1
|
Presutti C, Vreeker E, Sasidharan S, Ferdinando Z, Stuart M, Juhaniewicz-Dębińska J, Maglia G, Roos WH, Poolman B. Balancing Permeability and Stability: A Study of Hybrid Membranes for Synthetic Cells Using Lipids and PBd- b-PEO Block Copolymers. Biomacromolecules 2025; 26:2868-2881. [PMID: 40197008 PMCID: PMC12076510 DOI: 10.1021/acs.biomac.4c01651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Revised: 03/25/2025] [Accepted: 03/27/2025] [Indexed: 04/09/2025]
Abstract
We have synthesized hybrid membranes composed of amphiphilic block copolymers, polybutadiene-poly(ethylene oxide) [PBd-b-PEO], with different lengths [PBd22-PEO14 and PBd11-PEO8] and mixtures of phospholipids (DOPC:DOPG:DOPE 50:25:25 mol %) to combine the properties of both in terms of stability and fluidity of the membrane. The amphiphilic block copolymers increase the stability, whereas the lipids support the functionality of membrane proteins. The hybrid nature of the bilayers was studied by means of Cryo-TEM, Langmuir-Blodgett technique, atomic force microscopy (AFM), electrical measurements, and fluorescence-based stopped-flow assay to determine the permeability of the membrane for water and osmolytes. We observe that the structural, thermodynamic, and permeability properties of hybrid PBd11-PEO8 membranes are similar to their purely lipid counterparts, with the advantage of being more stable and resisting a higher transmembrane electrical potential. Hybrid membranes with the longer polymer, PBd22-PEO14, display more significant structural, thermodynamic, and permeability differences and show less favorable properties than hybrid-PBd11-PEO8 membranes.
Collapse
Affiliation(s)
- Caterina Presutti
- Department
of Biochemistry, University of Groningen, Nijenborgh 3, Groningen 9747 AG, The Netherlands
| | - Edo Vreeker
- Chemical
Biology, University of Groningen, Nijenborgh 7, Groningen 9747 AG, The Netherlands
| | - Sajitha Sasidharan
- Molecular
Biophysics, University of Groningen, Nijenborgh 3, Groningen 9747 AG, Netherlands
| | - Zanetta Ferdinando
- Molecular
Biophysics, University of Groningen, Nijenborgh 3, Groningen 9747 AG, Netherlands
| | - Marc Stuart
- Electron
Microscopy Group, University of Groningen, Nijenborgh 7, Groningen 9747 AG, The Netherlands
| | - Joanna Juhaniewicz-Dębińska
- Faculty of
Chemistry, Biological and Chemical Research Centre, University of Warsaw, Żwirki i Wigury 101, Warsaw 02-089, Poland
| | - Giovanni Maglia
- Chemical
Biology, University of Groningen, Nijenborgh 7, Groningen 9747 AG, The Netherlands
| | - Wouter H. Roos
- Molecular
Biophysics, University of Groningen, Nijenborgh 3, Groningen 9747 AG, Netherlands
| | - Bert Poolman
- Department
of Biochemistry, University of Groningen, Nijenborgh 3, Groningen 9747 AG, The Netherlands
| |
Collapse
|
2
|
Chen S, Zhang S, Yuan Q, Gan W. Water Transportation through Nano/Microsized Lipid Protocells with a Significant Deviation from the van't Hoff Osmotic Rule. J Phys Chem B 2025; 129:3103-3108. [PMID: 40070153 DOI: 10.1021/acs.jpcb.5c00133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/21/2025]
Abstract
Osmotic pressure is known to be an important driving force that induces water transport through membranes, which is crucial for many biophysical processes. Here, we observed that under a relatively low osmotic pressure induced by sugars' protocells (vesicles) with a diameter of ∼110 nm barely shrank. However, NaCl and CaCl2 at lower concentrations induced a rapid decrease in the vesicle size as evidence of water transportation through the membrane. An additional mechanical pressure resulting from the increase in interfacial tension of the lipid membrane was proposed to be the main driving force of this electrolyte-specific effect. These results indicate that osmotic pressure is not the only driving force of water transport in nano/microsized lipid protocells.
