1
|
Cai J, Quan Y, Zhang CY, Wang Z, Hinshaw SM, Zhou H, Suhandynata RT. Concatemer-assisted stoichiometry analysis: targeted mass spectrometry for protein quantification. Life Sci Alliance 2025; 8:e202403007. [PMID: 39741008 PMCID: PMC11707388 DOI: 10.26508/lsa.202403007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 12/06/2024] [Accepted: 12/09/2024] [Indexed: 01/02/2025] Open
Abstract
Large multiprotein machines are central to many biological processes. However, stoichiometric determination of protein complex subunits in their native states presents a significant challenge. This study addresses the limitations of current tools in accuracy and precision by introducing concatemer-assisted stoichiometry analysis (CASA). CASA leverages stable isotope-labeled concatemers and liquid chromatography-parallel reaction monitoring-mass spectrometry (LC-PRM-MS) to achieve robust quantification of proteins with sub-femtomole sensitivity. As a proof of concept, CASA was applied to study budding yeast kinetochores. Stoichiometries were determined for ex vivo reconstituted kinetochore components, including the canonical H3 nucleosomes, centromeric (Cse4CENP-A) nucleosomes, centromere proximal factors (Cbf1 and CBF3 complex), inner kinetochore proteins (Mif2CENP-C, Ctf19CCAN complex), and outer kinetochore proteins (KMN network). Absolute quantification by CASA revealed Cse4CENP-A as a cell cycle-controlled limiting factor for kinetochore assembly. These findings demonstrate that CASA is applicable for stoichiometry analysis of multiprotein assemblies.
Collapse
Affiliation(s)
- Jiaxi Cai
- https://ror.org/0168r3w48 Department of Cellular and Molecular Medicine, University of California, San Diego, San Diego, CA, USA
- https://ror.org/0168r3w48 Department of Bioengineering, University of California, San Diego, San Diego, CA, USA
| | - Yun Quan
- https://ror.org/0168r3w48 Department of Cellular and Molecular Medicine, University of California, San Diego, San Diego, CA, USA
| | - Cindy Yuxuan Zhang
- https://ror.org/0168r3w48 Department of Cellular and Molecular Medicine, University of California, San Diego, San Diego, CA, USA
| | - Ziyi Wang
- https://ror.org/0168r3w48 Department of Cellular and Molecular Medicine, University of California, San Diego, San Diego, CA, USA
| | - Stephen M Hinshaw
- https://ror.org/00f54p054 Department of Chemical and Systems Biology, Stanford University, Palo Alto, CA, USA
| | - Huilin Zhou
- https://ror.org/0168r3w48 Department of Cellular and Molecular Medicine, University of California, San Diego, San Diego, CA, USA
- https://ror.org/0168r3w48 Department of Bioengineering, University of California, San Diego, San Diego, CA, USA
- https://ror.org/0168r3w48 Moores Cancer Center, University of California, San Diego, San Diego, CA, USA
| | - Raymond T Suhandynata
- https://ror.org/0168r3w48 Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, San Diego, CA, USA
- https://ror.org/0168r3w48 Department of Pathology, University of California, San Diego, San Diego, CA, USA
| |
Collapse
|
2
|
Cai J, Yun Q, Zhang CY, Wang Z, Hinshaw SM, Zhou H, Suhandynata RT. Concatemer Assisted Stoichiometry Analysis (CASA): targeted mass spectrometry for protein quantification. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.26.605382. [PMID: 39091769 PMCID: PMC11291133 DOI: 10.1101/2024.07.26.605382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 08/04/2024]
Abstract
Large multi-protein machines are central to multiple biological processes. However, stoichiometric determination of protein complex subunits in their native states presents a significant challenge. This study addresses the limitations of current tools in accuracy and precision by introducing concatemer-assisted stoichiometry analysis (CASA). CASA leverages stable isotope-labeled concatemers and liquid chromatography parallel reaction monitoring mass spectrometry (LC-PRM-MS) to achieve robust quantification of proteins with sub-femtomole sensitivity. As a proof-of-concept, CASA was applied to study budding yeast kinetochores. Stoichiometries were determined for ex vivo reconstituted kinetochore components, including the canonical H3 nucleosomes, centromeric (Cse4CENP-A) nucleosomes, centromere proximal factors (Cbf1 and CBF3 complex), inner kinetochore proteins (Mif2CENP-C, Ctf19CCAN complex), and outer kinetochore proteins (KMN network). Absolute quantification by CASA revealed Cse4CENP-A as a cell-cycle controlled limiting factor for kinetochore assembly. These findings demonstrate that CASA is applicable for stoichiometry analysis of multi-protein assemblies.
