1
|
Zhang K, Zheng S, Zhao C, Liang J, Sun X. Bioturbation effects and behavioral changes in buried bivalves after exposure to microplastics. JOURNAL OF HAZARDOUS MATERIALS 2025; 484:136765. [PMID: 39642743 DOI: 10.1016/j.jhazmat.2024.136765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2024] [Revised: 11/15/2024] [Accepted: 12/02/2024] [Indexed: 12/09/2024]
Abstract
Microplastic pollution has become an increasing concern. Vertical transport of microplastics is one of the major research questions concerning the distribution and fate of microplastics in the marine environment, and biologically mediated vertical transport is particularly significant. However, studies on the effects of different types of benthic organisms on the vertical distribution of microplastics in sediments are still scarce. The results of this study revealed that when exposed to environmentally relevant concentrations of fluorescent polystyrene microbeads (200 µm), Manila clams (Ruditapes philippinarum) exhibited prolonged acclimation period, yet subsequent burrowing behavior (burrowing rate and burrowing velocity) was unaffected. The condition index, clearance rate, and oxygen consumption rate of the clams similarly exhibited no stress response after 14 days of exposure. We determined that microplastics were rapidly transported to deeper layers (6-8 cm below the surface) in the sediment under bioturbation. This study elucidates the mechanisms of microplastic transport, showing that clam behaviors such as burrowing, movement, and ingestion contribute to this process. The results suggest that a biologically based management strategy may be a more environmentally friendly means of mitigating microplastic pollution in seawater.
Collapse
Affiliation(s)
- Kangning Zhang
- Jiaozhou Bay National Marine Ecosystem Research Station, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; University of Chinese Academy of Sciences, Beijing 100049, China; National Marine Environmental Monitoring Center, Dalian 116023, China
| | - Shan Zheng
- Jiaozhou Bay National Marine Ecosystem Research Station, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; Laboratory for Marine Ecology and Environmental Science, Qingdao Marine Science and Technology Center, Qingdao 266237, China
| | - Chenhao Zhao
- Jiaozhou Bay National Marine Ecosystem Research Station, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Junhua Liang
- Jiaozhou Bay National Marine Ecosystem Research Station, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; Laboratory for Marine Ecology and Environmental Science, Qingdao Marine Science and Technology Center, Qingdao 266237, China
| | - Xiaoxia Sun
- Jiaozhou Bay National Marine Ecosystem Research Station, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; Laboratory for Marine Ecology and Environmental Science, Qingdao Marine Science and Technology Center, Qingdao 266237, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
2
|
Gougeon R, Buatois LA, Mángano MG, Narbonne GM, Laing BA, Paz M, Minter NJ. Environmental and evolutionary controls in animal-sediment interactions at the onset of the Cambrian explosion. Curr Biol 2025; 35:249-264.e4. [PMID: 39719696 DOI: 10.1016/j.cub.2024.11.028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 06/19/2024] [Accepted: 11/15/2024] [Indexed: 12/26/2024]
Abstract
The Cambrian explosion was a time of groundbreaking ecological shifts related to the establishment of the Phanerozoic biosphere. Trace fossils, which are the products of animals interacting with their substrates, provide a key record of the diversification of the benthos and the evolution of behavioral complexity through this interval. The Chapel Island Formation of Newfoundland in Canada hosts the most extensive trace-fossil record from the latest Ediacaran to Cambrian Age 2, spanning about 20 million years continuously. To elucidate the relative roles of environmental changes as opposed to evolutionary trajectories, we gathered the largest trace-fossil dataset to date and designed fourteen high-resolution time-environment matrices on bioturbation intensity, burrow width and depth, tiering (i.e., the vertical partitioning of trace fossils within the substrate), ichnodiversity, ichnodisparity (i.e., the development of novel architectural designs in ichnotaxa), ecospace utilization (i.e., the development of ecological niches by benthic animals), and other trends related to specific trace-fossil types. Ecosystem engineering by early animals resulted in three stages identified in the Chapel Island Formation that are probably global-an Ediacaran matground ecology, a Fortunian matground/firmground ecology, and a latest Fortunian/Cambrian Age 2 mixground ecology. Time-environment matrices further imply that the lower offshore was the cradle of diversification for animal behavior, which later expanded inshore and led to a novelty evolutionary event, refining our understanding of the early stages of the Cambrian explosion.
Collapse
Affiliation(s)
- Romain Gougeon
- Department of Geological Sciences, University of Saskatchewan, Science Place, Saskatoon, SK S7N 5E2, Canada; Geo-Ocean, University of Brest, CNRS, Ifremer, UMR 6538, Place Nicolas Copernic, Plouzané 29280, France.
| | - Luis A Buatois
- Department of Geological Sciences, University of Saskatchewan, Science Place, Saskatoon, SK S7N 5E2, Canada
| | - M Gabriela Mángano
- Department of Geological Sciences, University of Saskatchewan, Science Place, Saskatoon, SK S7N 5E2, Canada
| | - Guy M Narbonne
- Department of Geological Sciences, University of Saskatchewan, Science Place, Saskatoon, SK S7N 5E2, Canada; Department of Geological Sciences and Geological Engineering, Queen's University, Union Street, Kingston, ON K7L 3N6, Canada
| | - Brittany A Laing
- Department of Geological Sciences, University of Saskatchewan, Science Place, Saskatoon, SK S7N 5E2, Canada
| | - Maximiliano Paz
- Department of Geological Sciences, University of Saskatchewan, Science Place, Saskatoon, SK S7N 5E2, Canada; Oberlin College and Conservatory, W. Lorain Street, Oberlin, OH 44074, USA
| | - Nicholas J Minter
- School of the Environment and Life Sciences, University of Portsmouth, Burnaby Road, Portsmouth PO1 3QL, UK
| |
Collapse
|
3
|
Cribb AT, Darroch SAF. Geobiology: Machine learning puts bioturbation on the map. Curr Biol 2024; 34:R630-R632. [PMID: 38981429 DOI: 10.1016/j.cub.2024.05.038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/11/2024]
Abstract
Bioturbation, the mixing of sediment through the actions of organisms, is a crucial ecosystem engineering process that controls biogeochemical cycles and helps structure marine ecosystems. Machine learning is helping to develop global maps of the intensity and depth of bioturbation.
Collapse
Affiliation(s)
- Alison T Cribb
- School of Ocean and Earth Science, University of Southampton, Southampton SO17 1BJ, UK
| | - Simon A F Darroch
- Senckenberg Museum of Natural History, Frankfurt am Main 60325, Germany.
| |
Collapse
|
4
|
Williams TJ, Reed AJ, Peck LS, Godbold JA, Solan M. Ocean warming and acidification adjust inter- and intra-specific variability in the functional trait expression of polar invertebrates. Sci Rep 2024; 14:14985. [PMID: 38951669 PMCID: PMC11217501 DOI: 10.1038/s41598-024-65808-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Accepted: 06/24/2024] [Indexed: 07/03/2024] Open
Abstract
Climate change is known to affect the distribution and composition of species, but concomitant alterations to functionally important aspects of behaviour and species-environment relations are poorly constrained. Here, we examine the ecosystem ramifications of changes in sediment-dwelling invertebrate bioturbation behaviour-a key process mediating nutrient cycling-associated with near-future environmental conditions (+ 1.5 °C, 550 ppm [pCO2]) for species from polar regions experiencing rapid rates of climate change. We find that responses to warming and acidification vary between species and lead to a reduction in intra-specific variability in behavioural trait expression that adjusts the magnitude and direction of nutrient concentrations. Our analyses also indicate that species behaviour is not predetermined, but can be dependent on local variations in environmental history that set population capacities for phenotypic plasticity. We provide evidence that certain, but subtle, aspects of inter- and intra-specific variation in behavioural trait expression, rather than the presence or proportional representation of species per se, is an important and under-appreciated determinant of benthic biogeochemical responses to climate change. Such changes in species behaviour may act as an early warning for impending ecological transitions associated with progressive climate forcing.