Collapse
Affiliation(s)
- Shujiao Chen
- Shenzhen Key Laboratory of Flexible Printed Electronics Technology, School of Science, Harbin Institute of Technology (Shenzhen), University Town, Shenzhen, Guangdong 518055, China
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, Heilongjiang 150001, China
| | - Shuai Zhang
- Shenzhen Key Laboratory of Flexible Printed Electronics Technology, School of Science, Harbin Institute of Technology (Shenzhen), University Town, Shenzhen, Guangdong 518055, China
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, Heilongjiang 150001, China
| | - Qunhui Yuan
- Shenzhen Key Laboratory of Flexible Printed Electronics Technology, School of Materials Science and Engineering, Harbin Institute of Technology (Shenzhen), University Town, Shenzhen, Guangdong 518055, China
| | - Wei Gan
- Shenzhen Key Laboratory of Flexible Printed Electronics Technology, School of Science, Harbin Institute of Technology (Shenzhen), University Town, Shenzhen, Guangdong 518055, China
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, Heilongjiang 150001, China
| |
Collapse
|
3
|
Duncan TJ, Behera H, Meng MF, Zhang Z, Marioni N, Tadesse M, Kumar M, Ganesan V. Side-Chain and Ring-Size Effects on Permeability in Artificial Water Channels. J Phys Chem B 2025; 129:659-670. [PMID: 39745026 DOI: 10.1021/acs.jpcb.4c05244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2025]
Abstract
Artificial water channels (AWCs) have emerged as a promising framework for stable water permeation, with water transport rates comparable to aquaporins (3.4-40.3 × 108 H2O/channel/s). In this study, we probe the influence of ring-size and side-chain length on the water permeability observed within a class of AWCs termed ligand-appended pillar[n]arenes (LAPs) that have an adjustable ring-size (m) and side-chain length (n). Through all-atom molecular dynamics simulations, we calculate the permeability of these channels using the collective diffusion model and find their permeabilities. We characterize the mechanistic influence of pillar[n]arene ring-size and side-chain length on the channel water permeability by analyzing the characteristics of the internal permeating water-wire and the surrounding channel structure. We observe that water permeability decreases as a function of increasing ring-size due to increases in hydrophilic contacts between the permeating water-wire and the oxygen groups on the channel wall. Further, we observe an increase in water permeability as a function of side-chain length due to increased partitioning of the channel terminal groups into the hydrophilic blocks of the surrounding bilayer. For the LAP6 channel, with increase in side-chain length, the distance between terminal groups increases and leads to an increase in pore size, thereby enhancing water permeability. In the case of LAP5, as side-chain length increases, the channel displays a compensatory effect between tilt and bend angle due to the flexible side-chains. Such flexibility leads to higher terminal group partitioning in the hydrophilic blocks of the bilayer and extends the permeating water-wire. This increase in water-wire length and hydrophilic block access overcomes the nonmonotonic pore size trend in pillar[5]arene channels.
Collapse
Affiliation(s)
- Tyler J Duncan
- McKetta Department of Chemical Engineering, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Harekrushna Behera
- Department of Civil, Architectural and Environmental Engineering, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Michael F Meng
- McKetta Department of Chemical Engineering, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Zidan Zhang
- McKetta Department of Chemical Engineering, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Nico Marioni
- McKetta Department of Chemical Engineering, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Meron Tadesse
- McKetta Department of Chemical Engineering, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Manish Kumar
- McKetta Department of Chemical Engineering, The University of Texas at Austin, Austin, Texas 78712, United States
- Department of Civil, Architectural and Environmental Engineering, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Venkat Ganesan
- McKetta Department of Chemical Engineering, The University of Texas at Austin, Austin, Texas 78712, United States
| |
Collapse
|
4
|
Lai Y, Zhang T, Huang L, Klymchenko AS, Lin W. An exchangeable SIM probe for monitoring organellar dynamics of necrosis cells and intracellular water heterogeneity in kidney repair. Proc Natl Acad Sci U S A 2025; 122:e2402348121. [PMID: 39752520 PMCID: PMC11725781 DOI: 10.1073/pnas.2402348121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Accepted: 11/25/2024] [Indexed: 01/15/2025] Open
Abstract
Monitoring subcellular organelle dynamics in real time and precisely assessing membrane heterogeneity in living cells are very important for studying fundamental biological mechanisms and gaining a comprehensive understanding of cellular processes. However, there remains a shortage of effective tools for these purposes. Herein, we propose a strategy to develop the exchangeable water-sensing probeAPBD for time-lapse imaging of dynamics in cellular membrane-bound organelle morphology with structured illumination microscopy at the nanoscale. In this work, our results reveal mitochondria as the first organelle to undergo morphological changes through swelling, fission, and fusion in cell necrosis, leading to the rupture of the endoplasmic reticulum (ER) sheet adhered to the mitochondria. Meanwhile, the ER tubules are then reconstructed by stretching and fusion of autophagosomes. Moreover, APBD allows us to directly visualize spatially resolved distribution of biomembranes vs. water inside single mammalian cells. Our findings show that the renal ischemia-reperfusion injury (IRI) model results in the increased biomembrane to cytoplasmic water ratio in the tissue. This reveals intracellular water heterogeneity between the nucleus and the cytoplasm during the IRI process. Overall, this study presents a strategy for development of the molecular tools for cellular water heterogeneity and organelle dynamics.
