1
|
Apte A, Fernald J, Slater C, Sorrentino M, Youngerman B, Wang Q. Bidirectional Modulation of Somatostatin-expressing Interneurons in the Basolateral Amygdala Reduces Neuropathic Pain Perception in Mice. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.03.28.645947. [PMID: 40236096 PMCID: PMC11996412 DOI: 10.1101/2025.03.28.645947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 04/17/2025]
Abstract
Neuropathic pain is characterized by mechanical allodynia and thermal (heat and cold) hypersensitivity, yet the underlying neural mechanisms remain poorly understood. This study examines the role of inhibitory interneurons in the basolateral amygdala (BLA) in modulating pain perception following nerve injury. Chemogenetic excitation of parvalbumin-positive (PV + ) interneurons significantly alleviated mechanical allodynia but had minimal effects on thermal hypersensitivity. However, inhibition of PV + interneurons did not produce significant changes in pain sensitivity, suggesting that reductions in perisomatic inhibition do not contribute to chronic pain states. In contrast, bidirectional modulation of somatostatin-positive (SST + ) interneurons influenced pain perception in a modality-specific manner. Both excitation and inhibition of SST + interneurons alleviated mechanical allodynia, indicating a potential compensatory role in nociceptive processing. Additionally, SST + neuron excitation reduced cold hypersensitivity without affecting heat hypersensitivity, whereas inhibition improved heat hypersensitivity but not cold responses. These findings suggest that, in addition to PV + neurons, SST + interneurons in the BLA play a complex role in modulating neuropathic pain following nerve injury and may serve as a potential target for future neuromodulation interventions in chronic pain management.
Collapse
|
2
|
Simacek CA, Kirischuk S, Mittmann T. Postnatal development of vasoactive intestinal polypeptide-expressing GABAergic interneurons in mouse somatosensory cortex. Acta Physiol (Oxf) 2025; 241:e14265. [PMID: 39803724 PMCID: PMC11726421 DOI: 10.1111/apha.14265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 11/30/2024] [Accepted: 01/01/2025] [Indexed: 01/16/2025]
Abstract
AIM Despite dysfunctional vasoactive intestinal polypeptide-positive interneurons (VIP-INs) being linked to the emergence of neurodevelopmental disorders, the temporal profile of VIP-IN functional maturation and cortical network integration remains unclear. METHODS Postnatal VIP-IN development was traced with patch clamp experiments in the somatosensory cortex of Vip-IRES-cre x tdTomato mice. Age groups were chosen during barrel field formation, before and after activation of main sensory inputs, and in adult animals (postnatal days (P) P3-4, P8-10, P14-16, and P30-36). RESULTS Changes in passive and active membrane properties show a maturation towards accelerated signal integrations. Excitatory and inhibitory postsynaptic currents (EPSCs and IPSCs) showed progressive VIP-IN integration into cortical networks, likely via synaptogenesis: mEPSC frequency increased before P8-10, while mIPSC frequency increased at P14-16. Only mIPSC kinetics became accelerated, and the E/I ratio of synaptic inputs, defined as a ratio of mEPSC to mIPSC charge transfer, remained constant throughout the investigated developmental stages. Evoked (e)EPSCs and (e)IPSCs showed increased amplitudes, while only eIPSCs demonstrated faster kinetics. eEPSCs and eIPSCs revealed a paired-pulse facilitation by P14-16, indicating probably a decrease in the presynaptic release probability (pr) and a paired-pulse depression in adulthood. eIPSCs also showed the latter, suggesting a decrease in pr for both signal transmission pathways at this time point. CONCLUSIONS VIP-INs mature towards faster signal integration and pursue different strategies to avoid overexcitation. Excitatory and inhibitory synaptic transmission become stronger and shorter via different pre- and postsynaptic alterations, likely promoting the execution of active whisking.
