1
|
Li Y, Zhang Y. Flexing protein assemblies. Nat Struct Mol Biol 2025:10.1038/s41594-025-01560-2. [PMID: 40355748 DOI: 10.1038/s41594-025-01560-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/15/2025]
Affiliation(s)
- Yang Li
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore
| | - Yang Zhang
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore.
- Department of Computer Science, School of Computing, National University of Singapore, Singapore, Singapore.
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.
| |
Collapse
|
2
|
Akisaka T. Three-dimensional digital elevation models reconstructed from stereoscopic image of platinum replica in sheared open osteoclasts. Micron 2025; 195:103834. [PMID: 40273509 DOI: 10.1016/j.micron.2025.103834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2025] [Revised: 04/10/2025] [Accepted: 04/14/2025] [Indexed: 04/26/2025]
Abstract
Computer-generated microscopic images can be valuable tools for analyzing cell structure. We have used a computerized surface topography technique to convert platinum replica images into measurable 3D digital elevation model reconstructiondata. The commercially available Alicona MeX software can be successfully applied to the 3D reconstruction images of the platinum replicas, resulting in a series of digital elevation models in grayscale and coloured elevation maps in RGB mode of the selected area of interest. Here, we present accessible methods to analyze cell structures in sheared-open osteoclasts in 3D and at nanometre resolution, focusing on the podosome cytoskeleton, membrane-bound clathrin lattices, and surface topography. These structures on the surface of the ventral membrane appear to be highly characterized for their specific cellular functions. Extraction data from these reconstructed digital elevation models lead to the presentation of 3D information on some ultrastructural architectures on the ventral membrane, including the height of podosomes, the thickness of clathrin-coated structures and the non-coplanar surface of the flat clathrin lattices. In particular, we found that flat clathrin lattices appear on the curved surface of the basal part of the cell protrusions, or the non-coplanarity of their surface topography further indicates their morphological diversity. This new analytical approach provided a fast and easy way to reveal the ventral membrane surface structures in sheared open osteoclasts using high quality 3D reconstructed images.
Collapse
Affiliation(s)
- Toshitaka Akisaka
- Asahi University School of Dentistry, Hozumi 1851, Gifu 501-0296, Japan.
| |
Collapse
|
3
|
Caroprese V, Tekin C, Cencen V, Mosayebi M, Asmari N, Liverpool TB, Woolfson DN, Fantner GE, Bastings MMC. Interface flexibility controls the nucleation and growth of supramolecular networks. Nat Chem 2025; 17:325-333. [PMID: 39948282 PMCID: PMC11882452 DOI: 10.1038/s41557-025-01741-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Accepted: 01/14/2025] [Indexed: 02/23/2025]
Abstract
Supramolecular networks are abundantly present in nature and, like crystalline materials, often develop from an initial nucleation site, followed by growth based on directional interactions between components. Traditionally, the binding strength and directionality of interactions is thought to dictate nucleation and crystal growth, whereas structural flexibility favours defects. Usually, macromonomers present multiple binding sites with relative intramolecular flexibility, but the effects of such flexibility on regulating network formation have been given little attention. Here we introduce the concept of 'interface flexibility' and demonstrate its critical importance in the nucleation and growth of supramolecular networks. As a model system, we use trisymmetric DNA-based macromonomers, which organize into hexagonal networks through weak π-π interactions at their tips. The directional nature and low spatial tolerance of π-π interactions mean that small shifts in orientation have a large effect on effective valency. We show that too much interface flexibility disrupts network formation, regardless of affinity. Tuning the interface flexibility greatly expands the available design space for synthetic supramolecular materials.
Collapse
Affiliation(s)
- Vincenzo Caroprese
- Programmable Biomaterials Laboratory, Institute of Materials, School of Engineering, Ecole Polytechnique Fédérale Lausanne, Lausanne, Switzerland
| | - Cem Tekin
- Programmable Biomaterials Laboratory, Institute of Materials, School of Engineering, Ecole Polytechnique Fédérale Lausanne, Lausanne, Switzerland
| | - Veronika Cencen
- Laboratory for Bio- and Nano-Instrumentation, Interfaculty Bioengineering Institute, School of Engineering, Ecole Polytechnique Fédérale Lausanne, Lausanne, Switzerland
| | - Majid Mosayebi
- School of Mathematics, University of Bristol, Bristol, UK
- Bristol BioDesign Institute, School of Chemistry, University of Bristol, Bristol, UK
| | - Navid Asmari
- Laboratory for Bio- and Nano-Instrumentation, Interfaculty Bioengineering Institute, School of Engineering, Ecole Polytechnique Fédérale Lausanne, Lausanne, Switzerland
| | - Tanniemola B Liverpool
- School of Mathematics, University of Bristol, Bristol, UK
- Bristol BioDesign Institute, School of Chemistry, University of Bristol, Bristol, UK
- The Isaac Newton Institute for Mathematical Sciences, Cambridge, UK
| | - Derek N Woolfson
- Bristol BioDesign Institute, School of Chemistry, University of Bristol, Bristol, UK
- The Isaac Newton Institute for Mathematical Sciences, Cambridge, UK
- School of Biochemistry, University of Bristol, Bristol, UK
| | - Georg E Fantner
- Laboratory for Bio- and Nano-Instrumentation, Interfaculty Bioengineering Institute, School of Engineering, Ecole Polytechnique Fédérale Lausanne, Lausanne, Switzerland
| | - Maartje M C Bastings
- Programmable Biomaterials Laboratory, Institute of Materials, School of Engineering, Ecole Polytechnique Fédérale Lausanne, Lausanne, Switzerland.
| |
Collapse
|
4
|
Zhang K, Cossio P, Rangan AV, Lucas BA, Grigorieff N. A new statistical metric for robust target detection in cryo-EM using 2D template matching. IUCRJ 2025; 12:155-176. [PMID: 39819740 PMCID: PMC11878444 DOI: 10.1107/s2052252524011771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Accepted: 12/03/2024] [Indexed: 01/19/2025]
Abstract
2D template matching (2DTM) can be used to detect molecules and their assemblies in cellular cryo-EM images with high positional and orientational accuracy. While 2DTM successfully detects spherical targets such as large ribosomal subunits, challenges remain in detecting smaller and more aspherical targets in various environments. In this work, a novel 2DTM metric, referred to as the 2DTM p-value, is developed to extend the 2DTM framework to more complex applications. The 2DTM p-value combines information from two previously used 2DTM metrics, namely the 2DTM signal-to-noise ratio (SNR) and z-score, which are derived from the cross-correlation coefficient between the target and the template. The 2DTM p-value demonstrates robust detection accuracies under various imaging and sample conditions and outperforms the 2DTM SNR and z-score alone. Specifically, the 2DTM p-value improves the detection of aspherical targets such as a modified artificial tubulin patch particle (500 kDa) and a much smaller clathrin monomer (193 kDa) in simulated data. It also accurately recovers mature 60S ribosomes in yeast lamellae samples, even under conditions of increased Gaussian noise. The new metric will enable the detection of a wider variety of targets in both purified and cellular samples through 2DTM.
Collapse
Affiliation(s)
- Kexin Zhang
- RNA Therapeutics InstituteUniversity of Massachusetts Chan Medical SchoolWorcesterUSA
- Howard Hughes Medical InstituteUniversity of Massachusetts Chan Medical SchoolWorcesterUSA
| | - Pilar Cossio
- Center for Computational Mathematics, Flatiron Institute, New York, USA
- Center for Computational Biology, Flatiron Institute, New York, USA
| | - Aaditya V. Rangan
- Center for Computational Mathematics, Flatiron Institute, New York, USA
- Courant Institute of Mathematical Sciences, New York UniversityNew YorkUSA
| | - Bronwyn A. Lucas
- RNA Therapeutics InstituteUniversity of Massachusetts Chan Medical SchoolWorcesterUSA
| | - Nikolaus Grigorieff
- RNA Therapeutics InstituteUniversity of Massachusetts Chan Medical SchoolWorcesterUSA
- Howard Hughes Medical InstituteUniversity of Massachusetts Chan Medical SchoolWorcesterUSA
| |
Collapse
|
5
|
Khmelinskaia A, Bethel NP, Fatehi F, Mallik BB, Antanasijevic A, Borst AJ, Lai SH, Chim HY, Wang JY'J, Miranda MC, Watkins AM, Ogohara C, Caldwell S, Wu M, Heck AJR, Veesler D, Ward AB, Baker D, Twarock R, King NP. Local structural flexibility drives oligomorphism in computationally designed protein assemblies. Nat Struct Mol Biol 2025:10.1038/s41594-025-01490-z. [PMID: 40011747 DOI: 10.1038/s41594-025-01490-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Accepted: 01/14/2025] [Indexed: 02/28/2025]
Abstract
Many naturally occurring protein assemblies have dynamic structures that allow them to perform specialized functions. Although computational methods for designing novel self-assembling proteins have advanced substantially over the past decade, they primarily focus on designing static structures. Here we characterize three distinct computationally designed protein assemblies that exhibit unanticipated structural diversity arising from flexibility in their subunits. Cryo-EM single-particle reconstructions and native mass spectrometry reveal two distinct architectures for two assemblies, while six cryo-EM reconstructions for the third likely represent a subset of its solution-phase structures. Structural modeling and molecular dynamics simulations indicate that constrained flexibility within the subunits of each assembly promotes a defined range of architectures rather than nonspecific aggregation. Redesigning the flexible region in one building block rescues the intended monomorphic assembly. These findings highlight structural flexibility as a powerful design principle, enabling exploration of new structural and functional spaces in protein assembly design.
Collapse
Affiliation(s)
- Alena Khmelinskaia
- Department of Biochemistry, University of Washington, Seattle, WA, USA.
- Institute for Protein Design, University of Washington, Seattle, WA, USA.
- Transdisciplinary Research Areas 'Building Blocks of Matter and Fundamental Interactions', University of Bonn, Bonn, Germany.
- Life and Medical Sciences Institute, University of Bonn, Bonn, Germany.
- Department of Chemistry, Ludwig Maximilian University of Munich, Munich, Germany.
| | - Neville P Bethel
- Department of Biochemistry, University of Washington, Seattle, WA, USA
- Institute for Protein Design, University of Washington, Seattle, WA, USA
| | - Farzad Fatehi
- Department of Mathematics, University of York, York, UK
- York Cross-Disciplinary Center for Systems Analysis, University of York, York, UK
| | - Bhoomika Basu Mallik
- Transdisciplinary Research Areas 'Building Blocks of Matter and Fundamental Interactions', University of Bonn, Bonn, Germany
- Life and Medical Sciences Institute, University of Bonn, Bonn, Germany
- Department of Chemistry, Ludwig Maximilian University of Munich, Munich, Germany
| | - Aleksandar Antanasijevic
- Department of Integrative, Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA, USA
- Scripps Consortium for HIV/AIDS Vaccine Development, The Scripps Research Institute, La Jolla, CA, USA
- School of Life Sciences, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Andrew J Borst
- Department of Biochemistry, University of Washington, Seattle, WA, USA
- Institute for Protein Design, University of Washington, Seattle, WA, USA
| | - Szu-Hsueh Lai
- Bijvoet Center for Biomolecular Research, Utrecht University, Utrecht, the Netherlands
- Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, the Netherlands
- Department of Chemistry, National Cheng Kung University, Tainan, Taiwan
| | - Ho Yeung Chim
- Department of Chemistry, Ludwig Maximilian University of Munich, Munich, Germany
| | - Jing Yang 'John' Wang
- Department of Biochemistry, University of Washington, Seattle, WA, USA
- Institute for Protein Design, University of Washington, Seattle, WA, USA
- Graduate Program in Molecular and Cellular Biology, University of Washington, Seattle, WA, USA
| | - Marcos C Miranda
- Department of Biochemistry, University of Washington, Seattle, WA, USA
- Institute for Protein Design, University of Washington, Seattle, WA, USA
| | | | - Cassandra Ogohara
- Department of Biochemistry, University of Washington, Seattle, WA, USA
- Institute for Protein Design, University of Washington, Seattle, WA, USA
| | - Shane Caldwell
- Department of Biochemistry, University of Washington, Seattle, WA, USA
- Institute for Protein Design, University of Washington, Seattle, WA, USA
| | - Mengyu Wu
- Department of Biochemistry, University of Washington, Seattle, WA, USA
- Institute for Protein Design, University of Washington, Seattle, WA, USA
| | - Albert J R Heck
- Bijvoet Center for Biomolecular Research, Utrecht University, Utrecht, the Netherlands
- Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, the Netherlands
| | - David Veesler
- Department of Biochemistry, University of Washington, Seattle, WA, USA
- Howard Hughes Medical Institute, Seattle, WA, USA
| | - Andrew B Ward
- Scripps Consortium for HIV/AIDS Vaccine Development, The Scripps Research Institute, La Jolla, CA, USA
- School of Life Sciences, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - David Baker
- Department of Biochemistry, University of Washington, Seattle, WA, USA
- Institute for Protein Design, University of Washington, Seattle, WA, USA
- Howard Hughes Medical Institute, Seattle, WA, USA
| | - Reidun Twarock
- Department of Mathematics, University of York, York, UK
- York Cross-Disciplinary Center for Systems Analysis, University of York, York, UK
- Department of Biology, University of York, York, UK
| | - Neil P King
- Department of Biochemistry, University of Washington, Seattle, WA, USA.