Collapse
Affiliation(s)
- Youbo Lai
- Institute of Optical Materials and Chemical Biology, Guangxi Key Laboratory of Electrochemical Energy Materials, School of Chemistry and Chemical Engineering, Guangxi University, Nanning530004, Guangxi, People's Republic of China
| | - Tengteng Zhang
- Institute of Optical Materials and Chemical Biology, Guangxi Key Laboratory of Electrochemical Energy Materials, School of Chemistry and Chemical Engineering, Guangxi University, Nanning530004, Guangxi, People's Republic of China
| | - Ling Huang
- Institute of Optical Materials and Chemical Biology, Guangxi Key Laboratory of Electrochemical Energy Materials, School of Chemistry and Chemical Engineering, Guangxi University, Nanning530004, Guangxi, People's Republic of China
| | - Andrey S. Klymchenko
- Laboratoire de Bioimagerie et Pathologies, UMR 7021 CNRS, Faculté de Pharmacie, Université de Strasbourg, Illkirch 67401, France
| | - Weiying Lin
- Institute of Optical Materials and Chemical Biology, Guangxi Key Laboratory of Electrochemical Energy Materials, School of Chemistry and Chemical Engineering, Guangxi University, Nanning530004, Guangxi, People's Republic of China
| |
Collapse
|
5
|
Wu K, Kwon SH, Zhou X, Fuller C, Wang X, Vadgama J, Wu Y. Overcoming Challenges in Small-Molecule Drug Bioavailability: A Review of Key Factors and Approaches. Int J Mol Sci 2024; 25:13121. [PMID: 39684832 PMCID: PMC11642056 DOI: 10.3390/ijms252313121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Revised: 11/28/2024] [Accepted: 12/04/2024] [Indexed: 12/18/2024] Open
Abstract
The bioavailability of small-molecule drugs remains a critical challenge in pharmaceutical development, significantly impacting therapeutic efficacy and commercial viability. This review synthesizes recent advances in understanding and overcoming bioavailability limitations, focusing on key physicochemical and biological factors influencing drug absorption and distribution. We examine cutting-edge strategies for enhancing bioavailability, including innovative formulation approaches, rational structural modifications, and the application of artificial intelligence in drug design. The integration of nanotechnology, 3D printing, and stimuli-responsive delivery systems are highlighted as promising avenues for improving drug delivery. We discuss the importance of a holistic, multidisciplinary approach to bioavailability optimization, emphasizing early-stage consideration of ADME properties and the need for patient-centric design. This review also explores emerging technologies such as CRISPR-Cas9-mediated personalization and microbiome modulation for tailored bioavailability enhancement. Finally, we outline future research directions, including advanced predictive modeling, overcoming biological barriers, and addressing the challenges of emerging therapeutic modalities. By elucidating the complex interplay of factors affecting bioavailability, this review aims to guide future efforts in developing more effective and accessible small-molecule therapeutics.