Collapse
Affiliation(s)
- Clara A. Simacek
- Institute for PhysiologyUniversity Medical Centre of the Johannes Gutenberg University MainzMainzGermany
| | - Sergei Kirischuk
- Institute for PhysiologyUniversity Medical Centre of the Johannes Gutenberg University MainzMainzGermany
| | - Thomas Mittmann
- Institute for PhysiologyUniversity Medical Centre of the Johannes Gutenberg University MainzMainzGermany
| |
Collapse
|
3
|
Kołosowska KA, Schratt G, Winterer J. microRNA-dependent regulation of gene expression in GABAergic interneurons. Front Cell Neurosci 2023; 17:1188574. [PMID: 37213213 PMCID: PMC10196030 DOI: 10.3389/fncel.2023.1188574] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Accepted: 04/20/2023] [Indexed: 05/23/2023] Open
Abstract
Information processing within neuronal circuits relies on their proper development and a balanced interplay between principal and local inhibitory interneurons within those circuits. Gamma-aminobutyric acid (GABA)ergic inhibitory interneurons are a remarkably heterogeneous population, comprising subclasses based on their morphological, electrophysiological, and molecular features, with differential connectivity and activity patterns. microRNA (miRNA)-dependent post-transcriptional control of gene expression represents an important regulatory mechanism for neuronal development and plasticity. miRNAs are a large group of small non-coding RNAs (21-24 nucleotides) acting as negative regulators of mRNA translation and stability. However, while miRNA-dependent gene regulation in principal neurons has been described heretofore in several studies, an understanding of the role of miRNAs in inhibitory interneurons is only beginning to emerge. Recent research demonstrated that miRNAs are differentially expressed in interneuron subclasses, are vitally important for migration, maturation, and survival of interneurons during embryonic development and are crucial for cognitive function and memory formation. In this review, we discuss recent progress in understanding miRNA-dependent regulation of gene expression in interneuron development and function. We aim to shed light onto mechanisms by which miRNAs in GABAergic interneurons contribute to sculpting neuronal circuits, and how their dysregulation may underlie the emergence of numerous neurodevelopmental and neuropsychiatric disorders.
Collapse
Affiliation(s)
| | - Gerhard Schratt
- Lab of Systems Neuroscience, Department of Health Science and Technology, Institute for Neuroscience, Swiss Federal Institute of Technology ETH, Zurich, Switzerland
| | - Jochen Winterer
- Lab of Systems Neuroscience, Department of Health Science and Technology, Institute for Neuroscience, Swiss Federal Institute of Technology ETH, Zurich, Switzerland
| |
Collapse
|
4
|
Thyroid Hormone Transporters MCT8 and OATP1C1 Are Expressed in Pyramidal Neurons and Interneurons in the Adult Motor Cortex of Human and Macaque Brain. Int J Mol Sci 2023; 24:ijms24043207. [PMID: 36834621 PMCID: PMC9965431 DOI: 10.3390/ijms24043207] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 01/26/2023] [Accepted: 02/01/2023] [Indexed: 02/09/2023] Open
Abstract
Monocarboxylate transporter 8 (MCT8) and organic anion transporter polypeptide 1C1 (OATP1C1) are thyroid hormone (TH) transmembrane transporters that play an important role in the availability of TH for neural cells, allowing their proper development and function. It is important to define which cortical cellular subpopulations express those transporters to explain why MCT8 and OATP1C1 deficiency in humans leads to dramatic alterations in the motor system. By means of immunohistochemistry and double/multiple labeling immunofluorescence in adult human and monkey motor cortices, we demonstrate the presence of both transporters in long-projection pyramidal neurons and in several types of short-projection GABAergic interneurons in both species, suggesting a critical position of these transporters for modulating the efferent motor system. MCT8 is present at the neurovascular unit, but OATP1C1 is only present in some of the large vessels. Both transporters are expressed in astrocytes. OATP1C1 was unexpectedly found, only in the human motor cortex, inside the Corpora amylacea complexes, aggregates linked to substance evacuation towards the subpial system. On the basis of our findings, we propose an etiopathogenic model that emphasizes these transporters' role in controlling excitatory/inhibitory motor cortex circuits in order to understand some of the severe motor disturbances observed in TH transporter deficiency syndromes.
