1
|
Singh MI, Rajendraprasad G, Katopodis V, Cui R, Barisic M, Bhowmick R, Hickson ID. Mechanistic insight into anaphase bridge signaling to the abscission checkpoint. EMBO J 2025:10.1038/s44318-025-00453-w. [PMID: 40355560 DOI: 10.1038/s44318-025-00453-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 04/16/2025] [Accepted: 04/24/2025] [Indexed: 05/14/2025] Open
Abstract
During cytokinesis in human cells, a failure to resolve persistent DNA bridges that span the cell-division plane maintains the Aurora B-dependent abscission checkpoint in an active state. However, the molecular mechanism by which unresolved sister-chromatid bridging signals to this checkpoint is poorly defined. Here, we define an essential role for the Bloom's syndrome helicase, BLM, in signaling to the abscission-checkpoint machinery in response to replication stress through the conversion of dsDNA bridges into RPA-coated ssDNA. RPA then promotes ATR-CHK1 signaling to Aurora B, utilizing a kinase cascade shared with the S-phase checkpoint. BLM-deficient cells ultimately abandon cytokinesis in response to replication stress, which promotes binucleation and hence aneuploidy. Considering that aneuploidy is a hallmark of cancer, we propose that this role for BLM in cytokinesis is a plausible reason for cancer predisposition in Bloom's syndrome individuals. Consistent with this, BLM deficiency promotes anchorage-independent growth of non-cancer cells.
Collapse
Affiliation(s)
- Manika I Singh
- Center for Chromosome Stability, Department of Cellular and Molecular Medicine, University of Copenhagen, Blegdamsvej 3B, 2200, Copenhagen N, Denmark
- Centre for Genomic Medicine, Rigshospitalet, Blegdamsvej 9, 2100, Copenhagen, Denmark
| | - Girish Rajendraprasad
- Danish Cancer Society Research Center, Strandboulevarden 49, 2100, Copenhagen N, Denmark
| | - Vasileios Katopodis
- Danish Cancer Society Research Center, Strandboulevarden 49, 2100, Copenhagen N, Denmark
| | - Rui Cui
- Center for Chromosome Stability, Department of Cellular and Molecular Medicine, University of Copenhagen, Blegdamsvej 3B, 2200, Copenhagen N, Denmark
| | - Marin Barisic
- Danish Cancer Society Research Center, Strandboulevarden 49, 2100, Copenhagen N, Denmark
- Department of Cellular and Molecular Medicine, University of Copenhagen, Blegdamsvej 3B, 2200, Copenhagen N, Denmark
| | - Rahul Bhowmick
- Department of Biochemistry, Vanderbilt University, Nashville, TN, 37232, USA.
| | - Ian D Hickson
- Center for Chromosome Stability, Department of Cellular and Molecular Medicine, University of Copenhagen, Blegdamsvej 3B, 2200, Copenhagen N, Denmark.
| |
Collapse
|
2
|
Li Z, Zhang W, Zhang Z, Mao G, Qi L, Wang Y, Yang H, Ye H. PICH, A protein that maintains genomic stability, can promote tumor growth. Gene 2025; 935:149074. [PMID: 39491600 DOI: 10.1016/j.gene.2024.149074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 10/22/2024] [Accepted: 10/30/2024] [Indexed: 11/05/2024]
Abstract
Genomic instability is regardedas a hallmark of cancer cells. It can be presented in many ways, among which chromosome instability has received attention. Ultrafine anaphase bridges are a typeof chromatin bridges, the untimely resolution of which can also lead to chromosome instability. PICH can play a role in maintaining chromosome stability by regulating chromosome morphologyand resolving ultrafine anaphase bridges. Recently, PICH has been found to be overexpressed in various cancers. Overexpression of PICH is related to the proliferation of tumors and poor prognosis. In this article, we consider that PICH can maintain genomic stability by regulating appropriate chromosome structure, ensuring proper chromosome segregation, and facilitating replication fork reversal. We summarize how PICH regulates chromosome stability, how PICH resolves Ultrafine anaphase bridges with other proteins, and how PICH promotes tumor progression.
Collapse
Affiliation(s)
- Zeyuan Li
- The Second Clinical Medical School, Lanzhou University, Lanzhou, People's Republic of China
| | - Wentao Zhang
- The Second Clinical Medical School, Lanzhou University, Lanzhou, People's Republic of China
| | - Zihan Zhang
- The Second Clinical Medical School, Lanzhou University, Lanzhou, People's Republic of China
| | - Guoming Mao
- The Second Clinical Medical School, Lanzhou University, Lanzhou, People's Republic of China
| | - Linping Qi
- The Second Clinical Medical School, Lanzhou University, Lanzhou, People's Republic of China
| | - Yubin Wang
- Laboratory Medicine Center Gansu Provincial Natural Science, Lanzhou University Second Hospital, People's Republic of China
| | - Hanteng Yang
- The Department of General Surgery, Lanzhou University Second Hospital, Lanzhou, People's Republic of China.
| | - Huili Ye
- The Second Clinical Medical School, Lanzhou University, Lanzhou, People's Republic of China; Cuiying Biomedical Research Center, Lanzhou University Second Hospital, Lanzhou, People's Republic of China; Biobank of Tumors from Plateau of Gansu Province, Lanzhou University Second Hospital, Lanzhou, People's Republic of China.
| |
Collapse
|
3
|
Kong N, Chen K, Chanboonyasitt P, Jiang H, Wong K, Ma H, Chan Y. The interplay of the translocase activity and protein recruitment function of PICH in ultrafine anaphase bridge resolution and genomic stability. Nucleic Acids Res 2025; 53:gkae1249. [PMID: 39704103 PMCID: PMC11797016 DOI: 10.1093/nar/gkae1249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 12/02/2024] [Accepted: 12/05/2024] [Indexed: 12/21/2024] Open
Abstract
Incomplete sister centromere decatenation results in centromeric ultrafine anaphase bridges (UFBs). PICH (PLK1-interacting checkpoint helicase), a DNA translocase, plays a crucial role in UFB resolution by recruiting UFB-binding proteins and stimulating topoisomerase IIα. However, the involvement of distinct PICH functions in UFB resolution remains ambiguous. Here, we demonstrate that PICH depletion in non-transformed diploid cells induces DNA damage, micronuclei formation, p53 activation, G1-phase delay and cell death. Whole-genome sequencing reveals that segregation defects induced by PICH depletion cause chromosomal rearrangements, including translocations and inversions, emphasizing its significance in preserving genomic integrity. Furthermore, a PICH mutant that impairs UFB recruitment of BLM and RIF1 partially inhibits UFB resolution while a translocase-inactive mutant (PICHK128A) fails to resolve UFBs. Notably, expression of PICHK128A inhibits single-stranded UFB formation and induces hypocondensed chromosomes. We propose that PICH's translocase activity plays a dual role in promoting UFB resolution by facilitating the generation of single-stranded UFBs and stimulating topoisomerase IIα.
Collapse
Affiliation(s)
- Nannan Kong
- School of Biological Sciences, The University of Hong Kong, Pokfulam Road, Hong Kong SAR, China
| | - Kun Chen
- School of Biological Sciences, The University of Hong Kong, Pokfulam Road, Hong Kong SAR, China
| | - Primrose Chanboonyasitt
- School of Biological Sciences, The University of Hong Kong, Pokfulam Road, Hong Kong SAR, China
| | - Huadong Jiang
- School of Biological Sciences, The University of Hong Kong, Pokfulam Road, Hong Kong SAR, China
| | - Ka Yan Wong
- Department of Pathology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Hoi Tang Ma
- Department of Pathology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
- State Key Laboratory of Liver Research, The University of Hong Kong, 5 Sassoon Road, Pokfulam, Hong Kong SAR, China
| | - Ying Wai Chan
- School of Biological Sciences, The University of Hong Kong, Pokfulam Road, Hong Kong SAR, China
| |
Collapse
|
4
|
Osia B, Merkell A, Lopezcolorado FW, Ping X, Stark JM. RAD52 and ERCC6L/PICH have a compensatory relationship for genome stability in mitosis. PLoS Genet 2024; 20:e1011479. [PMID: 39561207 PMCID: PMC11614213 DOI: 10.1371/journal.pgen.1011479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 12/03/2024] [Accepted: 10/31/2024] [Indexed: 11/21/2024] Open
Abstract
Mammalian RAD52 is a DNA repair factor with strand annealing and recombination mediator activities that appear important in both interphase and mitotic cells. Nonetheless, RAD52 is dispensable for cell viability. To query RAD52 synthetic lethal relationships, we performed genome-wide CRISPR knock-out screens and identified hundreds of candidate synthetic lethal interactions. We then performed secondary screening and identified genes for which depletion causes reduced viability and elevated genome instability (increased 53BP1 nuclear foci) in RAD52-deficient cells. One such factor was ERCC6L, which marks DNA bridges during anaphase, and hence is important for genome stability in mitosis. Thus, we investigated the functional interrelationship between RAD52 and ERCC6L. We found that RAD52 deficiency increases ERCC6L-coated anaphase ultrafine bridges, and that ERCC6L depletion causes elevated RAD52 foci in prometaphase and interphase cells. These effects were enhanced with replication stress (i.e. hydroxyurea) and topoisomerase IIα inhibition (ICRF-193), where post-treatment effect timings were consistent with defects in addressing stress in mitosis. Altogether, we suggest that RAD52 and ERCC6L co-compensate to protect genome stability in mitosis.
Collapse
Affiliation(s)
- Beth Osia
- Department of Cancer Genetics and Epigenetics, Beckman Research Institute of the City of Hope, Duarte, California, United States of America
| | - Arianna Merkell
- Department of Cancer Genetics and Epigenetics, Beckman Research Institute of the City of Hope, Duarte, California, United States of America
| | - Felicia Wednesday Lopezcolorado
- Department of Cancer Genetics and Epigenetics, Beckman Research Institute of the City of Hope, Duarte, California, United States of America
| | - Xiaoli Ping
- Department of Cancer Genetics and Epigenetics, Beckman Research Institute of the City of Hope, Duarte, California, United States of America
| | - Jeremy M. Stark
- Department of Cancer Genetics and Epigenetics, Beckman Research Institute of the City of Hope, Duarte, California, United States of America
| |
Collapse
|
5
|
Chua GNL, Liu S. When Force Met Fluorescence: Single-Molecule Manipulation and Visualization of Protein-DNA Interactions. Annu Rev Biophys 2024; 53:169-191. [PMID: 38237015 DOI: 10.1146/annurev-biophys-030822-032904] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/26/2024]
Abstract
Myriad DNA-binding proteins undergo dynamic assembly, translocation, and conformational changes while on DNA or alter the physical configuration of the DNA substrate to control its metabolism. It is now possible to directly observe these activities-often central to the protein function-thanks to the advent of single-molecule fluorescence- and force-based techniques. In particular, the integration of fluorescence detection and force manipulation has unlocked multidimensional measurements of protein-DNA interactions and yielded unprecedented mechanistic insights into the biomolecular processes that orchestrate cellular life. In this review, we first introduce the different experimental geometries developed for single-molecule correlative force and fluorescence microscopy, with a focus on optical tweezers as the manipulation technique. We then describe the utility of these integrative platforms for imaging protein dynamics on DNA and chromatin, as well as their unique capabilities in generating complex DNA configurations and uncovering force-dependent protein behaviors. Finally, we give a perspective on the future directions of this emerging research field.
