1
|
Steczkiewicz K, Kossakowski A, Janik S, Muszewska A. Low-complexity regions in fungi display functional groups and are depleted in positively charged amino acids. NAR Genom Bioinform 2025; 7:lqaf014. [PMID: 40041205 PMCID: PMC11878562 DOI: 10.1093/nargab/lqaf014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 01/29/2025] [Accepted: 02/20/2025] [Indexed: 03/06/2025] Open
Abstract
Reports on the diversity and occurrence of low-complexity regions (LCR) in Eukaryota are limited. Some studies have provided a more extensive characterization of LCR proteins in prokaryotes. There is a growing body of knowledge about a plethora of biological functions attributable to LCRs. However, it is hard to determine to what extent observed phenomena apply to fungi since most studies of fungal LCRs were limited to model yeasts. To fill this gap, we performed a survey of LCRs in proteins across all fungal tree of life branches. We show that the abundance of LCRs and the abundance of proteins with LCRs are positively correlated with proteome size. We observed that most LCRs are present in proteins with protein domains but do not overlap with the domain regions. LCRs are associated with many duplicated protein domains. The quantity of particular amino acids in LCRs deviates from the background frequency with a clear over-representation of amino acids with functional groups and a negative charge. Moreover, we discovered that each lineage of fungi favors distinct LCRs expansions. Early diverging fungal lineages differ in LCR abundance and composition pointing at a different evolutionary trajectory of each fungal group.
Collapse
Affiliation(s)
- Kamil Steczkiewicz
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawinskiego 5A, 02-106 Warsaw, Poland
| | - Aleksander Kossakowski
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawinskiego 5A, 02-106 Warsaw, Poland
| | - Stanisław Janik
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawinskiego 5A, 02-106 Warsaw, Poland
- Faculty of Mathematics, Informatics and Mechanics, University of Warsaw, Stefana Banacha 2, 02-097 Warsaw, Poland
| | - Anna Muszewska
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawinskiego 5A, 02-106 Warsaw, Poland
| |
Collapse
|
2
|
Saadeldin IM, Ehab S, Alshammari MEF, Abdelazim AM, Assiri AM. The Mammalian Oocyte: A Central Hub for Cellular Reprogramming and Stemness. Stem Cells Cloning 2025; 18:15-34. [PMID: 39991743 PMCID: PMC11846613 DOI: 10.2147/sccaa.s513982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2025] [Accepted: 02/13/2025] [Indexed: 02/25/2025] Open
Abstract
The mammalian oocyte is pivotal in reproductive biology, acting as a central hub for cellular reprogramming and stemness. It uniquely contributes half of the zygotic nuclear genome and the entirety of the mitochondrial genome, ensuring individual development and health. Oocyte-mediated reprogramming, exemplified by nuclear transfer, resets somatic cell identity to achieve pluripotency and has transformative potential in regenerative medicine. This process is critical for understanding cellular differentiation, improving assisted reproductive technologies, and advancing cloning and stem cell research. During fertilization, the maternal-zygotic transition shifts developmental control from maternal factors to zygotic genome activation, establishing totipotency. Oocytes also harbor reprogramming factors that guide nuclear remodeling, epigenetic modifications, and metabolic reprogramming, enabling early embryogenesis. Structures like mitochondria, lipid droplets, and cytoplasmic lattices contribute to energy production, molecular regulation, and cellular organization. Recent insights into oocyte components, such as ooplasmic nanovesicles and endolysosomal vesicular assemblies (ELVAS), highlight their roles in maintaining cellular homeostasis, protein synthesis, and reprogramming efficiency. By unraveling the reprogramming mechanisms inherent in oocytes, we advance our understanding of cloning, cell differentiation, and stem cell therapy, highlighting their valuable significance in developmental biology and regenerative medicine.