- Institute for Protein Design, University of Washington, Seattle, WA, USA.
| |
Collapse
|
6
|
Sun WW, Michalak DJ, Sochacki KA, Kunamaneni P, Alfonzo-Méndez MA, Arnold AM, Strub MP, Hinshaw JE, Taraska JW. Cryo-electron tomography pipeline for plasma membranes. Nat Commun 2025; 16:855. [PMID: 39833141 PMCID: PMC11747107 DOI: 10.1038/s41467-025-56045-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Accepted: 01/03/2025] [Indexed: 01/22/2025] Open
Abstract
Cryo-electron tomography (cryoET) provides sub-nanometer protein structure within the dense cellular environment. Existing sample preparation methods are insufficient at accessing the plasma membrane and its associated proteins. Here, we present a correlative cryo-electron tomography pipeline optimally suited to image large ultra-thin areas of isolated basal and apical plasma membranes. The pipeline allows for angstrom-scale structure determination with subtomogram averaging and employs a genetically encodable rapid chemically-induced electron microscopy visible tag for marking specific proteins within the complex cellular environment. The pipeline provides efficient, distributable, low-cost sample preparation and enables targeted structural studies of identified proteins at the plasma membrane of mammalian cells.
Collapse
Affiliation(s)
- Willy W Sun
- National Heart, Lung, and Blood Institute, US National Institutes of Health, Bethesda, MD, USA
| | - Dennis J Michalak
- National Heart, Lung, and Blood Institute, US National Institutes of Health, Bethesda, MD, USA
| | - Kem A Sochacki
- National Heart, Lung, and Blood Institute, US National Institutes of Health, Bethesda, MD, USA.
| | - Prasanthi Kunamaneni
- National Heart, Lung, and Blood Institute, US National Institutes of Health, Bethesda, MD, USA
- National Institute of Diabetes and Digestive and Kidney Diseases, US National Institutes of Health, Bethesda, MD, USA
| | - Marco A Alfonzo-Méndez
- National Heart, Lung, and Blood Institute, US National Institutes of Health, Bethesda, MD, USA
| | - Andreas M Arnold
- National Heart, Lung, and Blood Institute, US National Institutes of Health, Bethesda, MD, USA
| | - Marie-Paule Strub
- National Heart, Lung, and Blood Institute, US National Institutes of Health, Bethesda, MD, USA
| | - Jenny E Hinshaw
- National Institute of Diabetes and Digestive and Kidney Diseases, US National Institutes of Health, Bethesda, MD, USA.
| | - Justin W Taraska
- National Heart, Lung, and Blood Institute, US National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
7
|
Kravčenko U, Ruwolt M, Kroll J, Yushkevich A, Zenkner M, Ruta J, Lotfy R, Wanker EE, Rosenmund C, Liu F, Kudryashev M. Molecular architecture of synaptic vesicles. Proc Natl Acad Sci U S A 2024; 121:e2407375121. [PMID: 39602275 PMCID: PMC11626200 DOI: 10.1073/pnas.2407375121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Accepted: 10/24/2024] [Indexed: 11/29/2024] Open
Abstract
Synaptic vesicles (SVs) store and transport neurotransmitters to the presynaptic active zone for release by exocytosis. After release, SV proteins and excess membrane are recycled via endocytosis, and new SVs can be formed in a clathrin-dependent manner. This process maintains complex molecular composition of SVs through multiple recycling rounds. Previous studies explored the molecular composition of SVs through proteomic analysis and fluorescent microscopy, proposing a model for an average SV (1). However, the structural heterogeneity and molecular architecture of individual SVs are not well described. Here, we used cryoelectron tomography to visualize molecular details of SVs isolated from mouse brains and inside cultured neurons. We describe several classes of small proteins on the SV surface and long proteinaceous densities inside SVs. We identified V-ATPases, determined a structure using subtomogram averaging, and showed them forming a complex with the membrane-embedded protein synaptophysin (Syp). Our bioluminescence assay revealed pairwise interactions between vesicle-associated membrane protein 2 and Syp and V-ATPase Voe1 domains. Interestingly, V-ATPases were randomly distributed on the surface of SVs irrespective of vesicle size. A subpopulation of isolated vesicles and vesicles inside neurons contained a partially assembled clathrin coat with an icosahedral symmetry. We observed V-ATPases under clathrin cages in several isolated clathrin-coated vesicles (CCVs). Additionally, from isolated SV preparations and within hippocampal neurons we identified clathrin baskets without vesicles. We determined their and CCVs preferential location in proximity to the cell membrane. Our analysis advances the understanding of individual SVs' diversity and their molecular architecture.
Collapse
Affiliation(s)
- Uljana Kravčenko
- In situ Structural Biology, Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin13125, Germany
- Department of Biology, Humboldt University of Berlin, Berlin, Germany
| | - Max Ruwolt
- Leibniz Research Institute for Molecular Pharmacology, Berlin, Germany
| | - Jana Kroll
- Structural Biology of Membrane-Associated Processes, Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany
- Institute of Chemistry and Biochemistry, Free University of Berlin, Berlin, Germany
- Institute of Neurophysiology, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Artsemi Yushkevich
- In situ Structural Biology, Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin13125, Germany
- Department of Physics, Humboldt University of Berlin, Berlin, Germany
| | - Martina Zenkner
- Neuroproteomics, Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany
| | - Julia Ruta
- In situ Structural Biology, Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin13125, Germany
- Leibniz Research Institute for Molecular Pharmacology, Berlin, Germany
- Institute of Chemistry and Biochemistry, Free University of Berlin, Berlin, Germany
| | - Rowaa Lotfy
- In situ Structural Biology, Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin13125, Germany
- Institute of Pharmacy, Free University of Berlin, Berlin, Germany
| | - Erich E. Wanker
- Neuroproteomics, Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany
| | - Christian Rosenmund
- Institute of Neurophysiology, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Fan Liu
- Leibniz Research Institute for Molecular Pharmacology, Berlin, Germany
- Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Mikhail Kudryashev
- In situ Structural Biology, Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin13125, Germany
- Institute of Medical Physics and Biophysics, Charité-Universitätsmedizin Berlin, Berlin, Germany
| |
Collapse
|
8
|
Frey F, Schwarz US. Coat stiffening can explain invagination of clathrin-coated membranes. Phys Rev E 2024; 110:064403. [PMID: 39916158 DOI: 10.1103/physreve.110.064403] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Accepted: 11/14/2024] [Indexed: 05/07/2025]
Abstract
Clathrin-mediated endocytosis is the main pathway used by eukaryotic cells to take up extracellular material, but the dominant physical mechanisms driving this process are still elusive. Recently, several high-resolution imaging techniques have been used on different cell lines to measure the geometrical properties of clathrin-coated pits over their whole lifetime. Here, we first show that the combination of all datasets with the recently introduced cooperative curvature model defines a consensus pathway, which is characterized by a flat-to-curved transition at finite area, followed by linear growth and subsequent saturation of curvature. We then apply an energetic model for the composite of the plasma membrane and clathrin coat to this consensus pathway to show that the dominant mechanism for invagination could be coat stiffening, which might originate from cooperative interactions between the different clathrin molecules and progressively drives the system toward its intrinsic curvature. Our theory predicts that two length scales determine the invagination pathway, namely the patch size at which the flat-to-curved transition occurs and the final pit radius.
Collapse
Affiliation(s)
- Felix Frey
- Institute of Science and Technology Austria, 3400 Klosterneuburg, Austria
| | - Ulrich S Schwarz
- Heidelberg University, Institute for Theoretical Physics and BioQuant, 69120 Heidelberg, Germany
| |
Collapse
|
9
|
Defelipe LA, Veith K, Burastero O, Kupriianova T, Bento I, Skruzny M, Kölbel K, Uetrecht C, Thuenauer R, García-Alai MM. Subtleties in Clathrin heavy chain binding boxes provide selectivity among adaptor proteins of budding yeast. Nat Commun 2024; 15:9655. [PMID: 39511183 PMCID: PMC11543927 DOI: 10.1038/s41467-024-54037-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Accepted: 10/28/2024] [Indexed: 11/15/2024] Open
Abstract
Clathrin forms a triskelion, or three-legged, network that regulates cellular processes by facilitating cargo internalization and trafficking in eukaryotes. Its N-terminal domain is crucial for interacting with adaptor proteins, which link clathrin to the membrane and engage with specific cargo. The N-terminal domain contains up to four adaptor-binding sites, though their role in preferential occupancy by adaptor proteins remains unclear. In this study, we examine the binding hierarchy of adaptors for clathrin, using integrative biophysical and structural approaches, along with in vivo functional experiments. We find that yeast epsin Ent5 has the highest affinity for clathrin, highlighting its key role in cellular trafficking. Epsins Ent1 and Ent2, crucial for endocytosis but thought to have redundant functions, show distinct binding patterns. Ent1 exhibits stronger interactions with clathrin than Ent2, suggesting a functional divergence toward actin binding. These results offer molecular insights into adaptor protein selectivity, suggesting they competitively bind clathrin while also targeting three different clathrin sites.
Collapse
Affiliation(s)
- Lucas A Defelipe
- European Molecular Biology Laboratory - Hamburg Unit, Hamburg, Germany
- Centre for Structural Systems Biology, Hamburg, Germany
| | - Katharina Veith
- European Molecular Biology Laboratory - Hamburg Unit, Hamburg, Germany
- Centre for Structural Systems Biology, Hamburg, Germany
| | - Osvaldo Burastero
- European Molecular Biology Laboratory - Hamburg Unit, Hamburg, Germany
- Centre for Structural Systems Biology, Hamburg, Germany
| | - Tatiana Kupriianova
- European Molecular Biology Laboratory - Hamburg Unit, Hamburg, Germany
- Centre for Structural Systems Biology, Hamburg, Germany
| | - Isabel Bento
- European Molecular Biology Laboratory - Hamburg Unit, Hamburg, Germany
| | - Michal Skruzny
- Cell Biology and Biophysics Unit, European Molecular Biology Laboratory, Heidelberg, Germany
- Department of Systems and Synthetic Microbiology, Max Planck Institute for Terrestrial Microbiology, Marburg, Germany
- Carl Zeiss Microscopy GmbH, Jena, Germany
| | - Knut Kölbel
- Centre for Structural Systems Biology, Hamburg, Germany
- Leibniz Institute of Virology (LIV), Hamburg, Germany
- Deutsches Elektronen Synchrotron - DESY, Hamburg, Germany
| | - Charlotte Uetrecht
- Centre for Structural Systems Biology, Hamburg, Germany
- Leibniz Institute of Virology (LIV), Hamburg, Germany
- Deutsches Elektronen Synchrotron - DESY, Hamburg, Germany
- Institute of Chemistry and Metabolomics, University of Lübeck, Lübeck, Germany
| | - Roland Thuenauer
- Centre for Structural Systems Biology, Hamburg, Germany
- Leibniz Institute of Virology (LIV), Hamburg, Germany
- Technology Platform Light Microscopy (TPLM), Universität Hamburg (UHH), Hamburg, Germany
| | - Maria M García-Alai
- European Molecular Biology Laboratory - Hamburg Unit, Hamburg, Germany.
- Centre for Structural Systems Biology, Hamburg, Germany.
| |
Collapse
|
10
|
Cheng PM, Jia T, Li CY, Qi MQ, Du MH, Su HF, Sun QF, Long LS, Zheng LS, Kong XJ. Bottom-up construction of chiral metal-peptide assemblies from metal cluster motifs. Nat Commun 2024; 15:9034. [PMID: 39426962 PMCID: PMC11490616 DOI: 10.1038/s41467-024-53320-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Accepted: 10/07/2024] [Indexed: 10/21/2024] Open
Abstract
The exploration of artificial metal-peptide assemblies (MPAs) is one of the most exciting fields because of their great potential for simulating the dynamics and functionality of natural proteins. However, unfavorable enthalpy changes make forming discrete complexes with large and adaptable cavities from flexible peptide ligands challenging. Here, we present a strategy integrating metal-cluster building blocks and peptides to create chiral metal-peptide assemblies and get a family of enantiopure [R-/S-Ni3L2]n (n = 2, 3, 6) MPAs, including the R-/S-Ni6L4 capsule, the S-Ni9L6 trigonal prism, and the R-/S-Ni18L12 octahedron cage. X-ray crystallography shows MPA formation reactions are highly solvent-condition-dependent, resulting in significant changes in ligand conformation and discrete cavity sizes. Moreover, we demonstrate that a structure transformation from Ni18L12 to Ni9L6 in the presence of benzopyrone molecules depends on the peptide conformational selection in crystallization. This work reveals that a metal-cluster building block approach enables facile bottom-up construction of artificial metal-peptide assemblies.