Collapse
Affiliation(s)
- Jiaxi Cai
- Department of Cellular and Molecular Medicine, University of California, San Diego, California
- Department of Bioengineering, University of California, San Diego, California
| | - Quan Yun
- Department of Cellular and Molecular Medicine, University of California, San Diego, California
| | - Cindy Yuxuan Zhang
- Department of Cellular and Molecular Medicine, University of California, San Diego, California
| | - Ziyi Wang
- Department of Cellular and Molecular Medicine, University of California, San Diego, California
| | - Stephen M. Hinshaw
- Department of Chemical and Systems Biology, Stanford University, Palo Alto, California
| | - Huilin Zhou
- Department of Cellular and Molecular Medicine, University of California, San Diego, California
- Department of Bioengineering, University of California, San Diego, California
- Moores Cancer Center, University of California, San Diego, California
| | - Raymond T. Suhandynata
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, California
- Department of Pathology, University of California, San Diego, California
| |
Collapse
|
3
|
Blundon JM, Cesar BI, Bae JW, Čavka I, Haversat J, Ries J, Köhler S, Kim Y. Skp1 proteins are structural components of the synaptonemal complex in C. elegans. SCIENCE ADVANCES 2024; 10:eadl4876. [PMID: 38354250 PMCID: PMC10866564 DOI: 10.1126/sciadv.adl4876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Accepted: 01/12/2024] [Indexed: 02/16/2024]
Abstract
The synaptonemal complex (SC) is a zipper-like protein assembly that links homologous chromosomes to regulate recombination and segregation during meiosis. The SC has been notoriously refractory to in vitro reconstitution, thus leaving its molecular organization largely unknown. Here, we report a moonlighting function of two paralogous S-phase kinase-associated protein 1 (Skp1)-related proteins (SKR-1 and SKR-2), well-known adaptors of the Skp1-Cul1-F-box (SCF) ubiquitin ligase, as the key missing components of the SC in Caenorhabditis elegans. SKR proteins repurpose their SCF-forming interfaces to dimerize and interact with meiosis-specific SC proteins, thereby driving synapsis independent of SCF activity. SKR-1 enables the formation of the long-sought-after soluble complex with previously identified SC proteins in vitro, which we propose it to represent a complete SC building block. Our findings demonstrate how a conserved cell cycle regulator has been co-opted to interact with rapidly evolving meiotic proteins to construct the SC and provide a foundation for understanding its structure and assembly mechanisms.
Collapse
Affiliation(s)
- Joshua M. Blundon
- Department of Biology, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Brenda I. Cesar
- Department of Biology, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Jung Woo Bae
- Department of Biology, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Ivana Čavka
- The European Molecular Biology Laboratory, Heidelberg, Germany
- Collaboration for joint PhD degree between EMBL and Heidelberg University, Faculty of Biosciences, Heidelberg, Germany
| | - Jocelyn Haversat
- Department of Biology, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Jonas Ries
- The European Molecular Biology Laboratory, Heidelberg, Germany
| | - Simone Köhler
- The European Molecular Biology Laboratory, Heidelberg, Germany
| | - Yumi Kim
- Department of Biology, Johns Hopkins University, Baltimore, MD 21218, USA
| |
Collapse
|
4
|
Deng S, Cai J, Harrison SC, Zhou H, Hinshaw SM. Recognition of centromere-specific histone Cse4 by the inner kinetochore Okp1-Ame1 complex. EMBO Rep 2023; 24:e57702. [PMID: 37983946 PMCID: PMC10702835 DOI: 10.15252/embr.202357702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 10/30/2023] [Accepted: 11/02/2023] [Indexed: 11/22/2023] Open
Abstract
Successful mitosis depends on the timely establishment of correct chromosomal attachments to microtubules. The kinetochore, a modular multiprotein complex, mediates this connection by recognizing specialized chromatin containing a histone H3 variant called Cse4 in budding yeast and CENP-A in vertebrates. Structural features of the kinetochore that enable discrimination between Cse4/CENP-A and H3 have been identified in several species. How and when these contribute to centromere recognition and how they relate to the overall structure of the inner kinetochore are unsettled questions. More generally, this molecular recognition ensures that only one kinetochore is built on each chromatid and that this happens at the right place on the chromatin fiber. We have determined the crystal structure of a Cse4 peptide bound to the essential inner kinetochore Okp1-Ame1 heterodimer from budding yeast. The structure and related experiments show in detail an essential point of Cse4 contact and provide information about the arrangement of the inner kinetochore.
Collapse
Affiliation(s)
- Sunbin Deng
- Department of Biological Chemistry and Molecular PharmacologyHarvard Medical School, and Howard Hughes Medical InstituteBostonMAUSA
| | - Jiaxi Cai
- Department of BioengineeringJacobs School of Engineering, UCSDSan DiegoCAUSA
| | - Stephen C Harrison
- Department of Biological Chemistry and Molecular PharmacologyHarvard Medical School, and Howard Hughes Medical InstituteBostonMAUSA
| | - Huilin Zhou
- Department of BioengineeringJacobs School of Engineering, UCSDSan DiegoCAUSA
- Department of Cellular and Molecular Medicine, School of MedicineMoores Cancer Center, UCSDSan DiegoCAUSA
| | | |
Collapse
|
5
|
Popchock AR, Larson JD, Dubrulle J, Asbury CL, Biggins S. Direct observation of coordinated assembly of individual native centromeric nucleosomes. EMBO J 2023; 42:e114534. [PMID: 37469281 PMCID: PMC10476280 DOI: 10.15252/embj.2023114534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 06/27/2023] [Accepted: 07/04/2023] [Indexed: 07/21/2023] Open
Abstract
Eukaryotic chromosome segregation requires the kinetochore, a megadalton-sized machine that forms on specialized centromeric chromatin containing CENP-A, a histone H3 variant. CENP-A deposition requires a chaperone protein HJURP that targets it to the centromere, but it has remained unclear whether HJURP has additional functions beyond CENP-A targeting and why high AT DNA content, which disfavors nucleosome assembly, is widely conserved at centromeres. To overcome the difficulties of studying nucleosome formation in vivo, we developed a microscopy assay that enables direct observation of de novo centromeric nucleosome recruitment and maintenance with single molecule resolution. Using this assay, we discover that CENP-A can arrive at centromeres without its dedicated centromere-specific chaperone HJURP, but stable incorporation depends on HJURP and additional DNA-binding proteins of the inner kinetochore. We also show that homopolymer AT runs in the yeast centromeres are essential for efficient CENP-A deposition. Together, our findings reveal requirements for stable nucleosome formation and provide a foundation for further studies of the assembly and dynamics of native kinetochore complexes.