Collapse
Affiliation(s)
- Gabriella N L Chua
- Laboratory of Nanoscale Biophysics and Biochemistry, The Rockefeller University, New York, New York, USA;
- Tri-Institutional PhD Program in Chemical Biology, New York, New York, USA
| | - Shixin Liu
- Laboratory of Nanoscale Biophysics and Biochemistry, The Rockefeller University, New York, New York, USA;
| |
Collapse
|
6
|
Marcon F, Giunta S, Bignami M. Emerging roles of DNA repair factors in the stability of centromeres. Semin Cell Dev Biol 2024; 156:121-129. [PMID: 37852903 DOI: 10.1016/j.semcdb.2023.10.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 10/07/2023] [Accepted: 10/10/2023] [Indexed: 10/20/2023]
Abstract
Satellite DNA sequences are an integral part of centromeres, regions critical for faithful segregation of chromosomes during cell division. Because of their complex repetitive structure, satellite DNA may act as a barrier to DNA replication and other DNA based transactions ultimately resulting in chromosome breakage. Over the past two decades, several DNA repair proteins have been shown to bind and function at centromeres. While the importance of these repair factors is highlighted by various structural and numerical chromosome aberrations resulting from their inactivation, their roles in helping to maintain genome stability by solving the intrinsic difficulties of satellite DNA replication or promoting their repair are just starting to emerge. In this review, we summarize the current knowledge on the role of DNA repair and DNA damage response proteins in maintaining the structure and function of centromeres in different contexts. We also report the recent connection between the roles of specific DNA repair factors at these genomic loci with age-related increase of chromosomal instability under physiological and pathological conditions.
Collapse
Affiliation(s)
- Francesca Marcon
- Department of Environment and Health, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Rome, Italy.
| | - Simona Giunta
- Laboratory of Genome Evolution, Department of Biology and Biotechnologies Charles Darwin, Sapienza University of Rome, 00185, Italy
| | - Margherita Bignami
- Department of Environment and Health, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Rome, Italy
| |
Collapse
|
7
|
Tsukada K, Jones SE, Bannister J, Durin MA, Vendrell I, Fawkes M, Fischer R, Kessler BM, Chapman JR, Blackford AN. BLM and BRCA1-BARD1 coordinate complementary mechanisms of joint DNA molecule resolution. Mol Cell 2024; 84:640-658.e10. [PMID: 38266639 DOI: 10.1016/j.molcel.2023.12.040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2023] [Revised: 10/10/2023] [Accepted: 12/22/2023] [Indexed: 01/26/2024]
Abstract
The Bloom syndrome helicase BLM interacts with topoisomerase IIIα (TOP3A), RMI1, and RMI2 to form the BTR complex, which dissolves double Holliday junctions and DNA replication intermediates to promote sister chromatid disjunction before cell division. In its absence, structure-specific nucleases like the SMX complex (comprising SLX1-SLX4, MUS81-EME1, and XPF-ERCC1) can cleave joint DNA molecules instead, but cells deficient in both BTR and SMX are not viable. Here, we identify a negative genetic interaction between BLM loss and deficiency in the BRCA1-BARD1 tumor suppressor complex. We show that this is due to a previously overlooked role for BARD1 in recruiting SLX4 to resolve DNA intermediates left unprocessed by BLM in the preceding interphase. Consequently, cells with defective BLM and BRCA1-BARD1 accumulate catastrophic levels of chromosome breakage and micronucleation, leading to cell death. Thus, we reveal mechanistic insights into SLX4 recruitment to DNA lesions, with potential clinical implications for treating BRCA1-deficient tumors.
Collapse
Affiliation(s)
- Kaima Tsukada
- Department of Oncology, MRC Weatherall Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, Oxford OX3 9DS, UK
| | - Samuel E Jones
- Department of Oncology, MRC Weatherall Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, Oxford OX3 9DS, UK
| | - Julius Bannister
- Department of Oncology, MRC Weatherall Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, Oxford OX3 9DS, UK
| | - Mary-Anne Durin
- MRC Haematology Unit, MRC Weatherall Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, Oxford OX3 9DS, UK
| | - Iolanda Vendrell
- Target Discovery Institute, Centre for Medicines Discovery, Nuffield Department of Medicine, University of Oxford, Oxford OX3 7FZ, UK; Chinese Academy for Medical Sciences Oxford Institute, Nuffield Department of Medicine, University of Oxford, Oxford OX3 7FZ, UK
| | - Matthew Fawkes
- Department of Oncology, MRC Weatherall Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, Oxford OX3 9DS, UK
| | - Roman Fischer
- Target Discovery Institute, Centre for Medicines Discovery, Nuffield Department of Medicine, University of Oxford, Oxford OX3 7FZ, UK; Chinese Academy for Medical Sciences Oxford Institute, Nuffield Department of Medicine, University of Oxford, Oxford OX3 7FZ, UK
| | - Benedikt M Kessler
- Target Discovery Institute, Centre for Medicines Discovery, Nuffield Department of Medicine, University of Oxford, Oxford OX3 7FZ, UK; Chinese Academy for Medical Sciences Oxford Institute, Nuffield Department of Medicine, University of Oxford, Oxford OX3 7FZ, UK
| | - J Ross Chapman
- MRC Haematology Unit, MRC Weatherall Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, Oxford OX3 9DS, UK
| | - Andrew N Blackford
- Department of Oncology, MRC Weatherall Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, Oxford OX3 9DS, UK.
| |
Collapse
|
8
|
Bhowmick R, Hickson ID, Liu Y. Completing genome replication outside of S phase. Mol Cell 2023; 83:3596-3607. [PMID: 37716351 DOI: 10.1016/j.molcel.2023.08.023] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 08/03/2023] [Accepted: 08/17/2023] [Indexed: 09/18/2023]
Abstract
Mitotic DNA synthesis (MiDAS) is an unusual form of DNA replication that occurs during mitosis. Initially, MiDAS was characterized as a process associated with intrinsically unstable loci known as common fragile sites that occurs after cells experience DNA replication stress (RS). However, it is now believed to be a more widespread "salvage" mechanism that is called upon to complete the duplication of any under-replicated genomic region. Emerging data suggest that MiDAS is a DNA repair process potentially involving two or more pathways working in parallel or sequentially. In this review, we introduce the causes of RS, regions of the human genome known to be especially vulnerable to RS, and the strategies used to complete DNA replication outside of S phase. Additionally, because MiDAS is a prominent feature of aneuploid cancer cells, we will discuss how targeting MiDAS might potentially lead to improvements in cancer therapy.
Collapse
Affiliation(s)
- Rahul Bhowmick
- Center for Chromosome Stability and Center for Healthy Aging, Department of Cellular and Molecular Medicine, University of Copenhagen, Panum Institute, Blegdamsvej 3B, 2200 Copenhagen N, Denmark; Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - Ian D Hickson
- Center for Chromosome Stability and Center for Healthy Aging, Department of Cellular and Molecular Medicine, University of Copenhagen, Panum Institute, Blegdamsvej 3B, 2200 Copenhagen N, Denmark.
| | - Ying Liu
- Center for Chromosome Stability and Center for Healthy Aging, Department of Cellular and Molecular Medicine, University of Copenhagen, Panum Institute, Blegdamsvej 3B, 2200 Copenhagen N, Denmark.
| |
Collapse
|
9
|
Osia B, Merkell A, Lopezcolorado FW, Ping X, Stark JM. RAD52 and ERCC6L/PICH have a compensatory relationship for genome stability in mitosis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.23.554522. [PMID: 37662271 PMCID: PMC10473716 DOI: 10.1101/2023.08.23.554522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/05/2023]
Abstract
The mammalian RAD52 protein is a DNA repair factor that has both strand annealing and recombination mediator activities, yet is dispensable for cell viability. To characterize genetic contexts that reveal dependence on RAD52 to sustain cell viability (i.e., synthetic lethal relationships), we performed genome-wide CRISPR knock-out screens. Subsequent secondary screening found that depletion of ERCC6L in RAD52-deficient cells causes reduced viability and elevated genome instability, measured as accumulation of 53BP1 into nuclear foci. Furthermore, loss of RAD52 causes elevated levels of anaphase ultrafine bridges marked by ERCC6L, and conversely depletion of ERCC6L causes elevated RAD52 foci both in prometaphase and interphase cells. These effects were enhanced with combination treatments using hydroxyurea and the topoisomerase IIα inhibitor ICRF-193, and the timing of these treatments are consistent with defects in addressing such stress in mitosis. Thus, loss of RAD52 appears to cause an increased reliance on ERCC6L in mitosis, and vice versa. Consistent with this notion, combined depletion of ERCC6L and disrupting G2/M progression via CDK1 inhibition causes a marked loss of viability in RAD52-deficient cells. We suggest that RAD52 and ERCC6L play compensatory roles in protecting genome stability in mitosis.
Collapse
|
10
|
Roshan P, Kuppa S, Mattice JR, Kaushik V, Chadda R, Pokhrel N, Tumala BR, Biswas A, Bothner B, Antony E, Origanti S. An Aurora B-RPA signaling axis secures chromosome segregation fidelity. Nat Commun 2023; 14:3008. [PMID: 37230964 PMCID: PMC10212944 DOI: 10.1038/s41467-023-38711-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Accepted: 05/09/2023] [Indexed: 05/27/2023] Open
Abstract
Errors in chromosome segregation underlie genomic instability associated with cancers. Resolution of replication and recombination intermediates and protection of vulnerable single-stranded DNA (ssDNA) intermediates during mitotic progression requires the ssDNA binding protein Replication Protein A (RPA). However, the mechanisms that regulate RPA specifically during unperturbed mitotic progression are poorly resolved. RPA is a heterotrimer composed of RPA70, RPA32 and RPA14 subunits and is predominantly regulated through hyperphosphorylation of RPA32 in response to DNA damage. Here, we have uncovered a mitosis-specific regulation of RPA by Aurora B kinase. Aurora B phosphorylates Ser-384 in the DNA binding domain B of the large RPA70 subunit and highlights a mode of regulation distinct from RPA32. Disruption of Ser-384 phosphorylation in RPA70 leads to defects in chromosome segregation with loss of viability and a feedback modulation of Aurora B activity. Phosphorylation at Ser-384 remodels the protein interaction domains of RPA. Furthermore, phosphorylation impairs RPA binding to DSS1 that likely suppresses homologous recombination during mitosis by preventing recruitment of DSS1-BRCA2 to exposed ssDNA. We showcase a critical Aurora B-RPA signaling axis in mitosis that is essential for maintaining genomic integrity.
