1
|
Kiefer L, Gaudin S, Rajkumar SM, Servito GIF, Langen J, Mui MH, Nawsheen S, Canzio D. Tuning cohesin trajectories enables differential readout of the Pcdhα cluster across neurons. Science 2024; 385:eadm9802. [PMID: 39052779 DOI: 10.1126/science.adm9802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Accepted: 05/16/2024] [Indexed: 07/27/2024]
Abstract
Expression of Protocadherin (Pcdh) genes is critical to the generation of neuron identity and wiring of the nervous system. Pcdhα genes are arranged in clusters and exhibit a range of expression profiles, from stochastic to deterministic. Because Pcdhα promoters have high sequence identity and share distal enhancers, how distinct neurons choose which gene to express remains unclear. We show that the interplay between multiple enhancers, epigenetics, and genome folding orchestrates differential readouts of the locus across neurons. The probability of Pcdhα promoter choice depends on enhancer/promoter encounters catalyzed by cohesin, whose extrusion trajectories determine the likelihood that an individual promoter can "escape" heterochromatin-mediated silencing. We propose that tunable locus-specific regulatory elements and cell type-specific cohesin activity underlie the generation of cellular diversity by Pcdh genes.
Collapse
Affiliation(s)
- Lea Kiefer
- Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA 94158, USA
- Department of Neurology, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Simon Gaudin
- Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA 94158, USA
- Department of Neurology, University of California, San Francisco, San Francisco, CA 94158, USA
- Department of Biology, Ecole Normale Supérieure de Lyon, 69432 Lyon, France
| | - Sandy M Rajkumar
- Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA 94158, USA
- Department of Neurology, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Gabrielle Isabelle F Servito
- Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA 94158, USA
- Department of Neurology, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Jennifer Langen
- Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA 94158, USA
- Department of Neurology, University of California, San Francisco, San Francisco, CA 94158, USA
- Neuroscience Graduate Program, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Michael H Mui
- Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA 94158, USA
- Department of Neurology, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Shayra Nawsheen
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Daniele Canzio
- Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA 94158, USA
- Department of Neurology, University of California, San Francisco, San Francisco, CA 94158, USA
- Chan-Zuckerberg Biohub Investigator, San Francisco, San Francisco, CA 94158, USA
| |
Collapse
|
2
|
Pang QY, Chiu YC, Huang RYJ. Regulating epithelial-mesenchymal plasticity from 3D genome organization. Commun Biol 2024; 7:750. [PMID: 38902393 PMCID: PMC11190238 DOI: 10.1038/s42003-024-06441-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Accepted: 06/11/2024] [Indexed: 06/22/2024] Open
Abstract
Epithelial-mesenchymal transition (EMT) is a dynamic process enabling polarized epithelial cells to acquire mesenchymal features implicated in development and carcinoma progression. As our understanding evolves, it is clear the reversible execution of EMT arises from complex epigenomic regulation involving histone modifications and 3-dimensional (3D) genome structural changes, leading to a cascade of transcriptional events. This review summarizes current knowledge on chromatin organization in EMT, with a focus on hierarchical structures of the 3D genome and chromatin accessibility changes.
Collapse
Affiliation(s)
- Qing You Pang
- Neuro-Oncology Research Laboratory, National Neuroscience Institute, Singapore, 308433, Singapore
| | - Yi-Chia Chiu
- School of Medicine, College of Medicine, National Taiwan University, Taipei, 10051, Taiwan
| | - Ruby Yun-Ju Huang
- School of Medicine, College of Medicine, National Taiwan University, Taipei, 10051, Taiwan.
- Center for Advanced Computing and Imaging in Biomedicine, National Taiwan University, Taipei, 10051, Taiwan.
- Department of Obstetrics & Gynaecology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 119077, Singapore.
| |
Collapse
|
3
|
Sahoo S, Kadam S, Padinhateeri R, Kumar PBS. Nonequilibrium switching of segmental states can influence compaction of chromatin. SOFT MATTER 2024; 20:4621-4632. [PMID: 38819321 DOI: 10.1039/d4sm00274a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2024]
Abstract
Knowledge about the dynamic nature of chromatin organization is essential to understand the regulation of processes like DNA transcription and repair. The existing models of chromatin assume that protein organization and chemical states along chromatin are static and the 3D organization is purely a result of protein-mediated intra-chromatin interactions. Here we present a new hypothesis that certain nonequilibrium processes, such as switching of chemical and physical states due to nucleosome assembly/disassembly or gene repression/activation, can also simultaneously influence chromatin configurations. To understand the implications of this inherent nonequilibrium switching, we present a block copolymer model of chromatin, with switching of its segmental states between two states, mimicking active/repressed or protein unbound/bound states. We show that competition between switching timescale Tt, polymer relaxation timescale τp, and segmental relaxation timescale τs can lead to non-trivial changes in chromatin organization, leading to changes in local compaction and contact probabilities. As a function of the switching timescale, the radius of gyration of chromatin shows a non-monotonic behavior with a prominent minimum when Tt ≈ τp and a maximum when Tt ≈ τs. We find that polymers with a small segment length exhibit a more compact structure than those with larger segment lengths. We also find that the switching can lead to higher contact probability and better mixing of far-away segments. Our study also shows that the nature of the distribution of chromatin clusters varies widely as we change the switching rate.
Collapse
Affiliation(s)
- Soudamini Sahoo
- Department of Physics, Indian Institute of Technology Palakkad, Palakkad, 678623, India
- Department of Physics and Astronomy, National Institute of Technology Rourkela, Rourkela, 769008, India
| | - Sangram Kadam
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Powai, Mumbai, 400076, India.
| | - Ranjith Padinhateeri
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Powai, Mumbai, 400076, India.
| | - P B Sunil Kumar
- Department of Physics, Indian Institute of Technology Palakkad, Palakkad, 678623, India
- Department of Physics, Indian Institute of Technology Madras, Chennai, 600036, India
- Center for Soft and Biological Matter, Indian Institute of Technology Madras, Chennai, 600036, India
| |
Collapse
|
4
|
Borando F, Tiana G. Effective model of protein-mediated interactions in chromatin. Phys Rev E 2024; 109:064406. [PMID: 39021027 DOI: 10.1103/physreve.109.064406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Accepted: 05/30/2024] [Indexed: 07/20/2024]
Abstract
Protein-mediated interactions are ubiquitous in the cellular environment, and particularly in the nucleus, where they are responsible for the structuring of chromatin. We show through molecular-dynamics simulations of a polymer surrounded by binders that the strength of the binder-polymer interaction separates an equilibrium from a nonequilibrium regime. In the equilibrium regime, the system can be efficiently described by an effective model in which the binders are traced out. Even in this case, the polymers display features that are different from those of a standard homopolymer interacting with two-body interactions. We then extend the effective model to deal with the case where binders cannot be regarded as in equilibrium and a new phenomenology appears, including local blobs in the polymer. An effective description of this system can be useful in elucidating the fundamental mechanisms that govern chromatin structuring in particular and indirect interactions in general.
Collapse
|
5
|
Xu J, Xu X, Huang D, Luo Y, Lin L, Bai X, Zheng Y, Yang Q, Cheng Y, Huang A, Shi J, Bo X, Gu J, Chen H. A comprehensive benchmarking with interpretation and operational guidance for the hierarchy of topologically associating domains. Nat Commun 2024; 15:4376. [PMID: 38782890 PMCID: PMC11116433 DOI: 10.1038/s41467-024-48593-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Accepted: 05/03/2024] [Indexed: 05/25/2024] Open
Abstract
Topologically associating domains (TADs), megabase-scale features of chromatin spatial architecture, are organized in a domain-within-domain TAD hierarchy. Within TADs, the inner and smaller subTADs not only manifest cell-to-cell variability, but also precisely regulate transcription and differentiation. Although over 20 TAD callers are able to detect TAD, their usability in biomedicine is confined by a disagreement of outputs and a limit in understanding TAD hierarchy. We compare 13 computational tools across various conditions and develop a metric to evaluate the similarity of TAD hierarchy. Although outputs of TAD hierarchy at each level vary among callers, data resolutions, sequencing depths, and matrices normalization, they are more consistent when they have a higher similarity of larger TADs. We present comprehensive benchmarking of TAD hierarchy callers and operational guidance to researchers of life science researchers. Moreover, by simulating the mixing of different types of cells, we confirm that TAD hierarchy is generated not simply from stacking Hi-C heatmaps of heterogeneous cells. Finally, we propose an air conditioner model to decipher the role of TAD hierarchy in transcription.
Collapse
Affiliation(s)
- Jingxuan Xu
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Gastrointestinal Surgery, Peking University Cancer Hospital & Institute, Beijing, 100142, China
| | - Xiang Xu
- Academy of Military Medical Science, Beijing, 100850, China
| | - Dandan Huang
- Department of Oncology, Peking University Shougang Hospital, Beijing, China
- Center for Precision Diagnosis and Treatment of Colorectal Cancer and Inflammatory Diseases, Peking University Health Science Center, Beijing, China
| | - Yawen Luo
- Academy of Military Medical Science, Beijing, 100850, China
| | - Lin Lin
- Academy of Military Medical Science, Beijing, 100850, China
- School of Computer Science and Information Technology& KLAS, Northeast Normal University, Changchun, China
| | - Xuemei Bai
- Academy of Military Medical Science, Beijing, 100850, China
| | - Yang Zheng
- Academy of Military Medical Science, Beijing, 100850, China
| | - Qian Yang
- Academy of Military Medical Science, Beijing, 100850, China
| | - Yu Cheng
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Gastrointestinal Surgery, Peking University Cancer Hospital & Institute, Beijing, 100142, China
| | - An Huang
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Gastrointestinal Surgery, Peking University Cancer Hospital & Institute, Beijing, 100142, China
| | - Jingyi Shi
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Gastrointestinal Surgery, Peking University Cancer Hospital & Institute, Beijing, 100142, China
| | - Xiaochen Bo
- Academy of Military Medical Science, Beijing, 100850, China.
| | - Jin Gu
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Gastrointestinal Surgery, Peking University Cancer Hospital & Institute, Beijing, 100142, China.
- Department of Oncology, Peking University Shougang Hospital, Beijing, China.
- Center for Precision Diagnosis and Treatment of Colorectal Cancer and Inflammatory Diseases, Peking University Health Science Center, Beijing, China.
- Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, China.
- Peking University International Cancer Institute, Beijing, China.
| | - Hebing Chen
- Academy of Military Medical Science, Beijing, 100850, China.
| |
Collapse
|
6
|
Li Y, Lee J, Bai L. DNA methylation-based high-resolution mapping of long-distance chromosomal interactions in nucleosome-depleted regions. Nat Commun 2024; 15:4358. [PMID: 38778058 PMCID: PMC11111806 DOI: 10.1038/s41467-024-48718-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Accepted: 05/10/2024] [Indexed: 05/25/2024] Open
Abstract
3C-based methods have significantly advanced our understanding of 3D genome organization. However, it remains a formidable task to precisely capture long-range chromosomal interactions between individual loci, such as those between promoters and distal enhancers. Here, we present Methyltransferase Targeting-based chromosome Architecture Capture (MTAC), a method that maps the contacts between a target site (viewpoint) and the rest of the genome in budding yeast with high resolution and sensitivity. MTAC detects hundreds of intra- and inter-chromosomal interactions within nucleosome-depleted regions (NDRs) that cannot be captured by 4C, Hi-C, or Micro-C. By applying MTAC to various viewpoints, we find that (1) most long-distance chromosomal interactions detected by MTAC reflect tethering by the nuclear pore complexes (NPCs), (2) genes co-regulated by methionine assemble into inter-chromosomal clusters near NPCs upon activation, (3) mediated by condensin, the mating locus forms a highly specific interaction with the recombination enhancer (RE) in a mating-type specific manner, and (4) correlation of MTAC signals among NDRs reveal spatial mixing and segregation of the genome. Overall, these results demonstrate MTAC as a powerful tool to resolve fine-scale long-distance chromosomal interactions and provide insights into the 3D genome organization.
Collapse
Affiliation(s)
- Yi Li
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA, 16802, USA
- Center for Eukaryotic Gene Regulation, The Pennsylvania State University, University Park, PA, 16802, USA
| | - James Lee
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA, 16802, USA
- Center for Eukaryotic Gene Regulation, The Pennsylvania State University, University Park, PA, 16802, USA
| | - Lu Bai
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA, 16802, USA.
- Center for Eukaryotic Gene Regulation, The Pennsylvania State University, University Park, PA, 16802, USA.