Collapse
Affiliation(s)
- Andrew R Popchock
- Basic Sciences Division, Howard Hughes Medical InstituteFred Hutchinson Cancer CenterSeattleWAUSA
| | - Joshua D Larson
- Department of Physiology and BiophysicsUniversity of WashingtonSeattleWAUSA
| | | | - Charles L Asbury
- Department of Physiology and BiophysicsUniversity of WashingtonSeattleWAUSA
| | - Sue Biggins
- Basic Sciences Division, Howard Hughes Medical InstituteFred Hutchinson Cancer CenterSeattleWAUSA
| |
Collapse
|
6
|
Yatskevich S, Barford D, Muir KW. Conserved and divergent mechanisms of inner kinetochore assembly onto centromeric chromatin. Curr Opin Struct Biol 2023; 81:102638. [PMID: 37343495 DOI: 10.1016/j.sbi.2023.102638] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 05/03/2023] [Accepted: 05/23/2023] [Indexed: 06/23/2023]
Abstract
Kinetochores are large protein complexes built on centromeric chromatin that mediate chromosome segregation. The inner kinetochore, or constitutive centromere-associated network (CCAN), assembles onto centromeres defined by centromere protein A (CENP-A) nucleosomes (CENP-ANuc), and acts as a platform for the regulated assembly of the microtubule-binding outer kinetochore. Recent cryo-EM work revealed structural conservation of CCAN, from the repeating human regional centromeres to the point centromere of budding yeast. Centromere recognition is determined mainly through engagement of duplex DNA proximal to the CENP-A nucleosome by a DNA-binding CENP-LN channel located at the core of CCAN. Additional DNA interactions formed by other CCAN modules create an enclosed DNA-binding chamber. This configuration explains how kinetochores maintain their tight grip on centromeric DNA to withstand the forces of chromosome segregation. Defining the higher-order architecture of complete kinetochore assemblies with implications for understanding the 3D organisation of regional centromeres and mechanisms of kinetochore dynamics, including how kinetochores sense and respond to tension, are important future directions.
Collapse
Affiliation(s)
- Stanislau Yatskevich
- MRC Laboratory of Molecular Biology, Cambridge, CB2 0QH, United Kingdom. https://twitter.com/StanislauY
| | - David Barford
- MRC Laboratory of Molecular Biology, Cambridge, CB2 0QH, United Kingdom.
| | - Kyle W Muir
- MRC Laboratory of Molecular Biology, Cambridge, CB2 0QH, United Kingdom. https://twitter.com/centromuir
| |
Collapse
|
7
|
Dendooven T, Zhang Z, Yang J, McLaughlin SH, Schwab J, Scheres SHW, Yatskevich S, Barford D. Cryo-EM structure of the complete inner kinetochore of the budding yeast point centromere. SCIENCE ADVANCES 2023; 9:eadg7480. [PMID: 37506202 PMCID: PMC10381965 DOI: 10.1126/sciadv.adg7480] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Accepted: 06/26/2023] [Indexed: 07/30/2023]
Abstract
The point centromere of budding yeast specifies assembly of the large kinetochore complex to mediate chromatid segregation. Kinetochores comprise the centromere-associated inner kinetochore (CCAN) complex and the microtubule-binding outer kinetochore KNL1-MIS12-NDC80 (KMN) network. The budding yeast inner kinetochore also contains the DNA binding centromere-binding factor 1 (CBF1) and CBF3 complexes. We determined the cryo-electron microscopy structure of the yeast inner kinetochore assembled onto the centromere-specific centromere protein A nucleosomes (CENP-ANuc). This revealed a central CENP-ANuc with extensively unwrapped DNA ends. These free DNA duplexes bind two CCAN protomers, one of which entraps DNA topologically, positioned on the centromere DNA element I (CDEI) motif by CBF1. The two CCAN protomers are linked through CBF3 forming an arch-like configuration. With a structural mechanism for how CENP-ANuc can also be linked to KMN involving only CENP-QU, we present a model for inner kinetochore assembly onto a point centromere and how it organizes the outer kinetochore for chromosome attachment to the mitotic spindle.
