1
|
Sun Y, Li J. Mechanistic insights into stem cell fate regulation via RNA methylation. Ageing Res Rev 2025; 107:102717. [PMID: 40054777 DOI: 10.1016/j.arr.2025.102717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Revised: 02/24/2025] [Accepted: 03/04/2025] [Indexed: 04/13/2025]
Abstract
Stem cells possess an extraordinary ability for self-renewal and differentiation, making them essential for tissue repair, regeneration, and anti-aging. RNA methylation is crucial in regulating stem cell fate by modulating gene expression. This review synthesizes current research on RNA methylation modifications, such as m6A, m7G, m5C, and m1A, and their impact on adult stem cell fate. It provides a comprehensive overview of the molecular machinery involved in RNA methylation, emphasizes the critical roles of these modifications in stem cell biology, reviews the latest advancements in sequencing technologies, and discusses potential crosstalk between RNA methylation and epigenetic mechanisms.
Collapse
Affiliation(s)
- Yushuang Sun
- Institute of Precision Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510080, China
| | - Jingting Li
- Institute of Precision Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510080, China.
| |
Collapse
|
2
|
Lu Y, Yang L, Feng Q, Liu Y, Sun X, Liu D, Qiao L, Liu Z. RNA 5-Methylcytosine Modification: Regulatory Molecules, Biological Functions, and Human Diseases. GENOMICS, PROTEOMICS & BIOINFORMATICS 2024; 22:qzae063. [PMID: 39340806 PMCID: PMC11634542 DOI: 10.1093/gpbjnl/qzae063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 08/12/2024] [Accepted: 09/12/2024] [Indexed: 09/30/2024]
Abstract
RNA methylation modifications influence gene expression, and disruptions of these processes are often associated with various human diseases. The common RNA methylation modification 5-methylcytosine (m5C), which is dynamically regulated by writers, erasers, and readers, widely occurs in transfer RNAs (tRNAs), messenger RNAs (mRNAs), ribosomal RNAs (rRNAs), enhancer RNAs (eRNAs), and other non-coding RNAs (ncRNAs). RNA m5C modification regulates metabolism, stability, nuclear export, and translation of RNA molecules. An increasing number of studies have revealed the critical roles of the m5C RNA modification and its regulators in the development, diagnosis, prognosis, and treatment of various human diseases. In this review, we summarized the recent studies on RNA m5C modification and discussed the advances in its detection methodologies, distribution, and regulators. Furthermore, we addressed the significance of RNAs modified with m5C marks in essential biological processes as well as in the development of various human disorders, from neurological diseases to cancers. This review provides a new perspective on the diagnosis, treatment, and monitoring of human diseases by elucidating the complex regulatory network of the epigenetic m5C modification.
Collapse
Affiliation(s)
- Yanfang Lu
- Department of Integrated Traditional and Western Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
- Research Institute of Nephrology, Zhengzhou University, Zhengzhou 450052, China
- Henan Province Research Center for Kidney Disease, Zhengzhou 450052, China
- Key Laboratory of Precision Diagnosis and Treatment for Chronic Kidney Disease in Henan Province, Zhengzhou 450052, China
| | - Liu Yang
- Department of Integrated Traditional and Western Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
- Research Institute of Nephrology, Zhengzhou University, Zhengzhou 450052, China
- Henan Province Research Center for Kidney Disease, Zhengzhou 450052, China
- Key Laboratory of Precision Diagnosis and Treatment for Chronic Kidney Disease in Henan Province, Zhengzhou 450052, China
| | - Qi Feng
- Department of Integrated Traditional and Western Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
- Research Institute of Nephrology, Zhengzhou University, Zhengzhou 450052, China
- Henan Province Research Center for Kidney Disease, Zhengzhou 450052, China
- Key Laboratory of Precision Diagnosis and Treatment for Chronic Kidney Disease in Henan Province, Zhengzhou 450052, China
| | - Yong Liu
- Department of Integrated Traditional and Western Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
- Research Institute of Nephrology, Zhengzhou University, Zhengzhou 450052, China
- Henan Province Research Center for Kidney Disease, Zhengzhou 450052, China
- Key Laboratory of Precision Diagnosis and Treatment for Chronic Kidney Disease in Henan Province, Zhengzhou 450052, China