- Department of Physics, The Pennsylvania State University, University Park, PA, 16802, USA.
| |
Collapse
|
7
|
Han MH, Park J, Park M. Advances in the multimodal analysis of the 3D chromatin structure and gene regulation. Exp Mol Med 2024; 56:763-771. [PMID: 38658704 PMCID: PMC11059362 DOI: 10.1038/s12276-024-01246-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 04/03/2024] [Accepted: 04/08/2024] [Indexed: 04/26/2024] Open
Abstract
Recent studies have demonstrated that the three-dimensional conformation of the chromatin plays a crucial role in gene regulation, with aberrations potentially leading to various diseases. Advanced methodologies have revealed a link between the chromatin conformation and biological function. This review divides these methodologies into sequencing-based and imaging-based methodologies, tracing their development over time. We particularly highlight innovative techniques that facilitate the simultaneous mapping of RNAs, histone modifications, and proteins within the context of the 3D architecture of chromatin. This multimodal integration substantially improves our ability to establish a robust connection between the spatial arrangement of molecular components in the nucleus and their functional roles. Achieving a comprehensive understanding of gene regulation requires capturing diverse data modalities within individual cells, enabling the direct inference of functional relationships between these components. In this context, imaging-based technologies have emerged as an especially promising approach for gathering spatial information across multiple components in the same cell.
Collapse
Affiliation(s)
- Man-Hyuk Han
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
| | - Jihyun Park
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
| | - Minhee Park
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea.
- Graduate School of Engineering Biology, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea.
- KAIST Institute for BioCentury, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea.
- KAIST Stem Cell Center, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea.
| |
Collapse
|
8
|
Zhang Y, Boninsegna L, Yang M, Misteli T, Alber F, Ma J. Computational methods for analysing multiscale 3D genome organization. Nat Rev Genet 2024; 25:123-141. [PMID: 37673975 PMCID: PMC11127719 DOI: 10.1038/s41576-023-00638-1] [Citation(s) in RCA: 23] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/12/2023] [Indexed: 09/08/2023]
Abstract
Recent progress in whole-genome mapping and imaging technologies has enabled the characterization of the spatial organization and folding of the genome in the nucleus. In parallel, advanced computational methods have been developed to leverage these mapping data to reveal multiscale three-dimensional (3D) genome features and to provide a more complete view of genome structure and its connections to genome functions such as transcription. Here, we discuss how recently developed computational tools, including machine-learning-based methods and integrative structure-modelling frameworks, have led to a systematic, multiscale delineation of the connections among different scales of 3D genome organization, genomic and epigenomic features, functional nuclear components and genome function. However, approaches that more comprehensively integrate a wide variety of genomic and imaging datasets are still needed to uncover the functional role of 3D genome structure in defining cellular phenotypes in health and disease.
Collapse
Affiliation(s)
- Yang Zhang
- Computational Biology Department, School of Computer Science, Carnegie Mellon University, Pittsburgh, PA, USA
| | - Lorenzo Boninsegna
- Department of Microbiology, Immunology and Molecular Genetics and Institute for Quantitative and Computational Biosciences, University of California Los Angeles, Los Angeles, CA, USA
| | - Muyu Yang
- Computational Biology Department, School of Computer Science, Carnegie Mellon University, Pittsburgh, PA, USA
| | - Tom Misteli
- Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA.
| | - Frank Alber
- Department of Microbiology, Immunology and Molecular Genetics and Institute for Quantitative and Computational Biosciences, University of California Los Angeles, Los Angeles, CA, USA.
| | - Jian Ma
- Computational Biology Department, School of Computer Science, Carnegie Mellon University, Pittsburgh, PA, USA.
| |
Collapse
|
9
|
Mach P, Giorgetti L. Integrative approaches to study enhancer-promoter communication. Curr Opin Genet Dev 2023; 80:102052. [PMID: 37257410 PMCID: PMC10293802 DOI: 10.1016/j.gde.2023.102052] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 04/21/2023] [Accepted: 04/22/2023] [Indexed: 06/02/2023]
Abstract
The spatiotemporal control of gene expression in complex multicellular organisms relies on noncoding regulatory sequences such as enhancers, which activate transcription of target genes often over large genomic distances. Despite the advances in the identification and characterization of enhancers, the principles and mechanisms by which enhancers select and control their target genes remain largely unknown. Here, we review recent interdisciplinary and quantitative approaches based on emerging techniques that aim to address open questions in the field, notably how regulatory information is encoded in the DNA sequence, how this information is transferred from enhancers to promoters, and how these processes are regulated in time.
Collapse
Affiliation(s)
- Pia Mach
- Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland; University of Basel, Basel, Switzerland. https://twitter.com/@MachPia
| | - Luca Giorgetti
- Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland.
| |
Collapse
|
10
|
Pecori F, Torres-Padilla ME. Dynamics of nuclear architecture during early embryonic development and lessons from liveimaging. Dev Cell 2023; 58:435-449. [PMID: 36977375 PMCID: PMC10062924 DOI: 10.1016/j.devcel.2023.02.018] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 11/29/2022] [Accepted: 02/27/2023] [Indexed: 03/29/2023]
Abstract
Nuclear organization has emerged as a potential key regulator of genome function. During development, the deployment of transcriptional programs must be tightly coordinated with cell division and is often accompanied by major changes in the repertoire of expressed genes. These transcriptional and developmental events are paralleled by changes in the chromatin landscape. Numerous studies have revealed the dynamics of nuclear organization underlying them. In addition, advances in live-imaging-based methodologies enable the study of nuclear organization with high spatial and temporal resolution. In this Review, we summarize the current knowledge of the changes in nuclear architecture in the early embryogenesis of various model systems. Furthermore, to highlight the importance of integrating fixed-cell and live approaches, we discuss how different live-imaging techniques can be applied to examine nuclear processes and their contribution to our understanding of transcription and chromatin dynamics in early development. Finally, we provide future avenues for outstanding questions in this field.
Collapse
Affiliation(s)
- Federico Pecori
- Institute of Epigenetics and Stem Cells, Helmholtz Zentrum München, Munich, Germany
| | - Maria-Elena Torres-Padilla
- Institute of Epigenetics and Stem Cells, Helmholtz Zentrum München, Munich, Germany; Faculty of Biology, Ludwig Maximilians University, Munich, Germany.
| |
Collapse
|
11
|
Chen M, Liu X, Liu Q, Shi D, Li H. 3D genomics and its applications in precision medicine. Cell Mol Biol Lett 2023; 28:19. [PMID: 36879202 PMCID: PMC9987123 DOI: 10.1186/s11658-023-00428-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Accepted: 02/06/2023] [Indexed: 03/08/2023] Open
Abstract
Three-dimensional (3D) genomics is an emerging discipline that studies the three-dimensional structure of chromatin and the three-dimensional and functions of genomes. It mainly studies the three-dimensional conformation and functional regulation of intranuclear genomes, such as DNA replication, DNA recombination, genome folding, gene expression regulation, transcription factor regulation mechanism, and the maintenance of three-dimensional conformation of genomes. Self-chromosomal conformation capture (3C) technology has been developed, and 3D genomics and related fields have developed rapidly. In addition, chromatin interaction analysis techniques developed by 3C technologies, such as paired-end tag sequencing (ChIA-PET) and whole-genome chromosome conformation capture (Hi-C), enable scientists to further study the relationship between chromatin conformation and gene regulation in different species. Thus, the spatial conformation of plant, animal, and microbial genomes, transcriptional regulation mechanisms, interaction patterns of chromosomes, and the formation mechanism of spatiotemporal specificity of genomes are revealed. With the help of new experimental technologies, the identification of key genes and signal pathways related to life activities and diseases is sustaining the rapid development of life science, agriculture, and medicine. In this paper, the concept and development of 3D genomics and its application in agricultural science, life science, and medicine are introduced, which provides a theoretical basis for the study of biological life processes.
Collapse
Affiliation(s)
- Mengjie Chen
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Animal Science and Technology, Guangxi University, Nanning, 530004, Guangxi Province, China
| | - Xingyu Liu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Animal Science and Technology, Guangxi University, Nanning, 530004, Guangxi Province, China
| | - Qingyou Liu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Animal Science and Technology, Guangxi University, Nanning, 530004, Guangxi Province, China.,Guangdong Provincial Key Laboratory of Animal Molecular Design and Precise Breeding, School of Life Science and Engineering, Foshan University, Foshan, 528225, China
| | - Deshun Shi
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Animal Science and Technology, Guangxi University, Nanning, 530004, Guangxi Province, China.
| | - Hui Li
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Animal Science and Technology, Guangxi University, Nanning, 530004, Guangxi Province, China.
| |
Collapse
|
12
|
Chakraborty S, Kopitchinski N, Zuo Z, Eraso A, Awasthi P, Chari R, Mitra A, Tobias IC, Moorthy SD, Dale RK, Mitchell JA, Petros TJ, Rocha PP. Enhancer-promoter interactions can bypass CTCF-mediated boundaries and contribute to phenotypic robustness. Nat Genet 2023; 55:280-290. [PMID: 36717694 PMCID: PMC10758292 DOI: 10.1038/s41588-022-01295-6] [Citation(s) in RCA: 57] [Impact Index Per Article: 28.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Accepted: 12/20/2022] [Indexed: 01/31/2023]
Abstract
How enhancers activate their distal target promoters remains incompletely understood. Here we dissect how CTCF-mediated loops facilitate and restrict such regulatory interactions. Using an allelic series of mouse mutants, we show that CTCF is neither required for the interaction of the Sox2 gene with distal enhancers, nor for its expression. Insertion of various combinations of CTCF motifs, between Sox2 and its distal enhancers, generated boundaries with varying degrees of insulation that directly correlated with reduced transcriptional output. However, in both epiblast and neural tissues, enhancer contacts and transcriptional induction could not be fully abolished, and insertions failed to disrupt implantation and neurogenesis. In contrast, Sox2 expression was undetectable in the anterior foregut of mutants carrying the strongest boundaries, and these animals fully phenocopied loss of SOX2 in this tissue. We propose that enhancer clusters with a high density of regulatory activity can better overcome physical barriers to maintain faithful gene expression and phenotypic robustness.
Collapse
Affiliation(s)
- Shreeta Chakraborty
- Unit on Genome Structure and Regulation, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
| | - Nina Kopitchinski
- Unit on Genome Structure and Regulation, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
| | - Zhenyu Zuo
- Unit on Genome Structure and Regulation, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
| | - Ariel Eraso
- Unit on Genome Structure and Regulation, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
| | - Parirokh Awasthi
- Laboratory Animal Sciences Program, Frederick National Lab for Cancer Research, Frederick, MD, USA
| | - Raj Chari
- Laboratory Animal Sciences Program, Frederick National Lab for Cancer Research, Frederick, MD, USA
| | - Apratim Mitra
- Bioinformatics and Scientific Programming Core, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
| | - Ian C Tobias
- Department of Cell and Systems Biology, University of Toronto, Toronto, Ontario, Canada
| | - Sakthi D Moorthy
- Department of Cell and Systems Biology, University of Toronto, Toronto, Ontario, Canada
| | - Ryan K Dale
- Bioinformatics and Scientific Programming Core, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
| | - Jennifer A Mitchell
- Department of Cell and Systems Biology, University of Toronto, Toronto, Ontario, Canada
| | - Timothy J Petros
- Unit on Cellular and Molecular Neurodevelopment, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
| | - Pedro P Rocha
- Unit on Genome Structure and Regulation, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA.
- National Cancer Institute, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
13
|
Mach P, Kos PI, Zhan Y, Cramard J, Gaudin S, Tünnermann J, Marchi E, Eglinger J, Zuin J, Kryzhanovska M, Smallwood S, Gelman L, Roth G, Nora EP, Tiana G, Giorgetti L. Cohesin and CTCF control the dynamics of chromosome folding. Nat Genet 2022; 54:1907-1918. [PMID: 36471076 PMCID: PMC9729113 DOI: 10.1038/s41588-022-01232-7] [Citation(s) in RCA: 106] [Impact Index Per Article: 35.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Accepted: 10/19/2022] [Indexed: 12/12/2022]
Abstract
In mammals, interactions between sequences within topologically associating domains enable control of gene expression across large genomic distances. Yet it is unknown how frequently such contacts occur, how long they last and how they depend on the dynamics of chromosome folding and loop extrusion activity of cohesin. By imaging chromosomal locations at high spatial and temporal resolution in living cells, we show that interactions within topologically associating domains are transient and occur frequently during the course of a cell cycle. Interactions become more frequent and longer in the presence of convergent CTCF sites, resulting in suppression of variability in chromosome folding across time. Supported by physical models of chromosome dynamics, our data suggest that CTCF-anchored loops last around 10 min. Our results show that long-range transcriptional regulation might rely on transient physical proximity, and that cohesin and CTCF stabilize highly dynamic chromosome structures, facilitating selected subsets of chromosomal interactions.