Collapse
Affiliation(s)
| | | | - Jing Yang
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, UK
| | | | | | | | | | | |
Collapse
|
8
|
Torres DE, Reckard AT, Klocko AD, Seidl MF. Nuclear genome organization in fungi: from gene folding to Rabl chromosomes. FEMS Microbiol Rev 2023; 47:fuad021. [PMID: 37197899 PMCID: PMC10246852 DOI: 10.1093/femsre/fuad021] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 04/28/2023] [Accepted: 05/08/2023] [Indexed: 05/19/2023] Open
Abstract
Comparative genomics has recently provided unprecedented insights into the biology and evolution of the fungal lineage. In the postgenomics era, a major research interest focuses now on detailing the functions of fungal genomes, i.e. how genomic information manifests into complex phenotypes. Emerging evidence across diverse eukaryotes has revealed that the organization of DNA within the nucleus is critically important. Here, we discuss the current knowledge on the fungal genome organization, from the association of chromosomes within the nucleus to topological structures at individual genes and the genetic factors required for this hierarchical organization. Chromosome conformation capture followed by high-throughput sequencing (Hi-C) has elucidated how fungal genomes are globally organized in Rabl configuration, in which centromere or telomere bundles are associated with opposite faces of the nuclear envelope. Further, fungal genomes are regionally organized into topologically associated domain-like (TAD-like) chromatin structures. We discuss how chromatin organization impacts the proper function of DNA-templated processes across the fungal genome. Nevertheless, this view is limited to a few fungal taxa given the paucity of fungal Hi-C experiments. We advocate for exploring genome organization across diverse fungal lineages to ensure the future understanding of the impact of nuclear organization on fungal genome function.
Collapse
Affiliation(s)
- David E Torres
- Theoretical Biology and Bioinformatics, Department of Biology, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands
- Laboratory of Phytopathology, Wageningen University and Research,Droevendaalsesteeg 4, 6708 PB Wageningen, The Netherlands
| | - Andrew T Reckard
- Department of Chemistry and Biochemistry, University of Colorado Colorado Springs, 234 Centennial Hall, 1420 Austin Bluffs Pkwy, Colorado Springs, CO 80918 USA
| | - Andrew D Klocko
- Department of Chemistry and Biochemistry, University of Colorado Colorado Springs, 234 Centennial Hall, 1420 Austin Bluffs Pkwy, Colorado Springs, CO 80918 USA
| | - Michael F Seidl
- Theoretical Biology and Bioinformatics, Department of Biology, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands
| |
Collapse
|
9
|
Popchock AR, Larson JD, Dubrulle J, Asbury CL, Biggins S. Direct observation of coordinated assembly of individual native centromeric nucleosomes. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.20.524981. [PMID: 36711558 PMCID: PMC9882320 DOI: 10.1101/2023.01.20.524981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Eukaryotic chromosome segregation requires the kinetochore, a megadalton-sized machine that forms on specialized centromeric chromatin containing CENP-A, a histone H3 variant. CENP-A deposition requires a chaperone protein HJURP that targets it to the centromere, but it has remained unclear whether HJURP has additional functions beyond CENP-A targeting and why high AT DNA content, which disfavors nucleosome assembly, is widely conserved at centromeres. To overcome the difficulties of studying nucleosome formation in vivo, we developed a microscopy assay that enables direct observation of de novo centromeric nucleosome recruitment and maintenance with single molecule resolution. Using this assay, we discover that CENP-A can arrive at centromeres without its dedicated centromere-specific chaperone HJURP, but stable incorporation depends on HJURP and additional DNA-binding proteins of the inner kinetochore. We also show that homopolymer AT runs in the yeast centromeres are essential for efficient CENP-A deposition. Together, our findings reveal requirements for stable nucleosome formation and provide a foundation for further studies of the assembly and dynamics of native kinetochore complexes.
Collapse
Affiliation(s)
- Andrew R. Popchock
- Howard Hughes Medical Institute, Basic Sciences Division, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA
| | - Joshua D. Larson
- Department of Physiology and Biophysics, University of Washington, Seattle, WA, USA
| | - Julien Dubrulle
- Shared Resources, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA
| | - Charles L. Asbury
- Department of Physiology and Biophysics, University of Washington, Seattle, WA, USA
| | - Sue Biggins
- Howard Hughes Medical Institute, Basic Sciences Division, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA
| |
Collapse
|
10
|
Cieslinski K, Wu YL, Nechyporenko L, Hörner SJ, Conti D, Skruzny M, Ries J. Nanoscale structural organization and stoichiometry of the budding yeast kinetochore. J Cell Biol 2023; 222:213833. [PMID: 36705601 PMCID: PMC9929930 DOI: 10.1083/jcb.202209094] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 12/16/2022] [Accepted: 12/27/2022] [Indexed: 01/28/2023] Open
Abstract
Proper chromosome segregation is crucial for cell division. In eukaryotes, this is achieved by the kinetochore, an evolutionarily conserved multiprotein complex that physically links the DNA to spindle microtubules and takes an active role in monitoring and correcting erroneous spindle-chromosome attachments. Our mechanistic understanding of these functions and how they ensure an error-free outcome of mitosis is still limited, partly because we lack a complete understanding of the kinetochore structure in the cell. In this study, we use single-molecule localization microscopy to visualize individual kinetochore complexes in situ in budding yeast. For major kinetochore proteins, we measured their abundance and position within the metaphase kinetochore. Based on this comprehensive dataset, we propose a quantitative model of the budding yeast kinetochore. While confirming many aspects of previous reports based on bulk imaging, our results present a unifying nanoscale model of the kinetochore in budding yeast.