| | - Xiaohui Sun
- Department of Integrated Traditional and Western Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
- Research Institute of Nephrology, Zhengzhou University, Zhengzhou 450052, China
- Henan Province Research Center for Kidney Disease, Zhengzhou 450052, China
- Key Laboratory of Precision Diagnosis and Treatment for Chronic Kidney Disease in Henan Province, Zhengzhou 450052, China
| | - Dongwei Liu
- Department of Integrated Traditional and Western Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
- Research Institute of Nephrology, Zhengzhou University, Zhengzhou 450052, China
- Henan Province Research Center for Kidney Disease, Zhengzhou 450052, China
- Key Laboratory of Precision Diagnosis and Treatment for Chronic Kidney Disease in Henan Province, Zhengzhou 450052, China
| | - Long Qiao
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Zhangsuo Liu
- Department of Integrated Traditional and Western Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
- Research Institute of Nephrology, Zhengzhou University, Zhengzhou 450052, China
- Henan Province Research Center for Kidney Disease, Zhengzhou 450052, China
- Key Laboratory of Precision Diagnosis and Treatment for Chronic Kidney Disease in Henan Province, Zhengzhou 450052, China
| |
Collapse
|
3
|
Yan Y, Wei W, Long S, Ye S, Yang B, Jiang J, Li X, Chen J. The role of RNA modification in the generation of acquired drug resistance in glioma. Front Genet 2022; 13:1032286. [DOI: 10.3389/fgene.2022.1032286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Accepted: 10/25/2022] [Indexed: 11/13/2022] Open
Abstract
Glioma is the most common malignant tumor in the central nervous system. The clinical treatment strategy is mainly surgery combined with concurrent temozolomide chemotherapy, but patients can develop drug resistance during treatment, which severely limits its therapeutic efficacy. Epigenetic regulation at the RNA level is plastic and adaptable, and it can induce a variety of tumor responses to drugs. The regulators of RNA modification include methyltransferases, demethylases, and methylation binding proteins; these are also considered to play an important role in the development, prognosis, and therapeutic response of gliomas, which provides a basis for finding new targets of epigenetic drugs and resetting the sensitivity of tumor cells to temozolomide. This review discusses the relationship between the development of adaptive drug resistance and RNA modification in glioma and summarizes the progress of several major RNA modification strategies in this field, especially RNA m6A modification, m5C modification, and adenosine-to-inosine editing.
Collapse
|
4
|
Kossinova OA, Gopanenko AV, Babaylova ES, Tupikin AE, Kabilov MR, Malygin AA, Karpova GG. Reorganization of the Landscape of Translated mRNAs in NSUN2-Deficient Cells and Specific Features of NSUN2 Target mRNAs. Int J Mol Sci 2022; 23:ijms23179740. [PMID: 36077143 PMCID: PMC9456143 DOI: 10.3390/ijms23179740] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 08/22/2022] [Accepted: 08/24/2022] [Indexed: 11/16/2022] Open
Abstract
The RNA cytosine C5 methyltransferase NSUN2 has a variety of RNA substrates and plays an important role in mRNA metabolism. NSUN2 binds to specific sequences enriched in exosomal mRNAs, suggesting its possible involvement in the sorting of mRNAs into exosomes. We applied the photoactivatable.4-thiouridine-enhanced cross-linking and immunoprecipitation assay involving high-throughput RNA sequencing (RNA-seq) to HEK293T cells to determine NSUN2 mRNA targets. NSUN2 cross-linking sites were found in more than one hundred relatively abundant mRNAs with a high GC content and a pronounced secondary structure. Then, utilizing RNA-seq for the total and polysome-associated mRNA from HEK293T cells with and without the knockdown of NSUN2, we identified differentially expressed genes, as well as genes with altered translational efficiency (GATEs). It turned out that the up-regulated GATE mRNAs were much shorter on average than the down-regulated ones, and their GC content was higher; moreover, they contained motifs with C residues located in GC-rich environments. Our findings reveal the specific features of mRNAs that make them potential targets for NSUN2 and expand our understanding of the role of NSUN2 in controlling translation and, possibly, in mRNA sorting into exosomes implemented through the methylation of cytosine residues.