Collapse
Affiliation(s)
- Islam M Saadeldin
- Comparative Medicine Department, King Faisal Specialist Hospital and Research Centre, Riyadh, 11211, Saudi Arabia
- College of Medicine, Alfaisal University, Riyadh, 11533, Saudi Arabia
| | - Seif Ehab
- Department of Zoology, Faculty of Science, Cairo University, Giza, 12613, Egypt
| | | | - Aaser M Abdelazim
- Department of Medical Laboratories Sciences, College of Applied Medical Sciences, University of Bisha, Bisha, 67714, Saudi Arabia
| | - Abdullah M Assiri
- Comparative Medicine Department, King Faisal Specialist Hospital and Research Centre, Riyadh, 11211, Saudi Arabia
- College of Medicine, Alfaisal University, Riyadh, 11533, Saudi Arabia
| |
Collapse
|
3
|
Chen W, Dong L, Wei C, Wu H. Role of epigenetic regulation in diminished ovarian reserve. J Assist Reprod Genet 2025; 42:389-403. [PMID: 39644448 PMCID: PMC11871224 DOI: 10.1007/s10815-024-03301-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Accepted: 10/18/2024] [Indexed: 12/09/2024] Open
Abstract
Diminished ovarian reserve (DOR) is characterized by a decrease in the number and quality of oocytes, with its incidence increasing annually. Its pathogenesis remains unclear, making it one of the most challenging problems in the field of assisted reproduction. Epigenetic modification, a molecular mechanism affecting genomic activity and expression without altering the DNA sequence, has been widely studied in reproductive medicine and has attracted considerable attention regarding DOR. This review comprehensively examines the various epigenetic regulatory changes in ovarian granulosa cells (OGCs) and oocytes during DOR. DNA methylation plays a crucial role in regulating granulosa cell function, hormone production, and oocyte development, maturation, and senescence. Histone modifications are involved in regulating follicular activation, while non-coding RNAs, such as long noncoding RNAs (lncRNAs) and microRNAs (miRNAs), regulate granulosa cell function and oocyte development. N6-methyladenosine (m6A) modifications are associated with age-related oocyte senescence. Epigenetic clocks based on DNA methylation show potential in predicting ovarian reserve in DOR. Furthermore, it discusses the potential for utilizing epigenetic mechanisms to better diagnose and manage DOR.
Collapse
Affiliation(s)
- Wen Chen
- First School of Clinical Medicine, Shandong University of Traditional Chinese Medicine, Jinan, 250011, China
| | - Li Dong
- First School of Clinical Medicine, Shandong University of Traditional Chinese Medicine, Jinan, 250011, China
| | - Chaofeng Wei
- First School of Clinical Medicine, Shandong University of Traditional Chinese Medicine, Jinan, 250011, China
| | - Haicui Wu
- Department of Reproduction and Genetics, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, 250014, China.
| |
Collapse
|
4
|
Sun H, Han L, Guo Y, An H, Wang B, Zhang X, Li J, Jiang Y, Wang Y, Sun G, Zhu S, Tang S, Ge J, Chen M, Guo X, Wang Q. The global phosphorylation landscape of mouse oocytes during meiotic maturation. EMBO J 2024; 43:4752-4785. [PMID: 39256562 PMCID: PMC11480333 DOI: 10.1038/s44318-024-00222-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 08/10/2024] [Accepted: 08/13/2024] [Indexed: 09/12/2024] Open
Abstract
Phosphorylation is a key post-translational modification regulating protein function and biological outcomes. However, the phosphorylation dynamics orchestrating mammalian oocyte development remains poorly understood. In the present study, we apply high-resolution mass spectrometry-based phosphoproteomics to obtain the first global in vivo quantification of mouse oocyte phosphorylation. Of more than 8000 phosphosites, 75% significantly oscillate and 64% exhibit marked upregulation during meiotic maturation, indicative of the dominant regulatory role. Moreover, we identify numerous novel phosphosites on oocyte proteins and a few highly conserved phosphosites in oocytes from different species. Through functional perturbations, we demonstrate that phosphorylation status of specific sites participates in modulating critical events including metabolism, translation, and RNA processing during meiosis. Finally, we combine inhibitor screening and enzyme-substrate network prediction to discover previously unexplored kinases and phosphatases that are essential for oocyte maturation. In sum, our data define landscape of the oocyte phosphoproteome, enabling in-depth mechanistic insights into developmental control of germ cells.