Collapse
Affiliation(s)
- Konstanty Cieslinski
- https://ror.org/03mstc592Cell Biology and Biophysics Unit, European Molecular Biology Laboratory, Heidelberg, Germany,Translational Radiation Oncology Unit, Deutsches Krebsforschungszentrum, Heidelberg, Germany
| | - Yu-Le Wu
- https://ror.org/03mstc592Cell Biology and Biophysics Unit, European Molecular Biology Laboratory, Heidelberg, Germany,Faculty of Biosciences, Collaboration for Joint PhD Degree Between European Molecular Biology Laboratory and Heidelberg University, Heidelberg, Germany
| | - Lisa Nechyporenko
- https://ror.org/03mstc592Cell Biology and Biophysics Unit, European Molecular Biology Laboratory, Heidelberg, Germany,Institute of Pharmacy and Molecular Biotechnology, Heidelberg University, Heidelberg, Germany
| | - Sarah Janice Hörner
- https://ror.org/03mstc592Cell Biology and Biophysics Unit, European Molecular Biology Laboratory, Heidelberg, Germany,https://ror.org/04p61dj41Institute of Molecular and Cell Biology, Mannheim University of Applied Sciences, Mannheim, Germany,Interdisciplinary Center for Neuroscience, Heidelberg University, Heidelberg, Germany
| | - Duccio Conti
- https://ror.org/03vpj4s62Department of Mechanistic Cell Biology, Max Planck Institute of Molecular Physiology, Dortmund, Germany
| | - Michal Skruzny
- https://ror.org/03mstc592Cell Biology and Biophysics Unit, European Molecular Biology Laboratory, Heidelberg, Germany
| | - Jonas Ries
- https://ror.org/03mstc592Cell Biology and Biophysics Unit, European Molecular Biology Laboratory, Heidelberg, Germany
| |
Collapse
|
11
|
Boland AW, Gas-Pascual E, Nottingham BL, van der Wel H, Daniel NG, Sheikh MO, Schafer CM, West CM. Oxygen-dependent regulation of E3(SCF)ubiquitin ligases and a Skp1-associated JmjD6 homolog in development of the social amoeba Dictyostelium. J Biol Chem 2022; 298:102305. [PMID: 35933019 PMCID: PMC9485057 DOI: 10.1016/j.jbc.2022.102305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 07/10/2022] [Accepted: 07/11/2022] [Indexed: 11/01/2022] Open
Abstract
E3-SCF (Skp1/cullin-1/F-box protein) polyubiquitin ligases activate the proteasomal degradation of over a thousand proteins, but the evolutionary diversification of the F-box protein (FBP) family of substrate receptor subunits has challenged their elucidation in protists. Here, we expand the FBP candidate list in the social amoeba Dictyostelium and show that the Skp1 interactome is highly remodeled as cells transition from growth to multicellular development. Importantly, a subset of candidate FBPs was less represented when the posttranslational hydroxylation and glycosylation of Skp1 was abrogated by deletion of the O2-sensing Skp1 prolyl hydroxylase PhyA. A role for this Skp1 modification for SCF activity was indicated by partial rescue of development, which normally depends on high O2 and PhyA, of phyA-KO cells by proteasomal inhibitors. Further examination of two FBPs, FbxwD and the Jumonji C protein JcdI, suggested that Skp1 was substituted by other factors in phyA-KO cells. Although a double-KO of jcdI and its paralog jcdH did not affect development, overexpression of JcdI increased its sensitivity to O2. JcdI, a nonheme dioxygenase shown to have physiological O2 dependence, is conserved across protists with its F-box and other domains, and is related to the human oncogene JmjD6. Sensitization of JcdI-overexpression cells to O2 depended on its dioxygenase activity and other domains, but not its F-box, which may however be the mediator of its reduced levels in WT relative to Skp1 modification mutant cells. The findings suggest that activation of JcdI by O2 is tempered by homeostatic downregulation via PhyA and association with Skp1.
Collapse
Affiliation(s)
- Andrew W Boland
- Department of Biochemistry & Molecular Biology, University of Georgia, Athens, Georgia, USA; Complex Carbohydrate Research Center, University of Georgia, Athens, Georgia, USA
| | - Elisabet Gas-Pascual
- Department of Biochemistry & Molecular Biology, University of Georgia, Athens, Georgia, USA; Complex Carbohydrate Research Center, University of Georgia, Athens, Georgia, USA; Center for Tropical and Emerging Global Diseases, University of Georgia, Athens, Georgia, USA
| | - Braxton L Nottingham
- Department of Biochemistry & Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA
| | - Hanke van der Wel
- Department of Biochemistry & Molecular Biology, University of Georgia, Athens, Georgia, USA; Department of Biochemistry & Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA
| | - Nitin G Daniel
- Department of Biochemistry & Molecular Biology, University of Georgia, Athens, Georgia, USA
| | - M Osman Sheikh
- Department of Biochemistry & Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA
| | - Christopher M Schafer
- Department of Biochemistry & Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA
| | - Christopher M West
- Department of Biochemistry & Molecular Biology, University of Georgia, Athens, Georgia, USA; Complex Carbohydrate Research Center, University of Georgia, Athens, Georgia, USA; Center for Tropical and Emerging Global Diseases, University of Georgia, Athens, Georgia, USA; Department of Biochemistry & Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA.