Collapse
|
5
|
LaNoce E, Dumeng-Rodriguez J, Christian KM. Using 2D and 3D pluripotent stem cell models to study neurotropic viruses. FRONTIERS IN VIROLOGY (LAUSANNE, SWITZERLAND) 2022; 2:869657. [PMID: 36325520 PMCID: PMC9624474 DOI: 10.3389/fviro.2022.869657] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Understanding the impact of viral pathogens on the human central nervous system (CNS) has been challenging due to the lack of viable human CNS models for controlled experiments to determine the causal factors underlying pathogenesis. Human embryonic stem cells (ESCs) and, more recently, cellular reprogramming of adult somatic cells to generate human induced pluripotent stem cells (iPSCs) provide opportunities for directed differentiation to neural cells that can be used to evaluate the impact of known and emerging viruses on neural cell types. Pluripotent stem cells (PSCs) can be induced to neural lineages in either two- (2D) or three-dimensional (3D) cultures, each bearing distinct advantages and limitations for modeling viral pathogenesis and evaluating effective therapeutics. Here we review the current state of technology in stem cell-based modeling of the CNS and how these models can be used to determine viral tropism and identify cellular phenotypes to investigate virus-host interactions and facilitate drug screening. We focus on several viruses (e.g., human immunodeficiency virus (HIV), herpes simplex virus (HSV), Zika virus (ZIKV), human cytomegalovirus (HCMV), SARS-CoV-2, West Nile virus (WNV)) to illustrate key advantages, as well as challenges, of PSC-based models. We also discuss how human PSC-based models can be used to evaluate the safety and efficacy of therapeutic drugs by generating data that are complementary to existing preclinical models. Ultimately, these efforts could facilitate the movement towards personalized medicine and provide patients and physicians with an additional source of information to consider when evaluating available treatment strategies.
Collapse
Affiliation(s)
- Emma LaNoce
- Mahoney Institute for Neurosciences, Department of Neuroscience, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Jeriel Dumeng-Rodriguez
- Developmental, Stem Cell and Regenerative Biology Program, Cell and Molecular Biology Graduate Group, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Kimberly M. Christian
- Mahoney Institute for Neurosciences, Department of Neuroscience, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| |
Collapse
|
6
|
Ferrer C, De Marco García NV. The Role of Inhibitory Interneurons in Circuit Assembly and Refinement Across Sensory Cortices. Front Neural Circuits 2022; 16:866999. [PMID: 35463203 PMCID: PMC9021723 DOI: 10.3389/fncir.2022.866999] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Accepted: 03/16/2022] [Indexed: 12/15/2022] Open
Abstract
Sensory information is transduced into electrical signals in the periphery by specialized sensory organs, which relay this information to the thalamus and subsequently to cortical primary sensory areas. In the cortex, microcircuits constituted by interconnected pyramidal cells and inhibitory interneurons, distributed throughout the cortical column, form the basic processing units of sensory information underlying sensation. In the mouse, these circuits mature shortly after birth. In the first postnatal week cortical activity is characterized by highly synchronized spontaneous activity. While by the second postnatal week, spontaneous activity desynchronizes and sensory influx increases drastically upon eye opening, as well as with the onset of hearing and active whisking. This influx of sensory stimuli is fundamental for the maturation of functional properties and connectivity in neurons allocated to sensory cortices. In the subsequent developmental period, spanning the first five postnatal weeks, sensory circuits are malleable in response to sensory stimulation in the so-called critical periods. During these critical periods, which vary in timing and duration across sensory areas, perturbations in sensory experience can alter cortical connectivity, leading to long-lasting modifications in sensory processing. The recent advent of intersectional genetics, in vivo calcium imaging and single cell transcriptomics has aided the identification of circuit components in emergent networks. Multiple studies in recent years have sought a better understanding of how genetically-defined neuronal subtypes regulate circuit plasticity and maturation during development. In this review, we discuss the current literature focused on postnatal development and critical periods in the primary auditory (A1), visual (V1), and somatosensory (S1) cortices. We compare the developmental trajectory among the three sensory areas with a particular emphasis on interneuron function and the role of inhibitory circuits in cortical development and function.