Collapse
|
5
|
Liu J, Huang T, Chen W, Ding C, Zhao T, Zhao X, Cai B, Zhang Y, Li S, Zhang L, Xue M, He X, Ge W, Zhou C, Xu Y, Zhang R. Developmental mRNA m 5C landscape and regulatory innovations of massive m 5C modification of maternal mRNAs in animals. Nat Commun 2022; 13:2484. [PMID: 35513466 PMCID: PMC9072368 DOI: 10.1038/s41467-022-30210-0] [Citation(s) in RCA: 59] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Accepted: 04/06/2022] [Indexed: 11/09/2022] Open
Abstract
m5C is one of the longest-known RNA modifications, however, its developmental dynamics, functions, and evolution in mRNAs remain largely unknown. Here, we generate quantitative mRNA m5C maps at different stages of development in 6 vertebrate and invertebrate species and find convergent and unexpected massive methylation of maternal mRNAs mediated by NSUN2 and NSUN6. Using Drosophila as a model, we reveal that embryos lacking maternal mRNA m5C undergo cell cycle delays and fail to timely initiate maternal-to-zygotic transition, implying the functional importance of maternal mRNA m5C. From invertebrates to the lineage leading to humans, two waves of m5C regulatory innovations are observed: higher animals gain cis-directed NSUN2-mediated m5C sites at the 5' end of the mRNAs, accompanied by the emergence of more structured 5'UTR regions; humans gain thousands of trans-directed NSUN6-mediated m5C sites enriched in genes regulating the mitotic cell cycle. Collectively, our studies highlight the existence and regulatory innovations of a mechanism of early embryonic development and provide key resources for elucidating the role of mRNA m5C in biology and disease. mRNAs are known to be decorated with m5C at a low-to-medium level. Here, the authors generate atlases of mRNA m5C during animal development in 6 species and identify convergent and unexpected massive methylation of maternal mRNAs by NSUN2 and NSUN6.
Collapse
Affiliation(s)
- Jianheng Liu
- MOE Key Laboratory of Gene Function and Regulation, Guangdong Province Key Laboratory of Pharmaceutical Functional Genes, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University, Guangzhou, PR China
| | - Tao Huang
- MOE Key Laboratory of Gene Function and Regulation, Guangdong Province Key Laboratory of Pharmaceutical Functional Genes, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University, Guangzhou, PR China
| | - Wanying Chen
- MOE Key Laboratory of Gene Function and Regulation, Guangdong Province Key Laboratory of Pharmaceutical Functional Genes, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University, Guangzhou, PR China
| | - Chenhui Ding
- Guangdong Provincial Key Laboratory of Reproductive Medicine, Center for Reproductive Medicine and Department of Gynecology & Obstetrics, the First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, PR China
| | - Tianxuan Zhao
- MOE Key Laboratory of Gene Function and Regulation, Guangdong Province Key Laboratory of Pharmaceutical Functional Genes, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University, Guangzhou, PR China
| | - Xueni Zhao
- MOE Key Laboratory of Gene Function and Regulation, Guangdong Province Key Laboratory of Pharmaceutical Functional Genes, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University, Guangzhou, PR China
| | - Bing Cai
- Guangdong Provincial Key Laboratory of Reproductive Medicine, Center for Reproductive Medicine and Department of Gynecology & Obstetrics, the First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, PR China
| | - Yusen Zhang
- MOE Key Laboratory of Gene Function and Regulation, Guangdong Province Key Laboratory of Pharmaceutical Functional Genes, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University, Guangzhou, PR China
| | - Song Li
- Guangdong Provincial Key Laboratory of Reproductive Medicine, Center for Reproductive Medicine and Department of Gynecology & Obstetrics, the First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, PR China
| | - Ling Zhang
- MOE Key Laboratory of Gene Function and Regulation, Guangdong Province Key Laboratory of Pharmaceutical Functional Genes, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University, Guangzhou, PR China
| | - Maoguang Xue
- Division of Human Reproduction and Developmental Genetics, Zhejiang Provincial Key Laboratory of Precision Diagnosis and Therapy for Major Gynecological Diseases, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310006, China.,Institute of Genetics, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310058, China
| | - Xiuju He
- MOE Key Laboratory of Gene Function and Regulation, Guangdong Province Key Laboratory of Pharmaceutical Functional Genes, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University, Guangzhou, PR China
| | - Wanzhong Ge
- Division of Human Reproduction and Developmental Genetics, Zhejiang Provincial Key Laboratory of Precision Diagnosis and Therapy for Major Gynecological Diseases, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310006, China. .,Institute of Genetics, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310058, China. .,Cancer Center, Zhejiang University, Hangzhou, Zhejiang, 310058, China.