Collapse
Affiliation(s)
- Pei-Ming Cheng
- Collaborative Innovation Center of Chemistry for Energy Materials, State Key Laboratory of Physical Chemistry of Solid Surfaces and Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, P. R. China
| | - Tao Jia
- Collaborative Innovation Center of Chemistry for Energy Materials, State Key Laboratory of Physical Chemistry of Solid Surfaces and Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, P. R. China
| | - Chong-Yang Li
- Collaborative Innovation Center of Chemistry for Energy Materials, State Key Laboratory of Physical Chemistry of Solid Surfaces and Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, P. R. China
| | - Ming-Qiang Qi
- Collaborative Innovation Center of Chemistry for Energy Materials, State Key Laboratory of Physical Chemistry of Solid Surfaces and Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, P. R. China
| | - Ming-Hao Du
- Collaborative Innovation Center of Chemistry for Energy Materials, State Key Laboratory of Physical Chemistry of Solid Surfaces and Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, P. R. China
| | - Hai-Feng Su
- Collaborative Innovation Center of Chemistry for Energy Materials, State Key Laboratory of Physical Chemistry of Solid Surfaces and Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, P. R. China
| | - Qing-Fu Sun
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, 350002, P. R. China
| | - La-Sheng Long
- Collaborative Innovation Center of Chemistry for Energy Materials, State Key Laboratory of Physical Chemistry of Solid Surfaces and Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, P. R. China
| | - Lan-Sun Zheng
- Collaborative Innovation Center of Chemistry for Energy Materials, State Key Laboratory of Physical Chemistry of Solid Surfaces and Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, P. R. China
| | - Xiang-Jian Kong
- Collaborative Innovation Center of Chemistry for Energy Materials, State Key Laboratory of Physical Chemistry of Solid Surfaces and Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, P. R. China.
| |
Collapse
|
11
|
Li Y, Zhang Y, Zhang Z, Zhang M, Niu X, Mao X, Yue T, Zhang X. Clathrin-Mediated Endocytosis of Multiple Nanoparticles Tends to Be Less Cooperative: A Computational Study. J Phys Chem B 2024; 128:9785-9797. [PMID: 39352204 DOI: 10.1021/acs.jpcb.4c05025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/11/2024]
Abstract
The internalization of nanoparticles is of great significance for their biological applications. Clathrin-mediated endocytosis (CME) is one of the main endocytic pathways. However, there is still a lack of a fundamental understanding regarding the internalization of multiple nanoparticles via CME. Therefore, in this study, we conducted computational investigations to uncover detailed molecular mechanisms and kinetic pathways for differently shaped nanoparticles in the presence of clathrin. Particular focus is given to understanding the CME of multiple-nanoparticle systems. We found that unlike receptor-mediated endocytosis, multiple nanoparticles did not get cooperatively wrapped by the membrane but tended to undergo independent endocytosis in the presence of clathrin. To further investigate the endocytosis mechanism, we studied the effects of clathrins, nanoparticle shape, nanoparticle size, nanoparticle arrangement, and membrane surface tension. The self-assembly of clathrin prefers independent endocytosis for multiple nanoparticles. Besides, the cooperative behavior is weak with increasing nanoparticle-shape anisotropy. However, when the membrane tension is reduced, the endocytosis pathway for multiple nanoparticles is cooperative endocytosis. Moreover, we found that the self-assembly of clathrins reduces the critical size of nanoparticles to undergo cooperative wrapping by the cell membrane. Our results provide valuable insights into the molecular mechanisms of multiple nanoparticles through CME and offer useful guidance for the design of nanoparticles as drug/gene delivery carriers.
Collapse
Affiliation(s)
- Ye Li
- State Key Laboratory of Tree Genetics and Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China
- Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 10083, China
| | - Yezhuo Zhang
- State Key Laboratory of Tree Genetics and Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China
- Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 10083, China
| | - Zhun Zhang
- State Key Laboratory of Tree Genetics and Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China
- Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 10083, China
| | - Man Zhang
- State Key Laboratory of Tree Genetics and Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China
- Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 10083, China
| | - Xinhui Niu
- State Key Laboratory of Tree Genetics and Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China
- Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 10083, China
| | - Xinyi Mao
- State Key Laboratory of Tree Genetics and Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China
- Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 10083, China
| | - Tongtao Yue
- Institute of Coastal Environmental Pollution Control, Ministry of Education Key Laboratory of Marine Environment and Ecology, Ocean University of China, Qingdao 266100, China
| | - Xianren Zhang
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, China
| |
Collapse
|
12
|
Greig J, Bates GT, Yin DI, Briant K, Simonetti B, Cullen PJ, Brodsky FM. CHC22 clathrin recruitment to the early secretory pathway requires two-site interaction with SNX5 and p115. EMBO J 2024; 43:4298-4323. [PMID: 39160272 PMCID: PMC11445476 DOI: 10.1038/s44318-024-00198-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 07/15/2024] [Accepted: 07/17/2024] [Indexed: 08/21/2024] Open
Abstract
The two clathrin isoforms, CHC17 and CHC22, mediate separate intracellular transport routes. CHC17 performs endocytosis and housekeeping membrane traffic in all cells. CHC22, expressed most highly in skeletal muscle, shuttles the glucose transporter GLUT4 from the ERGIC (endoplasmic-reticulum-to-Golgi intermediate compartment) directly to an intracellular GLUT4 storage compartment (GSC), from where GLUT4 can be mobilized to the plasma membrane by insulin. Here, molecular determinants distinguishing CHC22 from CHC17 trafficking are defined. We show that the C-terminal trimerization domain of CHC22 interacts with SNX5, which also binds the ERGIC tether p115. SNX5, and the functionally redundant SNX6, are required for CHC22 localization independently of their participation in the endosomal ESCPE-1 complex. In tandem, an isoform-specific patch in the CHC22 N-terminal domain separately mediates binding to p115. This dual mode of clathrin recruitment, involving interactions at both N- and C-termini of the heavy chain, is required for CHC22 targeting to ERGIC membranes to mediate the Golgi-bypass route for GLUT4 trafficking. Interference with either interaction inhibits GLUT4 targeting to the GSC, defining a bipartite mechanism regulating a key pathway in human glucose metabolism.
Collapse
Affiliation(s)
- Joshua Greig
- Structural and Molecular Biology, Division of Biosciences, University College London, London, WC1E 6BT, UK
- Institute of Structural and Molecular Biology, Birkbeck and University College London, London, WC1E 7HX, UK
| | - George T Bates
- Structural and Molecular Biology, Division of Biosciences, University College London, London, WC1E 6BT, UK
- Institute of Structural and Molecular Biology, Birkbeck and University College London, London, WC1E 7HX, UK
| | - Daowen I Yin
- Structural and Molecular Biology, Division of Biosciences, University College London, London, WC1E 6BT, UK
- Institute of Structural and Molecular Biology, Birkbeck and University College London, London, WC1E 7HX, UK
| | - Kit Briant
- Structural and Molecular Biology, Division of Biosciences, University College London, London, WC1E 6BT, UK
- Institute of Structural and Molecular Biology, Birkbeck and University College London, London, WC1E 7HX, UK
| | - Boris Simonetti
- School of Biochemistry, Faculty of Life Sciences, University of Bristol, Bristol, UK
| | - Peter J Cullen
- School of Biochemistry, Faculty of Life Sciences, University of Bristol, Bristol, UK
| | - Frances M Brodsky
- Structural and Molecular Biology, Division of Biosciences, University College London, London, WC1E 6BT, UK.
- Institute of Structural and Molecular Biology, Birkbeck and University College London, London, WC1E 7HX, UK.
| |
Collapse
|
13
|
Johnson A. Mechanistic divergences of endocytic clathrin-coated vesicle formation in mammals, yeasts and plants. J Cell Sci 2024; 137:jcs261847. [PMID: 39161994 PMCID: PMC11361644 DOI: 10.1242/jcs.261847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/21/2024] Open
Abstract
Clathrin-coated vesicles (CCVs), generated by clathrin-mediated endocytosis (CME), are essential eukaryotic trafficking organelles that transport extracellular and plasma membrane-bound materials into the cell. In this Review, we explore mechanisms of CME in mammals, yeasts and plants, and highlight recent advances in the characterization of endocytosis in plants. Plants separated from mammals and yeast over 1.5 billion years ago, and plant cells have distinct biophysical parameters that can influence CME, such as extreme turgor pressure. Plants can therefore provide a wider perspective on fundamental processes in eukaryotic cells. We compare key mechanisms that drive CCV formation and explore what these mechanisms might reveal about the core principles of endocytosis across the tree of life. Fascinatingly, CME in plants appears to more closely resemble that in mammalian cells than that in yeasts, despite plants being evolutionarily further from mammals than yeast. Endocytic initiation appears to be highly conserved across these three systems, requiring similar protein domains and regulatory processes. Clathrin coat proteins and their honeycomb lattice structures are also highly conserved. However, major differences are found in membrane-bending mechanisms. Unlike in mammals or yeast, plant endocytosis occurs independently of actin, highlighting that mechanistic assumptions about CME across different systems should be made with caution.
Collapse
Affiliation(s)
- Alexander Johnson
- Division of Anatomy, Center for Anatomy & Cell Biology, Medical University of Vienna, Vienna 1090, Austria
- Medical Imaging Cluster (MIC), Medical University of Vienna, Vienna 1090, Austria
- Biosciences, University of Exeter, Exeter EX4 4QD, UK
| |
Collapse
|
14
|
Kamatar A, Bravo JPK, Yuan F, Wang L, Lafer EM, Taylor DW, Stachowiak JC, Parekh SH. Lipid droplets as substrates for protein phase separation. Biophys J 2024; 123:1494-1507. [PMID: 38462838 PMCID: PMC11163294 DOI: 10.1016/j.bpj.2024.03.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 01/26/2024] [Accepted: 03/07/2024] [Indexed: 03/12/2024] Open
Abstract
Membrane-associated protein phase separation plays critical roles in cell biology, driving essential cellular phenomena from immune signaling to membrane traffic. Importantly, by reducing dimensionality from three to two dimensions, lipid bilayers can nucleate phase separation at far lower concentrations compared with those required for phase separation in solution. How might other intracellular lipid substrates, such as lipid droplets, contribute to nucleation of phase separation? Distinct from bilayer membranes, lipid droplets consist of a phospholipid monolayer surrounding a core of neutral lipids, and they are energy storage organelles that protect cells from lipotoxicity and oxidative stress. Here, we show that intrinsically disordered proteins can undergo phase separation on the surface of synthetic and cell-derived lipid droplets. Specifically, we find that the model disordered domains FUS LC and LAF-1 RGG separate into protein-rich and protein-depleted phases on the surfaces of lipid droplets. Owing to the hydrophobic nature of interactions between FUS LC proteins, increasing ionic strength drives an increase in its phase separation on droplet surfaces. The opposite is true for LAF-1 RGG, owing to the electrostatic nature of its interprotein interactions. In both cases, protein-rich phases on the surfaces of synthetic and cell-derived lipid droplets demonstrate molecular mobility indicative of a liquid-like state. Our results show that lipid droplets can nucleate protein condensates, suggesting that protein phase separation could be key in organizing biological processes involving lipid droplets.
Collapse
Affiliation(s)
- Advika Kamatar
- Department of Biomedical Engineering, University of Texas at Austin, Austin, Texas
| | - Jack P K Bravo
- Department of Molecular Biosciences, University of Texas at Austin, Austin, Texas
| | - Feng Yuan
- Department of Biomedical Engineering, University of Texas at Austin, Austin, Texas
| | - Liping Wang
- Department of Biochemistry and Structural Biology, University of Texas Health Science Center at San Antonio, San Antonio, Texas
| | - Eileen M Lafer
- Department of Biochemistry and Structural Biology, University of Texas Health Science Center at San Antonio, San Antonio, Texas
| | - David W Taylor
- Department of Molecular Biosciences, University of Texas at Austin, Austin, Texas; Interdisciplinary Life Sciences Graduate Program, University of Texas at Austin, Austin, Texas; Center for Systems and Synthetic Biology, University of Texas at Austin, Austin, Texas; LIVESTRONG Cancer Institutes, Dell Medical School, Austin, Texas
| | - Jeanne C Stachowiak
- Department of Biomedical Engineering, University of Texas at Austin, Austin, Texas; McKetta Department of Chemical Engineering, University of Texas at Austin, Austin, Texas.
| | - Sapun H Parekh
- Department of Biomedical Engineering, University of Texas at Austin, Austin, Texas.
| |
Collapse
|
15
|
Suder DS, Gonen S. Mitigating the Blurring Effect of CryoEM Averaging on a Flexible and Highly Symmetric Protein Complex through Sub-Particle Reconstruction. Int J Mol Sci 2024; 25:5665. [PMID: 38891853 PMCID: PMC11171969 DOI: 10.3390/ijms25115665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Revised: 05/13/2024] [Accepted: 05/14/2024] [Indexed: 06/21/2024] Open
Abstract
Many macromolecules are inherently flexible as a feature of their structure and function. During single-particle CryoEM processing, flexible protein regions can be detrimental to high-resolution reconstruction as signals from thousands of particles are averaged together. This "blurring" effect can be difficult to overcome and is possibly more pronounced when averaging highly symmetric complexes. Approaches to mitigating flexibility during CryoEM processing are becoming increasingly critical as the technique advances and is applied to more dynamic proteins and complexes. Here, we detail the use of sub-particle averaging and signal subtraction techniques to precisely target and resolve flexible DARPin protein attachments on a designed tetrahedrally symmetric protein scaffold called DARP14. Particles are first aligned as full complexes, and then the symmetry is reduced by alignment and focused refinement of the constituent subunits. The final reconstructions we obtained were vastly improved over the fully symmetric reconstructions, with observable secondary structure and side-chain placement. Additionally, we were also able to reconstruct the core region of the scaffold to 2.7 Å. The data processing protocol outlined here is applicable to other dynamic and symmetric protein complexes, and our improved maps could allow for new structure-guided variant designs of DARP14.