Collapse
|
7
|
Razenkova VA, Korzhevskii DE. Morphological Changes in GABAergic Structures of the Rat Brain during Postnatal Development. NEUROCHEM J+ 2022. [DOI: 10.1134/s181971242201010x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
8
|
Furuta T, Yamauchi K, Okamoto S, Takahashi M, Kakuta S, Ishida Y, Takenaka A, Yoshida A, Uchiyama Y, Koike M, Isa K, Isa T, Hioki H. Multi-scale light microscopy/electron microscopy neuronal imaging from brain to synapse with a tissue clearing method, ScaleSF. iScience 2022; 25:103601. [PMID: 35106459 PMCID: PMC8786651 DOI: 10.1016/j.isci.2021.103601] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 11/19/2021] [Accepted: 12/06/2021] [Indexed: 12/02/2022] Open
Abstract
The mammalian brain is organized over sizes that span several orders of magnitude, from synapses to the entire brain. Thus, a technique to visualize neural circuits across multiple spatial scales (multi-scale neuronal imaging) is vital for deciphering brain-wide connectivity. Here, we developed this technique by coupling successive light microscopy/electron microscopy (LM/EM) imaging with a glutaraldehyde-resistant tissue clearing method, ScaleSF. Our multi-scale neuronal imaging incorporates (1) brain-wide macroscopic observation, (2) mesoscopic circuit mapping, (3) microscopic subcellular imaging, and (4) EM imaging of nanoscopic structures, allowing seamless integration of structural information from the brain to synapses. We applied this technique to three neural circuits of two different species, mouse striatofugal, mouse callosal, and marmoset corticostriatal projection systems, and succeeded in simultaneous interrogation of their circuit structure and synaptic connectivity in a targeted way. Our multi-scale neuronal imaging will significantly advance the understanding of brain-wide connectivity by expanding the scales of objects. Successive light microscopy/electron microscopy in optically cleared tissues Multi-scale neuronal imaging from the entire brain to individual synapses Simultaneous interrogation of neural circuit structure and synaptic connectivity Zooming-in to scarce synaptic contacts with the successive imaging
Collapse
Affiliation(s)
- Takahiro Furuta
- Department of Oral Anatomy and Neurobiology, Graduate School of Dentistry, Osaka University, Suita, Osaka 565-0871, Japan
| | - Kenta Yamauchi
- Department of Neuroanatomy, Juntendo University Graduate School of Medicine, Bunkyo-Ku, Tokyo 113-8421, Japan
- Department of Cell Biology and Neuroscience, Juntendo University Graduate School of Medicine, Bunkyo-Ku, Tokyo 113-8421, Japan
- Advanced Research Institute for Health Sciences, Juntendo University, Bunkyo-Ku, Tokyo 113-8421, Japan
| | - Shinichiro Okamoto
- Department of Neuroanatomy, Juntendo University Graduate School of Medicine, Bunkyo-Ku, Tokyo 113-8421, Japan
- Department of Cell Biology and Neuroscience, Juntendo University Graduate School of Medicine, Bunkyo-Ku, Tokyo 113-8421, Japan
- Advanced Research Institute for Health Sciences, Juntendo University, Bunkyo-Ku, Tokyo 113-8421, Japan
| | - Megumu Takahashi
- Department of Neuroanatomy, Juntendo University Graduate School of Medicine, Bunkyo-Ku, Tokyo 113-8421, Japan
- Department of Cell Biology and Neuroscience, Juntendo University Graduate School of Medicine, Bunkyo-Ku, Tokyo 113-8421, Japan
- Department of Neuroscience, Graduate School of Medicine, Kyoto University, Kyoto, Kyoto 606-8501, Japan
| | - Soichiro Kakuta
- Laboratory of Morphology and Image Analysis, Biomedical Research Core Facilities, Juntendo University Graduate School of Medicine, Bunkyo-Ku, Tokyo 113-8421, Japan