Collapse
Affiliation(s)
- Poonam Roshan
- Department of Biology, St. Louis University, St. Louis, MO, 63103, USA
| | - Sahiti Kuppa
- Department of Biochemistry and Molecular Biology, St. Louis University School of Medicine, St. Louis, MO, 63104, USA
| | - Jenna R Mattice
- Department of Biochemistry, Montana State University, Bozeman, MT, 59717, USA
| | - Vikas Kaushik
- Department of Biochemistry and Molecular Biology, St. Louis University School of Medicine, St. Louis, MO, 63104, USA
| | - Rahul Chadda
- Department of Biochemistry and Molecular Biology, St. Louis University School of Medicine, St. Louis, MO, 63104, USA
| | - Nilisha Pokhrel
- Department of Biological Sciences, Marquette University, Milwaukee, WI, 53217, USA
| | - Brunda R Tumala
- Department of Biochemistry and Molecular Biology, St. Louis University School of Medicine, St. Louis, MO, 63104, USA
| | - Aparna Biswas
- Department of Biology, St. Louis University, St. Louis, MO, 63103, USA
| | - Brian Bothner
- Department of Biochemistry, Montana State University, Bozeman, MT, 59717, USA
| | - Edwin Antony
- Department of Biochemistry and Molecular Biology, St. Louis University School of Medicine, St. Louis, MO, 63104, USA.
| | - Sofia Origanti
- Department of Biology, St. Louis University, St. Louis, MO, 63103, USA.
| |
Collapse
|
11
|
Kong N, Liu Z, Chan YW. RIF1 suppresses the formation of single-stranded ultrafine anaphase bridges via protein phosphatase 1. Cell Rep 2023; 42:112032. [PMID: 36719798 DOI: 10.1016/j.celrep.2023.112032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 11/07/2022] [Accepted: 01/09/2023] [Indexed: 01/31/2023] Open
Abstract
Resolution of ultrafine anaphase bridges (UFBs) must be completed before cytokinesis to ensure sister-chromatid disjunction. RIF1 is involved in UFB resolution by a mechanism that is not yet clear. Here, we show that RIF1 functions in mitosis to inhibit the formation of 53BP1 nuclear bodies and micronuclei. Meanwhile, RIF1 localizes on PICH-coated double-stranded UFBs but not on RPA-coated single-stranded UFBs. Depletion of RIF1 leads to an elevated level of RPA-coated UFBs, in a BLM-dependent manner. RIF1 interacts with all three isoforms of protein phosphatase 1 (PP1) at its CI domain in anaphase when CDK1 activity declines. CDK1 negatively regulates RIF1-PP1 interaction via the CIII domain of RIF1. Importantly, depletion of PP1 phenocopies RIF1 depletion, and phosphorylation-resistant mutant of PICH shows reduced interaction with the BTR complex and bypasses the need of RIF1 in preventing the formation of single-stranded UFBs. Overall, our data show that PP1 is the effector of RIF1 in UFB resolution.
Collapse
Affiliation(s)
- Nannan Kong
- School of Biological Sciences, The University of Hong Kong, Pokfulam Road, Hong Kong SAR, China
| | - Zeyuan Liu
- School of Biological Sciences, The University of Hong Kong, Pokfulam Road, Hong Kong SAR, China
| | - Ying Wai Chan
- School of Biological Sciences, The University of Hong Kong, Pokfulam Road, Hong Kong SAR, China.
| |
Collapse
|
12
|
Xu L, Halma MTJ, Wuite GJL. Unravelling How Single-Stranded DNA Binding Protein Coordinates DNA Metabolism Using Single-Molecule Approaches. Int J Mol Sci 2023; 24:ijms24032806. [PMID: 36769124 PMCID: PMC9917605 DOI: 10.3390/ijms24032806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2022] [Revised: 01/23/2023] [Accepted: 01/28/2023] [Indexed: 02/05/2023] Open
Abstract
Single-stranded DNA-binding proteins (SSBs) play vital roles in DNA metabolism. Proteins of the SSB family exclusively and transiently bind to ssDNA, preventing the DNA double helix from re-annealing and maintaining genome integrity. In the meantime, they interact and coordinate with various proteins vital for DNA replication, recombination, and repair. Although SSB is essential for DNA metabolism, proteins of the SSB family have been long described as accessory players, primarily due to their unclear dynamics and mechanistic interaction with DNA and its partners. Recently-developed single-molecule tools, together with biochemical ensemble techniques and structural methods, have enhanced our understanding of the different coordination roles that SSB plays during DNA metabolism. In this review, we discuss how single-molecule assays, such as optical tweezers, magnetic tweezers, Förster resonance energy transfer, and their combinations, have advanced our understanding of the binding dynamics of SSBs to ssDNA and their interaction with other proteins partners. We highlight the central coordination role that the SSB protein plays by directly modulating other proteins' activities, rather than as an accessory player. Many possible modes of SSB interaction with protein partners are discussed, which together provide a bigger picture of the interaction network shaped by SSB.
Collapse
|
13
|
Abstract
In anaphase, any unresolved DNA entanglements between the segregating sister chromatids can give rise to chromatin bridges. To prevent genome instability, chromatin bridges must be resolved prior to cytokinesis. The SNF2 protein PICH has been proposed to play a direct role in this process through the remodeling of nucleosomes. However, direct evidence of nucleosome remodeling by PICH has remained elusive. Here, we present an in vitro single-molecule assay that mimics chromatin under tension, as is found in anaphase chromatin bridges. Applying a combination of dual-trap optical tweezers and fluorescence imaging of PICH and histones bound to a nucleosome-array construct, we show that PICH is a tension- and ATP-dependent nucleosome remodeler that facilitates nucleosome unwrapping and then subsequently slides remaining histones along the DNA. This work elucidates the role of PICH in chromatin-bridge dissolution, and might provide molecular insights into the mechanisms of related SNF2 proteins.
Collapse
|
14
|
Favre-Bulle IA, Scott EK. Optical tweezers across scales in cell biology. Trends Cell Biol 2022; 32:932-946. [PMID: 35672197 PMCID: PMC9588623 DOI: 10.1016/j.tcb.2022.05.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 05/02/2022] [Accepted: 05/04/2022] [Indexed: 01/21/2023]
Abstract
Optical tweezers (OT) provide a noninvasive approach for delivering minute physical forces to targeted objects. Controlling such forces in living cells or in vitro preparations allows for the measurement and manipulation of numerous processes relevant to the form and function of cells. As such, OT have made important contributions to our understanding of the structures of proteins and nucleic acids, the interactions that occur between microscopic structures within cells, the choreography of complex processes such as mitosis, and the ways in which cells interact with each other. In this review, we highlight recent contributions made to the field of cell biology using OT and provide basic descriptions of the physics, the methods, and the equipment that made these studies possible.
Collapse
Affiliation(s)
- Itia A Favre-Bulle
- Queensland Brain Institute, The University of Queensland, 4067, Brisbane, Australia; School of Mathematics and Physics, The University of Queensland, 4067, Brisbane, Australia.
| | - Ethan K Scott
- Queensland Brain Institute, The University of Queensland, 4067, Brisbane, Australia; Department of Anatomy and Physiology, School of Biomedical Sciences, The University of Melbourne, Parkville, VIC 3010, Australia.
| |
Collapse
|
15
|
de Nonneville A, Salas S, Bertucci F, Sobinoff AP, Adélaïde J, Guille A, Finetti P, Noble JR, Churikov D, Chaffanet M, Lavit E, Pickett HA, Bouvier C, Birnbaum D, Reddel RR, Géli V. TOP3A amplification and ATRX inactivation are mutually exclusive events in pediatric osteosarcomas using ALT. EMBO Mol Med 2022; 14:e15859. [PMID: 35920001 PMCID: PMC9549729 DOI: 10.15252/emmm.202215859] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 07/13/2022] [Accepted: 07/14/2022] [Indexed: 02/05/2023] Open
Abstract
In some types of cancer, telomere length is maintained by the alternative lengthening of telomeres (ALT) mechanism. In many ALT cancers, the α-thalassemia/mental retardation syndrome X-linked (ATRX) gene is mutated leading to the conclusion that the ATRX complex represses ALT. Here, we report that most high-grade pediatric osteosarcomas maintain their telomeres by ALT, and that the majority of these ALT tumors are ATRX wild-type (wt) and instead carry an amplified 17p11.2 chromosomal region containing TOP3A. We found that TOP3A was overexpressed in the ALT-positive ATRX-wt tumors consistent with its amplification. We demonstrated the functional significance of these results by showing that TOP3A overexpression in ALT cancer cells countered ATRX-mediated ALT inhibition and that TOP3A knockdown disrupted the ALT phenotype in ATRX-wt cells. Moreover, we report that TOP3A is required for proper BLM localization and promotes ALT DNA synthesis in ALT cell lines. Collectively, our results identify TOP3A as a major ALT player and potential therapeutic target.