Collapse
Affiliation(s)
- Thomas J Williams
- School of Ocean and Earth Science, National Oceanography Centre Southampton, University of Southampton, Waterfront Campus, European Way, Southampton, SO14 3ZH, UK.
| | - Adam J Reed
- School of Ocean and Earth Science, National Oceanography Centre Southampton, University of Southampton, Waterfront Campus, European Way, Southampton, SO14 3ZH, UK
| | - Lloyd S Peck
- British Antarctic Survey, NERC, High Cross, Madingley Road, Cambridge, CB3 0ET, UK
| | - Jasmin A Godbold
- School of Ocean and Earth Science, National Oceanography Centre Southampton, University of Southampton, Waterfront Campus, European Way, Southampton, SO14 3ZH, UK
| | - Martin Solan
- School of Ocean and Earth Science, National Oceanography Centre Southampton, University of Southampton, Waterfront Campus, European Way, Southampton, SO14 3ZH, UK
| |
Collapse
|
5
|
Zhu T, Zheng L, Li F, Liu J, Zhuang W. Sustainable carbon sequestration via olivine based ocean alkalinity enhancement in the east and South China Sea: Adhering to environmental norms for nickel and chromium. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 930:172853. [PMID: 38685434 DOI: 10.1016/j.scitotenv.2024.172853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 04/25/2024] [Accepted: 04/26/2024] [Indexed: 05/02/2024]
Abstract
Enhancing silicate weathering to increase oceanic alkalinity, thereby facilitating the absorption of atmospheric carbon dioxide (CO2), is considered a highly promising technique for carbon sequestration. This study aims to evaluate the feasibility and potential of olivine-based ocean alkalinity enhancement (OAE) for the removal of atmospheric CO2 and its storage in seawater as bicarbonates in the East and South China Seas (ESCS). A particular focus is placed on the potential ecological impacts arising from the release of nickel (Ni) and chromium (Cr) during the olivine weathering process. We considered two extreme scenarios: one where Ni and Cr are entirely retained in seawater, and another where they are completely deposited in sediments. These scenarios respectively represent the maximum permissible concentrations of Ni and Cr in seawater and sediments during the OAE process. Current marine environmental quality standards (EQS) were utilized as the threshold limits for Ni and Cr in both seawater and sediment, with concentrations exceeding these EQS potentially leading to significant adverse effects on marine life. When all released Ni is retained in seawater, the allowable dosage of olivine varies from 0.05 to 13.7 kg/m2 (depending on olivine particle size, temperature, and water depth); when all released Ni is captured by sediment, the permissible addition of olivine ranges from 0.21 to 2.1 kg/m2 (depending on mixing depth). Given the low solubility of Cr, it is not necessary to consider the scenario where Cr exceeds the limit in seawater. The allowable amount of Cr entirely retained in sediments ranges from 0.69 to 47.2 kg/m2.In most scenarios, the accumulation of metals in sediments preferentially exceeds the corresponding threshold value rather than remaining in seawater. Therefore, we recommend using alkalization equipment to fully dissolve olivine before discharging into the sea, enabling a larger-scale application of olivine without significant negative ecological impacts.
Collapse
Affiliation(s)
- Tianqiang Zhu
- Institute of Marine Science and Technology, Shandong University, Qingdao 266237, China; School of Environmental Science and Engineering, Shandong University, Qingdao 266237, China; National Laboratory for Marine Science and Technology, Qingdao 266237, China; Institute of Eco-environmental Forensics, Shandong University, Qingdao 266237, China
| | - Liwen Zheng
- Institute of Marine Science and Technology, Shandong University, Qingdao 266237, China
| | - Feng Li
- Institute of Marine Science and Technology, Shandong University, Qingdao 266237, China; School of Environmental Science and Engineering, Shandong University, Qingdao 266237, China; National Laboratory for Marine Science and Technology, Qingdao 266237, China; Institute of Eco-environmental Forensics, Shandong University, Qingdao 266237, China
| | - Jihua Liu
- Institute of Marine Science and Technology, Shandong University, Qingdao 266237, China.
| | - Wen Zhuang
- Institute of Marine Science and Technology, Shandong University, Qingdao 266237, China; School of Environmental Science and Engineering, Shandong University, Qingdao 266237, China; National Laboratory for Marine Science and Technology, Qingdao 266237, China; Institute of Eco-environmental Forensics, Shandong University, Qingdao 266237, China.
| |
Collapse
|
6
|
Zhang S, Solan M, Tarhan L. Global distribution and environmental correlates of marine bioturbation. Curr Biol 2024; 34:2580-2593.e4. [PMID: 38781955 DOI: 10.1016/j.cub.2024.04.065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 03/27/2024] [Accepted: 04/29/2024] [Indexed: 05/25/2024]
Abstract
The activities of marine sediment-dwelling invertebrates play a fundamental role in mediating major biogeochemical cycles and have profoundly shaped the evolution of marine systems. Yet there remains a paucity of global marine data describing bioturbation intensities and mixed layer depths and interrogating how these vary with multiple environmental and ecological factors at a system scale. We applied an ensemble of tree-based machine learning techniques to resolve a global map and determine the environmental and ecological correlates most closely associated with bioturbation. We find that bioturbation intensity and the depth of the sediment mixed layer each reflect different associations with a consortium of environmental and ecological parameters, and that bioturbation intensities are much more readily predicted than sediment mixed layer depths from these correlates. Furthermore, we find that the bioturbation intensity, the depth of the sediment mixed layer, and their environmental and ecological correlates differ between shallow marine and open-ocean settings. Our findings provide new insights into the importance of potential drivers of ancient sediment mixing recorded by geologic archives. These results also highlight that climate change may, in the near future, drive shifts in bioturbation and reciprocal fundamental changes in benthic functioning.