Collapse
Affiliation(s)
- Pia Mach
- Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland
- University of Basel, Basel, Switzerland
| | - Pavel I Kos
- Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland
| | - Yinxiu Zhan
- Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland
| | - Julie Cramard
- Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland
| | - Simon Gaudin
- Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland
- École Normale Supérieure de Lyon, Lyon, France
- Université Claude Bernard Lyon I, Lyon, France
| | - Jana Tünnermann
- Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland
- University of Basel, Basel, Switzerland
| | - Edoardo Marchi
- Università degli Studi di Milano, Milan, Italy
- INFN, Milan, Italy
| | - Jan Eglinger
- Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland
| | - Jessica Zuin
- Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland
| | | | | | - Laurent Gelman
- Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland
| | - Gregory Roth
- Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland
| | - Elphège P Nora
- Cardiovascular Research Institute, University of California San Francisco, San Francisco, CA, USA
- Department of Biochemistry and Biophysics, University of California San Francisco, San Francisco, CA, USA
| | - Guido Tiana
- Università degli Studi di Milano, Milan, Italy
- INFN, Milan, Italy
| | - Luca Giorgetti
- Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland.
| |
Collapse
|
14
|
Tang JLY, Krautz R, Llorà-Batlle O, Hakes AE, Fox PM, Brand AH. In vivo, genome-wide profiling of endogenously tagged chromatin-binding proteins with spatial and temporal resolution using NanoDam in Drosophila. STAR Protoc 2022; 3:101788. [PMID: 36345375 PMCID: PMC9636480 DOI: 10.1016/j.xpro.2022.101788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
NanoDam is a technique for genome-wide profiling of the binding targets of any endogenously tagged chromatin-binding protein in vivo, without the need for antibodies, crosslinking, or immunoprecipitation. Here, we explain the procedure for NanoDam experiments in Drosophila, starting from a genetic cross, to the generation of sequencing libraries and, finally, bioinformatic analysis. This protocol can be readily adapted for use in other model systems after simple modifications. For complete details on the use and execution of this protocol, please refer to Tang et al. (2022).
Collapse
Affiliation(s)
- Jocelyn L Y Tang
- Gurdon Institute and Department of Physiology, Development and Neuroscience, University of Cambridge, Tennis Court Road, Cambridge CB2 1QN, UK
| | - Robert Krautz
- Gurdon Institute and Department of Physiology, Development and Neuroscience, University of Cambridge, Tennis Court Road, Cambridge CB2 1QN, UK
| | - Oriol Llorà-Batlle
- Gurdon Institute and Department of Physiology, Development and Neuroscience, University of Cambridge, Tennis Court Road, Cambridge CB2 1QN, UK
| | - Anna E Hakes
- Gurdon Institute and Department of Physiology, Development and Neuroscience, University of Cambridge, Tennis Court Road, Cambridge CB2 1QN, UK
| | - Paul M Fox
- Gurdon Institute and Department of Physiology, Development and Neuroscience, University of Cambridge, Tennis Court Road, Cambridge CB2 1QN, UK
| | - Andrea H Brand
- Gurdon Institute and Department of Physiology, Development and Neuroscience, University of Cambridge, Tennis Court Road, Cambridge CB2 1QN, UK.
| |
Collapse
|
15
|
Orozco G, Schoenfelder S, Walker N, Eyre S, Fraser P. 3D genome organization links non-coding disease-associated variants to genes. Front Cell Dev Biol 2022; 10:995388. [PMID: 36340032 PMCID: PMC9631826 DOI: 10.3389/fcell.2022.995388] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Accepted: 09/27/2022] [Indexed: 11/13/2022] Open
Abstract
Genome sequencing has revealed over 300 million genetic variations in human populations. Over 90% of variants are single nucleotide polymorphisms (SNPs), the remainder include short deletions or insertions, and small numbers of structural variants. Hundreds of thousands of these variants have been associated with specific phenotypic traits and diseases through genome wide association studies which link significant differences in variant frequencies with specific phenotypes among large groups of individuals. Only 5% of disease-associated SNPs are located in gene coding sequences, with the potential to disrupt gene expression or alter of the function of encoded proteins. The remaining 95% of disease-associated SNPs are located in non-coding DNA sequences which make up 98% of the genome. The role of non-coding, disease-associated SNPs, many of which are located at considerable distances from any gene, was at first a mystery until the discovery that gene promoters regularly interact with distal regulatory elements to control gene expression. Disease-associated SNPs are enriched at the millions of gene regulatory elements that are dispersed throughout the non-coding sequences of the genome, suggesting they function as gene regulation variants. Assigning specific regulatory elements to the genes they control is not straightforward since they can be millions of base pairs apart. In this review we describe how understanding 3D genome organization can identify specific interactions between gene promoters and distal regulatory elements and how 3D genomics can link disease-associated SNPs to their target genes. Understanding which gene or genes contribute to a specific disease is the first step in designing rational therapeutic interventions.
Collapse
Affiliation(s)
- Gisela Orozco
- Centre for Genetics and Genomics Versus Arthritis, Division of Musculoskeletal and Dermatological Sciences, School of Biological Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester Academic Health Science Centre, Manchester, United Kingdom
- NIHR Manchester Biomedical Research Centre, Manchester University Foundation Trust, Manchester, United Kingdom
| | - Stefan Schoenfelder
- Enhanc3D Genomics Ltd., Cambridge, United Kingdom
- Epigenetics Programme, The Babraham Institute, Babraham Research Campus, CB22 3AT Cambridge, Cambridge, United Kingdom
| | | | - Stephan Eyre
- Centre for Genetics and Genomics Versus Arthritis, Division of Musculoskeletal and Dermatological Sciences, School of Biological Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester Academic Health Science Centre, Manchester, United Kingdom
- NIHR Manchester Biomedical Research Centre, Manchester University Foundation Trust, Manchester, United Kingdom
| | - Peter Fraser
- Enhanc3D Genomics Ltd., Cambridge, United Kingdom
- Department of Biological Science, Florida State University, Tallahassee, FL, United States
| |
Collapse
|
16
|
Dehingia B, Milewska M, Janowski M, Pękowska A. CTCF shapes chromatin structure and gene expression in health and disease. EMBO Rep 2022; 23:e55146. [PMID: 35993175 PMCID: PMC9442299 DOI: 10.15252/embr.202255146] [Citation(s) in RCA: 59] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 05/31/2022] [Accepted: 07/14/2022] [Indexed: 11/09/2022] Open
Abstract
CCCTC-binding factor (CTCF) is an eleven zinc finger (ZF), multivalent transcriptional regulator, that recognizes numerous motifs thanks to the deployment of distinct combinations of its ZFs. The great majority of the ~50,000 genomic locations bound by the CTCF protein in a given cell type is intergenic, and a fraction of these sites overlaps with transcriptional enhancers. Furthermore, a proportion of the regions bound by CTCF intersect genes and promoters. This suggests multiple ways in which CTCF may impact gene expression. At promoters, CTCF can directly affect transcription. At more distal sites, CTCF may orchestrate interactions between regulatory elements and help separate eu- and heterochromatic areas in the genome, exerting a chromatin barrier function. In this review, we outline how CTCF contributes to the regulation of the three-dimensional structure of chromatin and the formation of chromatin domains. We discuss how CTCF binding and architectural functions are regulated. We examine the literature implicating CTCF in controlling gene expression in development and disease both by acting as an insulator and a factor facilitating regulatory elements to efficiently interact with each other in the nuclear space.
Collapse
Affiliation(s)
- Bondita Dehingia
- Dioscuri Centre for Chromatin Biology and Epigenomics, Nencki Institute of Experimental BiologyPolish Academy of SciencesWarsawPoland
| | - Małgorzata Milewska
- Dioscuri Centre for Chromatin Biology and Epigenomics, Nencki Institute of Experimental BiologyPolish Academy of SciencesWarsawPoland
| | - Marcin Janowski
- Dioscuri Centre for Chromatin Biology and Epigenomics, Nencki Institute of Experimental BiologyPolish Academy of SciencesWarsawPoland
| | - Aleksandra Pękowska
- Dioscuri Centre for Chromatin Biology and Epigenomics, Nencki Institute of Experimental BiologyPolish Academy of SciencesWarsawPoland
| |
Collapse
|
17
|
Abdulla AZ, Vaillant C, Jost D. Painters in chromatin: a unified quantitative framework to systematically characterize epigenome regulation and memory. Nucleic Acids Res 2022; 50:9083-9104. [PMID: 36018799 PMCID: PMC9458448 DOI: 10.1093/nar/gkac702] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Accepted: 08/03/2022] [Indexed: 12/24/2022] Open
Abstract
In eukaryotes, many stable and heritable phenotypes arise from the same DNA sequence, owing to epigenetic regulatory mechanisms relying on the molecular cooperativity of 'reader-writer' enzymes. In this work, we focus on the fundamental, generic mechanisms behind the epigenome memory encoded by post-translational modifications of histone tails. Based on experimental knowledge, we introduce a unified modeling framework, the painter model, describing the mechanistic interplay between sequence-specific recruitment of chromatin regulators, chromatin-state-specific reader-writer processes and long-range spreading mechanisms. A systematic analysis of the model building blocks highlights the crucial impact of tridimensional chromatin organization and state-specific recruitment of enzymes on the stability of epigenomic domains and on gene expression. In particular, we show that enhanced 3D compaction of the genome and enzyme limitation facilitate the formation of ultra-stable, confined chromatin domains. The model also captures how chromatin state dynamics impact the intrinsic transcriptional properties of the region, slower kinetics leading to noisier expression. We finally apply our framework to analyze experimental data, from the propagation of γH2AX around DNA breaks in human cells to the maintenance of heterochromatin in fission yeast, illustrating how the painter model can be used to extract quantitative information on epigenomic molecular processes.
Collapse
Affiliation(s)
- Amith Z Abdulla
- Laboratoire de Biologie et Modélisation de la Cellule, École Normale Supérieure de Lyon, CNRS, UMR5239, Inserm U1293, Université Claude Bernard Lyon 1, 46 Allée d’Italie, 69007 Lyon, France,École Normale Supérieure de Lyon, CNRS, Laboratoire de Physique, 46 Allée d’Italie, 69007 Lyon, France
| | - Cédric Vaillant
- Correspondence may also be addressed to Cédric Vaillant. Tel: +33 4 72 72 81 54; Fax: +33 4 72 72 80 00;
| | - Daniel Jost
- To whom correspondence should be addressed. Tel: +33 4 72 72 86 30; Fax: +33 4 72 72 80 00;
| |
Collapse
|
18
|
A proposed unified interphase nucleus chromosome structure: Preliminary preponderance of evidence. Proc Natl Acad Sci U S A 2022; 119:e2119101119. [PMID: 35749363 PMCID: PMC9245672 DOI: 10.1073/pnas.2119101119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Cryopreservation of the nuclear interior allows a large-scale interphase chromosome structure—present throughout the nucleus—to be seen in its native state by electron tomography. This structure appears as a coiled chain of nucleosomes, wrapped like a Slinky toy. This coiled structure can be further used to explain the enigmatic architectures of polytene and lampbrush chromosomes. In addition, this new structure can further be organized as chromosome territories: for example, all 46 human interphase chromosomes easily fit into a 10-μm-diameter nucleus. Thus, interphase chromosomes can be unified into a flexibly defined structure. Cryoelectron tomography of the cell nucleus using scanning transmission electron microscopy and deconvolution processing technology has highlighted a large-scale, 100- to 300-nm interphase chromosome structure, which is present throughout the nucleus. This study further documents and analyzes these chromosome structures. The paper is divided into four parts: 1) evidence (preliminary) for a unified interphase chromosome structure; 2) a proposed unified interphase chromosome architecture; 3) organization as chromosome territories (e.g., fitting the 46 human chromosomes into a 10-μm-diameter nucleus); and 4) structure unification into a polytene chromosome architecture and lampbrush chromosomes. Finally, the paper concludes with a living light microscopy cell study showing that the G1 nucleus contains very similar structures throughout. The main finding is that this chromosome structure appears to coil the 11-nm nucleosome fiber into a defined hollow structure, analogous to a Slinky helical spring [https://en.wikipedia.org/wiki/Slinky; motif used in Bowerman et al., eLife 10, e65587 (2021)]. This Slinky architecture can be used to build chromosome territories, extended to the polytene chromosome structure, as well as to the structure of lampbrush chromosomes.
Collapse
|
19
|
The era of 3D and spatial genomics. Trends Genet 2022; 38:1062-1075. [PMID: 35680466 DOI: 10.1016/j.tig.2022.05.010] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 05/10/2022] [Accepted: 05/11/2022] [Indexed: 12/28/2022]
Abstract
Over a decade ago the advent of high-throughput chromosome conformation capture (Hi-C) sparked a new era of 3D genomics. Since then the number of methods for mapping the 3D genome has flourished, enabling an ever-increasing understanding of how DNA is packaged in the nucleus and how the spatiotemporal organization of the genome orchestrates its vital functions. More recently, the next generation of spatial genomics technologies has begun to reveal how genome sequence and 3D genome organization vary between cells in their tissue context. We summarize how the toolkit for charting genome topology has evolved over the past decade and discuss how new technological developments are advancing the field of 3D and spatial genomics.