Collapse
Affiliation(s)
- Alexandre de Nonneville
- Marseille Cancer Research Centre (CRCM), Inserm U1068, CNRS UMR7258, Institut Paoli‐Calmettes, Team « Telomere and Chromatin ». Equipe labellisée Ligue Nationale Contre Le CancerAix‐Marseille UnivMarseilleFrance,Cancer Research Unit, Faculty of Medicine and Health, Children's Medical Research InstituteUniversity of SydneyWestmeadNSWAustralia,Predictive Oncology Laboratory, Marseille Cancer Research Centre (CRCM), Inserm U1068, CNRS UMR7258, Institut Paoli‐CalmettesAix‐Marseille UniversityMarseilleFrance,Department of Medical Oncology, CRCM, CNRS, INSERM, Institut Paoli‐CalmettesAix‐Marseille UnivMarseilleFrance
| | - Sébastien Salas
- Department of Medical OncologyAssistance Publique Hôpitaux de Marseille ‐ Timone HospitalMarseilleFrance
| | - François Bertucci
- Predictive Oncology Laboratory, Marseille Cancer Research Centre (CRCM), Inserm U1068, CNRS UMR7258, Institut Paoli‐CalmettesAix‐Marseille UniversityMarseilleFrance,Department of Medical Oncology, CRCM, CNRS, INSERM, Institut Paoli‐CalmettesAix‐Marseille UnivMarseilleFrance
| | - Alexander P Sobinoff
- Telomere Length Regulation Unit, Faculty of Medicine and Health, Children's Medical Research InstituteUniversity of SydneyWestmeadNSWAustralia
| | - José Adélaïde
- Predictive Oncology Laboratory, Marseille Cancer Research Centre (CRCM), Inserm U1068, CNRS UMR7258, Institut Paoli‐CalmettesAix‐Marseille UniversityMarseilleFrance
| | - Arnaud Guille
- Predictive Oncology Laboratory, Marseille Cancer Research Centre (CRCM), Inserm U1068, CNRS UMR7258, Institut Paoli‐CalmettesAix‐Marseille UniversityMarseilleFrance
| | - Pascal Finetti
- Predictive Oncology Laboratory, Marseille Cancer Research Centre (CRCM), Inserm U1068, CNRS UMR7258, Institut Paoli‐CalmettesAix‐Marseille UniversityMarseilleFrance
| | - Jane R Noble
- Cancer Research Unit, Faculty of Medicine and Health, Children's Medical Research InstituteUniversity of SydneyWestmeadNSWAustralia
| | - Dimitri Churikov
- Marseille Cancer Research Centre (CRCM), Inserm U1068, CNRS UMR7258, Institut Paoli‐Calmettes, Team « Telomere and Chromatin ». Equipe labellisée Ligue Nationale Contre Le CancerAix‐Marseille UnivMarseilleFrance
| | - Max Chaffanet
- Predictive Oncology Laboratory, Marseille Cancer Research Centre (CRCM), Inserm U1068, CNRS UMR7258, Institut Paoli‐CalmettesAix‐Marseille UniversityMarseilleFrance
| | - Elise Lavit
- Department of Medical OncologyAssistance Publique Hôpitaux de Marseille ‐ Timone HospitalMarseilleFrance
| | - Hilda A Pickett
- Telomere Length Regulation Unit, Faculty of Medicine and Health, Children's Medical Research InstituteUniversity of SydneyWestmeadNSWAustralia
| | - Corinne Bouvier
- Department of PathologyAssistance Publique Hôpitaux de Marseille ‐ Timone HospitalMarseilleFrance
| | - Daniel Birnbaum
- Predictive Oncology Laboratory, Marseille Cancer Research Centre (CRCM), Inserm U1068, CNRS UMR7258, Institut Paoli‐CalmettesAix‐Marseille UniversityMarseilleFrance
| | - Roger R Reddel
- Cancer Research Unit, Faculty of Medicine and Health, Children's Medical Research InstituteUniversity of SydneyWestmeadNSWAustralia
| | - Vincent Géli
- Marseille Cancer Research Centre (CRCM), Inserm U1068, CNRS UMR7258, Institut Paoli‐Calmettes, Team « Telomere and Chromatin ». Equipe labellisée Ligue Nationale Contre Le CancerAix‐Marseille UnivMarseilleFrance
| |
Collapse
|
16
|
Balbo Pogliano C, Ceppi I, Giovannini S, Petroulaki V, Palmer N, Uliana F, Gatti M, Kasaciunaite K, Freire R, Seidel R, Altmeyer M, Cejka P, Matos J. The CDK1-TOPBP1-PLK1 axis regulates the Bloom's syndrome helicase BLM to suppress crossover recombination in somatic cells. SCIENCE ADVANCES 2022; 8:eabk0221. [PMID: 35119917 PMCID: PMC8816346 DOI: 10.1126/sciadv.abk0221] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Accepted: 12/14/2021] [Indexed: 06/14/2023]
Abstract
Bloom's syndrome is caused by inactivation of the BLM helicase, which functions with TOP3A and RMI1-2 (BTR complex) to dissolve recombination intermediates and avoid somatic crossing-over. We show here that crossover avoidance by BTR further requires the activity of cyclin-dependent kinase-1 (CDK1), Polo-like kinase-1 (PLK1), and the DDR mediator protein TOPBP1, which act in the same pathway. Mechanistically, CDK1 phosphorylates BLM and TOPBP1 and promotes the interaction of both proteins with PLK1. This is amplified by the ability of TOPBP1 to facilitate phosphorylation of BLM at sites that stimulate both BLM-PLK1 and BLM-TOPBP1 binding, creating a positive feedback loop that drives rapid BLM phosphorylation at the G2-M transition. In vitro, BLM phosphorylation by CDK/PLK1/TOPBP1 stimulates the dissolution of topologically linked DNA intermediates by BLM-TOP3A. Thus, we propose that the CDK1-TOPBP1-PLK1 axis enhances BTR-mediated dissolution of recombination intermediates late in the cell cycle to suppress crossover recombination and curtail genomic instability.
Collapse
Affiliation(s)
| | - Ilaria Ceppi
- Institute for Research in Biomedicine, Faculty of Biomedical Sciences, Università della Svizzera italiana (USI), 6500 Bellinzona, Switzerland
| | - Sara Giovannini
- Institute of Biochemistry, ETH Zürich, Otto-Stern-Weg 3, 8093 Zürich, Switzerland
| | - Vasiliki Petroulaki
- Department of Chromosome Biology, Max Perutz Labs, University of Vienna, Vienna Biocenter, Vienna, Austria
| | - Nathan Palmer
- Department of Chromosome Biology, Max Perutz Labs, University of Vienna, Vienna Biocenter, Vienna, Austria
| | - Federico Uliana
- Institute of Biochemistry, ETH Zürich, Otto-Stern-Weg 3, 8093 Zürich, Switzerland
| | - Marco Gatti
- Department of Molecular Mechanisms of Disease, University of Zurich, Winterthurerstrasse 190, 8057 Zürich, Switzerland
| | - Kristina Kasaciunaite
- Peter Debye Institute for Soft Matter Physics, Universität Leipzig, 04103 Leipzig, Germany
| | - Raimundo Freire
- Unidad de Investigación, Hospital Universitario de Canarias–FIISC, Ofra s/n, 38320 La Laguna, Tenerife, Spain
- Instituto de Tecnologías Biomédicas, Universidad de La Laguna, Tenerife, Spain
- Universidad Fernando Pessoa Canarias, 35450 Las Palmas de Gran Canaria, Spain
| | - Ralf Seidel
- Peter Debye Institute for Soft Matter Physics, Universität Leipzig, 04103 Leipzig, Germany
| | - Matthias Altmeyer
- Department of Molecular Mechanisms of Disease, University of Zurich, Winterthurerstrasse 190, 8057 Zürich, Switzerland
| | - Petr Cejka
- Institute of Biochemistry, ETH Zürich, Otto-Stern-Weg 3, 8093 Zürich, Switzerland
- Institute for Research in Biomedicine, Faculty of Biomedical Sciences, Università della Svizzera italiana (USI), 6500 Bellinzona, Switzerland
| | - Joao Matos
- Institute of Biochemistry, ETH Zürich, Otto-Stern-Weg 3, 8093 Zürich, Switzerland
- Department of Chromosome Biology, Max Perutz Labs, University of Vienna, Vienna Biocenter, Vienna, Austria
| |
Collapse
|
17
|
Harami GM, Pálinkás J, Seol Y, Kovács ZJ, Gyimesi M, Harami-Papp H, Neuman KC, Kovács M. The toposiomerase IIIalpha-RMI1-RMI2 complex orients human Bloom's syndrome helicase for efficient disruption of D-loops. Nat Commun 2022; 13:654. [PMID: 35115525 PMCID: PMC8813930 DOI: 10.1038/s41467-022-28208-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Accepted: 01/12/2022] [Indexed: 01/05/2023] Open
Abstract
Homologous recombination (HR) is a ubiquitous and efficient process that serves the repair of severe forms of DNA damage and the generation of genetic diversity during meiosis. HR can proceed via multiple pathways with different outcomes that may aid or impair genome stability and faithful inheritance, underscoring the importance of HR quality control. Human Bloom's syndrome (BLM, RecQ family) helicase plays central roles in HR pathway selection and quality control via unexplored molecular mechanisms. Here we show that BLM's multi-domain structural architecture supports a balance between stabilization and disruption of displacement loops (D-loops), early HR intermediates that are key targets for HR regulation. We find that this balance is markedly shifted toward efficient D-loop disruption by the presence of BLM's interaction partners Topoisomerase IIIα-RMI1-RMI2, which have been shown to be involved in multiple steps of HR-based DNA repair. Our results point to a mechanism whereby BLM can differentially process D-loops and support HR control depending on cellular regulatory mechanisms.
Collapse
Affiliation(s)
- Gábor M Harami
- ELTE-MTA "Momentum" Motor Enzymology Research Group, Department of Biochemistry, Eötvös Loránd University, Pázmány P. s. 1/c, H-1117, Budapest, Hungary. .,Laboratory of Single Molecule Biophysics, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, Maryland, 20892, USA.
| | - János Pálinkás
- ELTE-MTA "Momentum" Motor Enzymology Research Group, Department of Biochemistry, Eötvös Loránd University, Pázmány P. s. 1/c, H-1117, Budapest, Hungary
| | - Yeonee Seol
- Laboratory of Single Molecule Biophysics, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, Maryland, 20892, USA
| | - Zoltán J Kovács
- ELTE-MTA "Momentum" Motor Enzymology Research Group, Department of Biochemistry, Eötvös Loránd University, Pázmány P. s. 1/c, H-1117, Budapest, Hungary
| | - Máté Gyimesi
- ELTE-MTA "Momentum" Motor Enzymology Research Group, Department of Biochemistry, Eötvös Loránd University, Pázmány P. s. 1/c, H-1117, Budapest, Hungary.,MTA-ELTE Motor Pharmacology Research Group, Department of Biochemistry, Eötvös Loránd University, Pázmány P. s. 1/c, H-1117, Budapest, Hungary
| | - Hajnalka Harami-Papp
- ELTE-MTA "Momentum" Motor Enzymology Research Group, Department of Biochemistry, Eötvös Loránd University, Pázmány P. s. 1/c, H-1117, Budapest, Hungary.,Laboratory of Single Molecule Biophysics, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, Maryland, 20892, USA
| | - Keir C Neuman
- Laboratory of Single Molecule Biophysics, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, Maryland, 20892, USA
| | - Mihály Kovács
- ELTE-MTA "Momentum" Motor Enzymology Research Group, Department of Biochemistry, Eötvös Loránd University, Pázmány P. s. 1/c, H-1117, Budapest, Hungary. .,MTA-ELTE Motor Pharmacology Research Group, Department of Biochemistry, Eötvös Loránd University, Pázmány P. s. 1/c, H-1117, Budapest, Hungary.
| |
Collapse
|
18
|
Duplex DNA and BLM regulate gate opening by the human TopoIIIα-RMI1-RMI2 complex. Nat Commun 2022; 13:584. [PMID: 35102151 PMCID: PMC8803869 DOI: 10.1038/s41467-022-28082-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Accepted: 01/10/2022] [Indexed: 12/31/2022] Open
Abstract
Topoisomerase IIIα is a type 1A topoisomerase that forms a complex with RMI1 and RMI2 called TRR in human cells. TRR plays an essential role in resolving DNA replication and recombination intermediates, often alongside the helicase BLM. While the TRR catalytic cycle is known to involve a protein-mediated single-stranded (ss)DNA gate, the detailed mechanism is not fully understood. Here, we probe the catalytic steps of TRR using optical tweezers and fluorescence microscopy. We demonstrate that TRR forms an open gate in ssDNA of 8.5 ± 3.8 nm, and directly visualize binding of a second ssDNA or double-stranded (ds)DNA molecule to the open TRR-ssDNA gate, followed by catenation in each case. Strikingly, dsDNA binding increases the gate size (by ~16%), while BLM alters the mechanical flexibility of the gate. These findings reveal an unexpected plasticity of the TRR-ssDNA gate size and suggest that TRR-mediated transfer of dsDNA may be more relevant in vivo than previously believed. Here the authors probe the cleavage and gate opening of single-stranded DNA by the human topoisomerase TRR using a unique single-molecule strategy to reveal structural plasticity in response to both double-stranded DNA and the helicase BLM.