Collapse
Affiliation(s)
- Shuang Zhang
- Department of Oceanography, Texas A&M University, 3146 TAMU, College Station, TX 77843, USA; Department of Earth and Planetary Sciences, Yale University, P.O. Box 208109, New Haven, CT 06520, USA.
| | - Martin Solan
- Ocean and Earth Science, National Oceanography Centre, Southampton, University of Southampton, Waterfront Campus, European Way, Southampton SO14 3ZH, UK
| | - Lidya Tarhan
- Department of Earth and Planetary Sciences, Yale University, P.O. Box 208109, New Haven, CT 06520, USA.
| |
Collapse
|
7
|
Cribb AT, van de Velde SJ, Berelson WM, Bottjer DJ, Corsetti FA. Ediacaran-Cambrian bioturbation did not extensively oxygenate sediments in shallow marine ecosystems. GEOBIOLOGY 2023; 21:435-453. [PMID: 36815223 DOI: 10.1111/gbi.12550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 01/03/2023] [Accepted: 01/27/2023] [Indexed: 06/13/2023]
Abstract
The radiation of bioturbation during the Ediacaran-Cambrian transition has long been hypothesized to have oxygenated sediments, triggering an expansion of the habitable benthic zone and promoting increased infaunal tiering in early Paleozoic benthic communities. However, the effects of bioturbation on sediment oxygen are underexplored with respect to the importance of biomixing and bioirrigation, two bioturbation processes which can have opposite effects on sediment redox chemistry. We categorized trace fossils from the Ediacaran and Terreneuvian as biomixing or bioirrigation fossils and integrated sedimentological proxies for bioturbation intensity with biogeochemical modeling to simulate oxygen penetration depths through the Ediacaran-Cambrian transition. Ultimately, we find that despite dramatic increases in ichnodiversity in the Terreneuvian, biomixing remains the dominant bioturbation behavior, and in contrast to traditional assumptions, Ediacaran-Cambrian bioturbation was unlikely to have resulted in extensive oxygenation of shallow marine sediments globally.
Collapse
Affiliation(s)
- Alison T Cribb
- Department of Earth Sciences, University of Southern California, Los Angeles, California, USA
| | - Sebastiaan J van de Velde
- Department of Geosciences, Environment and Society, Universté Libre de Bruxelles, Brussels, Belgium
- Operational Directorate Natural Environment, Royal Belgian Institute of Natural Sciences, Brussels, Belgium
| | - William M Berelson
- Department of Earth Sciences, University of Southern California, Los Angeles, California, USA
| | - David J Bottjer
- Department of Earth Sciences, University of Southern California, Los Angeles, California, USA
| | - Frank A Corsetti
- Department of Earth Sciences, University of Southern California, Los Angeles, California, USA
| |
Collapse
|
8
|
Ilechukwu I, Das RR, Reimer JD. Review of microplastics in museum specimens: An under-utilized tool to better understand the Plasticene. MARINE POLLUTION BULLETIN 2023; 191:114922. [PMID: 37068343 DOI: 10.1016/j.marpolbul.2023.114922] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 03/25/2023] [Accepted: 04/06/2023] [Indexed: 05/13/2023]
Abstract
This study summarises the status of microplastic research in marine and freshwater specimens in natural museum collections around the world. Abundances, distributions, and types of microplastics in the archived collections are discussed. Museum collections can fill knowledge gaps on evolution of microplastic pollution before and during the Plasticene era. The specimens in these studies, ranging from plankton to vertebrates, were collected and archived between 1900 and 2019, and are dominated by specimens from marine ecosystems. All the specimens included in this review were preserved by freezing or in ethanol/formaldehyde except for specimens in one study that were preserved via cryomilling. Microfibers were the most common microplastics in the reviewed studies. We recommend more microplastic studies over a wider taxonomic range of species and across a longer span of years utilizing archival specimen collections around the world in order to establish reference points and develop temporal trends for microplastic pollution of the environment.
Collapse
Affiliation(s)
- Ifenna Ilechukwu
- Molecular Invertebrate Systematics and Ecology (MISE) Laboratory, Graduate School of Engineering and Science, University of the Ryukyus, Nishihara, Okinawa 903-0213, Japan; Department of Industrial Chemistry, Madonna University, Elele Campus, Rivers State, Nigeria.
| | - Rocktim Ramen Das
- Molecular Invertebrate Systematics and Ecology (MISE) Laboratory, Graduate School of Engineering and Science, University of the Ryukyus, Nishihara, Okinawa 903-0213, Japan
| | - James Davis Reimer
- Molecular Invertebrate Systematics and Ecology (MISE) Laboratory, Graduate School of Engineering and Science, University of the Ryukyus, Nishihara, Okinawa 903-0213, Japan; Tropical Biosphere Research Center, University of the Ryukyus, Nishihara, Okinawa 903-0213, Japan
| |
Collapse
|
9
|
Hsieh S, Łaska W, Uchman A. Intermittent and temporally variable bioturbation by some terrestrial invertebrates: implications for ichnology. THE SCIENCE OF NATURE - NATURWISSENSCHAFTEN 2023; 110:11. [PMID: 36881175 PMCID: PMC9992032 DOI: 10.1007/s00114-023-01833-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Revised: 01/16/2023] [Accepted: 01/19/2023] [Indexed: 03/08/2023]
Abstract
Bedding planes and vertical sections of many sedimentary rock formations reveal bioturbation structures, including burrows, produced by diverse animal taxa at different rates and durations. These variables are not directly measurable in the fossil record, but neoichnological observations and experiments provide informative analogues. Comparable to marine invertebrates from many phyla, a captive beetle larva burrowing over 2 weeks showed high rates of sediment disturbance within the first 100 h but slower rates afterwards. Tunnelling by earthworms and adult dung beetles is also inconstant-displacement of lithic material alternates with organic matter displacement, often driven by food availability with more locomotion when hungry. High rates of bioturbation, as with locomotion generally, result from internal and external drives, slowing down or stopping when needs are filled. Like other processes affecting sediment deposition and erosion, rates can drastically differ based on measured timescale, with short bursts of activity followed by hiatuses, concentrated in various seasons and ontogenetic stages for particular species. Assumptions of constant velocities within movement paths, left as traces afterward, may not apply in many cases. Arguments about energetic efficiency or optimal foraging based on ichnofossils have often overlooked these and related issues. Single bioturbation rates from short-term experiments in captivity may not be comparable to rates measured at an ecosystem level over a year or generalized across multiple time scales where conditions differ even for the same species. Neoichnological work, with an understanding of lifetime variabilities in bioturbation and their drivers, helps connect ichnology with behavioural biology and movement ecology.
Collapse
Affiliation(s)
- Shannon Hsieh
- Faculty of Geography and Geology, Institute of Geological Sciences, Jagiellonian University, Gronostajowa 3a, 30-387, Kraków, Poland.