Collapse
Affiliation(s)
| | - Shane Gonen
- Department of Molecular Biology and Biochemistry, University of California Irvine, Irvine, CA 92697, USA
| |
Collapse
|
16
|
Khmelinskaia A, Bethel NP, Fatehi F, Antanasijevic A, Borst AJ, Lai SH, Wang JYJ, Mallik BB, Miranda MC, Watkins AM, Ogohara C, Caldwell S, Wu M, Heck AJR, Veesler D, Ward AB, Baker D, Twarock R, King NP. Local structural flexibility drives oligomorphism in computationally designed protein assemblies. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.10.18.562842. [PMID: 37905007 PMCID: PMC10614843 DOI: 10.1101/2023.10.18.562842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/02/2023]
Abstract
Many naturally occurring protein assemblies have dynamic structures that allow them to perform specialized functions. For example, clathrin coats adopt a wide variety of architectures to adapt to vesicular cargos of various sizes. Although computational methods for designing novel self-assembling proteins have advanced substantially over the past decade, most existing methods focus on designing static structures with high accuracy. Here we characterize the structures of three distinct computationally designed protein assemblies that each form multiple unanticipated architectures, and identify flexibility in specific regions of the subunits of each assembly as the source of structural diversity. Cryo-EM single-particle reconstructions and native mass spectrometry showed that only two distinct architectures were observed in two of the three cases, while we obtained six cryo-EM reconstructions that likely represent a subset of the architectures present in solution in the third case. Structural modeling and molecular dynamics simulations indicated that the surprising observation of a defined range of architectures, instead of non-specific aggregation, can be explained by constrained flexibility within the building blocks. Our results suggest that deliberate use of structural flexibility as a design principle will allow exploration of previously inaccessible structural and functional space in designed protein assemblies.
Collapse
|
17
|
Mallik BB, Stanislaw J, Alawathurage TM, Khmelinskaia A. De Novo Design of Polyhedral Protein Assemblies: Before and After the AI Revolution. Chembiochem 2023; 24:e202300117. [PMID: 37014094 DOI: 10.1002/cbic.202300117] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 04/03/2023] [Accepted: 04/03/2023] [Indexed: 04/05/2023]
Abstract
Self-assembling polyhedral protein biomaterials have gained attention as engineering targets owing to their naturally evolved sophisticated functions, ranging from protecting macromolecules from the environment to spatially controlling biochemical reactions. Precise computational design of de novo protein polyhedra is possible through two main types of approaches: methods from first principles, using physical and geometrical rules, and more recent data-driven methods based on artificial intelligence (AI), including deep learning (DL). Here, we retrospect first principle- and AI-based approaches for designing finite polyhedral protein assemblies, as well as advances in the structure prediction of such assemblies. We further highlight the possible applications of these materials and explore how the presented approaches can be combined to overcome current challenges and to advance the design of functional protein-based biomaterials.
Collapse
Affiliation(s)
- Bhoomika Basu Mallik
- Transdisciplinary Research Area, "Building Blocks of Matter and Fundamental Interactions (TRA Matter)", University of Bonn, 53121, Bonn, Germany
- Life and Medical Sciences Institute, University of Bonn, 53115, Bonn, Germany
| | - Jenna Stanislaw
- Transdisciplinary Research Area, "Building Blocks of Matter and Fundamental Interactions (TRA Matter)", University of Bonn, 53121, Bonn, Germany
- Life and Medical Sciences Institute, University of Bonn, 53115, Bonn, Germany
| | - Tharindu Madhusankha Alawathurage
- Transdisciplinary Research Area, "Building Blocks of Matter and Fundamental Interactions (TRA Matter)", University of Bonn, 53121, Bonn, Germany
- Life and Medical Sciences Institute, University of Bonn, 53115, Bonn, Germany
| | - Alena Khmelinskaia
- Transdisciplinary Research Area, "Building Blocks of Matter and Fundamental Interactions (TRA Matter)", University of Bonn, 53121, Bonn, Germany
- Life and Medical Sciences Institute, University of Bonn, 53115, Bonn, Germany
- Current address: Department of Chemistry, Ludwig Maximillian University, 80539, Munich, Germany
| |
Collapse
|
18
|
Krishnan S, Klingauf J. The readily retrievable pool of synaptic vesicles. Biol Chem 2023; 404:385-397. [PMID: 36867726 DOI: 10.1515/hsz-2022-0298] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Accepted: 02/16/2023] [Indexed: 03/05/2023]
Abstract
In the CNS communication between neurons occurs at synapses by secretion of neurotransmitter via exocytosis of synaptic vesicles (SVs) at the active zone. Given the limited number of SVs in presynaptic boutons a fast and efficient recycling of exocytosed membrane and proteins by triggered compensatory endocytosis is required to maintain neurotransmission. Thus, pre-synapses feature a unique tight coupling of exo- and endocytosis in time and space resulting in the reformation of SVs with uniform morphology and well-defined molecular composition. This rapid response requires early stages of endocytosis at the peri-active zone to be well choreographed to ensure reformation of SVs with high fidelity. The pre-synapse can address this challenge by a specialized membrane microcompartment, where a pre-sorted and pre-assembled readily retrievable pool (RRetP) of endocytic membrane patches is formed, consisting of the vesicle cargo, presumably bound within a nucleated Clathrin and adaptor complex. This review considers evidence for the RRetP microcompartment to be the primary organizer of presynaptic triggered compensatory endocytosis.
Collapse
Affiliation(s)
- Sai Krishnan
- Institute of Medical Physics and Biophysics, University of Münster, Robert-Koch Strasse 31, D-48149, Münster, Germany
| | - Jürgen Klingauf
- Institute of Medical Physics and Biophysics, University of Münster, Robert-Koch Strasse 31, D-48149, Münster, Germany.,Center for Soft Nanoscience, Busso-Peus Strasse 10, D-48149, Münster, Germany
| |
Collapse
|
19
|
Nawara TJ, Mattheyses AL. Imaging nanoscale axial dynamics at the basal plasma membrane. Int J Biochem Cell Biol 2023; 156:106349. [PMID: 36566777 PMCID: PMC10634635 DOI: 10.1016/j.biocel.2022.106349] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 12/16/2022] [Accepted: 12/21/2022] [Indexed: 12/24/2022]
Abstract
Understanding of how energetically unfavorable plasma membrane shapes form, especially in the context of dynamic processes in living cells or tissues like clathrin-mediated endocytosis is in its infancy. Even though cutting-edge microscopy techniques that bridge this gap exist, they remain underused in biomedical sciences. Here, we demystify the perceived complexity of these advanced microscopy approaches and demonstrate their power in resolving nanometer axial dynamics in living cells. Total internal reflection fluorescence microscopy based approaches are the main focus of this review. We present clathrin-mediated endocytosis as a model system when describing the principles, data acquisition requirements, data interpretation strategies, and limitations of the described techniques. We hope this standardized description will bring the approaches for measuring nanoscale axial dynamics closer to the potential users and help in choosing the right approach to the right question.
Collapse
Affiliation(s)
- Tomasz J Nawara
- Department of Cell, Developmental, and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Alexa L Mattheyses
- Department of Cell, Developmental, and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL, USA.
| |
Collapse
|
20
|
Mund M, Tschanz A, Wu YL, Frey F, Mehl JL, Kaksonen M, Avinoam O, Schwarz US, Ries J. Clathrin coats partially preassemble and subsequently bend during endocytosis. J Cell Biol 2023; 222:213855. [PMID: 36734980 PMCID: PMC9929656 DOI: 10.1083/jcb.202206038] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 11/29/2022] [Accepted: 12/27/2022] [Indexed: 02/04/2023] Open
Abstract
Eukaryotic cells use clathrin-mediated endocytosis to take up a large range of extracellular cargo. During endocytosis, a clathrin coat forms on the plasma membrane, but it remains controversial when and how it is remodeled into a spherical vesicle. Here, we use 3D superresolution microscopy to determine the precise geometry of the clathrin coat at large numbers of endocytic sites. Through pseudo-temporal sorting, we determine the average trajectory of clathrin remodeling during endocytosis. We find that clathrin coats assemble first on flat membranes to 50% of the coat area before they become rapidly and continuously bent, and this mechanism is confirmed in three cell lines. We introduce the cooperative curvature model, which is based on positive feedback for curvature generation. It accurately describes the measured shapes and dynamics of the clathrin coat and could represent a general mechanism for clathrin coat remodeling on the plasma membrane.
Collapse
Affiliation(s)
- Markus Mund
- https://ror.org/03mstc592Cell Biology and Biophysics, European Molecular Biology Laboratory, Heidelberg, Germany,https://ror.org/01swzsf04Department of Biochemistry, University of Geneva, Geneva, Switzerland
| | - Aline Tschanz
- https://ror.org/03mstc592Cell Biology and Biophysics, European Molecular Biology Laboratory, Heidelberg, Germany,Candidate for Joint PhD Programme of EMBL and University of Heidelberg, Heidelberg, Germany
| | - Yu-Le Wu
- https://ror.org/03mstc592Cell Biology and Biophysics, European Molecular Biology Laboratory, Heidelberg, Germany,Candidate for Joint PhD Programme of EMBL and University of Heidelberg, Heidelberg, Germany
| | - Felix Frey
- https://ror.org/02e2c7k09Kavli Institute of Nanoscience, Department of Bionanoscience, Delft University of Technology, Delft, Netherlands
| | - Johanna L. Mehl
- https://ror.org/03mstc592Cell Biology and Biophysics, European Molecular Biology Laboratory, Heidelberg, Germany
| | - Marko Kaksonen
- https://ror.org/01swzsf04Department of Biochemistry, University of Geneva, Geneva, Switzerland,NCCR Chemical Biology, University of Geneva, Geneva, Switzerland
| | - Ori Avinoam
- https://ror.org/03mstc592Cell Biology and Biophysics, European Molecular Biology Laboratory, Heidelberg, Germany,https://ror.org/0316ej306Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovot, Israel
| | - Ulrich S. Schwarz
- https://ror.org/04rcqnp59Institute for Theoretical Physics and Bioquant, Heidelberg University, Heidelberg, Germany,Bioquant, Heidelberg University, Heidelberg, Germany
| | - Jonas Ries
- https://ror.org/03mstc592Cell Biology and Biophysics, European Molecular Biology Laboratory, Heidelberg, Germany,Correspondence to Jonas Ries:
| |
Collapse
|
21
|
Kim HS, Bae JH, Kim G, Song JJ, Kim HS. Construction and Functionalization of a Clathrin Assembly for a Targeted Protein Delivery. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2204620. [PMID: 36456203 DOI: 10.1002/smll.202204620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 11/02/2022] [Indexed: 06/17/2023]
Abstract
Protein assemblies have drawn much attention as platforms for biomedical applications, including gene/drug delivery and vaccine, due to biocompatibility and functional diversity. Here, the construction and functionalization of a protein assembly composed of human clathrin heavy chain and light chain for a targeted protein delivery, is presented. The clathrin heavy and light chains are redesigned and associated with each other, and the resulting triskelion unit further self-assembled into a clathrin assembly with the size of about 28 nm in diameter. The clathrin assembly is dual-functionalized with a protein cargo and a targeting moiety using two different orthogonal protein-ligand pairs through one-pot reaction. The functionalized clathrin assembly exhibits about a 900-fold decreased KD value for a cell-surface target due to avidity compared to a native targeting moiety. The utility of the clathrin assembly is demonstrated by an efficient delivery of a protein cargo into tumor cells in a target-specific manner, resulting in a strong cytotoxic effect. The present approach can be used in the creation of protein assemblies with multimodality.
Collapse
Affiliation(s)
- Hong-Sik Kim
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
| | - Jin-Ho Bae
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
| | - Gijeong Kim
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
| | - Ji-Joon Song
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
| | - Hak-Sung Kim
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
| |
Collapse
|
22
|
Isotropic reconstruction for electron tomography with deep learning. Nat Commun 2022; 13:6482. [PMID: 36309499 PMCID: PMC9617606 DOI: 10.1038/s41467-022-33957-8] [Citation(s) in RCA: 140] [Impact Index Per Article: 46.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Accepted: 10/05/2022] [Indexed: 12/25/2022] Open
Abstract
Cryogenic electron tomography (cryoET) allows visualization of cellular structures in situ. However, anisotropic resolution arising from the intrinsic "missing-wedge" problem has presented major challenges in visualization and interpretation of tomograms. Here, we have developed IsoNet, a deep learning-based software package that iteratively reconstructs the missing-wedge information and increases signal-to-noise ratio, using the knowledge learned from raw tomograms. Without the need for sub-tomogram averaging, IsoNet generates tomograms with significantly reduced resolution anisotropy. Applications of IsoNet to three representative types of cryoET data demonstrate greatly improved structural interpretability: resolving lattice defects in immature HIV particles, establishing architecture of the paraflagellar rod in Eukaryotic flagella, and identifying heptagon-containing clathrin cages inside a neuronal synapse of cultured cells. Therefore, by overcoming two fundamental limitations of cryoET, IsoNet enables functional interpretation of cellular tomograms without sub-tomogram averaging. Its application to high-resolution cellular tomograms should also help identify differently oriented complexes of the same kind for sub-tomogram averaging.