Collapse
|
19
|
King GA, Spakman D, Peterman EJG, Wuite GJL. Generating Negatively Supercoiled DNA Using Dual-Trap Optical Tweezers. Methods Mol Biol 2022; 2478:243-272. [PMID: 36063323 DOI: 10.1007/978-1-0716-2229-2_9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Many genomic processes lead to the formation of underwound (negatively supercoiled) or overwound (positively supercoiled) DNA. These DNA topological changes regulate the interactions of DNA-binding proteins, including transcription factors, architectural proteins and topoisomerases. In order to advance our understanding of the structure and interactions of supercoiled DNA, we recently developed a single-molecule approach called Optical DNA Supercoiling (ODS). This method enables rapid generation of negatively supercoiled DNA (with between <5% and 70% lower helical twist than nonsupercoiled DNA) using a standard dual-trap optical tweezers instrument. ODS is advantageous as it allows for combined force spectroscopy, fluorescence imaging, and spatial control of the supercoiled substrate, which is difficult to achieve with most other approaches. Here, we describe how to generate negatively supercoiled DNA using dual-trap optical tweezers. To this end, we provide detailed instructions on the design and preparation of suitable DNA substrates, as well as a step-by-step guide for how to control and calibrate the supercoiling density produced.
Collapse
Affiliation(s)
- Graeme A King
- Institute of Structural and Molecular Biology, University College London, London, UK.
| | - Dian Spakman
- Department of Physics and Astronomy, and LaserLaB Amsterdam, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Erwin J G Peterman
- Department of Physics and Astronomy, and LaserLaB Amsterdam, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands.
| | - Gijs J L Wuite
- Department of Physics and Astronomy, and LaserLaB Amsterdam, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands.
| |
Collapse
|
20
|
Chanboonyasitt P, Chan YW. Regulation of mitotic chromosome architecture and resolution of ultrafine anaphase bridges by PICH. Cell Cycle 2021; 20:2077-2090. [PMID: 34530686 PMCID: PMC8565832 DOI: 10.1080/15384101.2021.1970877] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Revised: 07/28/2021] [Accepted: 08/16/2021] [Indexed: 11/30/2022] Open
Abstract
To ensure genome stability, chromosomes need to undergo proper condensation into two linked sister chromatids from prophase to prometaphase, followed by equal segregation at anaphase. Emerging evidence has shown that persistent DNA entanglements connecting the sister chromatids lead to the formation of ultrafine anaphase bridges (UFBs). If UFBs are not resolved soon after anaphase, they can induce chromosome missegregation. PICH (PLK1-interacting checkpoint helicase) is a DNA translocase that localizes on chromosome arms, centromeres and UFBs. It plays multiple essential roles in mitotic chromosome organization and segregation. PICH also recruits other associated proteins to UFBs, and together they mediate UFB resolution. Here, the proposed mechanism behind PICH's functions in chromosome organization and UFB resolution will be discussed. We summarize the regulation of PICH action at chromosome arms and centromeres, how PICH recognizes UFBs and recruits other UFB-associated factors, and finally how PICH promotes UFB resolution together with other DNA processing enzymes.
Collapse
Affiliation(s)
| | - Ying Wai Chan
- School of Biological Sciences, The University of Hong Kong, Pokfulam, Hong Kong
| |
Collapse
|
21
|
Backer AS, King GA, Biebricher AS, Shepherd JW, Noy A, Leake MC, Heller I, Wuite GJL, Peterman EJG. Elucidating the Role of Topological Constraint on the Structure of Overstretched DNA Using Fluorescence Polarization Microscopy. J Phys Chem B 2021; 125:8351-8361. [PMID: 34309392 PMCID: PMC8350907 DOI: 10.1021/acs.jpcb.1c02708] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 07/01/2021] [Indexed: 11/29/2022]
Abstract
The combination of DNA force spectroscopy and polarization microscopy of fluorescent DNA intercalator dyes can provide valuable insights into the structure of DNA under tension. These techniques have previously been used to characterize S-DNA-an elongated DNA conformation that forms when DNA overstretches at forces ≥ 65 pN. In this way, it was deduced that the base pairs of S-DNA are highly inclined, relative to those in relaxed (B-form) DNA. However, it is unclear whether and how topological constraints on the DNA may influence the base-pair inclinations under tension. Here, we apply polarization microscopy to investigate the impact of DNA pulling geometry, torsional constraint, and negative supercoiling on the orientations of intercalated dyes during overstretching. In contrast to earlier predictions, the pulling geometry (namely, whether the DNA molecule is stretched via opposite strands or the same strand) is found to have little influence. However, torsional constraint leads to a substantial reduction in intercalator tilting in overstretched DNA, particularly in AT-rich sequences. Surprisingly, the extent of intercalator tilting is similarly reduced when the DNA molecule is negatively supercoiled up to a critical supercoiling density (corresponding to ∼70% reduction in the linking number). We attribute these observations to the presence of P-DNA (an overwound DNA conformation). Our results suggest that intercalated DNA preferentially flanks regions of P-DNA rather than those of S-DNA and also substantiate previous suggestions that P-DNA forms predominantly in AT-rich sequences.
Collapse
Affiliation(s)
- Adam S. Backer
- Apple Inc, 1 Apple Park Way, Cupertino, California 95014, United States
| | - Graeme A. King
- Institute
of Structural and Molecular Biology, University
College London, Gower Street, London WC1E
6BT, U.K.
| | - Andreas S. Biebricher
- Department
of Physics and Astronomy, LaserLaB Amsterdam, Vrije Universiteit Amsterdam, De Boelelaan 1081, Amsterdam 1081 HV, The Netherlands
| | - Jack W. Shepherd
- Department
of Physics, University of York, York YO10 5DD, U.K.
- Department
of Biology, University of York, York YO10 5DD, U.K.
| | - Agnes Noy
- Department
of Physics, University of York, York YO10 5DD, U.K.
| | - Mark C. Leake
- Department
of Physics, University of York, York YO10 5DD, U.K.
- Department
of Biology, University of York, York YO10 5DD, U.K.
| | - Iddo Heller
- Department
of Physics and Astronomy, LaserLaB Amsterdam, Vrije Universiteit Amsterdam, De Boelelaan 1081, Amsterdam 1081 HV, The Netherlands
| | - Gijs J. L. Wuite
- Department
of Physics and Astronomy, LaserLaB Amsterdam, Vrije Universiteit Amsterdam, De Boelelaan 1081, Amsterdam 1081 HV, The Netherlands
| | - Erwin J. G. Peterman
- Department
of Physics and Astronomy, LaserLaB Amsterdam, Vrije Universiteit Amsterdam, De Boelelaan 1081, Amsterdam 1081 HV, The Netherlands
| |
Collapse
|
22
|
Spakman D, Bakx JAM, Biebricher AS, Peterman EJG, Wuite GJL, King GA. Unravelling the mechanisms of Type 1A topoisomerases using single-molecule approaches. Nucleic Acids Res 2021; 49:5470-5492. [PMID: 33963870 PMCID: PMC8191776 DOI: 10.1093/nar/gkab239] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 03/19/2021] [Accepted: 05/05/2021] [Indexed: 12/14/2022] Open
Abstract
Topoisomerases are essential enzymes that regulate DNA topology. Type 1A family topoisomerases are found in nearly all living organisms and are unique in that they require single-stranded (ss)DNA for activity. These enzymes are vital for maintaining supercoiling homeostasis and resolving DNA entanglements generated during DNA replication and repair. While the catalytic cycle of Type 1A topoisomerases has been long-known to involve an enzyme-bridged ssDNA gate that allows strand passage, a deeper mechanistic understanding of these enzymes has only recently begun to emerge. This knowledge has been greatly enhanced through the combination of biochemical studies and increasingly sophisticated single-molecule assays based on magnetic tweezers, optical tweezers, atomic force microscopy and Förster resonance energy transfer. In this review, we discuss how single-molecule assays have advanced our understanding of the gate opening dynamics and strand-passage mechanisms of Type 1A topoisomerases, as well as the interplay of Type 1A topoisomerases with partner proteins, such as RecQ-family helicases. We also highlight how these assays have shed new light on the likely functional roles of Type 1A topoisomerases in vivo and discuss recent developments in single-molecule technologies that could be applied to further enhance our understanding of these essential enzymes.