| | - Yoko Ishida
- Department of Neuroanatomy, Juntendo University Graduate School of Medicine, Bunkyo-Ku, Tokyo 113-8421, Japan
- Department of Cell Biology and Neuroscience, Juntendo University Graduate School of Medicine, Bunkyo-Ku, Tokyo 113-8421, Japan
- Advanced Research Institute for Health Sciences, Juntendo University, Bunkyo-Ku, Tokyo 113-8421, Japan
| | - Aya Takenaka
- Department of Oral Anatomy and Neurobiology, Graduate School of Dentistry, Osaka University, Suita, Osaka 565-0871, Japan
| | - Atsushi Yoshida
- Department of Oral Anatomy and Neurobiology, Graduate School of Dentistry, Osaka University, Suita, Osaka 565-0871, Japan
| | - Yasuo Uchiyama
- Department of Cellular and Molecular Neuropathology, Juntendo University Graduate School of Medicine, Bunkyo-Ku, Tokyo 113-8421, Japan
| | - Masato Koike
- Department of Cell Biology and Neuroscience, Juntendo University Graduate School of Medicine, Bunkyo-Ku, Tokyo 113-8421, Japan
- Advanced Research Institute for Health Sciences, Juntendo University, Bunkyo-Ku, Tokyo 113-8421, Japan
| | - Kaoru Isa
- Department of Neuroscience, Graduate School of Medicine, Kyoto University, Kyoto, Kyoto 606-8501, Japan
| | - Tadashi Isa
- Department of Neuroscience, Graduate School of Medicine, Kyoto University, Kyoto, Kyoto 606-8501, Japan
- Institute for the Advanced Study of Human Biology (WPI-ASHBi), Kyoto University, Kyoto, Kyoto 606-8501, Japan
| | - Hiroyuki Hioki
- Department of Neuroanatomy, Juntendo University Graduate School of Medicine, Bunkyo-Ku, Tokyo 113-8421, Japan
- Department of Cell Biology and Neuroscience, Juntendo University Graduate School of Medicine, Bunkyo-Ku, Tokyo 113-8421, Japan
- Department of Multi-Scale Brain Structure Imaging, Juntendo University Graduate School of Medicine, Bunkyo-Ku, Tokyo 113-8421, Japan
- Corresponding author
| |
Collapse
|
9
|
|
10
|
Di Volo M, Destexhe A. Optimal responsiveness and information flow in networks of heterogeneous neurons. Sci Rep 2021; 11:17611. [PMID: 34475456 PMCID: PMC8413388 DOI: 10.1038/s41598-021-96745-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Accepted: 08/11/2021] [Indexed: 02/07/2023] Open
Abstract
Cerebral cortex is characterized by a strong neuron-to-neuron heterogeneity, but it is unclear what consequences this may have for cortical computations, while most computational models consider networks of identical units. Here, we study network models of spiking neurons endowed with heterogeneity, that we treat independently for excitatory and inhibitory neurons. We find that heterogeneous networks are generally more responsive, with an optimal responsiveness occurring for levels of heterogeneity found experimentally in different published datasets, for both excitatory and inhibitory neurons. To investigate the underlying mechanisms, we introduce a mean-field model of heterogeneous networks. This mean-field model captures optimal responsiveness and suggests that it is related to the stability of the spontaneous asynchronous state. The mean-field model also predicts that new dynamical states can emerge from heterogeneity, a prediction which is confirmed by network simulations. Finally we show that heterogeneous networks maximise the information flow in large-scale networks, through recurrent connections. We conclude that neuronal heterogeneity confers different responsiveness to neural networks, which should be taken into account to investigate their information processing capabilities.