Collapse
Affiliation(s)
- Hongzheng Sun
- State Key Laboratory of Reproductive Medicine and Offspring Health, Changzhou Maternity and Child Health Care Hospital, Changzhou Medical Center, Nanjing Medical University, 211166, Nanjing, China
| | - Longsen Han
- State Key Laboratory of Reproductive Medicine and Offspring Health, Changzhou Maternity and Child Health Care Hospital, Changzhou Medical Center, Nanjing Medical University, 211166, Nanjing, China
| | - Yueshuai Guo
- State Key Laboratory of Reproductive Medicine and Offspring Health, Changzhou Maternity and Child Health Care Hospital, Changzhou Medical Center, Nanjing Medical University, 211166, Nanjing, China
| | - Huiqing An
- State Key Laboratory of Reproductive Medicine and Offspring Health, Changzhou Maternity and Child Health Care Hospital, Changzhou Medical Center, Nanjing Medical University, 211166, Nanjing, China
| | - Bing Wang
- State Key Laboratory of Reproductive Medicine and Offspring Health, Changzhou Maternity and Child Health Care Hospital, Changzhou Medical Center, Nanjing Medical University, 211166, Nanjing, China
| | - Xiangzheng Zhang
- State Key Laboratory of Reproductive Medicine and Offspring Health, Changzhou Maternity and Child Health Care Hospital, Changzhou Medical Center, Nanjing Medical University, 211166, Nanjing, China
| | - Jiashuo Li
- State Key Laboratory of Reproductive Medicine and Offspring Health, Changzhou Maternity and Child Health Care Hospital, Changzhou Medical Center, Nanjing Medical University, 211166, Nanjing, China
| | - Yingtong Jiang
- State Key Laboratory of Reproductive Medicine and Offspring Health, Changzhou Maternity and Child Health Care Hospital, Changzhou Medical Center, Nanjing Medical University, 211166, Nanjing, China
| | - Yue Wang
- State Key Laboratory of Reproductive Medicine and Offspring Health, Changzhou Maternity and Child Health Care Hospital, Changzhou Medical Center, Nanjing Medical University, 211166, Nanjing, China
| | - Guangyi Sun
- State Key Laboratory of Reproductive Medicine and Offspring Health, Changzhou Maternity and Child Health Care Hospital, Changzhou Medical Center, Nanjing Medical University, 211166, Nanjing, China
| | - Shuai Zhu
- State Key Laboratory of Reproductive Medicine and Offspring Health, Changzhou Maternity and Child Health Care Hospital, Changzhou Medical Center, Nanjing Medical University, 211166, Nanjing, China
| | - Shoubin Tang
- State Key Laboratory of Reproductive Medicine and Offspring Health, Changzhou Maternity and Child Health Care Hospital, Changzhou Medical Center, Nanjing Medical University, 211166, Nanjing, China
| | - Juan Ge
- State Key Laboratory of Reproductive Medicine and Offspring Health, Changzhou Maternity and Child Health Care Hospital, Changzhou Medical Center, Nanjing Medical University, 211166, Nanjing, China
| | - Minjian Chen
- State Key Laboratory of Reproductive Medicine and Offspring Health, Changzhou Maternity and Child Health Care Hospital, Changzhou Medical Center, Nanjing Medical University, 211166, Nanjing, China
| | - Xuejiang Guo
- State Key Laboratory of Reproductive Medicine and Offspring Health, Changzhou Maternity and Child Health Care Hospital, Changzhou Medical Center, Nanjing Medical University, 211166, Nanjing, China.
- Department of Histology and Embryology, Nanjing Medical University, 211166, Nanjing, China.
| | - Qiang Wang
- State Key Laboratory of Reproductive Medicine and Offspring Health, Changzhou Maternity and Child Health Care Hospital, Changzhou Medical Center, Nanjing Medical University, 211166, Nanjing, China.
- Center for Global Health, School of Public Health, Nanjing Medical University, 211166, Nanjing, China.
| |
Collapse
|
5
|
Liang D, Yan R, Long X, Ji D, Song B, Wang M, Zhang F, Cheng X, Sun F, Zhu R, Hou X, Wang T, Zou W, Zhang Y, Pu Z, Zhang J, Zhang Z, Liu Y, Hu Y, He X, Cao Y, Guo F. Distinct dynamics of parental 5-hydroxymethylcytosine during human preimplantation development regulate early lineage gene expression. Nat Cell Biol 2024; 26:1458-1469. [PMID: 39080410 PMCID: PMC11392820 DOI: 10.1038/s41556-024-01475-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Accepted: 07/08/2024] [Indexed: 09/14/2024]
Abstract
The conversion of DNA 5-methylcytosine (5mC) to 5-hydroxymethylcytosine (5hmC) by TET enzymes represents a significant epigenetic modification, yet its role in early human embryos remains largely unknown. Here we showed that the early human embryo inherited a significant amount of 5hmCs from an oocyte, which unexpectedly underwent de novo hydroxymethylation during its growth. Furthermore, the generation of 5hmC in the paternal genome after fertilization roughly followed the maternal pattern, which was linked to DNA methylation dynamics and regions of sustained methylation. The 5hmCs persisted until the eight-cell stage and exhibited high enrichment at OTX2 binding sites, whereas knockdown of OTX2 in human embryos compromised the expression of early lineage genes. Specifically, the depletion of 5hmC affected the activation of embryonic genes, which was further evaluated by ectopically expressing mouse Tet3 in human early embryos. These findings revealed distinct dynamics of 5hmC and unravelled its multifaceted functions in early human embryonic development.