Collapse
|
23
|
Kendall AK, Chandra M, Xie B, Wan W, Jackson LP. Improved mammalian retromer cryo-EM structures reveal a new assembly interface. J Biol Chem 2022; 298:102523. [PMID: 36174678 PMCID: PMC9636581 DOI: 10.1016/j.jbc.2022.102523] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 08/30/2022] [Accepted: 09/03/2022] [Indexed: 12/05/2022] Open
Abstract
Retromer (VPS26/VPS35/VPS29 subunits) assembles with multiple sorting nexin proteins on membranes to mediate endosomal recycling of transmembrane protein cargoes. Retromer has been implicated in other cellular processes, including mitochondrial homeostasis, nutrient sensing, autophagy, and fission events. Mechanisms for mammalian retromer assembly remain undefined, and retromer engages multiple sorting nexin proteins to sort cargoes to different destinations. Published structures demonstrate mammalian retromer forms oligomers in vitro, but several structures were poorly resolved. We report here improved retromer oligomer structures using single-particle cryo-EM by combining data collected from tilted specimens with multiple advancements in data processing, including using a 3D starting model for enhanced automated particle picking in RELION. We used a retromer mutant (3KE retromer) that breaks VPS35-mediated interfaces to determine a structure of a new assembly interface formed by the VPS26A and VPS35 N-termini. The interface reveals how an N-terminal VPS26A arrestin saddle can link retromer chains by engaging a neighboring VPS35 N- terminus, on the opposite side from the well-characterized C-VPS26/N-VPS35 interaction observed within heterotrimers. The new interaction interface exhibits substantial buried surface area (∼7000 Å2) and further suggests that metazoan retromer may serve as an adaptable scaffold.
Collapse
Affiliation(s)
- Amy K Kendall
- Department of Biological Sciences, Vanderbilt University, Nashville, TN, USA; Center for Structural Biology, Vanderbilt University, Nashville, TN, USA
| | - Mintu Chandra
- Department of Biological Sciences, Vanderbilt University, Nashville, TN, USA; Center for Structural Biology, Vanderbilt University, Nashville, TN, USA
| | - Boyang Xie
- Department of Biological Sciences, Vanderbilt University, Nashville, TN, USA
| | - William Wan
- Center for Structural Biology, Vanderbilt University, Nashville, TN, USA; Department of Biochemistry, Vanderbilt University, Nashville, TN, USA
| | - Lauren P Jackson
- Department of Biological Sciences, Vanderbilt University, Nashville, TN, USA; Center for Structural Biology, Vanderbilt University, Nashville, TN, USA; Department of Biochemistry, Vanderbilt University, Nashville, TN, USA.
| |
Collapse
|
24
|
Imoto Y, Raychaudhuri S, Ma Y, Fenske P, Sandoval E, Itoh K, Blumrich EM, Matsubayashi HT, Mamer L, Zarebidaki F, Söhl-Kielczynski B, Trimbuch T, Nayak S, Iwasa JH, Liu J, Wu B, Ha T, Inoue T, Jorgensen EM, Cousin MA, Rosenmund C, Watanabe S. Dynamin is primed at endocytic sites for ultrafast endocytosis. Neuron 2022; 110:2815-2835.e13. [PMID: 35809574 PMCID: PMC9464723 DOI: 10.1016/j.neuron.2022.06.010] [Citation(s) in RCA: 48] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 03/24/2022] [Accepted: 06/09/2022] [Indexed: 02/06/2023]
Abstract
Dynamin mediates fission of vesicles from the plasma membrane during endocytosis. Typically, dynamin is recruited from the cytosol to endocytic sites, requiring seconds to tens of seconds. However, ultrafast endocytosis in neurons internalizes vesicles as quickly as 50 ms during synaptic vesicle recycling. Here, we demonstrate that Dynamin 1 is pre-recruited to endocytic sites for ultrafast endocytosis. Specifically, Dynamin 1xA, a splice variant of Dynamin 1, interacts with Syndapin 1 to form molecular condensates on the plasma membrane. Single-particle tracking of Dynamin 1xA molecules confirms the liquid-like property of condensates in vivo. When Dynamin 1xA is mutated to disrupt its interaction with Syndapin 1, the condensates do not form, and consequently, ultrafast endocytosis slows down by 100-fold. Mechanistically, Syndapin 1 acts as an adaptor by binding the plasma membrane and stores Dynamin 1xA at endocytic sites. This cache bypasses the recruitment step and accelerates endocytosis at synapses.
Collapse
Affiliation(s)
- Yuuta Imoto
- Department of Cell Biology, Johns Hopkins University, Baltimore, MD 21205, USA.
| | - Sumana Raychaudhuri
- Department of Cell Biology, Johns Hopkins University, Baltimore, MD 21205, USA
| | - Ye Ma
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD 21205, USA
| | - Pascal Fenske
- Institute of Neurophysiology, Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Eduardo Sandoval
- Department of Cell Biology, Johns Hopkins University, Baltimore, MD 21205, USA
| | - Kie Itoh
- Department of Cell Biology, Johns Hopkins University, Baltimore, MD 21205, USA
| | - Eva-Maria Blumrich
- Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh, Scotland EH8 9XD, UK; The Muir Maxwell Epilepsy Centre, University of Edinburgh, Edinburgh, Scotland EH8 9XD, UK; Simons Initiatives for the Developing Brain, University of Edinburgh, Edinburgh, Scotland EH8 9XD, UK
| | - Hideaki T Matsubayashi
- Department of Cell Biology, Johns Hopkins University, Baltimore, MD 21205, USA; The Center for Cell Dynamics, Johns Hopkins University, Baltimore, MD 21205, USA
| | - Lauren Mamer
- Institute of Neurophysiology, Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Fereshteh Zarebidaki
- Institute of Neurophysiology, Charité Universitätsmedizin Berlin, Berlin, Germany
| | | | - Thorsten Trimbuch
- Institute of Neurophysiology, Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Shraddha Nayak
- Department of Biochemistry, University of Utah, Salt Lake City, UT 84112-0840, USA
| | - Janet H Iwasa
- Department of Biochemistry, University of Utah, Salt Lake City, UT 84112-0840, USA
| | - Jian Liu
- Department of Cell Biology, Johns Hopkins University, Baltimore, MD 21205, USA; Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh, Scotland EH8 9XD, UK
| | - Bin Wu
- The Center for Cell Dynamics, Johns Hopkins University, Baltimore, MD 21205, USA; Solomon H. Snyder Department of Neuroscience, Johns Hopkins University, Baltimore, MD 21205, USA; Department of Biophysics and Biophysical Chemistry, Johns Hopkins University, Baltimore, MD 21205, USA
| | - Taekjip Ha
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD 21205, USA; Department of Biophysics and Biophysical Chemistry, Johns Hopkins University, Baltimore, MD 21205, USA; Howard Hughes Medical Institute, Baltimore, MD 21205, USA
| | - Takanari Inoue
- Department of Cell Biology, Johns Hopkins University, Baltimore, MD 21205, USA; The Center for Cell Dynamics, Johns Hopkins University, Baltimore, MD 21205, USA
| | - Erik M Jorgensen
- HHMI, Department of Biology, University of Utah, Salt Lake City, UT 84112-0840, USA
| | - Michael A Cousin
- Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh, Scotland EH8 9XD, UK; The Muir Maxwell Epilepsy Centre, University of Edinburgh, Edinburgh, Scotland EH8 9XD, UK; Simons Initiatives for the Developing Brain, University of Edinburgh, Edinburgh, Scotland EH8 9XD, UK
| | - Christian Rosenmund
- Institute of Neurophysiology, Charité Universitätsmedizin Berlin, Berlin, Germany.
| | - Shigeki Watanabe
- Department of Cell Biology, Johns Hopkins University, Baltimore, MD 21205, USA; The Center for Cell Dynamics, Johns Hopkins University, Baltimore, MD 21205, USA; Solomon H. Snyder Department of Neuroscience, Johns Hopkins University, Baltimore, MD 21205, USA.
| |
Collapse
|
25
|
Smith SM, Smith CJ. Capturing the mechanics of clathrin-mediated endocytosis. Curr Opin Struct Biol 2022; 75:102427. [PMID: 35872561 DOI: 10.1016/j.sbi.2022.102427] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 06/13/2022] [Accepted: 06/16/2022] [Indexed: 02/01/2023]
Abstract
Clathrin-mediated endocytosis enables selective uptake of molecules into cells in response to changing cellular needs. It occurs through assembly of coat components around the plasma membrane that determine vesicle contents and facilitate membrane bending to form a clathrin-coated transport vesicle. In this review we discuss recent cryo-electron microscopy structures that have captured a series of events in the life cycle of a clathrin-coated vesicle. Both single particle analysis and tomography approaches have revealed details of the clathrin lattice structure itself, how AP2 may interface with clathrin within a coated vesicle and the importance of PIP2 binding for assembly of the yeast adaptors Sla2 and Ent1 on the membrane. Within cells, cryo-electron tomography of clathrin in flat lattices and high-speed AFM studies provided new insights into how clathrin morphology can adapt during CCV formation. Thus, key mechanical processes driving clathrin-mediated endocytosis have been captured through multiple techniques working in partnership.
Collapse
Affiliation(s)
- Sarah M Smith
- School of Life Sciences, University of Warwick, Coventry, UK
| | - Corinne J Smith
- School of Life Sciences, University of Warwick, Coventry, UK.
| |
Collapse
|
26
|
Serwas D, Akamatsu M, Moayed A, Vegesna K, Vasan R, Hill JM, Schöneberg J, Davies KM, Rangamani P, Drubin DG. Mechanistic insights into actin force generation during vesicle formation from cryo-electron tomography. Dev Cell 2022; 57:1132-1145.e5. [PMID: 35504288 PMCID: PMC9165722 DOI: 10.1016/j.devcel.2022.04.012] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Revised: 01/18/2022] [Accepted: 04/07/2022] [Indexed: 01/26/2023]
Abstract
Actin assembly provides force for a multitude of cellular processes. Compared to actin-assembly-based force production during cell migration, relatively little is understood about how actin assembly generates pulling forces for vesicle formation. Here, cryo-electron tomography identified actin filament number, organization, and orientation during clathrin-mediated endocytosis in human SK-MEL-2 cells, showing that force generation is robust despite variance in network organization. Actin dynamics simulations incorporating a measured branch angle indicate that sufficient force to drive membrane internalization is generated through polymerization and that assembly is triggered from ∼4 founding "mother" filaments, consistent with tomography data. Hip1R actin filament anchoring points are present along the entire endocytic invagination, where simulations show that it is key to pulling force generation, and along the neck, where it targets filament growth and makes internalization more robust. Actin organization described here allowed direct translation of structure to mechanism with broad implications for other actin-driven processes.
Collapse
Affiliation(s)
- Daniel Serwas
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA, USA.
| | - Matthew Akamatsu
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA, USA
| | - Amir Moayed
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA, USA
| | - Karthik Vegesna
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA, USA
| | - Ritvik Vasan
- Department of Mechanical and Aerospace Engineering, University of California, San Diego, La Jolla, CA, USA
| | - Jennifer M Hill
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA, USA
| | - Johannes Schöneberg
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA, USA
| | - Karen M Davies
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA, USA; Molecular Biophysics and Integrative Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Padmini Rangamani
- Department of Mechanical and Aerospace Engineering, University of California, San Diego, La Jolla, CA, USA
| | - David G Drubin
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA, USA.
| |
Collapse
|
27
|
Nawara TJ, Williams YD, Rao TC, Hu Y, Sztul E, Salaita K, Mattheyses AL. Imaging vesicle formation dynamics supports the flexible model of clathrin-mediated endocytosis. Nat Commun 2022; 13:1732. [PMID: 35365614 PMCID: PMC8976038 DOI: 10.1038/s41467-022-29317-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Accepted: 02/24/2022] [Indexed: 12/11/2022] Open
Abstract
Clathrin polymerization and changes in plasma membrane architecture are necessary steps in forming vesicles to internalize cargo during clathrin-mediated endocytosis (CME). Simultaneous analysis of clathrin dynamics and membrane structure is challenging due to the limited axial resolution of fluorescence microscopes and the heterogeneity of CME. This has fueled conflicting models of vesicle assembly and obscured the roles of flat clathrin assemblies. Here, using Simultaneous Two-wavelength Axial Ratiometry (STAR) microscopy, we bridge this critical knowledge gap by quantifying the nanoscale dynamics of clathrin-coat shape change during vesicle assembly. We find that de novo clathrin accumulations generate both flat and curved structures. High-throughput analysis reveals that the initiation of vesicle curvature does not directly correlate with clathrin accumulation. We show clathrin accumulation is preferentially simultaneous with curvature formation at shorter-lived clathrin-coated vesicles (CCVs), but favors a flat-to-curved transition at longer-lived CCVs. The broad spectrum of curvature initiation dynamics revealed by STAR microscopy supports multiple productive mechanisms of vesicle formation and advocates for the flexible model of CME. Despite decades of research, the dynamics of clathrin-coated vesicle formation is ambiguous. Here, authors use STAR microscopy to quantify the nanoscale dynamics of vesicle formation, supporting the flexible model of clathrin-mediated endocytosis.