Collapse
Affiliation(s)
- Ke Wu
- Division of Cancer Research and Training, Department of Internal Medicine, Charles R. Drew University of Medicine and Science, Los Angeles, CA 90095, USA
- David Geffen School of Medicine at University of California, Los Angeles, CA 90095, USA
| | - Soon Hwan Kwon
- Division of Cancer Research and Training, Department of Internal Medicine, Charles R. Drew University of Medicine and Science, Los Angeles, CA 90095, USA
- David Geffen School of Medicine at University of California, Los Angeles, CA 90095, USA
| | - Xuhan Zhou
- Department of Pre-Biology, University of California, Santa Barbara (UCSB), Santa Barbara, CA 93106, USA
| | - Claire Fuller
- Department of Whiting School of Engineering, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Xianyi Wang
- Department of Chemistry, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA
| | - Jaydutt Vadgama
- Division of Cancer Research and Training, Department of Internal Medicine, Charles R. Drew University of Medicine and Science, Los Angeles, CA 90095, USA
- David Geffen School of Medicine at University of California, Los Angeles, CA 90095, USA
| | - Yong Wu
- Division of Cancer Research and Training, Department of Internal Medicine, Charles R. Drew University of Medicine and Science, Los Angeles, CA 90095, USA
- David Geffen School of Medicine at University of California, Los Angeles, CA 90095, USA
| |
Collapse
|
6
|
Hussein W, Goldberg D, Tenzer G, Bentwich I, Haran Y, Getter T. Boronic Acid-Based Glucose Detection for Liver Three-Dimensional Cellular Models. ACS OMEGA 2024; 9:44214-44223. [PMID: 39524682 PMCID: PMC11541505 DOI: 10.1021/acsomega.4c04101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 08/01/2024] [Accepted: 10/18/2024] [Indexed: 11/16/2024]
Abstract
Liver 3D cell models are regularly employed as a screening platform for predicting the metabolic safety of drugs, by monitoring the physiological responses of the spheroids, through the measurement of relevant markers of normal liver physiology, notably glucose. Measuring glucose levels within the spheroids and their surroundings provides insight into the metabolic homeostasis of liver cells and may be employed as an indication of potential drug-induced toxicity. Several ortho-aminomethyl phenylboronic acid (PDBA) glucose sensors have been developed. Most recently, Mc-CDBA ((((((2-(methoxycarbonyl)anthracene-9,10-diyl)bis(methylene)) bis(methylazanediyl))bis(methylene))bis(4-cyano-2,1-phenylene))diboronic acid) was reported. Although Mc-CDBA exhibits good water solubility and sensitivity toward glucose, its ability for intra- and extracellular glucose monitoring in spheroids has not been determined. Here, we present a set of Mc-CDBA derivatives: carboxylic (BA) and amide (BA 5)-based Mc-CDBA sensors for extra- and intracellular glucose monitoring, respectively. Both sensors exhibit superior spectroscopic features. BA 5 showed selective intracellular accumulation in liver spheroids and exhibited more than 3-fold higher basal fluorescence sensitivity compared to Mc-CDBA. These observations led to the development of an extracellular hydrogel-embedded sensor (HG-BA 21) to monitor extracellular glucose levels under persistent solution flow mimicking physiological conditions. We have therefore demonstrated that the sensors developed by our team are suitable for a variety of assays, notably with liver spheroids, and provide powerful new tools for organ-on-a-chip applications predicting drug-induced liver injury in the early stages of drug development.
Collapse
Affiliation(s)
- Wessal Hussein
- BioAI Drug Safety Prediction
Platform, Quris, HaNatsiv St 6, Tel Aviv-Yafo 6701033, Israel
| | - Doron Goldberg
- BioAI Drug Safety Prediction
Platform, Quris, HaNatsiv St 6, Tel Aviv-Yafo 6701033, Israel
| | - Guy Tenzer
- BioAI Drug Safety Prediction
Platform, Quris, HaNatsiv St 6, Tel Aviv-Yafo 6701033, Israel
| | - Isaac Bentwich
- BioAI Drug Safety Prediction
Platform, Quris, HaNatsiv St 6, Tel Aviv-Yafo 6701033, Israel
| | - Yossi Haran
- BioAI Drug Safety Prediction
Platform, Quris, HaNatsiv St 6, Tel Aviv-Yafo 6701033, Israel
| | - Tamar Getter
- BioAI Drug Safety Prediction
Platform, Quris, HaNatsiv St 6, Tel Aviv-Yafo 6701033, Israel
| |
Collapse
|
7
|
Hu XH, Dai HL. Effect of molecular structure on membrane diffusion: Triphenylmethanes across Escherichia coli studied by second harmonic light scattering. J Chem Phys 2024; 161:124701. [PMID: 39311078 DOI: 10.1063/5.0232591] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Accepted: 09/04/2024] [Indexed: 01/25/2025] Open
Abstract
Understanding how the structure of molecules affects their permeability across cell membranes is crucial for many topics in biomedical research, including the development of drugs. In this work, we examine the transport rates of structurally similar triphenylmethane dyes, malachite green (MG) and brilliant green (BG), across the membranes of living Escherichia coli (E. coli) cells and biomimetic liposomes. Using the time-resolved second harmonic light scattering technique, we found that BG passively diffuses across the E. coli cytoplasmic membrane (CM) 3.8 times faster than MG. In addition, BG exhibits a diffusion rate 3.1 times higher than MG across the membranes of liposomes made from E. coli polar lipid extracts. Measurements on these two molecules, alongside previously studied crystal violet (CV), another triphenylmethane molecule, are compared against the set of propensity rules developed by Lipinski and co-workers for assessing the permeability of hydrophobic ion-like drug molecules through biomembranes. It indicates that BG's increased diffusion rate is due to its higher lipophilicity, with a distribution coefficient 25 times greater than MG. In contrast, CV, despite having similar lipophilicity to MG, shows negligible permeation through the E. coli CM on the observation scale, attributed to its more hydrogen bonding sites and larger polar surface area. Importantly, cell viability tests revealed that BG's antimicrobial efficacy is ∼2.4 times greater than that of MG, which aligns well with its enhanced diffusion into the E. coli cytosol. These findings offer valuable insights for drug design and development, especially for improving the permeability of poorly permeable drug molecules.