| |
Collapse
|
12
|
Dibus N, Korinek V, Cermak L. FBXO38 Ubiquitin Ligase Controls Centromere Integrity via ZXDA/B Stability. Front Cell Dev Biol 2022; 10:929288. [PMID: 35813202 PMCID: PMC9260856 DOI: 10.3389/fcell.2022.929288] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Accepted: 06/02/2022] [Indexed: 11/13/2022] Open
Abstract
Alterations in the gene encoding the E3 ubiquitin ligase substrate receptor FBXO38 have been associated with several diseases, including early-onset motor neuronopathy. However, the cellular processes affected by the enzymatic action of FBXO38 are not yet known. Here, we identify the zinc finger proteins ZXDA/B as its interaction partners. FBXO38 controls the stability of ZXDA/B proteins via ubiquitination and proteasome-dependent degradation. We show that ZXDA/B proteins associate with the centromeric protein CENP-B and that the interaction between ZXDA/B and FBXO38 or CENP-B is mutually exclusive. Functionally, ZXDA/B factors control the protein level of chromatin-associated CENP-B. Furthermore, their inappropriate stabilization leads to upregulation of CENP-A and CENP-B positive centromeric chromatin. Thus we demonstrate a previously unknown role of cullin-dependent protein degradation in the control of centromeric chromatin integrity.
Collapse
Affiliation(s)
- Nikol Dibus
- Laboratory of Cancer Biology, Institute of Molecular Genetics of the Czech Academy of Sciences, Vestec, Czechia
| | - Vladimir Korinek
- Laboratory of Cell and Developmental Biology, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czechia
| | - Lukas Cermak
- Laboratory of Cancer Biology, Institute of Molecular Genetics of the Czech Academy of Sciences, Vestec, Czechia
- *Correspondence: Lukas Cermak,
| |
Collapse
|
13
|
Cell-cycle phospho-regulation of the kinetochore. Curr Genet 2021; 67:177-193. [PMID: 33221975 DOI: 10.1007/s00294-020-01127-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Revised: 10/27/2020] [Accepted: 10/29/2020] [Indexed: 02/07/2023]
Abstract
The kinetochore is a mega-dalton protein assembly that forms within centromeric regions of chromosomes and directs their segregation during cell division. Here we review cell cycle-mediated phosphorylation events at the kinetochore, with a focus on the budding yeast Saccharomyces cerevisiae and the insight gained from forced associations of kinases and phosphatases. The point centromeres found in the budding yeast S. cerevisiae are one of the simplest such structures found in eukaryotes. The S. cerevisiae kinetochore comprises a single nucleosome, containing a centromere-specific H3 variant Cse4CENP-A, bound to a set of kinetochore proteins that connect to a single microtubule. Despite the simplicity of the budding yeast kinetochore, the proteins are mostly homologous with their mammalian counterparts. In some cases, human proteins can complement their yeast orthologs. Like its mammalian equivalent, the regulation of the budding yeast kinetochore is complex: integrating signals from the cell cycle, checkpoints, error correction, and stress pathways. The regulatory signals from these diverse pathways are integrated at the kinetochore by post-translational modifications, notably phosphorylation and dephosphorylation, to control chromosome segregation. Here we highlight the complex interplay between the activity of the different cell-cycle kinases and phosphatases at the kinetochore, emphasizing how much more we have to understand this essential structure.
Collapse
|
14
|
Structural and dynamic mechanisms of CBF3-guided centromeric nucleosome formation. Nat Commun 2021; 12:1763. [PMID: 33741944 PMCID: PMC7979930 DOI: 10.1038/s41467-021-21985-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2020] [Accepted: 02/22/2021] [Indexed: 11/08/2022] Open
Abstract
Accurate chromosome segregation relies on the specific centromeric nucleosome-kinetochore interface. In budding yeast, the centromere CBF3 complex guides the deposition of CENP-A, an H3 variant, to form the centromeric nucleosome in a DNA sequence-dependent manner. Here, we determine the structures of the centromeric nucleosome containing the native CEN3 DNA and the CBF3core bound to the canonical nucleosome containing an engineered CEN3 DNA. The centromeric nucleosome core structure contains 115 base pair DNA including a CCG motif. The CBF3core specifically recognizes the nucleosomal CCG motif through the Gal4 domain while allosterically altering the DNA conformation. Cryo-EM, modeling, and mutational studies reveal that the CBF3core forms dynamic interactions with core histones H2B and CENP-A in the CEN3 nucleosome. Our results provide insights into the structure of the budding yeast centromeric nucleosome and the mechanism of its assembly, which have implications for analogous processes of human centromeric nucleosome formation.
Collapse
|
15
|
Konrad SF, Vanderlinden W, Frederickx W, Brouns T, Menze BH, De Feyter S, Lipfert J. High-throughput AFM analysis reveals unwrapping pathways of H3 and CENP-A nucleosomes. NANOSCALE 2021; 13:5435-5447. [PMID: 33683227 DOI: 10.1039/d0nr08564b] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Nucleosomes, the fundamental units of chromatin, regulate readout and expression of eukaryotic genomes. Single-molecule experiments have revealed force-induced nucleosome accessibility, but a high-resolution unwrapping landscape in the absence of external forces is currently lacking. Here, we introduce a high-throughput pipeline for the analysis of nucleosome conformations based on atomic force microscopy and automated, multi-parameter image analysis. Our data set of ∼10 000 nucleosomes reveals multiple unwrapping states corresponding to steps of 5 bp DNA. For canonical H3 nucleosomes, we observe that dissociation from one side impedes unwrapping from the other side, but in contrast to force-induced unwrapping, we find only a weak sequence-dependent asymmetry. Notably, centromeric CENP-A nucleosomes do not unwrap anti-cooperatively, in stark contrast to H3 nucleosomes. Finally, our results reconcile previous conflicting findings about the differences in height between H3 and CENP-A nucleosomes. We expect our approach to enable critical insights into epigenetic regulation of nucleosome structure and stability and to facilitate future high-throughput AFM studies that involve heterogeneous nucleoprotein complexes.