Collapse
Affiliation(s)
- Tomasz J Nawara
- Department of Cell, Developmental, and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Yancey D Williams
- Department of Cell, Developmental, and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Tejeshwar C Rao
- Department of Cell, Developmental, and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Yuesong Hu
- Department of Chemistry, Emory University, Atlanta, GA, USA
| | - Elizabeth Sztul
- Department of Cell, Developmental, and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Khalid Salaita
- Department of Chemistry, Emory University, Atlanta, GA, USA
| | - Alexa L Mattheyses
- Department of Cell, Developmental, and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL, USA.
| |
Collapse
|
28
|
Ma R, Štefl M, Nienhaus GU. Single molecule localization-based analysis of clathrin-coated pit and caveolar dynamics. NANOSCALE HORIZONS 2022; 7:385-395. [PMID: 35289830 DOI: 10.1039/d2nh00008c] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Clathrin-coated pits and caveolae are nanoscale invaginations of the plasma membrane of cells, forming through the assembly of membrane coat and accessory proteins in a tightly regulated process. We have analyzed the development of these membrane coat structures with high spatial and temporal resolution and sensitivity using super-resolution single-molecule localization microscopy (SMLM) on live cells. To this end, we developed a sophisticated clustering and data analysis workflow that automatically extracts the relevant information from SMLM image sequences taken on live cells. We quantified lifetime distributions of clathrin-coated and caveolar structures, and analyzed their growth dynamics. Moreover, we observed hotspots in the plasma membrane where coat structures appear repeatedly. The stunningly similar temporal development of clathrin-coated and caveolar structures suggests that key accessory proteins, some of which are shared between the two types of membrane coat structures, orchestrate the temporal evolution of these complex architectures.
Collapse
Affiliation(s)
- Rui Ma
- Institute of Applied Physics (APH), Karlsruhe Institute of Technology (KIT), Wolfgang Gaede-Strasse 1, 76131 Karlsruhe, Germany.
| | - Martin Štefl
- Institute of Applied Physics (APH), Karlsruhe Institute of Technology (KIT), Wolfgang Gaede-Strasse 1, 76131 Karlsruhe, Germany.
| | - Gerd Ulrich Nienhaus
- Institute of Applied Physics (APH), Karlsruhe Institute of Technology (KIT), Wolfgang Gaede-Strasse 1, 76131 Karlsruhe, Germany.
- Institute of Nanotechnology (INT), Karlsruhe Institute of Technology (KIT), PO Box 3640, 76021 Karlsruhe, Germany
- Institute of Biological and Chemical Systems (IBCS), Karlsruhe Institute of Technology (KIT), PO Box 3640, 76021 Karlsruhe, Germany
- Department of Physics, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| |
Collapse
|
29
|
Mehrani A, Stagg SM. Probing intracellular vesicle trafficking and membrane remodelling by cryo-EM. J Struct Biol 2022; 214:107836. [PMID: 35101600 PMCID: PMC8923612 DOI: 10.1016/j.jsb.2022.107836] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 01/07/2022] [Accepted: 01/24/2022] [Indexed: 11/25/2022]
Abstract
Protein transport between the membranous compartments of the eukaryotic cells is mediated by the constant fission and fusion of the membrane-bounded vesicles from a donor to an acceptor membrane. While there are many membrane remodelling complexes in eukaryotes, COPII, COPI, and clathrin-coated vesicles are the three principal classes of coat protein complexes that participate in vesicle trafficking in the endocytic and secretory pathways. These vesicle-coat proteins perform two key functions: deforming lipid bilayers into vesicles and encasing selective cargoes. The three trafficking complexes share some commonalities in their structural features but differ in their coat structures, mechanisms of cargo sorting, vesicle formation, and scission. While the structures of many of the proteins involved in vesicle formation have been determined in isolation by X-ray crystallography, elucidating the proteins' structures together with the membrane is better suited for cryogenic electron microscopy (cryo-EM). In recent years, advances in cryo-EM have led to solving the structures and mechanisms of several vesicle trafficking complexes and associated proteins.
Collapse
Affiliation(s)
- Atousa Mehrani
- Department of Chemistry and Biochemistry, Florida State University
| | - Scott M. Stagg
- Department of Biological Sciences, Florida State University,Institute of Molecular Biophysics, Florida State University
| |
Collapse
|
30
|
Sych T, Levental KR, Sezgin E. Lipid–Protein Interactions in Plasma Membrane Organization and Function. Annu Rev Biophys 2022; 51:135-156. [DOI: 10.1146/annurev-biophys-090721-072718] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Lipid–protein interactions in cells are involved in various biological processes, including metabolism, trafficking, signaling, host–pathogen interactions, and transmembrane transport. At the plasma membrane, lipid–protein interactions play major roles in membrane organization and function. Several membrane proteins have motifs for specific lipid binding, which modulate protein conformation and consequent function. In addition to such specific lipid–protein interactions, protein function can be regulated by the dynamic, collective behavior of lipids in membranes. Emerging analytical, biochemical, and computational technologies allow us to study the influence of specific lipid–protein interactions, as well as the collective behavior of membranes on protein function. In this article, we review the recent literature on lipid–protein interactions with a specific focus on the current state-of-the-art technologies that enable novel insights into these interactions. Expected final online publication date for the Annual Review of Biophysics, Volume 51 is May 2022. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Collapse
Affiliation(s)
- Taras Sych
- Science for Life Laboratory, Department of Women's and Children's Health, Karolinska Institutet, Solna, Sweden;,
| | - Kandice R. Levental
- Department of Molecular Physiology and Biological Physics, Center for Membrane and Cell Physiology, University of Virginia, Charlottesville, Virginia, USA
| | - Erdinc Sezgin
- Science for Life Laboratory, Department of Women's and Children's Health, Karolinska Institutet, Solna, Sweden;,
- MRC Human Immunology Unit, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
31
|
Das J, Tiwari M, Subramanyam D. Clathrin Light Chains: Not to Be Taken so Lightly. Front Cell Dev Biol 2022; 9:774587. [PMID: 34970544 PMCID: PMC8712872 DOI: 10.3389/fcell.2021.774587] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2021] [Accepted: 11/12/2021] [Indexed: 01/31/2023] Open
Abstract
Clathrin is a cytosolic protein involved in the intracellular trafficking of a wide range of cargo. It is composed of three heavy chains and three light chains that together form a triskelion, the subunit that polymerizes to form a clathrin coated vesicle. In addition to its role in membrane trafficking, clathrin is also involved in various cellular and biological processes such as chromosomal segregation during mitosis and organelle biogenesis. Although the role of the heavy chains in regulating important physiological processes has been well documented, we still lack a complete understanding of how clathrin light chains regulate membrane traffic and cell signaling. This review highlights the importance and contributions of clathrin light chains in regulating clathrin assembly, vesicle formation, endocytosis of selective receptors and physiological and developmental processes.
Collapse
Affiliation(s)
- Jyoti Das
- National Centre for Cell Science, Pune, India.,Savitribai Phule Pune University, Pune, India
| | - Mahak Tiwari
- National Centre for Cell Science, Pune, India.,Savitribai Phule Pune University, Pune, India
| | | |
Collapse
|
32
|
Smith SM, Larocque G, Wood KM, Morris KL, Roseman AM, Sessions RB, Royle SJ, Smith CJ. Multi-modal adaptor-clathrin contacts drive coated vesicle assembly. EMBO J 2021; 40:e108795. [PMID: 34487371 PMCID: PMC8488560 DOI: 10.15252/embj.2021108795] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2021] [Revised: 07/30/2021] [Accepted: 08/03/2021] [Indexed: 12/17/2022] Open
Abstract
Clathrin‐coated pits are formed by the recognition of membrane and cargo by the AP2 complex and the subsequent recruitment of clathrin triskelia. A role for AP2 in coated‐pit assembly beyond initial clathrin recruitment has not been explored. Clathrin binds the β2 subunit of AP2, and several binding sites have been identified, but our structural knowledge of these interactions is incomplete and their functional importance during endocytosis is unclear. Here, we analysed the cryo‐EM structure of clathrin cages assembled in the presence of β2 hinge‐appendage (β2HA). We find that the β2‐appendage binds in at least two positions in the cage, demonstrating that multi‐modal binding is a fundamental property of clathrin‐AP2 interactions. In one position, β2‐appendage cross‐links two adjacent terminal domains from different triskelia. Functional analysis of β2HA‐clathrin interactions reveals that endocytosis requires two clathrin interaction sites: a clathrin‐box motif on the hinge and the “sandwich site” on the appendage. We propose that β2‐appendage binding to more than one triskelion is a key feature of the system and likely explains why assembly is driven by AP2.
Collapse
Affiliation(s)
- Sarah M Smith
- School of Life Sciences, University of Warwick, Coventry, UK
| | - Gabrielle Larocque
- Centre for Mechanochemical Cell Biology, Warwick Medical School, University of Warwick, Coventry, UK
| | | | - Kyle L Morris
- School of Life Sciences, University of Warwick, Coventry, UK
| | - Alan M Roseman
- Division of Molecular and Cellular Function, School of Biological Sciences, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, University of Manchester, Manchester, UK
| | | | - Stephen J Royle
- Centre for Mechanochemical Cell Biology, Warwick Medical School, University of Warwick, Coventry, UK
| | - Corinne J Smith
- School of Life Sciences, University of Warwick, Coventry, UK
| |
Collapse
|
33
|
Hiratsuka R, Terasaka O. Dynamics of Cell Membrane and Cell Wall Development during Generative Cell Engulfment by the Pollen Tube Cell in Liriope muscari. CYTOLOGIA 2021. [DOI: 10.1508/cytologia.86.225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Affiliation(s)
- Rie Hiratsuka
- Division of Biology, Department of Natural Science, The Jikei University School of Medicine
| | - Osamu Terasaka
- Division of Biology, Department of Natural Science, The Jikei University School of Medicine
| |
Collapse
|
34
|
Clathrin: the molecular shape shifter. Biochem J 2021; 478:3099-3123. [PMID: 34436540 DOI: 10.1042/bcj20200740] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Revised: 07/19/2021] [Accepted: 08/04/2021] [Indexed: 12/11/2022]
Abstract
Clathrin is best known for its contribution to clathrin-mediated endocytosis yet it also participates to a diverse range of cellular functions. Key to this is clathrin's ability to assemble into polyhedral lattices that include curved football or basket shapes, flat lattices or even tubular structures. In this review, we discuss clathrin structure and coated vesicle formation, how clathrin is utilised within different cellular processes including synaptic vesicle recycling, hormone desensitisation, spermiogenesis, cell migration and mitosis, and how clathrin's remarkable 'shapeshifting' ability to form diverse lattice structures might contribute to its multiple cellular functions.
Collapse
|
35
|
Tagiltsev G, Haselwandter CA, Scheuring S. Nanodissected elastically loaded clathrin lattices relax to increased curvature. SCIENCE ADVANCES 2021; 7:7/33/eabg9934. [PMID: 34389539 PMCID: PMC8363152 DOI: 10.1126/sciadv.abg9934] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Accepted: 06/24/2021] [Indexed: 06/13/2023]
Abstract
Clathrin-mediated endocytosis (CME) is the major endocytosis pathway for the specific internalization of large compounds, growth factors, and receptors. Formation of internalized vesicles from the flat plasma membrane is accompanied by maturation of cytoplasmic clathrin coats. How clathrin coats mature and the mechanistic role of clathrin coats are still largely unknown. Maturation models proposed clathrin coats to mature at constant radius or constant area, driven by molecular actions or elastic energy. Here, combining high-speed atomic force microscopy (HS-AFM) imaging, HS-AFM nanodissection, and elasticity theory, we show that clathrin lattices deviating from the intrinsic curvature of clathrin form elastically loaded assemblies. Upon nanodissection of the clathrin network, the stored elastic energy in these lattices drives lattice relaxation to accommodate an ideal area-curvature ratio toward the formation of closed clathrin-coated vesicles. Our work supports that the release of elastic energy stored in curvature-frustrated clathrin lattices could play a major role in CME.
Collapse
Affiliation(s)
- Grigory Tagiltsev
- Department of Anesthesiology, Weill Cornell Medicine, 1300 York Avenue, New York, NY 10065, USA
- Department of Physiology and Biophysics, Weill Cornell Medicine, 1300 York Avenue, New York, NY 10065, USA
| | - Christoph A Haselwandter
- Department of Physics and Astronomy, University of Southern California, Los Angeles, CA 90089, USA
- Department of Quantitative and Computational Biology, University of Southern California, Los Angeles, CA 90089, USA
| | - Simon Scheuring
- Department of Anesthesiology, Weill Cornell Medicine, 1300 York Avenue, New York, NY 10065, USA.