| | - Weronika Łaska
- Faculty of Geography and Geology, Institute of Geological Sciences, Jagiellonian University, Gronostajowa 3a, 30-387, Kraków, Poland.,Institute of Evolutionary Biology, Faculty of Biology, Biological and Chemical Research Centre, University of Warsaw, Warsaw, 101, 02-089, Żwirki i Wigury, Poland
| | - Alfred Uchman
- Faculty of Geography and Geology, Institute of Geological Sciences, Jagiellonian University, Gronostajowa 3a, 30-387, Kraków, Poland
| |
Collapse
|
10
|
van de Velde SJ, Dale AW, Arndt S. Bioturbation and the δ 56Fe signature of dissolved iron fluxes from marine sediments. ROYAL SOCIETY OPEN SCIENCE 2023; 10:220010. [PMID: 36704258 PMCID: PMC9874279 DOI: 10.1098/rsos.220010] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Accepted: 01/05/2023] [Indexed: 06/18/2023]
Abstract
We developed a reaction-transport model capable of tracing iron isotopes in marine sediments to quantify the influence of bioturbation on the isotopic signature of the benthic dissolved (DFe) flux. By fitting the model to published data from marine sediments, we calibrated effective overall fractionation factors for iron reduction (-1.3‰), oxidation (+0.4‰), iron-sulfide precipitation (+0.5‰) and dissolution (-0.5‰) and pyrite precipitation (-0.7‰) that agree with literature values. Results show that for bottom-water oxygen concentrations greater than 50 µM, higher bioturbation increased the benthic DFe flux and its δ 56Fe signature. By contrast, for oxygen concentrations less than 50 µM, higher bioturbation decreased the benthic DFe flux and its δ 56Fe signature. The expressed overall fractionation of the benthic DFe flux relative to the δ 56Fe of the iron oxides entering the sediment ranges from -1.67‰ to 0.0‰. On a global scale, the presence of bioturbation increases sedimentary DFe release from approximately 70 G mol DFe yr-1 to approximately 160 G mol DFe yr-1 and decreases the δ 56Fe signature of the DFe flux.
Collapse
Affiliation(s)
- Sebastiaan J. van de Velde
- Department of Geoscience, Environment & Society, Université Libre de Bruxelles, Av. F. Roosevelt 50, CP160/02, 1050 Brussels, Belgium
- Operational Directorate Natural Environment, Royal Belgian Institute of Natural Sciences, Rue Vautier 29, Brussels, Belgium
| | - Andrew W. Dale
- GEOMAR Helmholtz Centre for Ocean Research Kiel, Wischhofstr. 1-3, D-24148 Kiel, Germany
| | - Sandra Arndt
- Department of Geoscience, Environment & Society, Université Libre de Bruxelles, Av. F. Roosevelt 50, CP160/02, 1050 Brussels, Belgium
| |
Collapse
|
11
|
Weinert M, Kröncke I, Meyer J, Mathis M, Pohlmann T, Reiss H. Benthic ecosystem functioning under climate change: modelling the bioturbation potential for benthic key species in the southern North Sea. PeerJ 2022; 10:e14105. [PMID: 36317120 PMCID: PMC9617549 DOI: 10.7717/peerj.14105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Accepted: 09/01/2022] [Indexed: 01/21/2023] Open
Abstract
Climate change affects the marine environment on many levels with profound consequences for numerous biological, chemical, and physical processes. Benthic bioturbation is one of the most relevant and significant processes for benthic-pelagic coupling and biogeochemical fluxes in marine sediments, such as the uptake, transport, and remineralisation of organic carbon. However, only little is known about how climate change affects the distribution and intensity of benthic bioturbation of a shallow temperate shelf sea system such as the southern North Sea. In this study, we modelled and projected changes in bioturbation potential (BPp) under a continuous global warming scenario for seven southern North Sea key bioturbators: Abra alba, Amphiura filiformis, Callianassa subterranea, Echinocardium cordatum, Goniada maculata, Nephtys hombergii, and Nucula nitidosa. Spatial changes in species bioturbation intensity are simulated for the years 2050 and 2099 based on one species distribution model per species driven by bottom temperature and salinity changes using the IPCC SRES scenario A1B. Local mean bottom temperature was projected to increase between 0.15 and 5.4 °C, while mean bottom salinity was projected to moderately decrease by 1.7. Our results show that the considered benthic species are strongly influenced by the temperature increase. Although the total BP remained rather constant in the southern North Sea, the BPp for four out of seven species was projected to increase, mainly due to a simultaneous northward range expansion, while the BPp in the core area of the southern North Sea declined for the same species. Bioturbation of the most important species, Amphiura filiformis and Echinocardium cordatum, showed no substantial change in the spatial distribution, but over time. The BPp of E. cordatum remained almost constant until 2099, while the BPp of A. filiformis decreased by 41%. The northward expansion of some species and the decline of most species in the south led to a change of relative contribution to bioturbation in the southern North Sea. These results indicate that some of the selected key bioturbators in the southern North Sea might partly compensate the decrease in bioturbation by others. But especially in the depositional areas where bioturbation plays a specifically important role for ecosystem functioning, bioturbation potential declined until 2099, which might affect the biochemical cycling in sediments of some areas of the southern North Sea.
Collapse
Affiliation(s)
- Michael Weinert
- Department for Marine Research, Senckenberg am Meer, Wilhelmshaven, Germany,Faculty of Biosciences and Aquaculture, Nord University, Bodø, Norway
| | - Ingrid Kröncke
- Department for Marine Research, Senckenberg am Meer, Wilhelmshaven, Germany,Institute for Chemistry and Biology of the Marine Environment (ICBM), Carl von Ossietzky University, Oldenburg, Germany
| | - Julia Meyer
- Department for Marine Research, Senckenberg am Meer, Wilhelmshaven, Germany,Institute for Chemistry and Biology of the Marine Environment (ICBM), Carl von Ossietzky University, Oldenburg, Germany
| | - Moritz Mathis
- Institute of Coastal Systems, Helmholtz-Zentrum Hereon, Geesthacht, Germany
| | - Thomas Pohlmann
- Institute of Oceanography, University of Hamburg, Hamburg, Germany
| | - Henning Reiss
- Faculty of Biosciences and Aquaculture, Nord University, Bodø, Norway
| |
Collapse
|
12
|
Song S, Santos IR, Yu H, Wang F, Burnett WC, Bianchi TS, Dong J, Lian E, Zhao B, Mayer L, Yao Q, Yu Z, Xu B. A global assessment of the mixed layer in coastal sediments and implications for carbon storage. Nat Commun 2022; 13:4903. [PMID: 35987905 PMCID: PMC9392783 DOI: 10.1038/s41467-022-32650-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Accepted: 08/10/2022] [Indexed: 11/26/2022] Open
Abstract
The sediment-water interface in the coastal ocean is a highly dynamic zone controlling biogeochemical fluxes of greenhouse gases, nutrients, and metals. Processes in the sediment mixed layer (SML) control the transfer and reactivity of both particulate and dissolved matter in coastal interfaces. Here we map the global distribution of the coastal SML based on excess 210Pb (210Pbex) profiles and then use a neural network model to upscale these observations. We show that highly dynamic regions such as large estuaries have thicker SMLs than most oceanic sediments. Organic carbon preservation and SMLs are inversely related as mixing stimulates oxidation in sediments which enhances organic matter decomposition. Sites with SML thickness >60 cm usually have lower organic carbon accumulation rates (<50 g C m−2 yr−1) and total organic carbon/specific surface area ratios (<0.4 mg m−2). Our global scale observations reveal that reworking can accelerate organic matter degradation and reduce carbon storage in coastal sediments. The authors map the global distribution of the mixed layer in coastal ocean sediments, based on a neural network model. These observations reveal that mixing can accelerate organic matter degradation and reduce carbon storage in the coastal ocean.