Collapse
Affiliation(s)
- Sebastian F Konrad
- Department of Physics and Center for Nanoscience, LMU Munich, Amalienstr. 54, 80799 Munich, Germany.
| | - Willem Vanderlinden
- Department of Physics and Center for Nanoscience, LMU Munich, Amalienstr. 54, 80799 Munich, Germany.
| | - Wout Frederickx
- Department of Chemistry, KU Leuven, Celestijnenlaan 200F, 3001 Heverlee, Belgium
| | - Tine Brouns
- Department of Chemistry, KU Leuven, Celestijnenlaan 200F, 3001 Heverlee, Belgium
| | - Björn H Menze
- Department of Informatics, Technical University of Munich, Boltzmannstr. 3, 85748 Garching, Germany
| | - Steven De Feyter
- Department of Chemistry, KU Leuven, Celestijnenlaan 200F, 3001 Heverlee, Belgium
| | - Jan Lipfert
- Department of Physics and Center for Nanoscience, LMU Munich, Amalienstr. 54, 80799 Munich, Germany.
| |
Collapse
|
16
|
CENP-A nucleosome-a chromatin-embedded pedestal for the centromere: lessons learned from structural biology. Essays Biochem 2021; 64:205-221. [PMID: 32720682 PMCID: PMC7475651 DOI: 10.1042/ebc20190074] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Revised: 06/16/2020] [Accepted: 06/19/2020] [Indexed: 11/17/2022]
Abstract
The centromere is a chromosome locus that directs equal segregation of chromosomes during cell division. A nucleosome containing the histone H3 variant CENP-A epigenetically defines the centromere. Here, we summarize findings from recent structural biology studies, including several CryoEM structures, that contributed to elucidate specific features of the CENP-A nucleosome and molecular determinants of its interactions with CENP-C and CENP-N, the only two centromere proteins that directly bind to it. Based on those findings, we propose a role of the CENP-A nucleosome in the organization of centromeric chromatin beyond binding centromeric proteins.
Collapse
|
17
|
Ng CT, Gan L. Investigating eukaryotic cells with cryo-ET. Mol Biol Cell 2020; 31:87-100. [PMID: 31935172 PMCID: PMC6960407 DOI: 10.1091/mbc.e18-05-0329] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2019] [Revised: 11/25/2019] [Accepted: 11/29/2019] [Indexed: 01/06/2023] Open
Abstract
The interior of eukaryotic cells is mysterious. How do the large communities of macromolecular machines interact with each other? How do the structures and positions of these nanoscopic entities respond to new stimuli? Questions like these can now be answered with the help of a method called electron cryotomography (cryo-ET). Cryo-ET will ultimately reveal the inner workings of a cell at the protein, secondary structure, and perhaps even side-chain levels. Combined with genetic or pharmacological perturbation, cryo-ET will allow us to answer previously unimaginable questions, such as how structure, biochemistry, and forces are related in situ. Because it bridges structural biology and cell biology, cryo-ET is indispensable for structural cell biology-the study of the 3-D macromolecular structure of cells. Here we discuss some of the key ideas, strategies, auxiliary techniques, and innovations that an aspiring structural cell biologist will consider when planning to ask bold questions.
Collapse
Affiliation(s)
- Cai Tong Ng
- Department of Biological Sciences and Centre for BioImaging Sciences, National University of Singapore, Singapore 117543
| | - Lu Gan
- Department of Biological Sciences and Centre for BioImaging Sciences, National University of Singapore, Singapore 117543
| |
Collapse
|
18
|
Lee PD, Wei H, Tan D, Harrison SC. Structure of the Centromere Binding Factor 3 Complex from Kluyveromyces lactis. J Mol Biol 2019; 431:4444-4454. [PMID: 31425683 PMCID: PMC7004469 DOI: 10.1016/j.jmb.2019.08.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Revised: 07/28/2019] [Accepted: 08/05/2019] [Indexed: 01/21/2023]
Abstract
Kinetochores are the multiprotein complexes that link chromosomal centromeres to mitotic-spindle microtubules. Budding yeast centromeres comprise three sequential "centromere-determining elements", CDEI, II, and III. CDEI (8 bp) and CDEIII (∼25 bp) are conserved between Kluyveromyces lactis and Saccharomyces cerevisiae, but CDEII in the former is twice as long (160 bp) as CDEII in the latter (80 bp). The CBF3 complex recognizes CDEIII and is required for assembly of a centromeric nucleosome, which in turn recruits other kinetochore components. To understand differences in centromeric nucleosome assembly between K. lactis and S. cerevisiae, we determined the structure of a K. lactis CBF3 complex by electron cryomicroscopy at ∼4 Å resolution and compared it with published structures of S. cerevisiae CBF3. We show differences in the pose of Ndc10 and discuss potential models of the K. lactis centromeric nucleosome that account for the extended CDEII length.