- Department of Physiology and Biophysics, Weill Cornell Medicine, 1300 York Avenue, New York, NY 10065, USA
| |
Collapse
|
36
|
Size, geometry and mobility of protein assemblage regulate the kinetics of membrane wrapping on nanoparticles. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2021.115990] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
37
|
Redlingshöfer L, Brodsky FM. Antagonistic regulation controls clathrin-mediated endocytosis: AP2 adaptor facilitation vs restraint from clathrin light chains. Cells Dev 2021; 168:203714. [PMID: 34182181 DOI: 10.1016/j.cdev.2021.203714] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 06/11/2021] [Accepted: 06/21/2021] [Indexed: 02/02/2023]
Abstract
Orchestration of a complex network of protein interactions drives clathrin-mediated endocytosis (CME). A central role for the AP2 adaptor complex beyond cargo recognition and clathrin recruitment has emerged in recent years. It is now apparent that AP2 serves as a pivotal hub for protein interactions to mediate clathrin coated pit maturation, and couples lattice formation to membrane deformation. As a key driver for clathrin assembly, AP2 complements the attenuating role of clathrin light chain subunits, which enable dynamic lattice rearrangement needed for budding. This review summarises recent insights into AP2 function with respect to CME dynamics and biophysics, and its relationship to the role of clathrin light chains in clathrin assembly.
Collapse
Affiliation(s)
- Lisa Redlingshöfer
- Research Department of Structural and Molecular Biology, Division of Biosciences, University College London, Gower Street, London WC1E 6BT, United Kingdom; Institute for Structural and Molecular Biology, Birkbeck and University College London, London WC1E 7HX, United Kingdom.
| | - Frances M Brodsky
- Research Department of Structural and Molecular Biology, Division of Biosciences, University College London, Gower Street, London WC1E 6BT, United Kingdom; Institute for Structural and Molecular Biology, Birkbeck and University College London, London WC1E 7HX, United Kingdom.
| |
Collapse
|
38
|
Lizarrondo J, Klebl DP, Niebling S, Abella M, Schroer MA, Mertens HDT, Veith K, Thuenauer R, Svergun DI, Skruzny M, Sobott F, Muench SP, Garcia-Alai MM. Structure of the endocytic adaptor complex reveals the basis for efficient membrane anchoring during clathrin-mediated endocytosis. Nat Commun 2021; 12:2889. [PMID: 34001871 PMCID: PMC8129110 DOI: 10.1038/s41467-021-23151-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Accepted: 04/13/2021] [Indexed: 12/13/2022] Open
Abstract
During clathrin-mediated endocytosis, a complex and dynamic network of protein-membrane interactions cooperate to achieve membrane invagination. Throughout this process in yeast, endocytic coat adaptors, Sla2 and Ent1, must remain attached to the plasma membrane to transmit force from the actin cytoskeleton required for successful membrane invagination. Here, we present a cryo-EM structure of a 16-mer complex of the ANTH and ENTH membrane-binding domains from Sla2 and Ent1 bound to PIP2 that constitutes the anchor to the plasma membrane. Detailed in vitro and in vivo mutagenesis of the complex interfaces delineate the key interactions for complex formation and deficient cell growth phenotypes demonstrate its biological relevance. A hetero-tetrameric unit binds PIP2 molecules at the ANTH-ENTH interfaces and can form larger assemblies to contribute to membrane remodeling. Finally, a time-resolved small-angle X-ray scattering study of the interaction of these adaptor domains in vitro suggests that ANTH and ENTH domains have evolved to achieve a fast subsecond timescale assembly in the presence of PIP2 and do not require further proteins to form a stable complex. Together, these findings provide a molecular understanding of an essential piece in the molecular puzzle of clathrin-coated endocytic sites.
Collapse
Affiliation(s)
- Javier Lizarrondo
- European Molecular Biology Laboratory, Hamburg Outstation, Hamburg, Germany
| | - David P Klebl
- School of Biomedical Sciences, Faculty of Biological Sciences and Astbury Centre for Structural and Molecular Biology, University of Leeds, Leeds, UK
| | - Stephan Niebling
- European Molecular Biology Laboratory, Hamburg Outstation, Hamburg, Germany
| | - Marc Abella
- Department of Systems and Synthetic Microbiology, Max Planck Institute for Terrestrial Microbiology and LOEWE Center for Synthetic Microbiology (SYNMIKRO), Marburg, Germany
| | - Martin A Schroer
- European Molecular Biology Laboratory, Hamburg Outstation, Hamburg, Germany
| | - Haydyn D T Mertens
- European Molecular Biology Laboratory, Hamburg Outstation, Hamburg, Germany
| | - Katharina Veith
- European Molecular Biology Laboratory, Hamburg Outstation, Hamburg, Germany
| | - Roland Thuenauer
- Technology Platform Microscopy and Image Analysis, Heinrich Pette Institute, Leibniz Institute for Experimental Virology, Hamburg, Germany
| | - Dmitri I Svergun
- European Molecular Biology Laboratory, Hamburg Outstation, Hamburg, Germany
| | - Michal Skruzny
- Department of Systems and Synthetic Microbiology, Max Planck Institute for Terrestrial Microbiology and LOEWE Center for Synthetic Microbiology (SYNMIKRO), Marburg, Germany
| | - Frank Sobott
- School of Molecular and Cellular Biology, Faculty of Biological Sciences and Astbury Centre for Structural and Molecular Biology, University of Leeds, Leeds, UK.,Department of Chemistry, Biomolecular and Analytical Mass Spectrometry group, University of Antwerp, Antwerp, Belgium
| | - Stephen P Muench
- School of Biomedical Sciences, Faculty of Biological Sciences and Astbury Centre for Structural and Molecular Biology, University of Leeds, Leeds, UK
| | - Maria M Garcia-Alai
- European Molecular Biology Laboratory, Hamburg Outstation, Hamburg, Germany. .,Centre for Structural Systems Biology, Hamburg, Germany.
| |
Collapse
|
39
|
Sochacki KA, Heine BL, Haber GJ, Jimah JR, Prasai B, Alfonzo-Méndez MA, Roberts AD, Somasundaram A, Hinshaw JE, Taraska JW. The structure and spontaneous curvature of clathrin lattices at the plasma membrane. Dev Cell 2021; 56:1131-1146.e3. [PMID: 33823128 PMCID: PMC8081270 DOI: 10.1016/j.devcel.2021.03.017] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Revised: 01/19/2021] [Accepted: 03/11/2021] [Indexed: 01/10/2023]
Abstract
Clathrin-mediated endocytosis is the primary pathway for receptor and cargo internalization in eukaryotic cells. It is characterized by a polyhedral clathrin lattice that coats budding membranes. The mechanism and control of lattice assembly, curvature, and vesicle formation at the plasma membrane has been a matter of long-standing debate. Here, we use platinum replica and cryoelectron microscopy and tomography to present a structural framework of the pathway. We determine the shape and size parameters common to clathrin-mediated endocytosis. We show that clathrin sites maintain a constant surface area during curvature across multiple cell lines. Flat clathrin is present in all cells and spontaneously curves into coated pits without additional energy sources or recruited factors. Finally, we attribute curvature generation to loosely connected and pentagon-containing flat lattices that can rapidly curve when a flattening force is released. Together, these data present a universal mechanistic model of clathrin-mediated endocytosis.
Collapse
Affiliation(s)
- Kem A Sochacki
- Biochemistry and Biophysics Center, National Heart Lung and Blood Institute, National Institutes of Health, Bethesda, MD, USA.
| | - Bridgette L Heine
- Biochemistry and Biophysics Center, National Heart Lung and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Gideon J Haber
- Biochemistry and Biophysics Center, National Heart Lung and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - John R Jimah
- Laboratory of Cell and Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Bijeta Prasai
- Biochemistry and Biophysics Center, National Heart Lung and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Marco A Alfonzo-Méndez
- Biochemistry and Biophysics Center, National Heart Lung and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Aleah D Roberts
- Biochemistry and Biophysics Center, National Heart Lung and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Agila Somasundaram
- Biochemistry and Biophysics Center, National Heart Lung and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Jenny E Hinshaw
- Laboratory of Cell and Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Justin W Taraska
- Biochemistry and Biophysics Center, National Heart Lung and Blood Institute, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
40
|
Wu M, Wu X. A kinetic view of clathrin assembly and endocytic cargo sorting. Curr Opin Cell Biol 2021; 71:130-138. [PMID: 33865229 DOI: 10.1016/j.ceb.2021.02.010] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2020] [Revised: 02/10/2021] [Accepted: 02/12/2021] [Indexed: 01/30/2023]
Abstract
Specificity and sensitivity in biochemical reactions can be achieved through regulation of equilibrium binding affinity or through proofreading mechanisms that allow for the dissociation of unwanted intermediates. In this essay, we aim to provide our perspectives on how the concept of kinetic proofreading might apply in the context of cargo sorting in clathrin-mediated endocytosis.
Collapse
Affiliation(s)
- Min Wu
- Department of Cell Biology, Yale University School of Medicine, 333 Cedar Street, New Haven, CT, 06520-8002, USA.
| | - Xudong Wu
- Howard Hughes Medical Institute and Department of Cell Biology, Harvard Medical School, 240 Longwood Avenue, Boston, MA, 02115, USA
| |
Collapse
|
41
|
Find your coat: Using correlative light and electron microscopy to study intracellular protein coats. Curr Opin Cell Biol 2021; 71:21-28. [PMID: 33684808 DOI: 10.1016/j.ceb.2021.01.013] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Revised: 01/27/2021] [Accepted: 01/30/2021] [Indexed: 12/14/2022]
Abstract
Protein coats, important for vesicular trafficking in eukaryotic cells, help shape membranes and package cargo. But their dynamic construction cannot be fully understood until the distinct steps of their assembly in their native intracellular context at molecular resolution can be visualized. For this, correlative light and electron microscopy (CLEM) is an essential tool. Here, we discuss how emerging CLEM techniques have been used to study the assembly of protein coats inside cells. We review how current and developing CLEM technologies are poised to answer fundamental questions of protein coat architecture at the nanoscale.
Collapse
|
42
|
Clathrin senses membrane curvature. Biophys J 2021; 120:818-828. [PMID: 33524373 DOI: 10.1016/j.bpj.2020.12.035] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Revised: 11/23/2020] [Accepted: 12/07/2020] [Indexed: 11/21/2022] Open
Abstract
The ability of proteins to assemble at sites of high membrane curvature is essential to diverse membrane remodeling processes, including clathrin-mediated endocytosis. Multiple adaptor proteins within the clathrin pathway have been shown to sense regions of high membrane curvature, leading to local recruitment of the clathrin coat. Because clathrin triskelia do not bind to the membrane directly, it has remained unclear whether the clathrin coat plays an active role in sensing membrane curvature or is passively recruited by adaptor proteins. Using a synthetic tag to assemble clathrin directly on membrane surfaces, here we show that clathrin is a strong sensor of membrane curvature, comparable with previously studied adaptor proteins. Interestingly, this sensitivity arises from clathrin assembly rather than from the properties of unassembled triskelia, suggesting that triskelia have preferred angles of interaction, as predicted by earlier structural data. Furthermore, when clathrin is recruited by adaptors, its curvature sensitivity is amplified by 2- to 10-fold, such that the resulting protein complex is up to 100 times more likely to assemble on a highly curved surface compared with a flatter one. This exquisite sensitivity points to a synergistic relationship between the coat and its adaptor proteins, which enables clathrin to pinpoint sites of high membrane curvature, an essential step in ensuring robust membrane traffic. More broadly, these findings suggest that protein networks, rather than individual protein domains, are likely the most potent drivers of membrane curvature sensing.
Collapse
|
43
|
Clathrin light chain diversity regulates membrane deformation in vitro and synaptic vesicle formation in vivo. Proc Natl Acad Sci U S A 2020; 117:23527-23538. [PMID: 32907943 PMCID: PMC7519287 DOI: 10.1073/pnas.2003662117] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
This study reveals that diversity of clathrin light chain (CLC) subunits alters clathrin properties and demonstrates that the two neuronal CLC subunits work together for optimal clathrin function in synaptic vesicle formation. Our findings establish a role for CLC diversity in synaptic transmission and illustrate how CLC variability expands the complexity of clathrin to serve tissue-specific functions. Clathrin light chain (CLC) subunits in vertebrates are encoded by paralogous genes CLTA and CLTB, and both gene products are alternatively spliced in neurons. To understand how this CLC diversity influences neuronal clathrin function, we characterized the biophysical properties of clathrin comprising individual CLC variants for correlation with neuronal phenotypes of mice lacking either CLC-encoding gene. CLC splice variants differentially influenced clathrin knee conformation within assemblies, and clathrin with neuronal CLC mixtures was more effective in membrane deformation than clathrin with single neuronal isoforms nCLCa or nCLCb. Correspondingly, electrophysiological recordings revealed that neurons from mice lacking nCLCa or nCLCb were both defective in synaptic vesicle replenishment. Mice with only nCLCb had a reduced synaptic vesicle pool and impaired neurotransmission compared to WT mice, while nCLCa-only mice had increased synaptic vesicle numbers, restoring normal neurotransmission. These findings highlight differences between the CLC isoforms and show that isoform mixing influences tissue-specific clathrin activity in neurons, which requires their functional balance.