Collapse
|
13
|
Gogina M, Renz JR, Forster S, Zettler ML. Benthic Macrofauna Community Bioirrigation Potential (BIPc): Regional Map and Utility Validation for the South-Western Baltic Sea. BIOLOGY 2022; 11:biology11071085. [PMID: 36101463 PMCID: PMC9312502 DOI: 10.3390/biology11071085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 07/18/2022] [Accepted: 07/18/2022] [Indexed: 11/20/2022]
Abstract
Simple Summary The sediments on the seafloor are inhabited by multiple macroscopic organisms such as shells and worms, which, among other things, influence the biogeochemical cycling by flushing the near-bottom water through their gangways. This is called bioirrigation, one of key processes in the functioning of marine sediments. The density of animals, in addition to the features (or traits) of each species, define their specific contributions to this process. Measuring the intensity of this rather dynamic process in nature is difficult and costly; therefore, the available direct observations are too scarce for large-scale assessments. However, such assessments are essential for broadening our understanding of ecosystem functioning, and of the role that biodiversity plays in it. To address this shortage of observational data, a traits-based index “BIPc” that expresses the bioirrigation potential, based on available data on sediment-dwelling animals, comes into play. In this paper, we focus on the performance of the BIPc index in the south-western Baltic Sea, and on how it changes in space and time. The results support the usefulness of this index, but also highlight its existing limitations. Modelled distribution map layers of the bioirrigation potential and scores for 120 key species required for index calculation are made available for reuse. Abstract Benthic community bioirrigation potential (BIPc), an index developed to quantify the anticipated capacity of macrofauna to influence the solute exchange at the sediment–water interface, was calculated for the south-western Baltic Sea. This index can be regarded as an effect trait that is useful for predicting ecosystem processes impacted by animal burrow ventilation. The special feature, and presumably an advantage, of BIPc, compared to alternative recently developed benthic macrofauna-based bioirrigation indices, lies in its ability to distinguish the taxa-specific score values between diffusion- and advection-dominated sediment systems. The usefulness of the BIPc index was compared against the estimates of the well-established community bioturbation potential index (BPc). The BIPc index displayed a moderately but significantly stronger correlation with estimates of irrigation rates derived from tracer experiments. Using a random forest machine learning approach and a number of available relevant environmental predictor layers, we have modelled and mapped the spatial differences in this ecosystem functioning expression. The key species contributing to bioirrigation potential in the study area were identified. The interannual variation in BIPc was assessed on a small exemplary dataset. The scores required to calculate the index, that were assigned to 120 taxa dominating abundance and biomass in the region, are provided for reuse. The utility, temporal variability and uncertainty of the distribution estimate are discussed.
Collapse
Affiliation(s)
- Mayya Gogina
- Leibniz Institute for Baltic Sea Research, Seestraße 15, 18119 Rostock, Germany;
- Correspondence: ; Tel.: +49-381-519-7393
| | - Judith Rahel Renz
- Marine Biology, Institute of Biological Sciences, University of Rostock, Albert-Einstein-Straße 3, 18059 Rostock, Germany; (J.R.R.); (S.F.)
| | - Stefan Forster
- Marine Biology, Institute of Biological Sciences, University of Rostock, Albert-Einstein-Straße 3, 18059 Rostock, Germany; (J.R.R.); (S.F.)
| | - Michael L. Zettler
- Leibniz Institute for Baltic Sea Research, Seestraße 15, 18119 Rostock, Germany;
| |
Collapse
|
14
|
Savranskaia T, Egli R, Valet JP. Multiscale Brazil nut effects in bioturbated sediment. Sci Rep 2022; 12:11450. [PMID: 35794114 PMCID: PMC9259689 DOI: 10.1038/s41598-022-14276-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2022] [Accepted: 06/03/2022] [Indexed: 12/01/2022] Open
Abstract
Size segregation in granular materials is a universal phenomenon popularly known as the Brazil nut effect (BNE), from the tendency of larger nuts to end on the top of a shaken container. In nature, fast granular flows bear many similarities with well-studied mixing processes. Instead, much slower phenomena, such as the accumulation of ferromanganese nodules (FN) on the seafloor, have been attributed to the BNE but remain essentially unexplained. Here we document, for the first time, the BNE on sub-millimetre particles in pelagic sediment and propose a size segregation model for the surface mixed layer of bioturbated sediments. Our model explains the size distribution of FN seeds, pointing to a uniform segregation mechanism over sizes ranging from < 1 mm to > 1 cm, which does not depend on selective ingestion by feeding organisms. In addition to explaining FN nucleation, our model has important implications for microfossil dating and the mechanism underlying sedimentary records of the Earth’s magnetic field.
Collapse
Affiliation(s)
- Tatiana Savranskaia
- Institut de Physique Du Globe de Paris, CNRS, Université de Paris, 75005, Paris, France. .,Helmholtz-Zentrum Potsdam Deutsches GeoForschungsZentrum GFZ, Telegrafenberg, 14473, Potsdam, Germany.
| | - Ramon Egli
- Institut de Physique Du Globe de Paris, CNRS, Université de Paris, 75005, Paris, France. .,Zentralanstalt für Meteorologie und Geodynamik (ZAMG), 1190, Wien, Austria.
| | - Jean-Pierre Valet
- Institut de Physique Du Globe de Paris, CNRS, Université de Paris, 75005, Paris, France
| |
Collapse
|
15
|
März C, Freitas FS, Faust JC, Godbold JA, Henley SF, Tessin AC, Abbott GD, Airs R, Arndt S, Barnes DKA, Grange LJ, Gray ND, Head IM, Hendry KR, Hilton RG, Reed AJ, Rühl S, Solan M, Souster TA, Stevenson MA, Tait K, Ward J, Widdicombe S. Biogeochemical consequences of a changing Arctic shelf seafloor ecosystem. AMBIO 2022; 51:370-382. [PMID: 34628602 PMCID: PMC8692578 DOI: 10.1007/s13280-021-01638-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Revised: 09/02/2021] [Accepted: 09/22/2021] [Indexed: 05/05/2023]
Abstract
Unprecedented and dramatic transformations are occurring in the Arctic in response to climate change, but academic, public, and political discourse has disproportionately focussed on the most visible and direct aspects of change, including sea ice melt, permafrost thaw, the fate of charismatic megafauna, and the expansion of fisheries. Such narratives disregard the importance of less visible and indirect processes and, in particular, miss the substantive contribution of the shelf seafloor in regulating nutrients and sequestering carbon. Here, we summarise the biogeochemical functioning of the Arctic shelf seafloor before considering how climate change and regional adjustments to human activities may alter its biogeochemical and ecological dynamics, including ecosystem function, carbon burial, or nutrient recycling. We highlight the importance of the Arctic benthic system in mitigating climatic and anthropogenic change and, with a focus on the Barents Sea, offer some observations and our perspectives on future management and policy.