Collapse
Affiliation(s)
- Matteo Di Volo
- Laboratoire de Physique Théorique et Modélisation, Université de Cergy-Pontoise, CNRS, UMR 8089, 95302, Cergy-Pontoise cedex, France.
| | - Alain Destexhe
- Paris-Saclay University, Institute of Neuroscience, CNRS, Gif sur Yvette, France
| |
Collapse
|
11
|
Yamashiro K, Liu J, Matsumoto N, Ikegaya Y. Deep Learning-Based Classification of GAD67-Positive Neurons Without the Immunosignal. Front Neuroanat 2021; 15:643067. [PMID: 33867947 PMCID: PMC8044854 DOI: 10.3389/fnana.2021.643067] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Accepted: 03/01/2021] [Indexed: 02/02/2023] Open
Abstract
Excitatory neurons and GABAergic interneurons constitute neural circuits and play important roles in information processing. In certain brain regions, such as the neocortex and the hippocampus, there are fewer interneurons than excitatory neurons. Interneurons have been quantified via immunohistochemistry, for example, for GAD67, an isoform of glutamic acid decarboxylase. Additionally, the expression level of other proteins varies among cell types. For example, NeuN, a commonly used marker protein for postmitotic neurons, is expressed differently across brain regions and cell classes. Thus, we asked whether GAD67-immunopositive neurons can be detected using the immunofluorescence signals of NeuN and the fluorescence signals of Nissl substances. To address this question, we stained neurons in layers 2/3 of the primary somatosensory cortex (S1) and the primary motor cortex (M1) of mice and manually labeled the neurons as either cell type using GAD67 immunosignals. We then sought to detect GAD67-positive neurons without GAD67 immunosignals using a custom-made deep learning-based algorithm. Using this deep learning-based model, we succeeded in the binary classification of the neurons using Nissl and NeuN signals without referring to the GAD67 signals. Furthermore, we confirmed that our deep learning-based method surpassed classic machine-learning methods in terms of binary classification performance. Combined with the visualization of the hidden layer of our deep learning algorithm, our model provides a new platform for identifying unbiased criteria for cell-type classification.
Collapse
Affiliation(s)
- Kotaro Yamashiro
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan
| | - Jiayan Liu
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan
| | - Nobuyoshi Matsumoto
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan
| | - Yuji Ikegaya
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan.,Institute for AI and Beyond, The University of Tokyo, Tokyo, Japan.,Center for Information and Neural Networks, National Institute of Information and Communications Technology, Osaka, Japan
| |
Collapse
|
12
|
Mihaljević B, Larrañaga P, Bielza C. Comparing the Electrophysiology and Morphology of Human and Mouse Layer 2/3 Pyramidal Neurons With Bayesian Networks. Front Neuroinform 2021; 15:580873. [PMID: 33679362 PMCID: PMC7930221 DOI: 10.3389/fninf.2021.580873] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Accepted: 01/14/2021] [Indexed: 11/13/2022] Open
Abstract
Pyramidal neurons are the most common neurons in the cerebral cortex. Understanding how they differ between species is a key challenge in neuroscience. We compared human temporal cortex and mouse visual cortex pyramidal neurons from the Allen Cell Types Database in terms of their electrophysiology and dendritic morphology. We found that, among other differences, human pyramidal neurons had a higher action potential threshold voltage, a lower input resistance, and larger dendritic arbors. We learned Gaussian Bayesian networks from the data in order to identify correlations and conditional independencies between the variables and compare them between the species. We found strong correlations between electrophysiological and morphological variables in both species. In human cells, electrophysiological variables were correlated even with morphological variables that are not directly related to dendritic arbor size or diameter, such as mean bifurcation angle and mean branch tortuosity. Cortical depth was correlated with both electrophysiological and morphological variables in both species, and its effect on electrophysiology could not be explained in terms of the morphological variables. For some variables, the effect of cortical depth was opposite in the two species. Overall, the correlations among the variables differed strikingly between human and mouse neurons. Besides identifying correlations and conditional independencies, the learned Bayesian networks might be useful for probabilistic reasoning regarding the morphology and electrophysiology of pyramidal neurons.