Collapse
Affiliation(s)
- Dian Spakman
- Department of Physics and Astronomy, and LaserLaB Amsterdam, Vrije Universiteit Amsterdam, De Boelelaan 1081, 1081 HV, Amsterdam, The Netherlands
| | - Julia A M Bakx
- Department of Physics and Astronomy, and LaserLaB Amsterdam, Vrije Universiteit Amsterdam, De Boelelaan 1081, 1081 HV, Amsterdam, The Netherlands
| | - Andreas S Biebricher
- Department of Physics and Astronomy, and LaserLaB Amsterdam, Vrije Universiteit Amsterdam, De Boelelaan 1081, 1081 HV, Amsterdam, The Netherlands
| | - Erwin J G Peterman
- Department of Physics and Astronomy, and LaserLaB Amsterdam, Vrije Universiteit Amsterdam, De Boelelaan 1081, 1081 HV, Amsterdam, The Netherlands
| | - Gijs J L Wuite
- Department of Physics and Astronomy, and LaserLaB Amsterdam, Vrije Universiteit Amsterdam, De Boelelaan 1081, 1081 HV, Amsterdam, The Netherlands
| | - Graeme A King
- Institute of Structural and Molecular Biology, University College London, Gower Street, London WC1E 6BT, UK
| |
Collapse
|
23
|
Abstract
Unlike bacteria, mammalian cells need to complete DNA replication before segregating their chromosomes for the maintenance of genome integrity. Thus, cells have evolved efficient pathways to restore stalled and/or collapsed replication forks during S-phase, and when necessary, also to delay cell cycle progression to ensure replication completion. However, strong evidence shows that cells can proceed to mitosis with incompletely replicated DNA when under mild replication stress (RS) conditions. Consequently, the incompletely replicated genomic gaps form, predominantly at common fragile site regions, where the converging fork-like DNA structures accumulate. These branched structures pose a severe threat to the faithful disjunction of chromosomes as they physically interlink the partially duplicated sister chromatids. In this review, we provide an overview discussing how cells respond and deal with the under-replicated DNA structures that escape from the S/G2 surveillance system. We also focus on recent research of a mitotic break-induced replication pathway (also known as mitotic DNA repair synthesis), which has been proposed to operate during prophase in an attempt to finish DNA synthesis at the under-replicated genomic regions. Finally, we discuss recent data on how mild RS may cause chromosome instability and mutations that accelerate cancer genome evolution.
Collapse
Affiliation(s)
- Camelia Mocanu
- Chromosome Dynamics and Stability Group, Genome Damage and Stability Centre, University of Sussex, Brighton BN1 7BG, UK
| | - Kok-Lung Chan
- Chromosome Dynamics and Stability Group, Genome Damage and Stability Centre, University of Sussex, Brighton BN1 7BG, UK
| |
Collapse
|
24
|
Cardoso da Silva R, Vader G. Getting there: understanding the chromosomal recruitment of the AAA+ ATPase Pch2/TRIP13 during meiosis. Curr Genet 2021; 67:553-565. [PMID: 33712914 PMCID: PMC8254700 DOI: 10.1007/s00294-021-01166-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 02/16/2021] [Accepted: 02/18/2021] [Indexed: 12/21/2022]
Abstract
The generally conserved AAA+ ATPase Pch2/TRIP13 is involved in diverse aspects of meiosis, such as prophase checkpoint function, DNA break regulation, and meiotic recombination. The controlled recruitment of Pch2 to meiotic chromosomes allows it to use its ATPase activity to influence HORMA protein-dependent signaling. Because of the connection between Pch2 chromosomal recruitment and its functional roles in meiosis, it is important to reveal the molecular details that govern Pch2 localization. Here, we review the current understanding of the different factors that control the recruitment of Pch2 to meiotic chromosomes, with a focus on research performed in budding yeast. During meiosis in this organism, Pch2 is enriched within the nucleolus, where it likely associates with the specialized chromatin of the ribosomal (r)DNA. Pch2 is also found on non-rDNA euchromatin, where its recruitment is contingent on Zip1, a component of the synaptonemal complex (SC) that assembles between homologous chromosomes. We discuss recent findings connecting the recruitment of Pch2 with its association with the Origin Recognition Complex (ORC) and reliance on RNA Polymerase II-dependent transcription. In total, we provide a comprehensive overview of the pathways that control the chromosomal association of an important meiotic regulator.
Collapse
Affiliation(s)
- Richard Cardoso da Silva
- Department of Mechanistic Cell Biology, Max Planck Institute of Molecular Physiology, Otto-Hahn-Strasse 11, 44227, Dortmund, Germany. .,Department of Molecular Mechanisms of Disease, University of Zürich, Winterthurerstrasse 190, 8057, Zürich, Switzerland.
| | - Gerben Vader
- Department of Mechanistic Cell Biology, Max Planck Institute of Molecular Physiology, Otto-Hahn-Strasse 11, 44227, Dortmund, Germany. .,Department of Clinical Genetics, Section of Oncogenetics, Cancer Center Amsterdam, De Boelelaan 1118, 1081 HV, Amsterdam, The Netherlands.
| |
Collapse
|
25
|
Shorrocks AMK, Jones SE, Tsukada K, Morrow CA, Belblidia Z, Shen J, Vendrell I, Fischer R, Kessler BM, Blackford AN. The Bloom syndrome complex senses RPA-coated single-stranded DNA to restart stalled replication forks. Nat Commun 2021; 12:585. [PMID: 33500419 PMCID: PMC7838300 DOI: 10.1038/s41467-020-20818-5] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Accepted: 12/22/2020] [Indexed: 01/30/2023] Open
Abstract
The Bloom syndrome helicase BLM interacts with topoisomerase IIIα (TOP3A), RMI1 and RMI2 to form the BTR complex, which dissolves double Holliday junctions to produce non-crossover homologous recombination (HR) products. BLM also promotes DNA-end resection, restart of stalled replication forks, and processing of ultra-fine DNA bridges in mitosis. How these activities of the BTR complex are regulated in cells is still unclear. Here, we identify multiple conserved motifs within the BTR complex that interact cooperatively with the single-stranded DNA (ssDNA)-binding protein RPA. Furthermore, we demonstrate that RPA-binding is required for stable BLM recruitment to sites of DNA replication stress and for fork restart, but not for its roles in HR or mitosis. Our findings suggest a model in which the BTR complex contains the intrinsic ability to sense levels of RPA-ssDNA at replication forks, which controls BLM recruitment and activation in response to replication stress.
Collapse
Affiliation(s)
- Ann-Marie K Shorrocks
- MRC Weatherall Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, Oxford, OX3 9DS, UK
- MRC Oxford Institute for Radiation Oncology, Department of Oncology, University of Oxford, Oxford, OX3 7DQ, UK
| | - Samuel E Jones
- MRC Weatherall Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, Oxford, OX3 9DS, UK
- MRC Oxford Institute for Radiation Oncology, Department of Oncology, University of Oxford, Oxford, OX3 7DQ, UK
| | - Kaima Tsukada
- MRC Weatherall Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, Oxford, OX3 9DS, UK
- MRC Oxford Institute for Radiation Oncology, Department of Oncology, University of Oxford, Oxford, OX3 7DQ, UK
- Department of Transdisciplinary Science and Engineering, School of Environment and Society, Tokyo Institute of Technology, Tokyo, 152-8550, Japan
| | - Carl A Morrow
- MRC Weatherall Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, Oxford, OX3 9DS, UK
- MRC Oxford Institute for Radiation Oncology, Department of Oncology, University of Oxford, Oxford, OX3 7DQ, UK
| | - Zoulikha Belblidia
- MRC Weatherall Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, Oxford, OX3 9DS, UK
- MRC Oxford Institute for Radiation Oncology, Department of Oncology, University of Oxford, Oxford, OX3 7DQ, UK
| | - Johanna Shen
- MRC Weatherall Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, Oxford, OX3 9DS, UK
- MRC Oxford Institute for Radiation Oncology, Department of Oncology, University of Oxford, Oxford, OX3 7DQ, UK
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, CT, 06520, USA
| | - Iolanda Vendrell
- MRC Oxford Institute for Radiation Oncology, Department of Oncology, University of Oxford, Oxford, OX3 7DQ, UK
- Target Discovery Institute, Centre for Medicines Discovery, Nuffield Department of Medicine, University of Oxford, Oxford, OX3 7FZ, UK
| | - Roman Fischer
- Target Discovery Institute, Centre for Medicines Discovery, Nuffield Department of Medicine, University of Oxford, Oxford, OX3 7FZ, UK
| | - Benedikt M Kessler
- Target Discovery Institute, Centre for Medicines Discovery, Nuffield Department of Medicine, University of Oxford, Oxford, OX3 7FZ, UK
| | - Andrew N Blackford
- MRC Weatherall Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, Oxford, OX3 9DS, UK.
- MRC Oxford Institute for Radiation Oncology, Department of Oncology, University of Oxford, Oxford, OX3 7DQ, UK.
| |
Collapse
|
26
|
Bythell-Douglas R, Deans AJ. A Structural Guide to the Bloom Syndrome Complex. Structure 2020; 29:99-113. [PMID: 33357470 DOI: 10.1016/j.str.2020.11.020] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2020] [Revised: 09/03/2020] [Accepted: 11/25/2020] [Indexed: 01/19/2023]
Abstract
The Bloom syndrome complex is a DNA damage repair machine. It consists of several protein components which are functional in isolation, but interdependent in cells for the maintenance of accurate homologous recombination. Mutations to any of the genes encoding these proteins cause numerous physical and developmental markers as well as phenotypes of genome instability, infertility, and cancer predisposition. Here we review the published structural and biochemical data on each of the components of the complex: the helicase BLM, the type IA topoisomerase TOP3A, and the OB-fold-containing RMI and RPA subunits. We describe how each component contributes to function, interacts with each other, and the DNA that it manipulates/repairs.
Collapse
Affiliation(s)
- Rohan Bythell-Douglas
- Genome Stability Unit, St. Vincent's Institute of Medical Research, Fitzroy, VIC, 3056, Australia.
| | - Andrew J Deans
- Genome Stability Unit, St. Vincent's Institute of Medical Research, Fitzroy, VIC, 3056, Australia; Department of Medicine (St Vincent's), University of Melbourne, Fitzroy, VIC, 3056, Australia.
| |
Collapse
|
27
|
Under-Replicated DNA: The Byproduct of Large Genomes? Cancers (Basel) 2020; 12:cancers12102764. [PMID: 32992928 PMCID: PMC7601121 DOI: 10.3390/cancers12102764] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2020] [Revised: 09/21/2020] [Accepted: 09/22/2020] [Indexed: 12/28/2022] Open
Abstract
In this review, we provide an overview of how proliferating eukaryotic cells overcome one of the main threats to genome stability: incomplete genomic DNA replication during S phase. We discuss why it is currently accepted that double fork stalling (DFS) events are unavoidable events in higher eukaryotes with large genomes and which responses have evolved to cope with its main consequence: the presence of under-replicated DNA (UR-DNA) outside S phase. Particular emphasis is placed on the processes that constrain the detrimental effects of UR-DNA. We discuss how mitotic DNA synthesis (MiDAS), mitotic end joining events and 53BP1 nuclear bodies (53BP1-NBs) deal with such specific S phase DNA replication remnants during the subsequent phases of the cell cycle.