Collapse
Affiliation(s)
- Christian März
- School of Earth and Environment, University of Leeds, Leeds, LS2 9JT UK
| | - Felipe S. Freitas
- School of Earth Sciences, University of Bristol, Wills Memorial Building, Queens Road, Bristol, BS8 1QE UK
| | - Johan C. Faust
- School of Earth and Environment, University of Leeds, Leeds, LS2 9JT UK
- MARUM—Center for Marine Environmental Sciences, University of Bremen, Leobener Strasse 8, 28359 Bremen, Germany
| | - Jasmin A. Godbold
- Ocean and Earth Science, National Oceanography Centre Southampton, University of Southampton, Waterfront Campus, European Way, Southampton, SO14 3ZH UK
| | - Sian F. Henley
- School of GeoSciences, University of Edinburgh, James Hutton Road, Edinburgh, EH9 3FE UK
| | - Allyson C. Tessin
- Department of Geology, Kent State University, 221 McGilvrey Hall, 325 S. Lincoln St., Kent, OH 44242 USA
| | - Geoffrey D. Abbott
- School of Natural and Environmental Sciences, Newcastle University, Newcastle upon Tyne, NE1 7RU UK
| | - Ruth Airs
- Plymouth Marine Laboratory, Prospect Place, Plymouth, PL1 3DH UK
| | - Sandra Arndt
- Department of Geosciences, Environment and Society, Université libre de Bruxelles, Brussels, Av. F.
Roosevelt 50, CP160/02, 1050 Brussels, Belgium
| | - David K. A. Barnes
- British Antarctic Survey, UKRI, High Cross, Maddingley Rd, Cambridge, CB3 0ET UK
| | - Laura J. Grange
- School of Ocean Sciences, Bangor University, Bangor, Gwynedd, LL57 2DG North Wales UK
| | - Neil D. Gray
- School of Natural and Environmental Sciences, Newcastle University, Newcastle upon Tyne, NE1 7RU UK
| | - Ian M. Head
- School of Natural and Environmental Sciences, Newcastle University, Newcastle upon Tyne, NE1 7RU UK
| | - Katharine R. Hendry
- School of Earth Sciences, University of Bristol, Wills Memorial Building, Queens Road, Bristol, BS8 1QE UK
| | - Robert G. Hilton
- Department of Geography, Durham University, Lower Mountjoy, South Rd, Durham, DH1 3LE USA
| | - Adam J. Reed
- Ocean and Earth Science, National Oceanography Centre Southampton, University of Southampton, Waterfront Campus, European Way, Southampton, SO14 3ZH UK
| | - Saskia Rühl
- Plymouth Marine Laboratory, Prospect Place, Plymouth, PL1 3DH UK
- Helmholtz Zentrum Hereon, Max-Planck-Straße 1, 21502 Geesthacht, Germany
| | - Martin Solan
- Ocean and Earth Science, National Oceanography Centre Southampton, University of Southampton, Waterfront Campus, European Way, Southampton, SO14 3ZH UK
| | - Terri A. Souster
- British Antarctic Survey, UKRI, High Cross, Maddingley Rd, Cambridge, CB3 0ET UK
- Department of Biosciences, Fisheries and Economics, UIT, Tromsø, Norway
| | - Mark A. Stevenson
- School of Natural and Environmental Sciences, Newcastle University, Newcastle upon Tyne, NE1 7RU UK
- Department of Geography, Durham University, Lower Mountjoy, South Rd, Durham, DH1 3LE USA
| | - Karen Tait
- Plymouth Marine Laboratory, Prospect Place, Plymouth, PL1 3DH UK
| | - James Ward
- School of Earth Sciences, University of Bristol, Wills Memorial Building, Queens Road, Bristol, BS8 1QE UK
| | | |
Collapse
|
16
|
Crespo D, Leston S, Rato LD, Martinho F, Novais SC, Pardal MA, Lemos MFL. Does an Invasive Bivalve Outperform Its Native Congener in a Heat Wave Scenario? A Laboratory Study Case with Ruditapes decussatus and R. philippinarum. BIOLOGY 2021; 10:biology10121284. [PMID: 34943199 PMCID: PMC8698865 DOI: 10.3390/biology10121284] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/06/2021] [Revised: 11/29/2021] [Accepted: 12/04/2021] [Indexed: 12/05/2022]
Abstract
Simple Summary Global climate change is responsible for more frequent heat waves, which offers opportunities for invasive species to expand their range. Two congener bivalves, the native Ruditapes decussatus and the invasive R. philippinarum, were exposed to a heat wave aquaria simulation and analysed for ecological and subcellular biomarkers responses. Despite reduced responses on the ecological level (bioturbation and nutrient concentration), there were differential responses to the heat wave at the subcellular level, where the invasive species seems to be less impacted than the native by the heat wave. This reinforces the common notion that climate change events may provide opportunities for biological invasions. Abstract Global warming and the subsequent increase in the frequency of temperature anomalies are expected to affect marine and estuarine species’ population dynamics, latitudinal distribution, and fitness, allowing non-native opportunistic species to invade and thrive in new geographical areas. Bivalves represent a significant percentage of the benthic biomass in marine ecosystems worldwide, often with commercial interest, while mediating fundamental ecological processes. To understand how these temperature anomalies contribute to the success (or not) of biological invasions, two closely related species, the native Ruditapes decussatus and the introduced R. philippinarum, were exposed to a simulated heat wave. Organisms of both species were exposed to mean summer temperature (~18 °C) for 6 days, followed by 6 days of simulated heat wave conditions (~22 °C). Both species were analysed for key ecological processes such as bioturbation and nutrient generation—which are significant proxies for benthic function and habitat quality—and subcellular biomarkers—oxidative stress and damage, and energetic metabolism. Results showed subcellular responses to heat waves. However, such responses were not expressed at the addressed ecological levels. The subcellular responses to the heat wave in the invasive R. philippinarum pinpoint less damage and higher cellular energy allocation to cope with thermal stress, which may further improve its fitness and thus invasiveness behaviour.
Collapse
Affiliation(s)
- Daniel Crespo
- MARE—Marine and Environmental Sciences Centre, ESTM, Polytechnic of Leiria, 2520-641 Peniche, Portugal; (L.D.R.); (S.C.N.)
- CFE—Centre for Functional Ecology—Science for People & the Planet, Department of Life Sciences, University of Coimbra, Calçada Martim de Freitas, 3000-456 Coimbra, Portugal; (S.L.); (F.M.); (M.A.P.)
- CIIMAR—Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Terminal de Cruzeiros do Porto de Leixões, Avenida General Norton de Matos, S/N, 4450-208 Matosinhos, Portugal
- Correspondence: (D.C.); (M.F.L.L.)
| | - Sara Leston
- CFE—Centre for Functional Ecology—Science for People & the Planet, Department of Life Sciences, University of Coimbra, Calçada Martim de Freitas, 3000-456 Coimbra, Portugal; (S.L.); (F.M.); (M.A.P.)
| | - Lénia D. Rato
- MARE—Marine and Environmental Sciences Centre, ESTM, Polytechnic of Leiria, 2520-641 Peniche, Portugal; (L.D.R.); (S.C.N.)
| | - Filipe Martinho
- CFE—Centre for Functional Ecology—Science for People & the Planet, Department of Life Sciences, University of Coimbra, Calçada Martim de Freitas, 3000-456 Coimbra, Portugal; (S.L.); (F.M.); (M.A.P.)
| | - Sara C. Novais
- MARE—Marine and Environmental Sciences Centre, ESTM, Polytechnic of Leiria, 2520-641 Peniche, Portugal; (L.D.R.); (S.C.N.)
| | - Miguel A. Pardal
- CFE—Centre for Functional Ecology—Science for People & the Planet, Department of Life Sciences, University of Coimbra, Calçada Martim de Freitas, 3000-456 Coimbra, Portugal; (S.L.); (F.M.); (M.A.P.)
| | - Marco F. L. Lemos
- MARE—Marine and Environmental Sciences Centre, ESTM, Polytechnic of Leiria, 2520-641 Peniche, Portugal; (L.D.R.); (S.C.N.)