| | - Canquan Zhou
- Guangdong Provincial Key Laboratory of Reproductive Medicine, Center for Reproductive Medicine and Department of Gynecology & Obstetrics, the First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, PR China.
| | - Yanwen Xu
- Guangdong Provincial Key Laboratory of Reproductive Medicine, Center for Reproductive Medicine and Department of Gynecology & Obstetrics, the First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, PR China.
| | - Rui Zhang
- MOE Key Laboratory of Gene Function and Regulation, Guangdong Province Key Laboratory of Pharmaceutical Functional Genes, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University, Guangzhou, PR China.
| |
Collapse
|
6
|
Selmi T, Hussain S, Dietmann S, Heiß M, Borland K, Flad S, Carter JM, Dennison R, Huang YL, Kellner S, Bornelöv S, Frye M. Sequence- and structure-specific cytosine-5 mRNA methylation by NSUN6. Nucleic Acids Res 2021; 49:1006-1022. [PMID: 33330931 PMCID: PMC7826283 DOI: 10.1093/nar/gkaa1193] [Citation(s) in RCA: 113] [Impact Index Per Article: 28.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 11/20/2020] [Accepted: 11/24/2020] [Indexed: 12/12/2022] Open
Abstract
The highly abundant N6-methyladenosine (m6A) RNA modification affects most aspects of mRNA function, yet the precise function of the rarer 5-methylcytidine (m5C) remains largely unknown. Here, we map m5C in the human transcriptome using methylation-dependent individual-nucleotide resolution cross-linking and immunoprecipitation (miCLIP) combined with RNA bisulfite sequencing. We identify NSUN6 as a methyltransferase with strong substrate specificity towards mRNA. NSUN6 primarily targeted three prime untranslated regions (3'UTR) at the consensus sequence motif CTCCA, located in loops of hairpin structures. Knockout and rescue experiments revealed enhanced mRNA and translation levels when NSUN6-targeted mRNAs were methylated. Ribosome profiling further demonstrated that NSUN6-specific methylation correlated with translation termination. While NSUN6 was dispensable for mouse embryonic development, it was down-regulated in human tumours and high expression of NSUN6 indicated better patient outcome of certain cancer types. In summary, our study identifies NSUN6 as a methyltransferase targeting mRNA, potentially as part of a quality control mechanism involved in translation termination fidelity.
Collapse
Affiliation(s)
- Tommaso Selmi
- Department of Genetics, University of Cambridge, Downing Street, Cambridge CB2 3EH, UK
| | - Shobbir Hussain
- Department of Biology and Biochemistry, University of Bath, Claverton Down, Bath BA2 7AY, UK
| | - Sabine Dietmann
- Washington University School of Medicine in St. Louis, 660 S. Euclid Ave, St. Louis, MO 63110, USA
| | - Matthias Heiß
- Department of Chemistry, Ludwig-Maximilians-University Munich, Butenandtstr. 5-13, Haus F, 81377 Munich, Germany
| | - Kayla Borland
- Department of Chemistry, Ludwig-Maximilians-University Munich, Butenandtstr. 5-13, Haus F, 81377 Munich, Germany
| | - Sophia Flad
- German Cancer Research Center – Deutsches Krebsforschungszentrum (DKFZ), Im Neuenheimer Feld 280, 69120 Heidelberg, Germany
| | - Jean-Michel Carter
- Department of Biology and Biochemistry, University of Bath, Claverton Down, Bath BA2 7AY, UK
| | - Rebecca Dennison
- Cambridge Institute of Public Health, University of Cambridge, Forvie Site, Robinson Way, Cambridge CB2 0SR, UK
| | - Ya-Lin Huang
- Department of Genetics, University of Cambridge, Downing Street, Cambridge CB2 3EH, UK
| | - Stefanie Kellner
- Department of Chemistry, Ludwig-Maximilians-University Munich, Butenandtstr. 5-13, Haus F, 81377 Munich, Germany
| | - Susanne Bornelöv
- Wellcome – MRC Cambridge Stem Cell Institute, University of Cambridge, Puddicombe Way, Cambridge CB2 0AW, UK
| | - Michaela Frye
- German Cancer Research Center – Deutsches Krebsforschungszentrum (DKFZ), Im Neuenheimer Feld 280, 69120 Heidelberg, Germany
| |