Collapse
|
28
|
Finardi A, Massari LF, Visintin R. Anaphase Bridges: Not All Natural Fibers Are Healthy. Genes (Basel) 2020; 11:genes11080902. [PMID: 32784550 PMCID: PMC7464157 DOI: 10.3390/genes11080902] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 08/04/2020] [Accepted: 08/05/2020] [Indexed: 02/07/2023] Open
Abstract
At each round of cell division, the DNA must be correctly duplicated and distributed between the two daughter cells to maintain genome identity. In order to achieve proper chromosome replication and segregation, sister chromatids must be recognized as such and kept together until their separation. This process of cohesion is mainly achieved through proteinaceous linkages of cohesin complexes, which are loaded on the sister chromatids as they are generated during S phase. Cohesion between sister chromatids must be fully removed at anaphase to allow chromosome segregation. Other (non-proteinaceous) sources of cohesion between sister chromatids consist of DNA linkages or sister chromatid intertwines. DNA linkages are a natural consequence of DNA replication, but must be timely resolved before chromosome segregation to avoid the arising of DNA lesions and genome instability, a hallmark of cancer development. As complete resolution of sister chromatid intertwines only occurs during chromosome segregation, it is not clear whether DNA linkages that persist in mitosis are simply an unwanted leftover or whether they have a functional role. In this review, we provide an overview of DNA linkages between sister chromatids, from their origin to their resolution, and we discuss the consequences of a failure in their detection and processing and speculate on their potential role.
Collapse
Affiliation(s)
- Alice Finardi
- Department of Experimental Oncology, IEO, European Institute of Oncology IRCCS, 20139 Milan, Italy;
| | - Lucia F. Massari
- The Wellcome Centre for Cell Biology, Institute of Cell Biology, School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3BF, UK;
| | - Rosella Visintin
- Department of Experimental Oncology, IEO, European Institute of Oncology IRCCS, 20139 Milan, Italy;
- Correspondence: ; Tel.: +39-02-5748-9859; Fax: +39-02-9437-5991
| |
Collapse
|
29
|
Abstract
The double-helical structure of genomic DNA is both elegant and functional in that it serves both to protect vulnerable DNA bases and to facilitate DNA replication and compaction. However, these design advantages come at the cost of having to evolve and maintain a cellular machinery that can manipulate a long polymeric molecule that readily becomes topologically entangled whenever it has to be opened for translation, replication, or repair. If such a machinery fails to eliminate detrimental topological entanglements, utilization of the information stored in the DNA double helix is compromised. As a consequence, the use of B-form DNA as the carrier of genetic information must have co-evolved with a means to manipulate its complex topology. This duty is performed by DNA topoisomerases, which therefore are, unsurprisingly, ubiquitous in all kingdoms of life. In this review, we focus on how DNA topoisomerases catalyze their impressive range of DNA-conjuring tricks, with a particular emphasis on DNA topoisomerase III (TOP3). Once thought to be the most unremarkable of topoisomerases, the many lives of these type IA topoisomerases are now being progressively revealed. This research interest is driven by a realization that their substrate versatility and their ability to engage in intimate collaborations with translocases and other DNA-processing enzymes are far more extensive and impressive than was thought hitherto. This, coupled with the recent associations of TOP3s with developmental and neurological pathologies in humans, is clearly making us reconsider their undeserved reputation as being unexceptional enzymes.
Collapse
Affiliation(s)
- Anna H Bizard
- Center for Chromosome Stability and Center for Healthy Aging, Department of Cellular and Molecular Medicine, University of Copenhagen, Blegdamsvej 3B, 2200 Copenhagen N, Denmark
| | - Ian D Hickson
- Center for Chromosome Stability and Center for Healthy Aging, Department of Cellular and Molecular Medicine, University of Copenhagen, Blegdamsvej 3B, 2200 Copenhagen N, Denmark
| |
Collapse
|
30
|
Zhang M, Liang C, Chen Q, Yan H, Xu J, Zhao H, Yuan X, Liu J, Lin S, Lu W, Wang F. Histone H2A phosphorylation recruits topoisomerase IIα to centromeres to safeguard genomic stability. EMBO J 2020; 39:e101863. [PMID: 31769059 PMCID: PMC6996575 DOI: 10.15252/embj.2019101863] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Revised: 09/23/2019] [Accepted: 10/29/2019] [Indexed: 01/03/2023] Open
Abstract
Chromosome segregation in mitosis requires the removal of catenation between sister chromatids. Timely decatenation of sister DNAs at mitotic centromeres by topoisomerase IIα (TOP2A) is crucial to maintain genomic stability. The chromatin factors that recruit TOP2A to centromeres during mitosis remain unknown. Here, we show that histone H2A Thr-120 phosphorylation (H2ApT120), a modification generated by the mitotic kinase Bub1, is necessary and sufficient for the centromeric localization of TOP2A. Phosphorylation at residue-120 enhances histone H2A binding to TOP2A in vitro. The C-gate and the extreme C-terminal region are important for H2ApT120-dependent localization of TOP2A at centromeres. Preventing H2ApT120-mediated accumulation of TOP2A at mitotic centromeres interferes with sister chromatid disjunction, as evidenced by increased frequency of anaphase ultra-fine bridges (UFBs) that contain catenated DNA. Tethering TOP2A to centromeres bypasses the requirement for H2ApT120 in suppressing anaphase UFBs. These results demonstrate that H2ApT120 acts as a landmark that recruits TOP2A to mitotic centromeres to decatenate sister DNAs. Our study reveals a fundamental role for histone phosphorylation in resolving centromere DNA entanglements and safeguarding genomic stability during mitosis.
Collapse
Affiliation(s)
- Miao Zhang
- MOE Laboratory of Biosystems Homeostasis & Protection and Innovation Center for Cell Signaling NetworkLife Sciences InstituteZhejiang UniversityHangzhouZhejiangChina
| | - Cai Liang
- MOE Laboratory of Biosystems Homeostasis & Protection and Innovation Center for Cell Signaling NetworkLife Sciences InstituteZhejiang UniversityHangzhouZhejiangChina
| | - Qinfu Chen
- MOE Laboratory of Biosystems Homeostasis & Protection and Innovation Center for Cell Signaling NetworkLife Sciences InstituteZhejiang UniversityHangzhouZhejiangChina
| | - Haiyan Yan
- MOE Laboratory of Biosystems Homeostasis & Protection and Innovation Center for Cell Signaling NetworkLife Sciences InstituteZhejiang UniversityHangzhouZhejiangChina
| | - Junfen Xu
- Department of Gynecologic OncologyWomen's HospitalZhejiang University School of MedicineHangzhouZhejiangChina
| | - Hongxia Zhao
- MOE Laboratory of Biosystems Homeostasis & Protection and Innovation Center for Cell Signaling NetworkLife Sciences InstituteZhejiang UniversityHangzhouZhejiangChina
| | - Xueying Yuan
- MOE Laboratory of Biosystems Homeostasis & Protection and Innovation Center for Cell Signaling NetworkLife Sciences InstituteZhejiang UniversityHangzhouZhejiangChina
| | - Jingbo Liu
- MOE Laboratory of Biosystems Homeostasis & Protection and Innovation Center for Cell Signaling NetworkLife Sciences InstituteZhejiang UniversityHangzhouZhejiangChina
| | - Shixian Lin
- MOE Laboratory of Biosystems Homeostasis & Protection and Innovation Center for Cell Signaling NetworkLife Sciences InstituteZhejiang UniversityHangzhouZhejiangChina
| | - Weiguo Lu
- Department of Gynecologic OncologyWomen's HospitalZhejiang University School of MedicineHangzhouZhejiangChina
- Women's Reproductive Health Key Research Laboratory of Zhejiang ProvinceWomen's HospitalZhejiang University School of MedicineHangzhouZhejiangChina
| | - Fangwei Wang
- MOE Laboratory of Biosystems Homeostasis & Protection and Innovation Center for Cell Signaling NetworkLife Sciences InstituteZhejiang UniversityHangzhouZhejiangChina
- Department of Gynecologic OncologyWomen's HospitalZhejiang University School of MedicineHangzhouZhejiangChina
| |
Collapse
|
31
|
Stroik S, Hendrickson EA. Telomere fusions and translocations: a bridge too far? Curr Opin Genet Dev 2020; 60:85-91. [PMID: 32171975 PMCID: PMC7230018 DOI: 10.1016/j.gde.2020.02.010] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2019] [Revised: 02/02/2020] [Accepted: 02/03/2020] [Indexed: 12/22/2022]
Abstract
Telomere fusions inevitably arise as a cell's last-ditch effort to protect exposed chromosomal ends when telomeres are lost due to aging-associated erosion, breakage, failed replication, or a plethora of other cellular mistakes. Fusion of an exposed chromosomal end to another telomere presumably presents a superficially attractive option to the cell as opposed to the alternative of the impending degradation of the unprotected chromosomal terminus. However, when allowed to progress to mitosis these fusion events subsequently foster non-disjunction or bridge:breakage events - both of which drive highly pathogenic genomic instability and additional chromosomal translocations. Thus, the question becomes how and when telomere fusion events arise and, most importantly, is there a mechanism available to resolve these telomere bridges such that proper repair, and not genomic instability, results? Recent evidence suggests that the formation, and then the resolution of, ultrafine bridges may facilitate this process.
Collapse
Affiliation(s)
- Susanna Stroik
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota Medical School, Minneapolis, MN, 55455, United States
| | - Eric A Hendrickson
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota Medical School, Minneapolis, MN, 55455, United States.
| |
Collapse
|
32
|
Identification of hemicatenane-specific binding proteins by fractionation of HeLa nuclei extracts. Biochem J 2020; 477:509-524. [PMID: 31930351 DOI: 10.1042/bcj20190855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Revised: 01/10/2020] [Accepted: 01/13/2020] [Indexed: 11/17/2022]
Abstract
DNA hemicatenanes (HCs) are four-way junctions in which one strand of a double-stranded helix is catenated with one strand of another double-stranded DNA. Frequently mentioned as DNA replication, recombination and repair intermediates, they have been proposed to participate in the spatial organization of chromosomes and in the regulation of gene expression. To explore potential roles of HCs in genome metabolism, we sought to purify proteins capable of binding specifically HCs by fractionating nuclear extracts from HeLa cells. This approach identified three RNA-binding proteins: the Tudor-staphylococcal nuclease domain 1 (SND1) protein and two proteins from the Drosophila behavior human splicing family, the paraspeckle protein component 1 and the splicing factor proline- and glutamine-rich protein. Since these proteins were partially pure after fractionation, truncated forms of these proteins were expressed in Escherichia coli and purified to near homogeneity. The specificity of their interaction with HCs was re-examined in vitro. The two truncated purified SND1 proteins exhibited specificity for HCs, opening the interesting possibility of a link between the basic transcription machinery and HC structures via SND1.