- Correspondence: (D.C.); (M.F.L.L.)
| |
Collapse
|
17
|
Flipkens G, Blust R, Town RM. Deriving Nickel (Ni(II)) and Chromium (Cr(III)) Based Environmentally Safe Olivine Guidelines for Coastal Enhanced Silicate Weathering. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2021; 55:12362-12371. [PMID: 34464125 DOI: 10.1021/acs.est.1c02974] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Enhanced silicate weathering (ESW) by spreading finely ground silicate rock along the coastal zone to remove atmospheric carbon dioxide (CO2) is a proposed climate change mitigation technique. The abundant and fast-dissolving mineral olivine has received the most attention for this application. However, olivine contains nickel (Ni) and chromium (Cr), which may pose a risk to marine biota during a gigaton-scale ESW application. Herein we derive a first guideline for coastal olivine dispersal based on existing marine environmental quality standards (EQS) for Ni and Cr. Results show that benthic biota are at the highest risk when olivine and its associated trace metals are mixed in the surface sediment. Specifically, depending on local sedimentary Ni concentrations, 0.059-1.4 kg of olivine m-2 of seabed could be supplied without posing risks for benthic biota. Accordingly, globally coastal ESW could safely sequester only 0.51-37 Gt of CO2 in the 21st century. On the basis of current EQS, we conclude that adverse environmental impacts from Ni and Cr release could reduce the applicability of olivine in coastal ESW. Our findings call for more in-depth studies on the potential toxicity of olivine toward benthic marine biota, especially in regard to bioavailability and metal mixture toxicity.
Collapse
Affiliation(s)
- Gunter Flipkens
- Systemic Physiological and Ecotoxicological Research (SPHERE), Department of Biology, University of Antwerp, Groenenborgerlaan 171, 2020 Antwerp, Belgium
| | - Ronny Blust
- Systemic Physiological and Ecotoxicological Research (SPHERE), Department of Biology, University of Antwerp, Groenenborgerlaan 171, 2020 Antwerp, Belgium
| | - Raewyn M Town
- Systemic Physiological and Ecotoxicological Research (SPHERE), Department of Biology, University of Antwerp, Groenenborgerlaan 171, 2020 Antwerp, Belgium
| |
Collapse
|
18
|
Van Colen C, Moereels L, Vanhove B, Vrielinck H, Moens T. The biological plastic pump: Evidence from a local case study using blue mussel and infaunal benthic communities. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 274:115825. [PMID: 33339706 DOI: 10.1016/j.envpol.2020.115825] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Revised: 08/22/2020] [Accepted: 10/11/2020] [Indexed: 06/12/2023]
Abstract
The distinct spatial variability in microplastic concentrations between marine regions and habitats calls for a better understanding about the transport pathways of this omnipresent pollutant in the marine environment. This study provides empirical evidence that a sessile filter feeder, the Blue mussel M. edulis, accelerates microplastic deposition by aggregating them into sinking particulate faeces and pseudofaeces. After settling to the seafloor, the bioturbation of benthic fauna quickly buries these microplastics. Collectively, these results suggest that if such biologically-mediated benthic-pelagic coupling would be integrated into hydrodynamic transport models, the spatial variability and source-sink dynamics of microplastics would be better understood. It is proposed that microplastic pollution is monitored through sampling that takes into account faeces and pseudofaeces underneath filter feeders. The implications of this detrital pathway for microplastic transfer to the seafloor, and the role of shellfish mariculture in this process, are discussed. Studies that consider filter feeders and benthic communities from other regions, and during different seasons, are needed to validate the proposed biological pump mechanism across space and time.
Collapse
Affiliation(s)
- Carl Van Colen
- Ghent University, Marine Biology Research Group, Krijgslaan 281/S8, B-9000 Ghent, Belgium.
| | - Lieke Moereels
- Ghent University, Marine Biology Research Group, Krijgslaan 281/S8, B-9000 Ghent, Belgium
| | - Brecht Vanhove
- Ghent University, Marine Biology Research Group, Krijgslaan 281/S8, B-9000 Ghent, Belgium
| | - Henk Vrielinck
- Ghent University, Department of Solid State Sciences, Krijgslaan 281/S2, B-9000 Ghent, Belgium
| | - Tom Moens
- Ghent University, Marine Biology Research Group, Krijgslaan 281/S8, B-9000 Ghent, Belgium
| |
Collapse
|
19
|
Pasquier V, Bryant RN, Fike DA, Halevy I. Strong local, not global, controls on marine pyrite sulfur isotopes. SCIENCE ADVANCES 2021; 7:7/9/eabb7403. [PMID: 33637519 PMCID: PMC7909874 DOI: 10.1126/sciadv.abb7403] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2020] [Accepted: 01/14/2021] [Indexed: 05/26/2023]
Abstract
Understanding variation in the sulfur isotopic composition of sedimentary pyrite (δ34Spyr) is motivated by the key role of sulfur biogeochemistry in regulating Earth's surface oxidation state. Until recently, the impact of local depositional conditions on δ34Spyr has remained underappreciated, and stratigraphic variations in δ34Spyr were interpreted mostly to reflect global changes in biogeochemical cycling. We present two coeval δ34Spyr records from shelf and basin settings in a single sedimentary system. Despite their proximity and contemporaneous deposition, these two records preserve radically different geochemical signals. Swings of ~65‰ in shelf δ34Spyr track short-term variations in local sedimentation and are completely absent from the abyssal record. In contrast, a long-term ~30‰ decrease in abyssal δ34Spyr reflects regional changes in ocean circulation and/or sustained pyrite formation. These results highlight strong local controls on δ34Spyr, calling for reevaluation of the current practice of using δ34Spyr stratigraphic variations to infer global changes in Earth's surface environment.
Collapse
Affiliation(s)
- V Pasquier
- Earth and Planetary Sciences, Weizmann Institute of Sciences, Rehovot, Israel.