Collapse
Affiliation(s)
- Xiao-Hua Hu
- Department of Chemistry and Institute for Membranes and Interfaces, Temple University, 1901 N. 13th Street, Philadelphia, Pennsylvania 19122, USA
| | - Hai-Lung Dai
- Department of Chemistry and Institute for Membranes and Interfaces, Temple University, 1901 N. 13th Street, Philadelphia, Pennsylvania 19122, USA
| |
Collapse
|
8
|
Wang T, Guo L, Wu S, Xu Y, Song J, Yang Y, Zhang H, Li D, Li Y, Jiang X, Gu Z. Polyphenolic Platform Ameliorated Sanshool for Skin Photoprotection. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2310012. [PMID: 38359060 DOI: 10.1002/advs.202310012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 01/24/2024] [Indexed: 02/17/2024]
Abstract
Natural evolution has nurtured a series of active molecules that play vital roles in physiological systems, but their further applications have been severely limited by rapid deactivation, short cycle time, and potential toxicity after isolation. For instance, the instability of structures and properties has greatly descended when sanshool is derived from Zanthoxylum xanthoxylum. Herein, natural polyphenols are employed to boost the key properties of sanshool by fabricating a series of nanoparticles (NPs). The intracellular evaluation and in vivo animal model are conducted to demonstrate the decreased photodamage score and skin-fold thickness of prepared NPs, which can be attributed to the better biocompatibility, improved free radical scavenging, down-regulated apoptosis ratios, and reduced DNA double-strand breaks compared to naked sanshool. This work proposes a novel strategy to boost the key properties of naturally occurring active molecules with the assistance of natural polyphenol-based platforms.
Collapse
Affiliation(s)
- Tianyou Wang
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China
| | - Linghong Guo
- Department of Dermatology, West China Hospital, Sichuan University, Chengdu, 610041, China
- Laboratory of Dermatology, Clinical Institute of Inflammation and Immunology, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Shuwei Wu
- Department of Dermatology, West China Hospital, Sichuan University, Chengdu, 610041, China
- Laboratory of Dermatology, Clinical Institute of Inflammation and Immunology, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Yuanyuan Xu
- Department of Dermatology, West China Hospital, Sichuan University, Chengdu, 610041, China
- Laboratory of Dermatology, Clinical Institute of Inflammation and Immunology, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Junmei Song
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China
| | - Yi Yang
- Department of Dermatology, West China Hospital, Sichuan University, Chengdu, 610041, China
- Laboratory of Dermatology, Clinical Institute of Inflammation and Immunology, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Hengjie Zhang
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China
| | - Dongcui Li
- Hua An Tang Biotech Group Co., Ltd., Guangzhou, 511434, China
| | - Yiwen Li
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China
| | - Xian Jiang
- Department of Dermatology, West China Hospital, Sichuan University, Chengdu, 610041, China
- Laboratory of Dermatology, Clinical Institute of Inflammation and Immunology, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Zhipeng Gu
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China
| |
Collapse
|
9
|
Pal A, Jaju SJ, Kumaran V. The relationship between structure and rheology in a three-dimensional sheared lamellar mesophase. SOFT MATTER 2023. [PMID: 37401735 DOI: 10.1039/d3sm00455d] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/05/2023]
Abstract
The evolution of a lamellar mesophase from an initially disordered state under shear is examined using simulations of a mesoscale model based on a concentration field ψ that distinguishes the hydrophilic and hydrophobic components. The Landau-Ginzburg free-energy functional is augmented by a term that is minimised for sinusoidal modulations in the concentration field with wavelength λ = (2π/k), and the dynamical equations are the model H equations. The structure and rheology are determined by the relative magnitudes of the diffusion time for coarsening, (λ2/D) and the inverse of the strain rate -1, and the Ericksen number, which is the ratio of the shear stress and the layer stiffness. When the diffusion time is small compared with the inverse of the strain rate, there is a local formation of misaligned layers, which are deformed by the imposed flow. There is near-perfect ordering with isolated defects at low values of the Ericksen number, but the defects result in a significant increase in viscosity due to the high layer stiffness. At high values of the Ericksen number, the concentration field is deformed by the mean shear before layers form via diffusion. Cylindrical structures aligned along the flow direction form after about 8-10 strain units, and these evolve into layers with disorder through diffusion perpendicular to the flow. The layers are not perfectly ordered, even after hundreds of strain units, due to the creation and destruction of defects via shear. The excess viscosity is low because the layer stiffness is small compared with the applied shear at a high Ericksen number. This study provides guidance on how the material parameters and imposed flow can be tailored to achieve the desired rheological behaviour.