Collapse
|
7
|
Fang L, Wang W, Li G, Zhang L, Li J, Gan D, Yang J, Tang Y, Ding Z, Zhang M, Zhang W, Deng D, Song Z, Zhu Q, Cui H, Hu Y, Chen W. CIGAR-seq, a CRISPR/Cas-based method for unbiased screening of novel mRNA modification regulators. Mol Syst Biol 2020; 16:e10025. [PMID: 33251765 PMCID: PMC7701898 DOI: 10.15252/msb.202010025] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Revised: 11/04/2020] [Accepted: 11/04/2020] [Indexed: 12/13/2022] Open
Abstract
Cellular RNA is decorated with over 170 types of chemical modifications. Many modifications in mRNA, including m6 A and m5 C, have been associated with critical cellular functions under physiological and/or pathological conditions. To understand the biological functions of these modifications, it is vital to identify the regulators that modulate the modification rate. However, a high-throughput method for unbiased screening of these regulators is so far lacking. Here, we report such a method combining pooled CRISPR screen and reporters with RNA modification readout, termed CRISPR integrated gRNA and reporter sequencing (CIGAR-seq). Using CIGAR-seq, we discovered NSUN6 as a novel mRNA m5 C methyltransferase. Subsequent mRNA bisulfite sequencing in HAP1 cells without or with NSUN6 and/or NSUN2 knockout showed that NSUN6 and NSUN2 worked on non-overlapping subsets of mRNA m5 C sites and together contributed to almost all the m5 C modification in mRNA. Finally, using m1 A as an example, we demonstrated that CIGAR-seq can be easily adapted for identifying regulators of other mRNA modification.
Collapse
Affiliation(s)
- Liang Fang
- Department of BiologySouthern University of Science and TechnologyShenzhenGuangdongChina
- Academy for Advanced Interdisciplinary StudiesSouthern University of Science and TechnologyShenzhenGuangdongChina
| | - Wen Wang
- Department of BiologySouthern University of Science and TechnologyShenzhenGuangdongChina
- Harbin Institute of TechnologyHarbinHeilongjiangChina
| | - Guipeng Li
- Department of BiologySouthern University of Science and TechnologyShenzhenGuangdongChina
- Academy for Advanced Interdisciplinary StudiesSouthern University of Science and TechnologyShenzhenGuangdongChina
| | - Li Zhang
- Department of BiologySouthern University of Science and TechnologyShenzhenGuangdongChina
| | - Jun Li
- Department of BiologySouthern University of Science and TechnologyShenzhenGuangdongChina
| | - Diwen Gan
- Department of BiologySouthern University of Science and TechnologyShenzhenGuangdongChina
| | - Jiao Yang
- Department of BiologySouthern University of Science and TechnologyShenzhenGuangdongChina
| | - Yisen Tang
- Department of BiologySouthern University of Science and TechnologyShenzhenGuangdongChina
| | - Zewen Ding
- Department of BiologySouthern University of Science and TechnologyShenzhenGuangdongChina
| | - Min Zhang
- Department of BiologySouthern University of Science and TechnologyShenzhenGuangdongChina
| | - Wenhao Zhang
- Department of BiologySouthern University of Science and TechnologyShenzhenGuangdongChina
| | - Daqi Deng
- Department of BiologySouthern University of Science and TechnologyShenzhenGuangdongChina
| | - Zhengyu Song
- Department of BiologySouthern University of Science and TechnologyShenzhenGuangdongChina
| | - Qionghua Zhu
- Department of BiologySouthern University of Science and TechnologyShenzhenGuangdongChina
| | - Huanhuan Cui
- Department of BiologySouthern University of Science and TechnologyShenzhenGuangdongChina
- Academy for Advanced Interdisciplinary StudiesSouthern University of Science and TechnologyShenzhenGuangdongChina
| | - Yuhui Hu
- Department of BiologySouthern University of Science and TechnologyShenzhenGuangdongChina
| | - Wei Chen
- Department of BiologySouthern University of Science and TechnologyShenzhenGuangdongChina
- Academy for Advanced Interdisciplinary StudiesSouthern University of Science and TechnologyShenzhenGuangdongChina
| |
Collapse
|