Collapse
Affiliation(s)
- Phong D. Lee
- Department of Biological Chemistry and Molecular Pharmacology Harvard Medical School Boston MA 02115 USA,Graduate Program in Virology Harvard Medical School Boston MA 02115 USA
| | - Hui Wei
- The National Resource for Automated Molecular Microscopy Simons Electron Microscopy Center New York Structural Biology Center New York NY 10027 USA
| | - Dongyan Tan
- Department of Pharmacological Sciences Stony Brook University School of Medicine Stony Brook NY 11794 USA
| | - Stephen C. Harrison
- Department of Biological Chemistry and Molecular Pharmacology Harvard Medical School Boston MA 02115 USA,Howard Hughes Medical Institute Harvard Medical School Boston MA 02115 USA
| |
Collapse
|
19
|
Yan K, Yang J, Zhang Z, McLaughlin SH, Chang L, Fasci D, Ehrenhofer-Murray AE, Heck AJR, Barford D. Structure of the inner kinetochore CCAN complex assembled onto a centromeric nucleosome. Nature 2019; 574:278-282. [PMID: 31578520 PMCID: PMC6859074 DOI: 10.1038/s41586-019-1609-1] [Citation(s) in RCA: 93] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Accepted: 09/04/2019] [Indexed: 12/21/2022]
Abstract
In eukaryotes, accurate chromosome segregation in mitosis and meiosis maintains genome stability and prevents aneuploidy. Kinetochores are large protein complexes that, by assembling onto specialized Cenp-A nucleosomes1,2, function to connect centromeric chromatin to microtubules of the mitotic spindle3,4. Whereas the centromeres of vertebrate chromosomes comprise millions of DNA base pairs and attach to multiple microtubules, the simple point centromeres of budding yeast are connected to individual microtubules5,6. All 16 budding yeast chromosomes assemble complete kinetochores using a single Cenp-A nucleosome (Cenp-ANuc), each of which is perfectly centred on its cognate centromere7-9. The inner and outer kinetochore modules are responsible for interacting with centromeric chromatin and microtubules, respectively. Here we describe the cryo-electron microscopy structure of the Saccharomyces cerevisiae inner kinetochore module, the constitutive centromere associated network (CCAN) complex, assembled onto a Cenp-A nucleosome (CCAN-Cenp-ANuc). The structure explains the interdependency of the constituent subcomplexes of CCAN and shows how the Y-shaped opening of CCAN accommodates Cenp-ANuc to enable specific CCAN subunits to contact the nucleosomal DNA and histone subunits. Interactions with the unwrapped DNA duplex at the two termini of Cenp-ANuc are mediated predominantly by a DNA-binding groove in the Cenp-L-Cenp-N subcomplex. Disruption of these interactions impairs assembly of CCAN onto Cenp-ANuc. Our data indicate a mechanism of Cenp-A nucleosome recognition by CCAN and how CCAN acts as a platform for assembly of the outer kinetochore to link centromeres to the mitotic spindle for chromosome segregation.
Collapse
Affiliation(s)
- Kaige Yan
- MRC Laboratory of Molecular Biology, Cambridge, UK
| | - Jing Yang
- MRC Laboratory of Molecular Biology, Cambridge, UK
| | - Ziguo Zhang
- MRC Laboratory of Molecular Biology, Cambridge, UK
| | | | - Leifu Chang
- MRC Laboratory of Molecular Biology, Cambridge, UK
- Department of Biological Sciences, Purdue University, West Lafayette, IN, USA
| | - Domenico Fasci
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, University of Utrecht, Utrecht, The Netherlands
| | | | - Albert J R Heck
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, University of Utrecht, Utrecht, The Netherlands
| | | |
Collapse
|
20
|
Hamilton G, Dimitrova Y, Davis TN. Seeing is believing: our evolving view of kinetochore structure, composition, and assembly. Curr Opin Cell Biol 2019; 60:44-52. [PMID: 31078123 DOI: 10.1016/j.ceb.2019.03.016] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2019] [Revised: 03/20/2019] [Accepted: 03/28/2019] [Indexed: 11/26/2022]
Abstract
This review highlights three recent trends in the field of kinetochore biology: the proliferation of structural data for kinetochore protein complexes (including CBF3, Dam1c, Mis12cMIND, and CENP-NLChl4/Iml3); the growing consensus that the kinetochore is a dynamic structure whose composition changes as the cell cycle progresses; and the mounting evidence of multiple pathways whereby the microtubule-binding elements of the outer kinetochore may be recruited by inner kinetochore proteins. Our focus is on the two best-studied systems in the field: human and budding yeast kinetochores. This review will demonstrate the remarkable similarity of these two systems, as well as their intriguing differences.
Collapse
Affiliation(s)
- Grace Hamilton
- Department of Biochemistry, University of Washington Box 357350, 1705 NE Pacific St., Seattle, WA 98195-7350, USA
| | - Yoana Dimitrova
- Genentech, Inc., 1 DNA Way, MS: 27, South San Francisco, CA 94080, USA
| | - Trisha N Davis
- Department of Biochemistry, University of Washington Box 357350, 1705 NE Pacific St., Seattle, WA 98195-7350, USA.
| |
Collapse
|