Collapse
|
20
|
Rinzema NJ, Sofiadis K, Tjalsma SJD, Verstegen MJAM, Oz Y, Valdes-Quezada C, Felder AK, Filipovska T, van der Elst S, de Andrade Dos Ramos Z, Han R, Krijger PHL, de Laat W. Building regulatory landscapes reveals that an enhancer can recruit cohesin to create contact domains, engage CTCF sites and activate distant genes. Nat Struct Mol Biol 2022; 29:563-574. [PMID: 35710842 PMCID: PMC9205769 DOI: 10.1038/s41594-022-00787-7] [Citation(s) in RCA: 76] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Accepted: 04/25/2022] [Indexed: 12/14/2022]
Abstract
Developmental gene expression is often controlled by distal regulatory DNA elements called enhancers. Distant enhancer action is restricted to structural chromosomal domains that are flanked by CTCF-associated boundaries and formed through cohesin chromatin loop extrusion. To better understand how enhancers, genes and CTCF boundaries together form structural domains and control expression, we used a bottom-up approach, building series of active regulatory landscapes in inactive chromatin. We demonstrate here that gene transcription levels and activity over time reduce with increased enhancer distance. The enhancer recruits cohesin to stimulate domain formation and engage flanking CTCF sites in loop formation. It requires cohesin exclusively for the activation of distant genes, not of proximal genes, with nearby CTCF boundaries supporting efficient long-range enhancer action. Our work supports a dual activity model for enhancers: its classic role of stimulating transcription initiation and elongation from target gene promoters and a role of recruiting cohesin for the creation of chromosomal domains, the engagement of CTCF sites in chromatin looping and the activation of distal target genes.
Collapse
Affiliation(s)
- Niels J Rinzema
- Oncode Institute, Hubrecht Institute-KNAW and University Medical Center Utrecht, Utrecht, the Netherlands
| | - Konstantinos Sofiadis
- Oncode Institute, Hubrecht Institute-KNAW and University Medical Center Utrecht, Utrecht, the Netherlands
| | - Sjoerd J D Tjalsma
- Oncode Institute, Hubrecht Institute-KNAW and University Medical Center Utrecht, Utrecht, the Netherlands
| | - Marjon J A M Verstegen
- Oncode Institute, Hubrecht Institute-KNAW and University Medical Center Utrecht, Utrecht, the Netherlands
| | - Yuva Oz
- Oncode Institute, Hubrecht Institute-KNAW and University Medical Center Utrecht, Utrecht, the Netherlands
| | - Christian Valdes-Quezada
- Oncode Institute, Hubrecht Institute-KNAW and University Medical Center Utrecht, Utrecht, the Netherlands
| | - Anna-Karina Felder
- Oncode Institute, Hubrecht Institute-KNAW and University Medical Center Utrecht, Utrecht, the Netherlands
| | - Teodora Filipovska
- Oncode Institute, Hubrecht Institute-KNAW and University Medical Center Utrecht, Utrecht, the Netherlands
| | - Stefan van der Elst
- Oncode Institute, Hubrecht Institute-KNAW and University Medical Center Utrecht, Utrecht, the Netherlands
| | - Zaria de Andrade Dos Ramos
- Oncode Institute, Hubrecht Institute-KNAW and University Medical Center Utrecht, Utrecht, the Netherlands
| | - Ruiqi Han
- Oncode Institute, Hubrecht Institute-KNAW and University Medical Center Utrecht, Utrecht, the Netherlands
| | - Peter H L Krijger
- Oncode Institute, Hubrecht Institute-KNAW and University Medical Center Utrecht, Utrecht, the Netherlands
| | - Wouter de Laat
- Oncode Institute, Hubrecht Institute-KNAW and University Medical Center Utrecht, Utrecht, the Netherlands.
| |
Collapse
|
21
|
Zuin J, Roth G, Zhan Y, Cramard J, Redolfi J, Piskadlo E, Mach P, Kryzhanovska M, Tihanyi G, Kohler H, Eder M, Leemans C, van Steensel B, Meister P, Smallwood S, Giorgetti L. Nonlinear control of transcription through enhancer-promoter interactions. Nature 2022; 604:571-577. [PMID: 35418676 PMCID: PMC9021019 DOI: 10.1038/s41586-022-04570-y] [Citation(s) in RCA: 209] [Impact Index Per Article: 69.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Accepted: 02/21/2022] [Indexed: 12/19/2022]
Abstract
Chromosome structure in mammals is thought to regulate transcription by modulating three-dimensional interactions between enhancers and promoters, notably through CTCF-mediated loops and topologically associating domains (TADs)1-4. However, how chromosome interactions are actually translated into transcriptional outputs remains unclear. Here, to address this question, we use an assay to position an enhancer at large numbers of densely spaced chromosomal locations relative to a fixed promoter, and measure promoter output and interactions within a genomic region with minimal regulatory and structural complexity. A quantitative analysis of hundreds of cell lines reveals that the transcriptional effect of an enhancer depends on its contact probabilities with the promoter through a nonlinear relationship. Mathematical modelling suggests that nonlinearity might arise from transient enhancer-promoter interactions being translated into slower promoter bursting dynamics in individual cells, therefore uncoupling the temporal dynamics of interactions from those of transcription. This uncovers a potential mechanism of how distal enhancers act from large genomic distances, and of how topologically associating domain boundaries block distal enhancers. Finally, we show that enhancer strength also determines absolute transcription levels as well as the sensitivity of a promoter to CTCF-mediated transcriptional insulation. Our measurements establish general principles for the context-dependent role of chromosome structure in long-range transcriptional regulation.
Collapse
Affiliation(s)
- Jessica Zuin
- Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland
| | - Gregory Roth
- Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland
| | - Yinxiu Zhan
- Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland
| | - Julie Cramard
- Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland
| | - Josef Redolfi
- Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland
| | - Ewa Piskadlo
- Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland
| | - Pia Mach
- Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland
- University of Basel, Basel, Switzerland
| | | | - Gergely Tihanyi
- Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland
- University of Basel, Basel, Switzerland
| | - Hubertus Kohler
- Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland
| | - Mathias Eder
- Division of Gene Regulation and Oncode Institute, Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Christ Leemans
- Division of Gene Regulation and Oncode Institute, Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Bas van Steensel
- Division of Gene Regulation and Oncode Institute, Netherlands Cancer Institute, Amsterdam, The Netherlands
| | | | | | - Luca Giorgetti
- Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland.
| |
Collapse
|
22
|
Gjaltema RAF, Schwämmle T, Kautz P, Robson M, Schöpflin R, Ravid Lustig L, Brandenburg L, Dunkel I, Vechiatto C, Ntini E, Mutzel V, Schmiedel V, Marsico A, Mundlos S, Schulz EG. Distal and proximal cis-regulatory elements sense X chromosome dosage and developmental state at the Xist locus. Mol Cell 2022; 82:190-208.e17. [PMID: 34932975 DOI: 10.1016/j.molcel.2021.11.023] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 11/22/2021] [Accepted: 11/23/2021] [Indexed: 12/15/2022]
Abstract
Developmental genes such as Xist, which initiates X chromosome inactivation, are controlled by complex cis-regulatory landscapes, which decode multiple signals to establish specific spatiotemporal expression patterns. Xist integrates information on X chromosome dosage and developmental stage to trigger X inactivation in the epiblast specifically in female embryos. Through a pooled CRISPR screen in differentiating mouse embryonic stem cells, we identify functional enhancer elements of Xist at the onset of random X inactivation. Chromatin profiling reveals that X-dosage controls the promoter-proximal region, while differentiation cues activate several distal enhancers. The strongest distal element lies in an enhancer cluster associated with a previously unannotated Xist-enhancing regulatory transcript, which we named Xert. Developmental cues and X-dosage are thus decoded by distinct regulatory regions, which cooperate to ensure female-specific Xist upregulation at the correct developmental time. With this study, we start to disentangle how multiple, functionally distinct regulatory elements interact to generate complex expression patterns in mammals.
Collapse
Affiliation(s)
- Rutger A F Gjaltema
- Otto Warburg Laboratories, Max Planck Institute for Molecular Genetics, 14195 Berlin, Germany
| | - Till Schwämmle
- Otto Warburg Laboratories, Max Planck Institute for Molecular Genetics, 14195 Berlin, Germany
| | - Pauline Kautz
- Otto Warburg Laboratories, Max Planck Institute for Molecular Genetics, 14195 Berlin, Germany
| | - Michael Robson
- Development and Disease Group, Max Planck Institute for Molecular Genetics, 14195 Berlin, Germany; Medical Research Council Human Genetics Unit, Institute of Genetics and Molecular Medicine, University of Edinburgh EH4 2XU, Edinburgh, UK
| | - Robert Schöpflin
- Development and Disease Group, Max Planck Institute for Molecular Genetics, 14195 Berlin, Germany; Institute for Medical and Human Genetics, Charité-Universitätsmedizin Berlin, 13353 Berlin, Germany; Department of Computational Molecular Biology, Max Planck Institute for Molecular Genetics, 14195 Berlin, Germany
| | - Liat Ravid Lustig
- Otto Warburg Laboratories, Max Planck Institute for Molecular Genetics, 14195 Berlin, Germany
| | - Lennart Brandenburg
- Otto Warburg Laboratories, Max Planck Institute for Molecular Genetics, 14195 Berlin, Germany
| | - Ilona Dunkel
- Otto Warburg Laboratories, Max Planck Institute for Molecular Genetics, 14195 Berlin, Germany
| | - Carolina Vechiatto
- Otto Warburg Laboratories, Max Planck Institute for Molecular Genetics, 14195 Berlin, Germany
| | - Evgenia Ntini
- Otto Warburg Laboratories, Max Planck Institute for Molecular Genetics, 14195 Berlin, Germany
| | - Verena Mutzel
- Otto Warburg Laboratories, Max Planck Institute for Molecular Genetics, 14195 Berlin, Germany
| | - Vera Schmiedel
- Otto Warburg Laboratories, Max Planck Institute for Molecular Genetics, 14195 Berlin, Germany
| | - Annalisa Marsico
- Computational Health Center, Helmholtz Center München, 85764 Neuherberg, Germany
| | - Stefan Mundlos
- Development and Disease Group, Max Planck Institute for Molecular Genetics, 14195 Berlin, Germany; Institute for Medical and Human Genetics, Charité-Universitätsmedizin Berlin, 13353 Berlin, Germany
| | - Edda G Schulz
- Otto Warburg Laboratories, Max Planck Institute for Molecular Genetics, 14195 Berlin, Germany.
| |
Collapse
|
23
|
Zhan Y, Giorgetti L, Tiana G. Polymer Folding Simulations from Hi-C Data. Methods Mol Biol 2022; 2301:259-265. [PMID: 34415540 DOI: 10.1007/978-1-0716-1390-0_13] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
In the absence of a clear molecular understanding of the mechanism that stabilizes specific contacts in interphasic chromatin, we resort to the principle of maximum entropy to build a polymeric model based on the Hi-C data of the specific system one wants to study. The interactions are set by an iterative Monte Carlo algorithm to reproduce the average contacts summarized by the Hi-C map. The study of the ensemble of conformations generated by the algorithm can report a much richer set of information than the experimental map alone, including colocalization of multiple sites, fluctuations of the contacts, and kinetical properties.
Collapse
Affiliation(s)
- Yinxiu Zhan
- Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland
| | - Luca Giorgetti
- Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland
| | - Guido Tiana
- Department of Physics, University of Milano and INFN, Milan, Italy.
| |
Collapse
|
24
|
Kumar S, Kaur S, Seem K, Kumar S, Mohapatra T. Understanding 3D Genome Organization and Its Effect on Transcriptional Gene Regulation Under Environmental Stress in Plant: A Chromatin Perspective. Front Cell Dev Biol 2021; 9:774719. [PMID: 34957106 PMCID: PMC8692796 DOI: 10.3389/fcell.2021.774719] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2021] [Accepted: 11/23/2021] [Indexed: 01/17/2023] Open
Abstract
The genome of a eukaryotic organism is comprised of a supra-molecular complex of chromatin fibers and intricately folded three-dimensional (3D) structures. Chromosomal interactions and topological changes in response to the developmental and/or environmental stimuli affect gene expression. Chromatin architecture plays important roles in DNA replication, gene expression, and genome integrity. Higher-order chromatin organizations like chromosome territories (CTs), A/B compartments, topologically associating domains (TADs), and chromatin loops vary among cells, tissues, and species depending on the developmental stage and/or environmental conditions (4D genomics). Every chromosome occupies a separate territory in the interphase nucleus and forms the top layer of hierarchical structure (CTs) in most of the eukaryotes. While the A and B compartments are associated with active (euchromatic) and inactive (heterochromatic) chromatin, respectively, having well-defined genomic/epigenomic features, TADs are the structural units of chromatin. Chromatin architecture like TADs as well as the local interactions between promoter and regulatory elements correlates with the chromatin activity, which alters during environmental stresses due to relocalization of the architectural proteins. Moreover, chromatin looping brings the gene and regulatory elements in close proximity for interactions. The intricate relationship between nucleotide sequence and chromatin architecture requires a more comprehensive understanding to unravel the genome organization and genetic plasticity. During the last decade, advances in chromatin conformation capture techniques for unravelling 3D genome organizations have improved our understanding of genome biology. However, the recent advances, such as Hi-C and ChIA-PET, have substantially increased the resolution, throughput as well our interest in analysing genome organizations. The present review provides an overview of the historical and contemporary perspectives of chromosome conformation capture technologies, their applications in functional genomics, and the constraints in predicting 3D genome organization. We also discuss the future perspectives of understanding high-order chromatin organizations in deciphering transcriptional regulation of gene expression under environmental stress (4D genomics). These might help design the climate-smart crop to meet the ever-growing demands of food, feed, and fodder.