Collapse
Affiliation(s)
- Dan Liang
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, Hefei, China.
| | - Rui Yan
- Key Laboratory of Organ Regeneration and Reconstruction, State Key Laboratory of Stem Cell and Reproductive Biology, Institute for Stem Cell and Regeneration, Institute of Zoology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, China
| | - Xin Long
- Key Laboratory of Organ Regeneration and Reconstruction, State Key Laboratory of Stem Cell and Reproductive Biology, Institute for Stem Cell and Regeneration, Institute of Zoology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, China
| | - Dongmei Ji
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
- NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, Hefei, China
| | - Bing Song
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
- NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, Hefei, China
| | - Mengyao Wang
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
- NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, Hefei, China
| | - Fan Zhang
- Key Laboratory of Organ Regeneration and Reconstruction, State Key Laboratory of Stem Cell and Reproductive Biology, Institute for Stem Cell and Regeneration, Institute of Zoology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, China
| | - Xin Cheng
- Key Laboratory of Organ Regeneration and Reconstruction, State Key Laboratory of Stem Cell and Reproductive Biology, Institute for Stem Cell and Regeneration, Institute of Zoology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, China
| | - Fengyuan Sun
- Key Laboratory of Organ Regeneration and Reconstruction, State Key Laboratory of Stem Cell and Reproductive Biology, Institute for Stem Cell and Regeneration, Institute of Zoology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, China
| | - Ran Zhu
- Key Laboratory of Organ Regeneration and Reconstruction, State Key Laboratory of Stem Cell and Reproductive Biology, Institute for Stem Cell and Regeneration, Institute of Zoology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, China
| | - Xinling Hou
- Key Laboratory of Organ Regeneration and Reconstruction, State Key Laboratory of Stem Cell and Reproductive Biology, Institute for Stem Cell and Regeneration, Institute of Zoology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, China
| | - Tianjuan Wang
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
- NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, Hefei, China
| | - Weiwei Zou
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
- NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, Hefei, China
| | - Ying Zhang
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
- NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, Hefei, China
| | - Zhixin Pu
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
- NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, Hefei, China
| | - Jing Zhang
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
- NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, Hefei, China
| | - Zhiguo Zhang
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
- NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, Hefei, China
| | - Yajing Liu
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
- NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, Hefei, China
| | - Yuqiong Hu
- Key Laboratory of Organ Regeneration and Reconstruction, State Key Laboratory of Stem Cell and Reproductive Biology, Institute for Stem Cell and Regeneration, Institute of Zoology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, China
| | - Xiaojin He
- NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, Hefei, China.
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Yunxia Cao
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, Hefei, China.
- NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, Hefei, China.
| | - Fan Guo
- Key Laboratory of Organ Regeneration and Reconstruction, State Key Laboratory of Stem Cell and Reproductive Biology, Institute for Stem Cell and Regeneration, Institute of Zoology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing, China.
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, China.
| |
Collapse
|
6
|
Meng WY, Wang ZX, Zhang Y, Hou Y, Xue JH. Epigenetic marks or not? The discovery of novel DNA modifications in eukaryotes. J Biol Chem 2024; 300:106791. [PMID: 38403247 PMCID: PMC11065753 DOI: 10.1016/j.jbc.2024.106791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Revised: 01/24/2024] [Accepted: 02/04/2024] [Indexed: 02/27/2024] Open
Abstract
DNA modifications add another layer of complexity to the eukaryotic genome to regulate gene expression, playing critical roles as epigenetic marks. In eukaryotes, the study of DNA epigenetic modifications has been confined to 5mC and its derivatives for decades. However, rapid developing approaches have witnessed the expansion of DNA modification reservoirs during the past several years, including the identification of 6mA, 5gmC, 4mC, and 4acC in diverse organisms. However, whether these DNA modifications function as epigenetic marks requires careful consideration. In this review, we try to present a panorama of all the DNA epigenetic modifications in eukaryotes, emphasizing recent breakthroughs in the identification of novel DNA modifications. The characterization of their roles in transcriptional regulation as potential epigenetic marks is summarized. More importantly, the pathways for generating or eliminating these DNA modifications, as well as the proteins involved are comprehensively dissected. Furthermore, we briefly discuss the potential challenges and perspectives, which should be taken into account while investigating novel DNA modifications.
Collapse
Affiliation(s)
- Wei-Ying Meng
- Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration of Ministry of Education, Tongji Hospital affiliated to Tongji University, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Zi-Xin Wang
- Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration of Ministry of Education, Tongji Hospital affiliated to Tongji University, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Yunfang Zhang
- Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Shanghai Key Laboratory of Signaling and Disease Research, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Yujun Hou
- Institute for Regenerative Medicine, Shanghai East Hospital, Shanghai Key Laboratory of Signaling and Disease Research, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai, China.
| | - Jian-Huang Xue
- Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration of Ministry of Education, Tongji Hospital affiliated to Tongji University, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai, China.
| |
Collapse
|