Collapse
|
33
|
Xue C, Daley JM, Xue X, Steinfeld J, Kwon Y, Sung P, Greene EC. Single-molecule visualization of human BLM helicase as it acts upon double- and single-stranded DNA substrates. Nucleic Acids Res 2019; 47:11225-11237. [PMID: 31544923 PMCID: PMC6868385 DOI: 10.1093/nar/gkz810] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Revised: 09/06/2019] [Accepted: 09/17/2019] [Indexed: 11/12/2022] Open
Abstract
Bloom helicase (BLM) and its orthologs are essential for the maintenance of genome integrity. BLM defects represent the underlying cause of Bloom Syndrome, a rare genetic disorder that is marked by strong cancer predisposition. BLM deficient cells accumulate extensive chromosomal aberrations stemming from dysfunctions in homologous recombination (HR). BLM participates in several HR stages and helps dismantle potentially harmful HR intermediates. However, much remains to be learned about the molecular mechanisms of these BLM-mediated regulatory effects. Here, we use DNA curtains to directly visualize the activity of BLM helicase on single molecules of DNA. Our data show that BLM is a robust helicase capable of rapidly (∼70-80 base pairs per second) unwinding extensive tracts (∼8-10 kilobases) of double-stranded DNA (dsDNA). Importantly, we find no evidence for BLM activity on single-stranded DNA (ssDNA) that is bound by replication protein A (RPA). Likewise, our results show that BLM can neither associate with nor translocate on ssDNA that is bound by the recombinase protein RAD51. Moreover, our data reveal that the presence of RAD51 also blocks BLM translocation on dsDNA substrates. We discuss our findings within the context of potential regulator roles for BLM helicase during DNA replication and repair.
Collapse
Affiliation(s)
- Chaoyou Xue
- Department of Biochemistry & Molecular Biophysics, Columbia University, New York, NY 10032, USA
| | - James M Daley
- Department of Biochemistry and Structural Biology, University of Texas Health Science Center at San Antonio, TX 78229, USA
| | - Xiaoyu Xue
- Department of Chemistry and Biochemistry, Texas State University, San Marcos, TX 78666, USA
| | - Justin Steinfeld
- Department of Biochemistry & Molecular Biophysics, Columbia University, New York, NY 10032, USA
| | - Youngho Kwon
- Department of Biochemistry and Structural Biology, University of Texas Health Science Center at San Antonio, TX 78229, USA
| | - Patrick Sung
- Department of Biochemistry and Structural Biology, University of Texas Health Science Center at San Antonio, TX 78229, USA
| | - Eric C Greene
- Department of Biochemistry & Molecular Biophysics, Columbia University, New York, NY 10032, USA
| |
Collapse
|
34
|
|
35
|
Taylor AMR, Rothblum-Oviatt C, Ellis NA, Hickson ID, Meyer S, Crawford TO, Smogorzewska A, Pietrucha B, Weemaes C, Stewart GS. Chromosome instability syndromes. Nat Rev Dis Primers 2019; 5:64. [PMID: 31537806 PMCID: PMC10617425 DOI: 10.1038/s41572-019-0113-0] [Citation(s) in RCA: 134] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 07/29/2019] [Indexed: 01/28/2023]
Abstract
Fanconi anaemia (FA), ataxia telangiectasia (A-T), Nijmegen breakage syndrome (NBS) and Bloom syndrome (BS) are clinically distinct, chromosome instability (or breakage) disorders. Each disorder has its own pattern of chromosomal damage, with cells from these patients being hypersensitive to particular genotoxic drugs, indicating that the underlying defect in each case is likely to be different. In addition, each syndrome shows a predisposition to cancer. Study of the molecular and genetic basis of these disorders has revealed mechanisms of recognition and repair of DNA double-strand breaks, DNA interstrand crosslinks and DNA damage during DNA replication. Specialist clinics for each disorder have provided the concentration of expertise needed to tackle their characteristic clinical problems and improve outcomes. Although some treatments of the consequences of a disorder may be possible, for example, haematopoietic stem cell transplantation in FA and NBS, future early intervention to prevent complications of disease will depend on a greater understanding of the roles of the affected DNA repair pathways in development. An important realization has been the predisposition to cancer in carriers of some of these gene mutations.
Collapse
Affiliation(s)
- A Malcolm R Taylor
- Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham, UK.
| | | | - Nathan A Ellis
- The University of Arizona Cancer Center, Tucson, AZ, USA
| | - Ian D Hickson
- Center for Chromosome Stability, Department of Cellular and Molecular Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Stefan Meyer
- Stem Cell and Leukaemia Proteomics Laboratory, and Paediatric and Adolescent Oncology, Institute of Cancer Sciences, University of Manchester, Manchester, UK
- Department of Paediatric and Adolescent Haematology and Oncology, Royal Manchester Children's Hospital and The Christie NHS Trust, Manchester, UK
| | - Thomas O Crawford
- Department of Neurology and Pediatrics, Johns Hopkins University, Baltimore, MD, USA
| | - Agata Smogorzewska
- Laboratory of Genome Maintenance, Rockefeller University, New York, NY, USA
| | - Barbara Pietrucha
- Department of Immunology, The Children's Memorial Health Institute, Warsaw, Poland
| | - Corry Weemaes
- Department of Pediatrics (Pediatric Immunology), Amalia Children's Hospital, Radboud University Medical Center, Nijmegen, Netherlands
| | - Grant S Stewart
- Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham, UK
| |
Collapse
|
36
|
Addis Jones O, Tiwari A, Olukoga T, Herbert A, Chan KL. PLK1 facilitates chromosome biorientation by suppressing centromere disintegration driven by BLM-mediated unwinding and spindle pulling. Nat Commun 2019; 10:2861. [PMID: 31253795 PMCID: PMC6599003 DOI: 10.1038/s41467-019-10938-y] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2018] [Accepted: 06/07/2019] [Indexed: 12/16/2022] Open
Abstract
Centromeres provide a pivotal function for faithful chromosome segregation. They serve as a foundation for the assembly of the kinetochore complex and spindle connection, which is essential for chromosome biorientation. Cells lacking Polo-like kinase 1 (PLK1) activity suffer severe chromosome alignment defects, which is believed primarily due to unstable kinetochore-microtubule attachment. Here, we reveal a previously undescribed mechanism named 'centromere disintegration' that drives chromosome misalignment in PLK1-inactivated cells. We find that PLK1 inhibition does not necessarily compromise metaphase establishment, but instead its maintenance. We demonstrate that this is caused by unlawful unwinding of DNA by BLM helicase at a specific centromere domain underneath kinetochores. Under bipolar spindle pulling, the distorted centromeres are promptly decompacted into DNA threadlike molecules, leading to centromere rupture and whole-chromosome arm splitting. Consequently, chromosome alignment collapses. Our study unveils an unexpected role of PLK1 as a chromosome guardian to maintain centromere integrity for chromosome biorientation.
Collapse
Affiliation(s)
- Owen Addis Jones
- Genome Damage and Stability Centre, University of Sussex, Brighton, BN1 7BG, UK
| | - Ankana Tiwari
- Genome Damage and Stability Centre, University of Sussex, Brighton, BN1 7BG, UK
| | - Tomisin Olukoga
- Genome Damage and Stability Centre, University of Sussex, Brighton, BN1 7BG, UK
| | - Alex Herbert
- Genome Damage and Stability Centre, University of Sussex, Brighton, BN1 7BG, UK
| | - Kok-Lung Chan
- Genome Damage and Stability Centre, University of Sussex, Brighton, BN1 7BG, UK.
| |
Collapse
|
37
|
Bizard AH, Allemand JF, Hassenkam T, Paramasivam M, Sarlós K, Singh MI, Hickson ID. PICH and TOP3A cooperate to induce positive DNA supercoiling. Nat Struct Mol Biol 2019; 26:267-274. [PMID: 30936532 DOI: 10.1038/s41594-019-0201-6] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Accepted: 02/14/2019] [Indexed: 11/09/2022]
Abstract
All known eukaryotic topoisomerases are only able to relieve torsional stress in DNA. Nevertheless, it has been proposed that the introduction of positive DNA supercoiling is required for efficient sister-chromatid disjunction by Topoisomerase 2a during mitosis. Here we identify a eukaryotic enzymatic activity that introduces torsional stress into DNA. We show that the human Plk1-interacting checkpoint helicase (PICH) and Topoisomerase 3a proteins combine to create an extraordinarily high density of positive DNA supercoiling. This activity, which is analogous to that of a reverse-gyrase, is apparently driven by the ability of PICH to progressively extrude hypernegatively supercoiled DNA loops that are relaxed by Topoisomerase 3a. We propose that this positive supercoiling provides an optimal substrate for the rapid disjunction of sister centromeres by Topoisomerase 2a at the onset of anaphase in eukaryotic cells.
Collapse
Affiliation(s)
- Anna H Bizard
- Center for Chromosome Stability & Center for Healthy Aging, Department of Cellular and Molecular Medicine, University of Copenhagen, Copenhagen, Denmark.
| | - Jean-Francois Allemand
- Laboratoire de Physique de l'Ecole Normale Supérieure, Université PSL, CNRS, Sorbonne Université, Université Paris-Diderot, Sorbonne Paris Cité, Paris, France.,Institut de Biologie de l'Ecole Normale Supérieure (IBENS), Département de Biologie, École Normale Supérieure, CNRS, INSERM, Paris, France
| | - Tue Hassenkam
- Nano-Science Center, Department of Chemistry, University of Copenhagen, Copenhagen, Denmark
| | - Manikandan Paramasivam
- Center for Chromosome Stability & Center for Healthy Aging, Department of Cellular and Molecular Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Kata Sarlós
- Center for Chromosome Stability & Center for Healthy Aging, Department of Cellular and Molecular Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Manika Indrajit Singh
- Center for Chromosome Stability & Center for Healthy Aging, Department of Cellular and Molecular Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Ian D Hickson
- Center for Chromosome Stability & Center for Healthy Aging, Department of Cellular and Molecular Medicine, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
38
|
The Unresolved Problem of DNA Bridging. Genes (Basel) 2018; 9:genes9120623. [PMID: 30545131 PMCID: PMC6316547 DOI: 10.3390/genes9120623] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2018] [Revised: 12/08/2018] [Accepted: 12/10/2018] [Indexed: 12/31/2022] Open
Abstract
Accurate duplication and transmission of identical genetic information into offspring cells lies at the heart of a cell division cycle. During the last stage of cellular division, namely mitosis, the fully replicated DNA molecules are condensed into X-shaped chromosomes, followed by a chromosome separation process called sister chromatid disjunction. This process allows for the equal partition of genetic material into two newly born daughter cells. However, emerging evidence has shown that faithful chromosome segregation is challenged by the presence of persistent DNA intertwining structures generated during DNA replication and repair, which manifest as so-called ultra-fine DNA bridges (UFBs) during anaphase. Undoubtedly, failure to disentangle DNA linkages poses a severe threat to mitosis and genome integrity. This review will summarize the possible causes of DNA bridges, particularly sister DNA inter-linkage structures, in an attempt to explain how they may be processed and how they influence faithful chromosome segregation and the maintenance of genome stability.
Collapse
|