Collapse
Affiliation(s)
- Suresh Kumar
- Division of Biochemistry, ICAR-Indian Agricultural Research Institute, New Delhi, India
| | - Simardeep Kaur
- Division of Biochemistry, ICAR-Indian Agricultural Research Institute, New Delhi, India
| | - Karishma Seem
- Division of Biochemistry, ICAR-Indian Agricultural Research Institute, New Delhi, India
| | | | | |
Collapse
|
25
|
Goel VY, Hansen AS. The macro and micro of chromosome conformation capture. WILEY INTERDISCIPLINARY REVIEWS. DEVELOPMENTAL BIOLOGY 2021; 10:e395. [PMID: 32987449 PMCID: PMC8236208 DOI: 10.1002/wdev.395] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Revised: 07/21/2020] [Accepted: 07/31/2020] [Indexed: 12/14/2022]
Abstract
The 3D organization of the genome facilitates gene regulation, replication, and repair, making it a key feature of genomic function and one that remains to be properly understood. Over the past two decades, a variety of chromosome conformation capture (3C) methods have delineated genome folding from megabase-scale compartments and topologically associating domains (TADs) down to kilobase-scale enhancer-promoter interactions. Understanding the functional role of each layer of genome organization is a gateway to understanding cell state, development, and disease. Here, we discuss the evolution of 3C-based technologies for mapping 3D genome organization. We focus on genomics methods and provide a historical account of the development from 3C to Hi-C. We also discuss ChIP-based techniques that focus on 3D genome organization mediated by specific proteins, capture-based methods that focus on particular regions or regulatory elements, 3C-orthogonal methods that do not rely on restriction digestion and proximity ligation, and methods for mapping the DNA-RNA and RNA-RNA interactomes. We consider the biological discoveries that have come from these methods, examine the mechanistic contributions of CTCF, cohesin, and loop extrusion to genomic folding, and detail the 3D genome field's current understanding of nuclear architecture. Finally, we give special consideration to Micro-C as an emerging frontier in chromosome conformation capture and discuss recent Micro-C findings uncovering fine-scale chromatin organization in unprecedented detail. This article is categorized under: Gene Expression and Transcriptional Hierarchies > Regulatory Mechanisms Gene Expression and Transcriptional Hierarchies > Gene Networks and Genomics.
Collapse
Affiliation(s)
- Viraat Y. Goel
- Department of Biological EngineeringMassachusetts Institute of TechnologyCambridgeMassachusettsUSA
| | - Anders S. Hansen
- Department of Biological EngineeringMassachusetts Institute of TechnologyCambridgeMassachusettsUSA
| |
Collapse
|
26
|
Oliveira GM, Oravecz A, Kobi D, Maroquenne M, Bystricky K, Sexton T, Molina N. Precise measurements of chromatin diffusion dynamics by modeling using Gaussian processes. Nat Commun 2021; 12:6184. [PMID: 34702821 PMCID: PMC8548522 DOI: 10.1038/s41467-021-26466-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2021] [Accepted: 10/07/2021] [Indexed: 11/08/2022] Open
Abstract
The spatiotemporal organization of chromatin influences many nuclear processes: from chromosome segregation to transcriptional regulation. To get a deeper understanding of these processes, it is essential to go beyond static viewpoints of chromosome structures, to accurately characterize chromatin's diffusion properties. We present GP-FBM: a computational framework based on Gaussian processes and fractional Brownian motion to extract diffusion properties from stochastic trajectories of labeled chromatin loci. GP-FBM uses higher-order temporal correlations present in the data, therefore, outperforming existing methods. Furthermore, GP-FBM allows to interpolate incomplete trajectories and account for substrate movement when two or more particles are present. Using our method, we show that average chromatin diffusion properties are surprisingly similar in interphase and mitosis in mouse embryonic stem cells. We observe surprising heterogeneity in local chromatin dynamics, correlating with potential regulatory activity. We also present GP-Tool, a user-friendly graphical interface to facilitate usage of GP-FBM by the research community.
Collapse
Affiliation(s)
- Guilherme M Oliveira
- Institute of Genetics and Molecular and Cellular Biology (IGBMC) CNRS UMR7104, INSERM U1258, University of Strasbourg, Illkirch, France.
| | - Attila Oravecz
- Institute of Genetics and Molecular and Cellular Biology (IGBMC) CNRS UMR7104, INSERM U1258, University of Strasbourg, Illkirch, France
| | - Dominique Kobi
- Institute of Genetics and Molecular and Cellular Biology (IGBMC) CNRS UMR7104, INSERM U1258, University of Strasbourg, Illkirch, France
| | - Manon Maroquenne
- Institute of Genetics and Molecular and Cellular Biology (IGBMC) CNRS UMR7104, INSERM U1258, University of Strasbourg, Illkirch, France
| | - Kerstin Bystricky
- Molecular Cellular and Developmental Biology unit (MCD), Centre de Biologie Integrative (CBI) UPS, CNRS, Toulouse, France
| | - Tom Sexton
- Institute of Genetics and Molecular and Cellular Biology (IGBMC) CNRS UMR7104, INSERM U1258, University of Strasbourg, Illkirch, France.
| | - Nacho Molina
- Institute of Genetics and Molecular and Cellular Biology (IGBMC) CNRS UMR7104, INSERM U1258, University of Strasbourg, Illkirch, France.
| |
Collapse
|
27
|
Gómez-Saldivar G, Glauser DA, Meister P. Tissue-specific DamID protocol using nanopore sequencing. J Biol Methods 2021; 8:e152. [PMID: 34514013 PMCID: PMC8411031 DOI: 10.14440/jbm.2021.362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Revised: 05/05/2021] [Accepted: 05/12/2021] [Indexed: 11/23/2022] Open
Abstract
DNA adenine methylation identification (DamID) is a powerful method to determine DNA binding profiles of proteins at a genomic scale. The method leverages the fusion between a protein of interest and the Dam methyltransferase of E. coli, which methylates proximal DNA in vivo. Here, we present an optimized procedure, which was developed for tissue-specific analyses in Caenorhabditis elegans and successfully used to footprint genes actively transcribed by RNA polymerases and to map transcription factor binding in gene regulatory regions. The present protocol details C. elegans-specific steps involved in the preparation of transgenic lines and genomic DNA samples, as well as broadly applicable steps for the DamID procedure, including the isolation of methylated DNA fragments, the preparation of multiplexed libraries, Nanopore sequencing, and data analysis. Two distinctive features of the approach are (i) the use of an efficient recombination-based strategy to selectively analyze rare cell types and (ii) the use of Nanopore sequencing, which streamlines the process. The method allows researchers to go from genomic DNA samples to sequencing results in less than a week, while being sensitive enough to report reliable DNA footprints in cell types as rare as 2 cells per animal.
Collapse
Affiliation(s)
| | | | - Peter Meister
- Cell Fate and Nuclear Organization, Institute of Cell Biology, University of Bern, 3012 Bern, Switzerland
| |
Collapse
|
28
|
Alharbi AB, Schmitz U, Bailey CG, Rasko JEJ. CTCF as a regulator of alternative splicing: new tricks for an old player. Nucleic Acids Res 2021; 49:7825-7838. [PMID: 34181707 PMCID: PMC8373115 DOI: 10.1093/nar/gkab520] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Revised: 06/01/2021] [Accepted: 06/10/2021] [Indexed: 12/15/2022] Open
Abstract
Three decades of research have established the CCCTC-binding factor (CTCF) as a ubiquitously expressed chromatin organizing factor and master regulator of gene expression. A new role for CTCF as a regulator of alternative splicing (AS) has now emerged. CTCF has been directly and indirectly linked to the modulation of AS at the individual transcript and at the transcriptome-wide level. The emerging role of CTCF-mediated regulation of AS involves diverse mechanisms; including transcriptional elongation, DNA methylation, chromatin architecture, histone modifications, and regulation of splicing factor expression and assembly. CTCF thereby appears to not only co-ordinate gene expression regulation but contributes to the modulation of transcriptomic complexity. In this review, we highlight previous discoveries regarding the role of CTCF in AS. In addition, we summarize detailed mechanisms by which CTCF mediates AS regulation. We propose opportunities for further research designed to examine the possible fate of CTCF-mediated alternatively spliced genes and associated biological consequences. CTCF has been widely acknowledged as the 'master weaver of the genome'. Given its multiple connections, further characterization of CTCF's emerging role in splicing regulation might extend its functional repertoire towards a 'conductor of the splicing orchestra'.
Collapse
Affiliation(s)
- Adel B Alharbi
- Gene & Stem Cell Therapy Program Centenary Institute, The University of Sydney, Camperdown, NSW 2050, Australia
- Department of Laboratory Medicine, Faculty of Applied Medical Sciences, Umm Al-Qura University, Makkah, Saudi Arabia
- Computational BioMedicine Laboratory Centenary Institute, The University of Sydney, Camperdown, NSW 2050, Australia
- Faculty of Medicine & Health, The University of Sydney, NSW 2006, Australia
- Cancer & Gene Regulation Laboratory Centenary Institute, The University of Sydney, Camperdown, NSW 2050, Australia
| | - Ulf Schmitz
- Gene & Stem Cell Therapy Program Centenary Institute, The University of Sydney, Camperdown, NSW 2050, Australia
- Computational BioMedicine Laboratory Centenary Institute, The University of Sydney, Camperdown, NSW 2050, Australia
- Faculty of Medicine & Health, The University of Sydney, NSW 2006, Australia
| | - Charles G Bailey
- Gene & Stem Cell Therapy Program Centenary Institute, The University of Sydney, Camperdown, NSW 2050, Australia
- Faculty of Medicine & Health, The University of Sydney, NSW 2006, Australia
- Cancer & Gene Regulation Laboratory Centenary Institute, The University of Sydney, Camperdown, NSW 2050, Australia
| | - John E J Rasko
- Gene & Stem Cell Therapy Program Centenary Institute, The University of Sydney, Camperdown, NSW 2050, Australia
- Faculty of Medicine & Health, The University of Sydney, NSW 2006, Australia
- Cell & Molecular Therapies, Royal Prince Alfred Hospital, Camperdown, NSW 2050, Australia
| |
Collapse
|
29
|
Jerkovic I, Cavalli G. Understanding 3D genome organization by multidisciplinary methods. Nat Rev Mol Cell Biol 2021; 22:511-528. [PMID: 33953379 DOI: 10.1038/s41580-021-00362-w] [Citation(s) in RCA: 197] [Impact Index Per Article: 49.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/16/2021] [Indexed: 02/03/2023]
Abstract
Understanding how chromatin is folded in the nucleus is fundamental to understanding its function. Although 3D genome organization has been historically difficult to study owing to a lack of relevant methodologies, major technological breakthroughs in genome-wide mapping of chromatin contacts and advances in imaging technologies in the twenty-first century considerably improved our understanding of chromosome conformation and nuclear architecture. In this Review, we discuss methods of 3D genome organization analysis, including sequencing-based techniques, such as Hi-C and its derivatives, Micro-C, DamID and others; microscopy-based techniques, such as super-resolution imaging coupled with fluorescence in situ hybridization (FISH), multiplex FISH, in situ genome sequencing and live microscopy methods; and computational and modelling approaches. We describe the most commonly used techniques and their contribution to our current knowledge of nuclear architecture and, finally, we provide a perspective on up-and-coming methods that open possibilities for future major discoveries.
Collapse
Affiliation(s)
- Ivana Jerkovic
- Institute of Human Genetics, CNRS, University of Montpellier, Montpellier, France
| | - Giacomo Cavalli
- Institute of Human Genetics, CNRS, University of Montpellier, Montpellier, France.
| |
Collapse
|
30
|
Willemin A, Lopez-Delisle L, Bolt CC, Gadolini ML, Duboule D, Rodriguez-Carballo E. Induction of a chromatin boundary in vivo upon insertion of a TAD border. PLoS Genet 2021; 17:e1009691. [PMID: 34292939 PMCID: PMC8330945 DOI: 10.1371/journal.pgen.1009691] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Revised: 08/03/2021] [Accepted: 06/30/2021] [Indexed: 12/19/2022] Open
Abstract
Mammalian genomes are partitioned into sub-megabase to megabase-sized units of preferential interactions called topologically associating domains or TADs, which are likely important for the proper implementation of gene regulatory processes. These domains provide structural scaffolds for distant cis regulatory elements to interact with their target genes within the three-dimensional nuclear space and architectural proteins such as CTCF as well as the cohesin complex participate in the formation of the boundaries between them. However, the importance of the genomic context in providing a given DNA sequence the capacity to act as a boundary element remains to be fully investigated. To address this question, we randomly relocated a topological boundary functionally associated with the mouse HoxD gene cluster and show that it can indeed act similarly outside its initial genomic context. In particular, the relocated DNA segment recruited the required architectural proteins and induced a significant depletion of contacts between genomic regions located across the integration site. The host chromatin landscape was re-organized, with the splitting of the TAD wherein the boundary had integrated. These results provide evidence that topological boundaries can function independently of their site of origin, under physiological conditions during mouse development. During development, enhancer sequences tightly regulate the spatio-temporal expression of target genes often located hundreds of kilobases away. This complex process is made possible by the folding of chromatin into domains, which are separated from one another by specific genomic regions referred to as boundaries. In order to understand whether such boundary sequences require their particular genomic contexts to achieve their isolating effect, we analyzed the impact of introducing one such boundary, taken from the HoxD locus, into a distinct topological domain. We show that this ectopic boundary splits the host domain into two sub-domains and affects the expression levels of a neighboring gene. We conclude that this sequence can work independently from its genomic context and thus carries all the information necessary to act as a boundary element.