Collapse
Affiliation(s)
- Bojan Mihaljević
- Computational Intelligence Group, Departamento de Inteligencia Artificial, Universidad Politécnica de Madrid, Boadilla del Monte, Spain
| | | | | |
Collapse
|
13
|
Nguyen VT, Uchida R, Warling A, Sloan LJ, Saviano MS, Wicinski B, Hård T, Bertelsen MF, Stimpson CD, Bitterman K, Schall M, Hof PR, Sherwood CC, Manger PR, Spocter MA, Jacobs B. Comparative neocortical neuromorphology in felids: African lion, African leopard, and cheetah. J Comp Neurol 2020; 528:1392-1422. [DOI: 10.1002/cne.24823] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Revised: 11/18/2019] [Accepted: 11/18/2019] [Indexed: 02/03/2023]
Affiliation(s)
- Vivian T. Nguyen
- Laboratory of Quantitative Neuromorphology, Neuroscience Program, Department of PsychologyColorado College Colorado Springs Colorado
| | - Riri Uchida
- Laboratory of Quantitative Neuromorphology, Neuroscience Program, Department of PsychologyColorado College Colorado Springs Colorado
| | - Allysa Warling
- Laboratory of Quantitative Neuromorphology, Neuroscience Program, Department of PsychologyColorado College Colorado Springs Colorado
| | - Lucy J. Sloan
- Laboratory of Quantitative Neuromorphology, Neuroscience Program, Department of PsychologyColorado College Colorado Springs Colorado
| | - Mark S. Saviano
- Laboratory of Quantitative Neuromorphology, Neuroscience Program, Department of PsychologyColorado College Colorado Springs Colorado
| | - Bridget Wicinski
- Nash Family Department of Neuroscience and Friedman Brain InstituteIcahn School of Medicine at Mount Sinai New York New York
| | | | - Mads F. Bertelsen
- Center for Zoo and Wild Animal HealthCopenhagen Zoo Frederiksberg Denmark
| | - Cheryl D. Stimpson
- Department of Anthropology and Center for the Advanced Study of Human PaleobiologyThe George Washington University Washington District of Columbia
| | - Kathleen Bitterman
- School of Anatomical Sciences, Faculty of Health SciencesUniversity of the Witwatersrand Johannesburg South Africa
| | - Matthew Schall
- Laboratory of Quantitative Neuromorphology, Neuroscience Program, Department of PsychologyColorado College Colorado Springs Colorado
| | - Patrick R. Hof
- Nash Family Department of Neuroscience and Friedman Brain InstituteIcahn School of Medicine at Mount Sinai New York New York
| | - Chet C. Sherwood
- Department of Anthropology and Center for the Advanced Study of Human PaleobiologyThe George Washington University Washington District of Columbia
| | - Paul R. Manger
- School of Anatomical Sciences, Faculty of Health SciencesUniversity of the Witwatersrand Johannesburg South Africa
| | - Muhammad A. Spocter
- School of Anatomical Sciences, Faculty of Health SciencesUniversity of the Witwatersrand Johannesburg South Africa
- Department of AnatomyDes Moines University Des Moines Iowa
| | - Bob Jacobs
- Laboratory of Quantitative Neuromorphology, Neuroscience Program, Department of PsychologyColorado College Colorado Springs Colorado
| |
Collapse
|