cleavage, leading to increased formation of a unique Aβ conformer that rapidly aggregates and deposits in the brain. The aim of this study was to further explore the effects of APPUpp in a transgenic mouse model (tg-UppSwe), expressing human APP with the APPUpp mutation together with the APPSwe mutation. Aβ pathology was studied in tg-UppSwe brains at different ages, using ELISA and immunohistochemistry. In vivo PET imaging with three different PET radioligands was conducted in aged tg-UppSwe mice and two other mouse models; tg-ArcSwe and tg-Swe. Finally, glial responses to Aβ pathology were studied in cell culture models and mouse brain tissue, using ELISA and immunohistochemistry. Tg-UppSwe mice displayed increased β-secretase cleavage and suppressed α-secretase cleavage, resulting in AβUpp42 dominated diffuse plaque pathology appearing from the age of 5-6 months. The γ-secretase cleavage was not affected. Contrary to tg-ArcSwe and tg-Swe mice, tg-UppSwe mice were [11C]PiB-PET negative. Antibody-based PET with the 3D6 ligand visualized Aβ pathology in all models, whereas the Aβ protofibril selective mAb158 ligand did not give any signals in tg-UppSwe mice. Moreover, unlike the other two models, tg-UppSwe mice displayed a very faint glial response to the Aβ pathology. The tg-UppSwe mouse model thus recapitulates several pathological features of the Uppsala APP mutation carriers. The presumed unique structural features of AβUpp42 aggregates were found to affect their interaction with anti-Aβ antibodies and profoundly modify the Aβ-mediated glial response, which may be important aspects to consider for further development of AD therapies.
Collapse
Affiliation(s)
- María Pagnon de la Vega
- Department of Public Health and Caring Sciences, Geriatrics, Uppsala University, Uppsala, Sweden
| | - Stina Syvänen
- Department of Public Health and Caring Sciences, Geriatrics, Uppsala University, Uppsala, Sweden
| | - Vilmantas Giedraitis
- Department of Public Health and Caring Sciences, Geriatrics, Uppsala University, Uppsala, Sweden
| | - Monique Hooley
- UK Dementia Research Institute, Edinburgh Medical School, University of Edinburgh, Edinburgh, UK
- Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh, UK
| | - Evangelos Konstantinidis
- Department of Public Health and Caring Sciences, Geriatrics, Uppsala University, Uppsala, Sweden
| | - Silvio R Meier
- Department of Public Health and Caring Sciences, Geriatrics, Uppsala University, Uppsala, Sweden
| | - Johanna Rokka
- Department of Public Health and Caring Sciences, Geriatrics, Uppsala University, Uppsala, Sweden
| | - Jonas Eriksson
- Department of Medicinal Chemistry, Division of Organic Pharmaceutical Chemistry, Uppsala University, Uppsala, Sweden
- PET Centre, Uppsala University Hospital, Uppsala, Sweden
| | - Ximena Aguilar
- Department of Public Health and Caring Sciences, Geriatrics, Uppsala University, Uppsala, Sweden
| | - Tara L Spires-Jones
- UK Dementia Research Institute, Edinburgh Medical School, University of Edinburgh, Edinburgh, UK
- Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh, UK
| | - Lars Lannfelt
- Department of Public Health and Caring Sciences, Geriatrics, Uppsala University, Uppsala, Sweden
- BioArctic AB, Stockholm, Sweden
| | - Lars N G Nilsson
- Department of Pharmacology, University of Oslo and Oslo University Hospital, Oslo, Norway
| | - Anna Erlandsson
- Department of Public Health and Caring Sciences, Geriatrics, Uppsala University, Uppsala, Sweden
| | | | - Martin Ingelsson
- Department of Public Health and Caring Sciences, Geriatrics, Uppsala University, Uppsala, Sweden
- Krembil Brain Institute, University Health Network, Toronto, ON, Canada
- Tanz Centre for Research in Neurodegenerative Diseases, Departments of Medicine and Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
| | - Dag Sehlin
- Department of Public Health and Caring Sciences, Geriatrics, Uppsala University, Uppsala, Sweden.
| |
Collapse
|