Collapse
Affiliation(s)
- Andréa Willemin
- Department of Genetics and Evolution, Faculty of Science, University of Geneva, Geneva, Switzerland
| | - Lucille Lopez-Delisle
- School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Christopher Chase Bolt
- School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Marie-Laure Gadolini
- Department of Genetics and Evolution, Faculty of Science, University of Geneva, Geneva, Switzerland
| | - Denis Duboule
- Department of Genetics and Evolution, Faculty of Science, University of Geneva, Geneva, Switzerland
- School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
- Collège de France, Paris, France
- * E-mail: (DD); (ER-C)
| | - Eddie Rodriguez-Carballo
- Department of Genetics and Evolution, Faculty of Science, University of Geneva, Geneva, Switzerland
- * E-mail: (DD); (ER-C)
| |
Collapse
|
31
|
Xiao JY, Hafner A, Boettiger AN. How subtle changes in 3D structure can create large changes in transcription. eLife 2021; 10:e64320. [PMID: 34240703 PMCID: PMC8352591 DOI: 10.7554/elife.64320] [Citation(s) in RCA: 83] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2020] [Accepted: 06/25/2021] [Indexed: 12/17/2022] Open
Abstract
Animal genomes are organized into topologically associated domains (TADs). TADs are thought to contribute to gene regulation by facilitating enhancer-promoter (E-P) contacts within a TAD and preventing these contacts across TAD borders. However, the absolute difference in contact frequency across TAD boundaries is usually less than 2-fold, even though disruptions of TAD borders can change gene expression by 10-fold. Existing models fail to explain this hypersensitive response. Here, we propose a futile cycle model of enhancer-mediated regulation that can exhibit hypersensitivity through bistability and hysteresis. Consistent with recent experiments, this regulation does not exhibit strong correlation between E-P contact and promoter activity, even though regulation occurs through contact. Through mathematical analysis and stochastic simulation, we show that this system can create an illusion of E-P biochemical specificity and explain the importance of weak TAD boundaries. It also offers a mechanism to reconcile apparently contradictory results from recent global TAD disruption with local TAD boundary deletion experiments. Together, these analyses advance our understanding of cis-regulatory contacts in controlling gene expression and suggest new experimental directions.
Collapse
Affiliation(s)
| | - Antonina Hafner
- Department of Developmental Biology, Stanford UniversityStanfordUnited States
| | - Alistair N Boettiger
- Program in Biophysics, Stanford UniversityStanfordUnited States
- Department of Developmental Biology, Stanford UniversityStanfordUnited States
| |
Collapse
|
32
|
Xie L, Liu Z. Single-cell imaging of genome organization and dynamics. Mol Syst Biol 2021; 17:e9653. [PMID: 34232558 PMCID: PMC8262488 DOI: 10.15252/msb.20209653] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 04/13/2021] [Accepted: 04/23/2021] [Indexed: 12/28/2022] Open
Abstract
Probing the architecture, mechanism, and dynamics of genome folding is fundamental to our understanding of genome function in homeostasis and disease. Most chromosome conformation capture studies dissect the genome architecture with population- and time-averaged snapshots and thus have limited capabilities to reveal 3D nuclear organization and dynamics at the single-cell level. Here, we discuss emerging imaging techniques ranging from light microscopy to electron microscopy that enable investigation of genome folding and dynamics at high spatial and temporal resolution. Results from these studies complement genomic data, unveiling principles underlying the spatial arrangement of the genome and its potential functional links to diverse biological activities in the nucleus.
Collapse
Affiliation(s)
- Liangqi Xie
- Janelia Research CampusHoward Hughes Medical InstituteAshburnVAUSA
| | - Zhe Liu
- Janelia Research CampusHoward Hughes Medical InstituteAshburnVAUSA
| |
Collapse
|
33
|
Pei L, Li G, Lindsey K, Zhang X, Wang M. Plant 3D genomics: the exploration and application of chromatin organization. THE NEW PHYTOLOGIST 2021; 230:1772-1786. [PMID: 33560539 PMCID: PMC8252774 DOI: 10.1111/nph.17262] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Accepted: 02/01/2021] [Indexed: 05/29/2023]
Abstract
Eukaryotic genomes are highly folded for packing into higher-order chromatin structures in the nucleus. With the emergence of state-of-the-art chromosome conformation capture methods and microscopic imaging techniques, the spatial organization of chromatin and its functional implications have been interrogated. Our knowledge of 3D chromatin organization in plants has improved dramatically in the past few years, building on the early advances in animal systems. Here, we review recent advances in 3D genome mapping approaches, our understanding of the sophisticated organization of spatial structures, and the application of 3D genomic principles in plants. We also discuss directions for future developments in 3D genomics in plants.
Collapse
Affiliation(s)
- Liuling Pei
- National Key Laboratory of Crop Genetic ImprovementHuazhong Agricultural UniversityWuhanHubei430070China
| | - Guoliang Li
- Hubei Key Laboratory of Agricultural BioinformaticsCollege of InformaticsHuazhong Agricultural UniversityWuhanHubei430070China
| | - Keith Lindsey
- Department of BiosciencesDurham UniversitySouth RoadDurhamDH1 3LEUK
| | - Xianlong Zhang
- National Key Laboratory of Crop Genetic ImprovementHuazhong Agricultural UniversityWuhanHubei430070China
| | - Maojun Wang
- National Key Laboratory of Crop Genetic ImprovementHuazhong Agricultural UniversityWuhanHubei430070China
| |
Collapse
|
34
|
Hao N, Sullivan AE, Shearwin KE, Dodd IB. The loopometer: a quantitative in vivo assay for DNA-looping proteins. Nucleic Acids Res 2021; 49:e39. [PMID: 33511418 PMCID: PMC8053113 DOI: 10.1093/nar/gkaa1284] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Revised: 11/22/2020] [Accepted: 01/20/2021] [Indexed: 12/24/2022] Open
Abstract
Proteins that can bring together separate DNA sites, either on the same or on different DNA molecules, are critical for a variety of DNA-based processes. However, there are no general and technically simple assays to detect proteins capable of DNA looping in vivo nor to quantitate their in vivo looping efficiency. Here, we develop a quantitative in vivo assay for DNA-looping proteins in Escherichia coli that requires only basic DNA cloning techniques and a LacZ assay. The assay is based on loop assistance, where two binding sites for the candidate looping protein are inserted internally to a pair of operators for the E. coli LacI repressor. DNA looping between the sites shortens the effective distance between the lac operators, increasing LacI looping and strengthening its repression of a lacZ reporter gene. Analysis based on a general model for loop assistance enables quantitation of the strength of looping conferred by the protein and its binding sites. We use this ‘loopometer’ assay to measure DNA looping for a variety of bacterial and phage proteins.
Collapse
Affiliation(s)
- Nan Hao
- Department of Molecular and Biomedical Science, University of Adelaide, Adelaide, SA 5005, Australia.,CSIRO Synthetic Biology Future Science Platform, Canberra, ACT 2601, Australia
| | - Adrienne E Sullivan
- Department of Molecular and Biomedical Science, University of Adelaide, Adelaide, SA 5005, Australia
| | - Keith E Shearwin
- Department of Molecular and Biomedical Science, University of Adelaide, Adelaide, SA 5005, Australia
| | - Ian B Dodd
- Department of Molecular and Biomedical Science, University of Adelaide, Adelaide, SA 5005, Australia
| |
Collapse
|
35
|
Aboelnour E, Bonev B. Decoding the organization, dynamics, and function of the 4D genome. Dev Cell 2021; 56:1562-1573. [PMID: 33984271 DOI: 10.1016/j.devcel.2021.04.023] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Revised: 02/15/2021] [Accepted: 04/21/2021] [Indexed: 11/15/2022]
Abstract
Understanding how complex cell-fate decisions emerge at the molecular level is a key challenge in developmental biology. Despite remarkable progress in decoding the contribution of the linear epigenome, how spatial genome architecture functionally informs changes in gene expression remains unclear. In this review, we discuss recent insights in elucidating the molecular landscape of genome folding, emphasizing the multilayered nature of the 3D genome, its importance for gene regulation, and its spatiotemporal dynamics. Finally, we discuss how these new concepts and emergent technologies will enable us to address some of the outstanding questions in development and disease.
Collapse
Affiliation(s)
- Erin Aboelnour
- Helmholtz Pioneer Campus, Helmholtz Zentrum München, 85764 Neuherberg, Germany
| | - Boyan Bonev
- Helmholtz Pioneer Campus, Helmholtz Zentrum München, 85764 Neuherberg, Germany; Biomedical Center (BMC), Faculty of Medicine, LMU Munich, Germany.
| |
Collapse
|
36
|
Zhang D, Lam J, Blobel GA. Engineering three-dimensional genome folding. Nat Genet 2021; 53:602-611. [PMID: 33958782 DOI: 10.1038/s41588-021-00860-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Accepted: 03/29/2021] [Indexed: 02/02/2023]
Abstract
Animal genomes are partitioned and folded at various scales that contribute distinctly to nuclear processes. While structural features have been disrupted either globally or at select loci in loss-of-function studies, gain-of-function studies that probe the role of genome architecture have lagged behind. Here we examine recent advances in experimentally creating chromatin loops, contact domains, boundaries and compartments. Furthermore, we explore parallels between this emerging theme and natural evolution of mammalian genomes with increasing architectural complexity. Finally, we provide a perspective on how insights arising from recent gain-of-function studies may inform future endeavors toward engineering the three-dimensional genome.
Collapse
Affiliation(s)
- Di Zhang
- Division of Hematology, The Children's Hospital of Philadelphia, Philadelphia, PA, USA.,Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Jessica Lam
- Division of Hematology, The Children's Hospital of Philadelphia, Philadelphia, PA, USA.,Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Gerd A Blobel
- Division of Hematology, The Children's Hospital of Philadelphia, Philadelphia, PA, USA. .,Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
37
|
Liu S, Zhao K. The Toolbox for Untangling Chromosome Architecture in Immune Cells. Front Immunol 2021; 12:670884. [PMID: 33995409 PMCID: PMC8120992 DOI: 10.3389/fimmu.2021.670884] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Accepted: 04/06/2021] [Indexed: 12/19/2022] Open
Abstract
The code of life is not only encrypted in the sequence of DNA but also in the way it is organized into chromosomes. Chromosome architecture is gradually being recognized as an important player in regulating cell activities (e.g., controlling spatiotemporal gene expression). In the past decade, the toolbox for elucidating genome structure has been expanding, providing an opportunity to explore this under charted territory. In this review, we will introduce the recent advancements in approaches for mapping spatial organization of the genome, emphasizing applications of these techniques to immune cells, and trying to bridge chromosome structure with immune cell activities.
Collapse
Affiliation(s)
- Shuai Liu
- Laboratory of Epigenome Biology, Systems Biology Center, NHLBI, NIH, Bethesda, MD, United States
| | - Keji Zhao
- Laboratory of Epigenome Biology, Systems Biology Center, NHLBI, NIH, Bethesda, MD, United States
| |
Collapse
|
38
|
Genolet O, Monaco AA, Dunkel I, Boettcher M, Schulz EG. Identification of X-chromosomal genes that drive sex differences in embryonic stem cells through a hierarchical CRISPR screening approach. Genome Biol 2021; 22:110. [PMID: 33863351 PMCID: PMC8051100 DOI: 10.1186/s13059-021-02321-2] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Accepted: 03/22/2021] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND X-chromosomal genes contribute to sex differences, in particular during early development, when both X chromosomes are active in females. Double X-dosage shifts female pluripotent cells towards the naive stem cell state by increasing pluripotency factor expression, inhibiting the differentiation-promoting MAP kinase (MAPK) signaling pathway, and delaying differentiation. RESULTS To identify the genetic basis of these sex differences, we use a two-step CRISPR screening approach to comprehensively identify X-linked genes that cause the female pluripotency phenotype in murine embryonic stem cells. A primary chromosome-wide CRISPR knockout screen and three secondary screens assaying for different aspects of the female pluripotency phenotype allow us to uncover multiple genes that act in concert and to disentangle their relative roles. Among them, we identify Dusp9 and Klhl13 as two central players. While Dusp9 mainly affects MAPK pathway intermediates, Klhl13 promotes pluripotency factor expression and delays differentiation, with both factors jointly repressing MAPK target gene expression. CONCLUSIONS Here, we elucidate the mechanisms that drive sex-induced differences in pluripotent cells and our approach serves as a blueprint to discover the genetic basis of the phenotypic consequences of other chromosomal effects.