Collapse
Affiliation(s)
- A Pal
- Department of Chemical Engineering, Indian Institute of Science, Bangalore 560 012, India.
| | - S J Jaju
- Sankhyasutra Labs Ltd., 13th Floor, M2 Block, Manyata Embassy Business Park, Nagavara, Bengaluru, Karnataka 560045, India
| | - V Kumaran
- Department of Chemical Engineering, Indian Institute of Science, Bangalore 560 012, India.
| |
Collapse
|
10
|
Bailoni E, Partipilo M, Coenradij J, Grundel DAJ, Slotboom DJ, Poolman B. Minimal Out-of-Equilibrium Metabolism for Synthetic Cells: A Membrane Perspective. ACS Synth Biol 2023; 12:922-946. [PMID: 37027340 PMCID: PMC10127287 DOI: 10.1021/acssynbio.3c00062] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Indexed: 04/08/2023]
Abstract
Life-like systems need to maintain a basal metabolism, which includes importing a variety of building blocks required for macromolecule synthesis, exporting dead-end products, and recycling cofactors and metabolic intermediates, while maintaining steady internal physical and chemical conditions (physicochemical homeostasis). A compartment, such as a unilamellar vesicle, functionalized with membrane-embedded transport proteins and metabolic enzymes encapsulated in the lumen meets these requirements. Here, we identify four modules designed for a minimal metabolism in a synthetic cell with a lipid bilayer boundary: energy provision and conversion, physicochemical homeostasis, metabolite transport, and membrane expansion. We review design strategies that can be used to fulfill these functions with a focus on the lipid and membrane protein composition of a cell. We compare our bottom-up design with the equivalent essential modules of JCVI-syn3a, a top-down genome-minimized living cell with a size comparable to that of large unilamellar vesicles. Finally, we discuss the bottlenecks related to the insertion of a complex mixture of membrane proteins into lipid bilayers and provide a semiquantitative estimate of the relative surface area and lipid-to-protein mass ratios (i.e., the minimal number of membrane proteins) that are required for the construction of a synthetic cell.
Collapse
Affiliation(s)
- Eleonora Bailoni
- Department
of Biochemistry and Molecular Systems Biology, Groningen Biomolecular
Sciences and Biotechnology Institute, University
of Groningen, Nijenborgh
4, 9747 AG Groningen, The Netherlands
| | - Michele Partipilo
- Department
of Biochemistry and Molecular Systems Biology, Groningen Biomolecular
Sciences and Biotechnology Institute, University
of Groningen, Nijenborgh
4, 9747 AG Groningen, The Netherlands
| | - Jelmer Coenradij
- Department
of Biochemistry and Molecular Systems Biology, Groningen Biomolecular
Sciences and Biotechnology Institute, University
of Groningen, Nijenborgh
4, 9747 AG Groningen, The Netherlands
| | - Douwe A. J. Grundel
- Department
of Biochemistry and Molecular Systems Biology, Groningen Biomolecular
Sciences and Biotechnology Institute, University
of Groningen, Nijenborgh
4, 9747 AG Groningen, The Netherlands
| | - Dirk J. Slotboom
- Department
of Biochemistry and Molecular Systems Biology, Groningen Biomolecular
Sciences and Biotechnology Institute, University
of Groningen, Nijenborgh
4, 9747 AG Groningen, The Netherlands
| | - Bert Poolman
- Department
of Biochemistry and Molecular Systems Biology, Groningen Biomolecular
Sciences and Biotechnology Institute, University
of Groningen, Nijenborgh
4, 9747 AG Groningen, The Netherlands
| |
Collapse
|