Collapse
|
44
|
Briant K, Redlingshöfer L, Brodsky FM. Clathrin's life beyond 40: Connecting biochemistry with physiology and disease. Curr Opin Cell Biol 2020; 65:141-149. [PMID: 32836101 DOI: 10.1016/j.ceb.2020.06.004] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 06/23/2020] [Accepted: 06/27/2020] [Indexed: 01/21/2023]
Abstract
Understanding of the range and mechanisms of clathrin functions has developed exponentially since clathrin's discovery in 1975. Here, newly established molecular mechanisms that regulate clathrin activity and connect clathrin pathways to differentiation, disease and physiological processes such as glucose metabolism are reviewed. Diversity and commonalities of clathrin pathways across the tree of life reveal species-specific differences enabling functional plasticity in both membrane traffic and cytokinesis. New structural information on clathrin coat formation and cargo interactions emphasises the interplay between clathrin, adaptor proteins, lipids and cargo, and how this interplay regulates quality control of clathrin's function and is compromised in infection and neurological disease. Roles for balancing clathrin-mediated cargo transport are defined in stem cell development and additional disease states.
Collapse
Affiliation(s)
- Kit Briant
- Research Department of Structural and Molecular Biology, Division of Biosciences, University College London, Gower Street, London WC1E 6BT, UK; Institute of Structural and Molecular Biology, Birkbeck and University College London, 14 Malet Street, London WC1E 7HX, UK
| | - Lisa Redlingshöfer
- Research Department of Structural and Molecular Biology, Division of Biosciences, University College London, Gower Street, London WC1E 6BT, UK; Institute of Structural and Molecular Biology, Birkbeck and University College London, 14 Malet Street, London WC1E 7HX, UK
| | - Frances M Brodsky
- Research Department of Structural and Molecular Biology, Division of Biosciences, University College London, Gower Street, London WC1E 6BT, UK; Institute of Structural and Molecular Biology, Birkbeck and University College London, 14 Malet Street, London WC1E 7HX, UK.
| |
Collapse
|
45
|
Kovtun O, Dickson VK, Kelly BT, Owen DJ, Briggs JAG. Architecture of the AP2/clathrin coat on the membranes of clathrin-coated vesicles. SCIENCE ADVANCES 2020; 6:eaba8381. [PMID: 32743075 PMCID: PMC7375805 DOI: 10.1126/sciadv.aba8381] [Citation(s) in RCA: 67] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Accepted: 04/17/2020] [Indexed: 05/19/2023]
Abstract
Clathrin-mediated endocytosis (CME) is crucial for modulating the protein composition of a cell's plasma membrane. Clathrin forms a cage-like, polyhedral outer scaffold around a vesicle, to which cargo-selecting clathrin adaptors are attached. Adaptor protein complex (AP2) is the key adaptor in CME. Crystallography has shown AP2 to adopt a range of conformations. Here, we used cryo-electron microscopy, tomography, and subtomogram averaging to determine structures, interactions, and arrangements of clathrin and AP2 at the key steps of coat assembly, from AP2 in solution to membrane-assembled clathrin-coated vesicles (CCVs). AP2 binds cargo and PtdIns(4,5)P 2 (phosphatidylinositol 4,5-bisphosphate)-containing membranes via multiple interfaces, undergoing conformational rearrangement from its cytosolic state. The binding mode of AP2 β2 appendage into the clathrin lattice in CCVs and buds implies how the adaptor structurally modulates coat curvature and coat disassembly.
Collapse
Affiliation(s)
- Oleksiy Kovtun
- MRC Laboratory of Molecular Biology, Cambridge Biomedical Campus, Cambridge CB2 0QH, UK
- Structural and Computational Biology Unit, European Molecular Biology Laboratory, 69117 Heidelberg , Germany
| | - Veronica Kane Dickson
- Cambridge Institute for Medical Research, University of Cambridge, Hills Road, Cambridge CB2 0XY, UK
| | - Bernard T. Kelly
- Cambridge Institute for Medical Research, University of Cambridge, Hills Road, Cambridge CB2 0XY, UK
- Corresponding author. (B.T.K.); (D.J.O.); (J.A.G.B.)
| | - David J. Owen
- Cambridge Institute for Medical Research, University of Cambridge, Hills Road, Cambridge CB2 0XY, UK
- Corresponding author. (B.T.K.); (D.J.O.); (J.A.G.B.)
| | - John A. G. Briggs
- MRC Laboratory of Molecular Biology, Cambridge Biomedical Campus, Cambridge CB2 0QH, UK
- Structural and Computational Biology Unit, European Molecular Biology Laboratory, 69117 Heidelberg , Germany
- Corresponding author. (B.T.K.); (D.J.O.); (J.A.G.B.)
| |
Collapse
|
46
|
Paraan M, Mendez J, Sharum S, Kurtin D, He H, Stagg SM. The structures of natively assembled clathrin-coated vesicles. SCIENCE ADVANCES 2020; 6:eaba8397. [PMID: 32743076 PMCID: PMC7375819 DOI: 10.1126/sciadv.aba8397] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Accepted: 06/05/2020] [Indexed: 05/19/2023]
Abstract
Clathrin-coated vesicles mediate trafficking of proteins and nutrients in the cell and between organelles. Proteins included in the clathrin-coated vesicles (CCVs) category include clathrin heavy chain (CHC), clathrin light chain (CLC), and a variety of adaptor protein complexes. Much is known about the structures of the individual CCV components, but data are lacking about the structures of the fully assembled complexes together with membrane and in complex with cargo. Here, we determined the structures of natively assembled CCVs in a variety of geometries. We show that the adaptor β2 appendages crosslink adjacent CHC β-propellers and that the appendage densities are enriched in CCV hexagonal faces. We resolve how adaptor protein 2 and other associated factors in hexagonal faces form an assembly hub with an extensive web of interactions between neighboring β-propellers and propose a structural model that explains how adaptor binding can direct the formation of pentagonal and hexagonal faces.
Collapse
Affiliation(s)
- Mohammadreza Paraan
- Institute of Molecular Biophysics, Florida State University, 91 Chieftan Way, Tallahassee, FL 32306, USA
| | - Joshua Mendez
- Department of Physics, Florida State University, 77 Chieftan Way, Tallahassee, FL 32306, USA
| | - Savanna Sharum
- Institute of Molecular Biophysics, Florida State University, 91 Chieftan Way, Tallahassee, FL 32306, USA
| | - Danielle Kurtin
- Institute of Molecular Biophysics, Florida State University, 91 Chieftan Way, Tallahassee, FL 32306, USA
| | - Huan He
- Institute of Molecular Biophysics, Florida State University, 91 Chieftan Way, Tallahassee, FL 32306, USA
| | - Scott M. Stagg
- Institute of Molecular Biophysics, Florida State University, 91 Chieftan Way, Tallahassee, FL 32306, USA
- Department of Chemistry and Biochemistry, Florida State University, 95 Chieftain Way, Tallahassee, FL 32306, USA
| |
Collapse
|
47
|
Abrishami V, Ilca SL, Gomez-Blanco J, Rissanen I, de la Rosa-Trevín JM, Reddy VS, Carazo JM, Huiskonen JT. Localized reconstruction in Scipion expedites the analysis of symmetry mismatches in cryo-EM data. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2020; 160:43-52. [PMID: 32470354 DOI: 10.1016/j.pbiomolbio.2020.05.004] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2020] [Revised: 05/14/2020] [Accepted: 05/16/2020] [Indexed: 01/10/2023]
Abstract
Technological advances in transmission electron microscopes and detectors have turned cryogenic electron microscopy (cryo-EM) into an essential tool for structural biology. A commonly used cryo-EM data analysis method, single particle analysis, averages hundreds of thousands of low-dose images of individual macromolecular complexes to determine a density map of the complex. The presence of symmetry in the complex is beneficial since each projection image can be assigned to multiple views of the complex. However, data processing that applies symmetry can average out asymmetric features and consequently data analysis methods are required to resolve asymmetric structural features. Scipion is a cryo-EM image processing framework that integrates functions from different image processing packages as plugins. To extend its functionality for handling symmetry mismatches, we present here a Scipion plugin termed LocalRec implementing the localized reconstruction method. When tested on an adenovirus data set, the plugin enables resolving the symmetry-mismatched trimeric fibre bound to the five-fold vertices of the capsid. Furthermore, it improves the structure determination of the icosahedral capsid by dealing with the defocus gradient across the particle. LocalRec is expected to be widely applicable in a range of cryo-EM investigations of flexible and symmetry mismatched complexes.
Collapse
Affiliation(s)
- Vahid Abrishami
- Institute of Biotechnology, Helsinki Institute of Life Science HiLIFE, University of Helsinki, 00014, Helsinki, Finland; Molecular and Integrative Biosciences Research Programme, Faculty of Biological and Environmental and Sciences, University of Helsinki, 00014, Helsinki, Finland
| | - Serban L Ilca
- Division of Structural Biology, Wellcome Centre for Human Genetics, University of Oxford, Roosevelt Drive, Oxford, OX3 7BN, UK
| | - Josue Gomez-Blanco
- Biocomputing Unit, National Center for Biotechnology (CSIC), Calle Darwin 3, Campus Universidad Autónoma de Madrid, Cantoblanco, 28049, Madrid, Spain; Current address: Department of Anatomy & Cell Biology, McGill University, 3640 University Street, Montreal, Quebec, H3A 0C7, Canada
| | - Ilona Rissanen
- Institute of Biotechnology, Helsinki Institute of Life Science HiLIFE, University of Helsinki, 00014, Helsinki, Finland; Molecular and Integrative Biosciences Research Programme, Faculty of Biological and Environmental and Sciences, University of Helsinki, 00014, Helsinki, Finland
| | | | - Vijay S Reddy
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, North Torrey Pines Road, La Jolla, 92037, CA, USA
| | - José-Maria Carazo
- Biocomputing Unit, National Center for Biotechnology (CSIC), Calle Darwin 3, Campus Universidad Autónoma de Madrid, Cantoblanco, 28049, Madrid, Spain
| | - Juha T Huiskonen
- Institute of Biotechnology, Helsinki Institute of Life Science HiLIFE, University of Helsinki, 00014, Helsinki, Finland; Molecular and Integrative Biosciences Research Programme, Faculty of Biological and Environmental and Sciences, University of Helsinki, 00014, Helsinki, Finland; Division of Structural Biology, Wellcome Centre for Human Genetics, University of Oxford, Roosevelt Drive, Oxford, OX3 7BN, UK.
| |
Collapse
|
48
|
Varga MJ, Fu Y, Loggia S, Yogurtcu ON, Johnson ME. NERDSS: A Nonequilibrium Simulator for Multibody Self-Assembly at the Cellular Scale. Biophys J 2020; 118:3026-3040. [PMID: 32470324 DOI: 10.1016/j.bpj.2020.05.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2019] [Revised: 04/24/2020] [Accepted: 05/05/2020] [Indexed: 12/13/2022] Open
Abstract
Currently, a significant barrier to building predictive models of cellular self-assembly processes is that molecular models cannot capture minutes-long dynamics that couple distinct components with active processes, whereas reaction-diffusion models cannot capture structures of molecular assembly. Here, we introduce the nonequilibrium reaction-diffusion self-assembly simulator (NERDSS), which addresses this spatiotemporal resolution gap. NERDSS integrates efficient reaction-diffusion algorithms into generalized software that operates on user-defined molecules through diffusion, binding and orientation, unbinding, chemical transformations, and spatial localization. By connecting the fast processes of binding with the slow timescales of large-scale assembly, NERDSS integrates molecular resolution with reversible formation of ordered, multisubunit complexes. NERDSS encodes models using rule-based formatting languages to facilitate model portability, usability, and reproducibility. Applying NERDSS to steps in clathrin-mediated endocytosis, we design multicomponent systems that can form lattices in solution or on the membrane, and we predict how stochastic but localized dephosphorylation of membrane lipids can drive lattice disassembly. The NERDSS simulations reveal the spatial constraints on lattice growth and the role of membrane localization and cooperativity in nucleating assembly. By modeling viral lattice assembly and recapitulating oscillations in protein expression levels for a circadian clock model, we illustrate the adaptability of NERDSS. NERDSS simulates user-defined assembly models that were previously inaccessible to existing software tools, with broad applications to predicting self-assembly in vivo and designing high-yield assemblies in vitro.
Collapse
Affiliation(s)
- Matthew J Varga
- TC Jenkins Department of Biophysics, Johns Hopkins University, Baltimore, Maryland
| | - Yiben Fu
- TC Jenkins Department of Biophysics, Johns Hopkins University, Baltimore, Maryland
| | - Spencer Loggia
- TC Jenkins Department of Biophysics, Johns Hopkins University, Baltimore, Maryland
| | - Osman N Yogurtcu
- Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, Maryland
| | - Margaret E Johnson
- TC Jenkins Department of Biophysics, Johns Hopkins University, Baltimore, Maryland.
| |
Collapse
|