Collapse
Affiliation(s)
- Oriana Genolet
- Otto Warburg Laboratories, Max Planck Institute for Molecular Genetics, Berlin, Germany
| | - Anna A Monaco
- Otto Warburg Laboratories, Max Planck Institute for Molecular Genetics, Berlin, Germany
- Present address: BIMSB, Max Delbrück Center for Molecular Medicine, Berlin, Germany
| | - Ilona Dunkel
- Otto Warburg Laboratories, Max Planck Institute for Molecular Genetics, Berlin, Germany
| | - Michael Boettcher
- Medical Faculty, Martin-Luther-Universität Halle-Wittenberg, Halle, Germany
| | - Edda G Schulz
- Otto Warburg Laboratories, Max Planck Institute for Molecular Genetics, Berlin, Germany.
| |
Collapse
|
39
|
Oudelaar AM, Higgs DR. The relationship between genome structure and function. Nat Rev Genet 2020; 22:154-168. [PMID: 33235358 DOI: 10.1038/s41576-020-00303-x] [Citation(s) in RCA: 163] [Impact Index Per Article: 32.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/21/2020] [Indexed: 02/06/2023]
Abstract
Precise patterns of gene expression in metazoans are controlled by three classes of regulatory elements: promoters, enhancers and boundary elements. During differentiation and development, these elements form specific interactions in dynamic higher-order chromatin structures. However, the relationship between genome structure and its function in gene regulation is not completely understood. Here we review recent progress in this field and discuss whether genome structure plays an instructive role in regulating gene expression or is a reflection of the activity of the regulatory elements of the genome.
Collapse
Affiliation(s)
| | - Douglas R Higgs
- Laboratory of Gene Regulation, MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, UK.
| |
Collapse
|
40
|
Tjalsma SJ, de Laat W. Novel orthogonal methods to uncover the complexity and diversity of nuclear architecture. Curr Opin Genet Dev 2020; 67:10-17. [PMID: 33220512 DOI: 10.1016/j.gde.2020.10.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Revised: 09/29/2020] [Accepted: 10/08/2020] [Indexed: 12/22/2022]
Abstract
Recent years have seen a vast expansion of knowledge on three-dimensional (3D) genome organization. The majority of studies on chromosome topology consists of pairwise interaction data of bulk populations of cells and therefore conceals heterogenic and more complex folding patterns. Here, we discuss novel methodologies to study the variation in genome topologies between different cells and techniques that allow analysis of complex, multi-way interactions. These technologies will aid the interpretation of genome-wide chromosome conformation data and provide strategies to further dissect the interplay between genome architecture and transcription regulation.
Collapse
Affiliation(s)
- Sjoerd Jd Tjalsma
- Oncode Institute, Hubrecht Institute-KNAW and University Medical Center Utrecht, 3584 CT Utrecht, The Netherlands
| | - Wouter de Laat
- Oncode Institute, Hubrecht Institute-KNAW and University Medical Center Utrecht, 3584 CT Utrecht, The Netherlands.
| |
Collapse
|
41
|
Crippa M, Zhan Y, Tiana G. Effective model of loop extrusion predicts chromosomal domains. Phys Rev E 2020; 102:032414. [PMID: 33076010 DOI: 10.1103/physreve.102.032414] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Accepted: 09/03/2020] [Indexed: 11/07/2022]
Abstract
An active loop-extrusion mechanism is regarded as the main out-of-equilibrium mechanism responsible for the structuring of megabase-sized domains in chromosomes. We developed a model to study the dynamics of the chromosome fiber by solving the kinetic equations associated with the motion of the extruder. By averaging out the position of the extruder along the chain, we build an effective equilibrium model capable of reproducing experimental contact maps based solely on the positions of extrusion-blocking proteins. We assessed the quality of the effective model using numerical simulations of chromosomal segments and comparing the results with explicit-extruder models and experimental data.
Collapse
Affiliation(s)
- Martina Crippa
- Department of Physics, Università degli Studi di Milano, via Celoria 16, 20133 Milano, Italy and Department of Applied Science and Technology, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Torino, Italy
| | - Yinxiu Zhan
- Friedrich Miescher Institute for Biomedical Research, Maulbeerstrasse 66, 4058 Basel, Switzerland
| | - Guido Tiana
- Department of Physics and Center for Complexity and Biosystems, Università degli Studi di Milano and INFN, via Celoria 16, 20133 Milano, Italy
| |
Collapse
|
42
|
Huang Y, Neijts R, de Laat W. How chromosome topologies get their shape: views from proximity ligation and microscopy methods. FEBS Lett 2020; 594:3439-3449. [PMID: 33073863 DOI: 10.1002/1873-3468.13961] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Revised: 10/08/2020] [Accepted: 10/11/2020] [Indexed: 11/09/2022]
Abstract
The 3D organization of our genome is an important determinant for the transcriptional output of a gene in (patho)physiological contexts. The spatial organization of linear chromosomes within nucleus is dominantly inferred using two distinct approaches, chromosome conformation capture (3C) and DNA fluorescent in situ hybridization (DNA-FISH). While 3C and its derivatives score genomic interaction frequencies based on proximity ligation events, DNA-FISH methods measure physical distances between genomic loci. Despite these approaches probe different characteristics of chromosomal topologies, they provide a coherent picture of how chromosomes are organized in higher-order structures encompassing chromosome territories, compartments, and topologically associating domains. Yet, at the finer topological level of promoter-enhancer communication, the imaging-centered and the 3C methods give more divergent and sometimes seemingly paradoxical results. Here, we compare and contrast observations made applying visual DNA-FISH and molecular 3C approaches. We emphasize that the 3C approach, due to its inherently competitive ligation step, measures only 'relative' proximities. A 3C interaction enriched between loci, therefore does not necessarily translates into a decrease in absolute spatial distance. Hence, we advocate caution when modeling chromosome conformations.
Collapse
Affiliation(s)
- Yike Huang
- Oncode Institute, Hubrecht Institute-KNAW, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Roel Neijts
- Oncode Institute, Hubrecht Institute-KNAW, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Wouter de Laat
- Oncode Institute, Hubrecht Institute-KNAW, University Medical Center Utrecht, Utrecht, the Netherlands
| |
Collapse
|
43
|
Tissue-Specific Transcription Footprinting Using RNA PoI DamID (RAPID) in Caenorhabditis elegans. Genetics 2020; 216:931-945. [PMID: 33037050 PMCID: PMC7768263 DOI: 10.1534/genetics.120.303774] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Accepted: 10/09/2020] [Indexed: 11/23/2022] Open
Abstract
Differential gene expression across cell types underlies development and cell physiology in multicellular organisms. Caenorhabditis elegans is a powerful, extensively used model to address these biological questions. A remaining bottleneck relates to the difficulty to obtain comprehensive tissue-specific gene transcription data, since available methods are still challenging to execute and/or require large worm populations. Here, we introduce the RNA Polymerase DamID (RAPID) approach, in which the Dam methyltransferase is fused to a ubiquitous RNA polymerase subunit to create transcriptional footprints via methyl marks on the DNA of transcribed genes. To validate the method, we determined the polymerase footprints in whole animals, in sorted embryonic blastomeres and in different tissues from intact young adults by driving tissue-specific Dam fusion expression. We obtained meaningful transcriptional footprints in line with RNA-sequencing (RNA-seq) studies in whole animals or specific tissues. To challenge the sensitivity of RAPID and demonstrate its utility to determine novel tissue-specific transcriptional profiles, we determined the transcriptional footprints of the pair of XXX neuroendocrine cells, representing 0.2% of the somatic cell content of the animals. We identified 3901 candidate genes with putatively active transcription in XXX cells, including the few previously known markers for these cells. Using transcriptional reporters for a subset of new hits, we confirmed that the majority of them were expressed in XXX cells and identified novel XXX-specific markers. Taken together, our work establishes RAPID as a valid method for the determination of RNA polymerase footprints in specific tissues of C. elegans without the need for cell sorting or RNA tagging.
Collapse
|
44
|
Zhang D, Huang P, Sharma M, Keller CA, Giardine B, Zhang H, Gilgenast TG, Phillips-Cremins JE, Hardison RC, Blobel GA. Alteration of genome folding via contact domain boundary insertion. Nat Genet 2020; 52:1076-1087. [PMID: 32868908 PMCID: PMC7541666 DOI: 10.1038/s41588-020-0680-8] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2019] [Accepted: 07/23/2020] [Indexed: 12/26/2022]
Abstract
Animal chromosomes are partitioned into contact domains. Pathogenic domain disruptions can result from chromosomal rearrangements or perturbation of architectural factors. However, such broad-scale alterations are insufficient to define the minimal requirements for domain formation. Moreover, to what extent domains can be engineered is just beginning to be explored. In an attempt to create contact domains, we inserted a 2-kb DNA sequence underlying a tissue-invariant domain boundary-containing a CTCF-binding site (CBS) and a transcription start site (TSS)-into 16 ectopic loci across 11 chromosomes, and characterized its architectural impact. Depending on local constraints, this fragment variably formed new domains, partitioned existing ones, altered compartmentalization and initiated contacts reflecting chromatin loop extrusion. Deletions of the CBS or the TSS individually or in combination within inserts revealed its distinct contributions to genome folding. Altogether, short DNA insertions can suffice to shape the spatial genome in a manner influenced by chromatin context.
Collapse
Affiliation(s)
- Di Zhang
- Division of Hematology, Children's Hospital of Philadelphia, Philadelphia, PA, USA.
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| | - Peng Huang
- Division of Hematology, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Malini Sharma
- Division of Hematology, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Cheryl A Keller
- Department of Biochemistry & Molecular Biology, Pennsylvania State University, University Park, PA, USA
| | - Belinda Giardine
- Department of Biochemistry & Molecular Biology, Pennsylvania State University, University Park, PA, USA
| | - Haoyue Zhang
- Division of Hematology, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Thomas G Gilgenast
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, USA
| | - Jennifer E Phillips-Cremins
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, USA
- Department of Genetics, University of Pennsylvania, Philadelphia, PA, USA
| | - Ross C Hardison
- Department of Biochemistry & Molecular Biology, Pennsylvania State University, University Park, PA, USA
| | - Gerd A Blobel
- Division of Hematology, Children's Hospital of Philadelphia, Philadelphia, PA, USA.
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
45
|
Mizi A, Zhang S, Papantonis A. Genome folding and refolding in differentiation and cellular senescence. Curr Opin Cell Biol 2020; 67:56-63. [PMID: 32911122 DOI: 10.1016/j.ceb.2020.08.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Revised: 08/02/2020] [Accepted: 08/03/2020] [Indexed: 12/11/2022]
Abstract
The spatial conformation of chromatin within the confines of eukaryotic cell nuclei is now acknowledged as a decisive epigenetic mechanism for the modulation of such cellular functions as gene expression regulation, DNA replication or DNA damage repair. Of course, these processes are tightly regulated during organismal development and markedly affected by cellular ageing. Thus, the question that arises is to what extent does folding or refolding of the genome in three-dimensional space underlie the progression of development or ageing? Herein, we discuss recent experimental and modelling evidence to address this question and revisit how these seemingly different processed might represent two sides of the same coin.
Collapse
Affiliation(s)
- Athanasia Mizi
- Institute of Pathology, University Medical Center Göttingen, 37075, Göttingen, Germany
| | - Shu Zhang
- Institute of Pathology, University Medical Center Göttingen, 37075, Göttingen, Germany
| | - Argyris Papantonis
- Institute of Pathology, University Medical Center Göttingen, 37075, Göttingen, Germany.
| |
Collapse
|
46
|
Alharbi AB, Schmitz U, Marshall AD, Vanichkina D, Nagarajah R, Vellozzi M, Wong JJ, Bailey CG, Rasko JE. Ctcf haploinsufficiency mediates intron retention in a tissue-specific manner. RNA Biol 2020; 18:93-103. [PMID: 32816606 PMCID: PMC7834090 DOI: 10.1080/15476286.2020.1796052] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
CTCF is a master regulator of gene transcription and chromatin organisation with occupancy at thousands of DNA target sites genome-wide. While CTCF is essential for cell survival, CTCF haploinsufficiency is associated with tumour development and hypermethylation. Increasing evidence demonstrates CTCF as a key player in several mechanisms regulating alternative splicing (AS), however, the genome-wide impact of Ctcf dosage on AS has not been investigated. We examined the effect of Ctcf haploinsufficiency on gene expression and AS in five tissues from Ctcf hemizygous (Ctcf+/-) mice. Reduced Ctcf levels caused distinct tissue-specific differences in gene expression and AS in all tissues. An increase in intron retention (IR) was observed in Ctcf+/- liver and kidney. In liver, this specifically impacted genes associated with cytoskeletal organisation, splicing and metabolism. Strikingly, most differentially retained introns were short, with a high GC content and enriched in Ctcf binding sites in their proximal upstream genomic region. This study provides new insights into the effects of CTCF haploinsufficiency on organ transcriptomes and the role of CTCF in AS regulation.