| | - R N Bryant
- Earth and Planetary Sciences, Washington University in St. Louis, St. Louis, MO, USA
- Geophysical Sciences, University of Chicago, Chicago, IL, USA
| | - D A Fike
- Earth and Planetary Sciences, Washington University in St. Louis, St. Louis, MO, USA
| | - I Halevy
- Earth and Planetary Sciences, Weizmann Institute of Sciences, Rehovot, Israel
| |
Collapse
|
20
|
Solan M, Ward ER, Wood CL, Reed AJ, Grange LJ, Godbold JA. Climate-driven benthic invertebrate activity and biogeochemical functioning across the Barents Sea polar front. PHILOSOPHICAL TRANSACTIONS. SERIES A, MATHEMATICAL, PHYSICAL, AND ENGINEERING SCIENCES 2020; 378:20190365. [PMID: 32862817 PMCID: PMC7481672 DOI: 10.1098/rsta.2019.0365] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
Arctic marine ecosystems are undergoing rapid correction in response to multiple expressions of climate change, but the consequences of altered biodiversity for the sequestration, transformation and storage of nutrients are poorly constrained. Here, we determine the bioturbation activity of sediment-dwelling invertebrate communities over two consecutive summers that contrasted in sea-ice extent along a transect intersecting the polar front. We find a clear separation in community composition at the polar front that marks a transition in the type and amount of bioturbation activity, and associated nutrient concentrations, sufficient to distinguish a southern high from a northern low. While patterns in community structure reflect proximity to arctic versus boreal conditions, our observations strongly suggest that faunal activity is moderated by seasonal variations in sea ice extent that influence food supply to the benthos. Our observations help visualize how a climate-driven reorganization of the Barents Sea benthic ecosystem may be expressed, and emphasize the rapidity with which an entire region could experience a functional transformation. As strong benthic-pelagic coupling is typical across most parts of the Arctic shelf, the response of these ecosystems to a changing climate will have important ramifications for ecosystem functioning and the trophic structure of the entire food web. This article is part of the theme issue 'The changing Arctic Ocean: consequences for biological communities, biogeochemical processes and ecosystem functioning'.
Collapse
Affiliation(s)
- Martin Solan
- School of Ocean and Earth Science, National Oceanography Centre Southampton, University of Southampton, Waterfront Campus, European Way, Southampton SO14 3ZH, UK
- e-mail:
| | - Ellie R. Ward
- School of Ocean and Earth Science, National Oceanography Centre Southampton, University of Southampton, Waterfront Campus, European Way, Southampton SO14 3ZH, UK
| | - Christina L. Wood
- School of Ocean and Earth Science, National Oceanography Centre Southampton, University of Southampton, Waterfront Campus, European Way, Southampton SO14 3ZH, UK
| | - Adam J. Reed
- School of Ocean and Earth Science, National Oceanography Centre Southampton, University of Southampton, Waterfront Campus, European Way, Southampton SO14 3ZH, UK
| | - Laura J. Grange
- School of Ocean Sciences, Bangor University, Bangor, Gwynedd LL57 2DG, UK
| | - Jasmin A. Godbold
- School of Ocean and Earth Science, National Oceanography Centre Southampton, University of Southampton, Waterfront Campus, European Way, Southampton SO14 3ZH, UK
| |
Collapse
|
21
|
Cassidy C, Grange LJ, Garcia C, Bolam SG, Godbold JA. Species interactions and environmental context affect intraspecific behavioural trait variation and ecosystem function. Proc Biol Sci 2020; 287:20192143. [PMID: 31992167 DOI: 10.1098/rspb.2019.2143] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Functional trait-based approaches are increasingly adopted to understand and project ecological responses to environmental change; however, most assume trait expression is constant between conspecifics irrespective of context. Using two species of benthic invertebrate (brittlestars Amphiura filiformis and Amphiura chiajei), we demonstrate that trait expression at individual and community levels differs with biotic and abiotic context. We use PERMANOVA to test the effect of species identity, density and local environmental history on individual (righting and burrowing) and community (particle reworking and burrow ventilation) trait expression, as well as associated effects on ecosystem functioning (sediment nutrient release). Trait expression differs with context, with repercussions for the faunal mediation of ecosystem processes; we find increased rates of righting and burial behaviour and greater particle reworking with increasing density that are reflected in nutrient generation. However, the magnitude of effects differed within and between species, arising from site-specific environmental and morphological differences. Our results indicate that traits and processes influencing change in ecosystem functioning are products of both prevailing and historic conditions that cannot be constrained within typologies. Trait-based study must incorporate context-dependent variation, including intraspecific differences from individual to ecosystem scales, to avoid jeopardizing projections of ecosystem functioning and service delivery.
Collapse
Affiliation(s)
- Camilla Cassidy
- School of Ocean and Earth Science, National Oceanography Centre Southampton, University of Southampton, European Way, Southampton SO14 3ZH, UK
| | - Laura J Grange
- School of Ocean Sciences, Bangor University, Bangor LL57 2DG, UK
| | - Clement Garcia
- Centre for Environment, Fisheries and Aquaculture Science, Lowestoft Laboratory, Pakefield Road, Lowestoft, Suffolk NR33 0HT, UK
| | - Stefan G Bolam
- Centre for Environment, Fisheries and Aquaculture Science, Lowestoft Laboratory, Pakefield Road, Lowestoft, Suffolk NR33 0HT, UK
| | - Jasmin A Godbold
- School of Ocean and Earth Science, National Oceanography Centre Southampton, University of Southampton, European Way, Southampton SO14 3ZH, UK
| |
Collapse
|
22
|
Solan M, Bennett EM, Mumby PJ, Leyland J, Godbold JA. Benthic-based contributions to climate change mitigation and adaptation. Philos Trans R Soc Lond B Biol Sci 2020; 375:20190107. [PMID: 31983332 DOI: 10.1098/rstb.2019.0107] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Innovative solutions to improve the condition and resilience of ecosystems are needed to address societal challenges and pave the way towards a climate-resilient future. Nature-based solutions offer the potential to protect, sustainably manage and restore natural or modified ecosystems while providing multiple other benefits for health, the economy, society and the environment. However, the implementation of nature-based solutions stems from a discourse that is almost exclusively derived from a terrestrial and urban context and assumes that risk reduction is resolved locally. We argue that this position ignores the importance of complex ecological interactions across a range of temporal and spatial scales and misses the substantive contribution from marine ecosystems, which are notably absent from most climate mitigation and adaptation strategies that extend beyond coastal disaster management. Here, we consider the potential of sediment-dwelling fauna and flora to inform and support nature-based solutions, and how the ecology of benthic environments can enhance adaptation plans. We illustrate our thesis with examples of practice that are generating, or have the potential to deliver, transformative change and discuss where further innovation might be applied. Finally, we take a reflective look at the realized and potential capacity of benthic-based solutions to contribute to adaptation plans and offer our perspectives on the suitability and shortcomings of past achievements and the prospective rewards from sensible prioritization of future research. This article is part of the theme issue 'Climate change and ecosystems: threats, opportunities and solutions'.
Collapse
Affiliation(s)
- Martin Solan
- School of Ocean and Earth Science, National Oceanography Centre Southampton, University of Southampton, Waterfront Campus, European Way, Southampton SO14 3ZH, UK
| | - Elena M Bennett
- Department of Natural Resource Sciences and McGill School of Environment, McGill University-Macdonald Campus, 21,111 Lakeshore Road, St Anne-de-Bellevue, Quebec, Canada H9X 3 V9
| | - Peter J Mumby
- Marine Spatial Ecology Lab, School of Biological Sciences, The University of Queensland, St Lucia, Queensland 4072, Australia
| | - Julian Leyland
- School of Geography and Environmental Science, University of Southampton, Highfield Campus, Southampton, SO17 1BJ, UK
| | - Jasmin A Godbold
- School of Ocean and Earth Science, National Oceanography Centre Southampton, University of Southampton, Waterfront Campus, European Way, Southampton SO14 3ZH, UK.,School of Biological Sciences, University of Southampton, Highfield Campus, Southampton, SO17 1BJ, UK
| |
Collapse
|