Collapse
Affiliation(s)
- Adel B Alharbi
- Gene & Stem Cell Therapy Program Centenary Institute, The University of Sydney , Camperdown, Australia.,Computational BioMedicine Laboratory Centenary Institute, The University of Sydney , Camperdown, Australia.,Faculty of Medicine and Health, The University of Sydney , Camperdown, Australia.,Department of Laboratory Medicine, Faculty of Applied Medical Sciences, Umm Al-Qura University , Makkah, Saudi Arabia
| | - Ulf Schmitz
- Gene & Stem Cell Therapy Program Centenary Institute, The University of Sydney , Camperdown, Australia.,Computational BioMedicine Laboratory Centenary Institute, The University of Sydney , Camperdown, Australia.,Faculty of Medicine and Health, The University of Sydney , Camperdown, Australia
| | - Amy D Marshall
- Gene & Stem Cell Therapy Program Centenary Institute, The University of Sydney , Camperdown, Australia
| | - Darya Vanichkina
- Gene & Stem Cell Therapy Program Centenary Institute, The University of Sydney , Camperdown, Australia.,Faculty of Medicine and Health, The University of Sydney , Camperdown, Australia.,Sydney Informatics Hub, University of Sydney , Darlington, Australia
| | - Rajini Nagarajah
- Gene & Stem Cell Therapy Program Centenary Institute, The University of Sydney , Camperdown, Australia
| | - Melissa Vellozzi
- Gene & Stem Cell Therapy Program Centenary Institute, The University of Sydney , Camperdown, Australia.,Computational BioMedicine Laboratory Centenary Institute, The University of Sydney , Camperdown, Australia
| | - Justin Jl Wong
- Faculty of Medicine and Health, The University of Sydney , Camperdown, Australia.,Epigenetics and RNA Biology Program Centenary Institute, The University of Sydney , Camperdown, Australia
| | - Charles G Bailey
- Gene & Stem Cell Therapy Program Centenary Institute, The University of Sydney , Camperdown, Australia.,Faculty of Medicine and Health, The University of Sydney , Camperdown, Australia
| | - John Ej Rasko
- Gene & Stem Cell Therapy Program Centenary Institute, The University of Sydney , Camperdown, Australia.,Faculty of Medicine and Health, The University of Sydney , Camperdown, Australia.,Cell & Molecular Therapies, Royal Prince Alfred Hospital , Camperdown, Australia
| |
Collapse
|
47
|
Sparks TM, Harabula I, Pombo A. Evolving methodologies and concepts in 4D nucleome research. Curr Opin Cell Biol 2020; 64:105-111. [PMID: 32473574 PMCID: PMC7371551 DOI: 10.1016/j.ceb.2020.04.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Revised: 04/06/2020] [Accepted: 04/08/2020] [Indexed: 11/23/2022]
Abstract
The genome requires tight regulation in space and time to maintain viable cell functions. Advances in our understanding of the 3D genome show a complex hierarchical network of structures, involving compartments, membraneless bodies, topologically associating domains, lamina associated domains, protein- or RNA-mediated loops, enhancer-promoter contacts, and accessible chromatin regions, with chromatin state regulation through epigenetic and transcriptional mechanisms. Further technology developments are poised to increase genomic resolution, dissect single-cell behaviors, including in vivo dynamics of genome folding, and provide mechanistic perspectives that identify further 3D genome players by integrating multiomics information. We highlight recent key developments in 4D nucleome methodologies and give a perspective on their future directions.
Collapse
Affiliation(s)
- Thomas M Sparks
- Epigenetic Regulation and Chromatin Architecture Group, Berlin Institute for Medical Systems Biology, Max-Delbrück Centre for Molecular Medicine, Hannoversche Strasse 28, 10115 Berlin, Germany; Institute for Biology, Humboldt University of Berlin, Berlin, Germany.
| | - Izabela Harabula
- Epigenetic Regulation and Chromatin Architecture Group, Berlin Institute for Medical Systems Biology, Max-Delbrück Centre for Molecular Medicine, Hannoversche Strasse 28, 10115 Berlin, Germany; Institute for Biology, Humboldt University of Berlin, Berlin, Germany
| | - Ana Pombo
- Epigenetic Regulation and Chromatin Architecture Group, Berlin Institute for Medical Systems Biology, Max-Delbrück Centre for Molecular Medicine, Hannoversche Strasse 28, 10115 Berlin, Germany; Institute for Biology, Humboldt University of Berlin, Berlin, Germany.
| |
Collapse
|
48
|
Xu H, Zhang S, Yi X, Plewczynski D, Li MJ. Exploring 3D chromatin contacts in gene regulation: The evolution of approaches for the identification of functional enhancer-promoter interaction. Comput Struct Biotechnol J 2020; 18:558-570. [PMID: 32226593 PMCID: PMC7090358 DOI: 10.1016/j.csbj.2020.02.013] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2019] [Revised: 02/21/2020] [Accepted: 02/22/2020] [Indexed: 12/12/2022] Open
Abstract
Mechanisms underlying gene regulation are key to understand how multicellular organisms with various cell types develop from the same genetic blueprint. Dynamic interactions between enhancers and genes are revealed to play central roles in controlling gene transcription, but the determinants to link functional enhancer-promoter pairs remain elusive. A major challenge is the lack of reliable approach to detect and verify functional enhancer-promoter interactions (EPIs). In this review, we summarized the current methods for detecting EPIs and described how developing techniques facilitate the identification of EPI through assessing the merits and drawbacks of these methods. We also reviewed recent state-of-art EPI prediction methods in terms of their rationale, data usage and characterization. Furthermore, we briefly discussed the evolved strategies for validating functional EPIs.
Collapse
Affiliation(s)
- Hang Xu
- 2011 Collaborative Innovation Center of Tianjin for Medical Epigenetics, Tianjin Key Laboratory of Medical Epigenetics, Tianjin Medical University, Tianjin, China
| | - Shijie Zhang
- 2011 Collaborative Innovation Center of Tianjin for Medical Epigenetics, Tianjin Key Laboratory of Medical Epigenetics, Tianjin Medical University, Tianjin, China
- Department of Pharmacology, Tianjin Key Laboratory of Inflammation Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Xianfu Yi
- School of Biomedical Engineering, Tianjin Medical University, Tianjin, China
| | - Dariusz Plewczynski
- Centre of New Technologies, University of Warsaw, Banacha 2c, 02-097 Warsaw, Poland
- Faculty of Mathematics and Information Science, Warsaw University of Technology, Koszykowa 75, 00-662 Warsaw, Poland
| | - Mulin Jun Li
- 2011 Collaborative Innovation Center of Tianjin for Medical Epigenetics, Tianjin Key Laboratory of Medical Epigenetics, Tianjin Medical University, Tianjin, China
- Department of Pharmacology, Tianjin Key Laboratory of Inflammation Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| |
Collapse
|
49
|
McCord RP, Kaplan N, Giorgetti L. Chromosome Conformation Capture and Beyond: Toward an Integrative View of Chromosome Structure and Function. Mol Cell 2020; 77:688-708. [PMID: 32001106 PMCID: PMC7134573 DOI: 10.1016/j.molcel.2019.12.021] [Citation(s) in RCA: 128] [Impact Index Per Article: 25.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Rapidly developing technologies have recently fueled an exciting era of discovery in the field of chromosome structure and nuclear organization. In addition to chromosome conformation capture (3C) methods, new alternative techniques have emerged to study genome architecture and biological processes in the nucleus, often in single or living cells. This sets an unprecedented stage for exploring the mechanisms that link chromosome structure and biological function. Here we review popular as well as emerging approaches to study chromosome organization, focusing on the contribution of complementary methodologies to our understanding of structures revealed by 3C methods and their biological implications, and discuss the next technical and conceptual frontiers.
Collapse
Affiliation(s)
- Rachel Patton McCord
- Department of Biochemistry & Cellular and Molecular Biology, University of Tennessee, Knoxville, TN, USA
| | - Noam Kaplan
- Department of Physiology, Biophysics and Systems Biology, Rappaport Faculty of Medicine, Technion - Israel Institute of Technology, Haifa, Israel
| | - Luca Giorgetti
- Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland.
| |
Collapse
|
50
|
Galupa R, Nora EP, Worsley-Hunt R, Picard C, Gard C, van Bemmel JG, Servant N, Zhan Y, El Marjou F, Johanneau C, Diabangouaya P, Le Saux A, Lameiras S, Pipoli da Fonseca J, Loos F, Gribnau J, Baulande S, Ohler U, Giorgetti L, Heard E. A Conserved Noncoding Locus Regulates Random Monoallelic Xist Expression across a Topological Boundary. Mol Cell 2020; 77:352-367.e8. [PMID: 31759823 PMCID: PMC6964159 DOI: 10.1016/j.molcel.2019.10.030] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Revised: 09/08/2019] [Accepted: 10/17/2019] [Indexed: 12/11/2022]
Abstract
cis-Regulatory communication is crucial in mammalian development and is thought to be restricted by the spatial partitioning of the genome in topologically associating domains (TADs). Here, we discovered that the Xist locus is regulated by sequences in the neighboring TAD. In particular, the promoter of the noncoding RNA Linx (LinxP) acts as a long-range silencer and influences the choice of X chromosome to be inactivated. This is independent of Linx transcription and independent of any effect on Tsix, the antisense regulator of Xist that shares the same TAD as Linx. Unlike Tsix, LinxP is well conserved across mammals, suggesting an ancestral mechanism for random monoallelic Xist regulation. When introduced in the same TAD as Xist, LinxP switches from a silencer to an enhancer. Our study uncovers an unsuspected regulatory axis for X chromosome inactivation and a class of cis-regulatory effects that may exploit TAD partitioning to modulate developmental decisions.
Collapse
Affiliation(s)
- Rafael Galupa
- Mammalian Developmental Epigenetics Group, Genetics and Developmental Biology Unit, Institut Curie, PSL Research University, CNRS UMR3215, INSERM U934, Paris, France
| | - Elphège Pierre Nora
- Mammalian Developmental Epigenetics Group, Genetics and Developmental Biology Unit, Institut Curie, PSL Research University, CNRS UMR3215, INSERM U934, Paris, France
| | - Rebecca Worsley-Hunt
- Berlin Institute for Medical Systems Biology, Max Delbruck Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
| | - Christel Picard
- Mammalian Developmental Epigenetics Group, Genetics and Developmental Biology Unit, Institut Curie, PSL Research University, CNRS UMR3215, INSERM U934, Paris, France
| | - Chris Gard
- Mammalian Developmental Epigenetics Group, Genetics and Developmental Biology Unit, Institut Curie, PSL Research University, CNRS UMR3215, INSERM U934, Paris, France
| | - Joke Gerarda van Bemmel
- Mammalian Developmental Epigenetics Group, Genetics and Developmental Biology Unit, Institut Curie, PSL Research University, CNRS UMR3215, INSERM U934, Paris, France
| | - Nicolas Servant
- Bioinformatics, Biostatistics, Epidemiology and Computational Systems Unit, Institut Curie, PSL Research University, INSERM U900, Paris, France; MINES ParisTech, PSL Research University, Centre for Computational Biology (CBIO), Paris, France
| | - Yinxiu Zhan
- Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland; University of Basel, Basel, Switzerland
| | | | | | - Patricia Diabangouaya
- Mammalian Developmental Epigenetics Group, Genetics and Developmental Biology Unit, Institut Curie, PSL Research University, CNRS UMR3215, INSERM U934, Paris, France
| | - Agnès Le Saux
- Mammalian Developmental Epigenetics Group, Genetics and Developmental Biology Unit, Institut Curie, PSL Research University, CNRS UMR3215, INSERM U934, Paris, France
| | - Sonia Lameiras
- Institut Curie Genomics of Excellence (ICGex) Platform, Institut Curie, Paris, France
| | | | - Friedemann Loos
- Department of Developmental Biology, Erasmus MC, University Medical Center, Rotterdam, the Netherlands
| | - Joost Gribnau
- Department of Developmental Biology, Erasmus MC, University Medical Center, Rotterdam, the Netherlands
| | - Sylvain Baulande
- Institut Curie Genomics of Excellence (ICGex) Platform, Institut Curie, Paris, France
| | - Uwe Ohler
- Berlin Institute for Medical Systems Biology, Max Delbruck Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany; Department of Biology, Humboldt University, Berlin, Germany
| | - Luca Giorgetti
- Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland
| | - Edith Heard
- Mammalian Developmental Epigenetics Group, Genetics and Developmental Biology Unit, Institut Curie, PSL Research University, CNRS UMR3215, INSERM U934, Paris, France; Collège de France, Paris, France.
| |
Collapse
|