1
|
Ye J, Rizzoglio F, Smoulder A, Mao H, Ma X, Marino P, Chowdhury R, Moore D, Blumenthal G, Hockeimer W, Kunigk NG, Mayo JP, Batista A, Chase S, Rouse A, Boninger ML, Greenspon C, Schwartz AB, Hatsopoulos NG, Miller LE, Bouchard KE, Collinger JL, Wehbe L, Gaunt R. A Generalist Intracortical Motor Decoder. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.02.02.634313. [PMID: 39975007 PMCID: PMC11838490 DOI: 10.1101/2025.02.02.634313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 02/21/2025]
Abstract
Mapping the relationship between neural activity and motor behavior is a central aim of sensorimotor neuroscience and neurotechnology. While most progress to this end has relied on restricting complexity, the advent of foundation models instead proposes integrating a breadth of data as an alternate avenue for broadly advancing downstream modeling. We quantify this premise for motor decoding from intracortical microelectrode data, pretraining an autoregressive Transformer on 2000 hours of neural population spiking activity paired with diverse motor covariates from over 30 monkeys and humans. The resulting model is broadly useful, benefiting decoding on 8 downstream decoding tasks and generalizing to a variety of neural distribution shifts. However, we also highlight that scaling autoregressive Transformers seems unlikely to resolve limitations stemming from sensor variability and output stereotypy in neural datasets. Code: https://github.com/joel99/ndt3.
Collapse
|
2
|
Vetter J, Macke JH, Gao R. Generating realistic neurophysiological time series with denoising diffusion probabilistic models. PATTERNS (NEW YORK, N.Y.) 2024; 5:101047. [PMID: 39568643 PMCID: PMC11573898 DOI: 10.1016/j.patter.2024.101047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/06/2024] [Revised: 07/01/2024] [Accepted: 07/31/2024] [Indexed: 11/22/2024]
Abstract
Denoising diffusion probabilistic models (DDPMs) have recently been shown to accurately generate complicated data such as images, audio, or time series. Experimental and clinical neuroscience also stand to benefit from this progress, as the accurate generation of neurophysiological time series can enable or improve many neuroscientific applications. Here, we present a flexible DDPM-based method for modeling multichannel, densely sampled neurophysiological recordings. DDPMs can generate realistic synthetic data for a variety of datasets from different species and recording techniques. The generated data capture important statistics, such as frequency spectra and phase-amplitude coupling, as well as fine-grained features such as sharp wave ripples. Furthermore, data can be generated based on additional information such as experimental conditions. We demonstrate the flexibility of DDPMs in several applications, including brain-state classification and missing-data imputation. In summary, DDPMs can serve as accurate generative models of neurophysiological recordings and have broad utility in the probabilistic generation of synthetic recordings for neuroscientific applications.
Collapse
Affiliation(s)
- Julius Vetter
- Machine Learning in Science, University of Tübingen and Tübingen AI Center, Tübingen, Germany
| | - Jakob H Macke
- Machine Learning in Science, University of Tübingen and Tübingen AI Center, Tübingen, Germany
- Max Planck Institute for Intelligent Systems, Tübingen, Germany
| | - Richard Gao
- Machine Learning in Science, University of Tübingen and Tübingen AI Center, Tübingen, Germany
| |
Collapse
|
3
|
Gillon CJ, Baker C, Ly R, Balzani E, Brunton BW, Schottdorf M, Ghosh S, Dehghani N. Open Data In Neurophysiology: Advancements, Solutions & Challenges. ARXIV 2024:arXiv:2407.00976v1. [PMID: 39010879 PMCID: PMC11247910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Subscribe] [Scholar Register] [Indexed: 07/17/2024]
Abstract
Across the life sciences, an ongoing effort over the last 50 years has made data and methods more reproducible and transparent. This openness has led to transformative insights and vastly accelerated scientific progress1,2. For example, structural biology3 and genomics4,5 have undertaken systematic collection and publication of protein sequences and structures over the past half-century, and these data have led to scientific breakthroughs that were unthinkable when data collection first began (e.g.6). We believe that neuroscience is poised to follow the same path, and that principles of open data and open science will transform our understanding of the nervous system in ways that are impossible to predict at the moment. To this end, new social structures along with active and open scientific communities are essential7 to facilitate and expand the still limited adoption of open science practices in our field8. Unified by shared values of openness, we set out to organize a symposium for Open Data in Neuroscience (ODIN) to strengthen our community and facilitate transformative neuroscience research at large. In this report, we share what we learned during this first ODIN event. We also lay out plans for how to grow this movement, document emerging conversations, and propose a path toward a better and more transparent science of tomorrow.
Collapse
Affiliation(s)
- Colleen J Gillon
- These authors contributed equally to this paper
- Department of Bioengineering, Imperial College London, London, UK
| | - Cody Baker
- These authors contributed equally to this paper
- CatalystNeuro, Benicia, CA, USA
| | - Ryan Ly
- These authors contributed equally to this paper
- Scientific Data Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Edoardo Balzani
- Center for Computational Neuroscience, Flatiron Institute, New York, NY, USA
| | - Bingni W Brunton
- Department of Biology, University of Washington, Seattle, WA, USA
| | - Manuel Schottdorf
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ, USA
| | - Satrajit Ghosh
- McGovern Institute for Brain Research, MIT, Cambridge, MA, USA
| | - Nima Dehghani
- McGovern Institute for Brain Research, MIT, Cambridge, MA, USA
- These authors contributed equally to this paper
| |
Collapse
|
4
|
Alasfour A, Gilja V. Consistent spectro-spatial features of human ECoG successfully decode naturalistic behavioral states. Front Hum Neurosci 2024; 18:1388267. [PMID: 38873653 PMCID: PMC11169785 DOI: 10.3389/fnhum.2024.1388267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Accepted: 04/19/2024] [Indexed: 06/15/2024] Open
Abstract
Objective Understanding the neural correlates of naturalistic behavior is critical for extending and confirming the results obtained from trial-based experiments and designing generalizable brain-computer interfaces that can operate outside laboratory environments. In this study, we aimed to pinpoint consistent spectro-spatial features of neural activity in humans that can discriminate between naturalistic behavioral states. Approach We analyzed data from five participants using electrocorticography (ECoG) with broad spatial coverage. Spontaneous and naturalistic behaviors such as "Talking" and "Watching TV" were labeled from manually annotated videos. Linear discriminant analysis (LDA) was used to classify the two behavioral states. The parameters learned from the LDA were then used to determine whether the neural signatures driving classification performance are consistent across the participants. Main results Spectro-spatial feature values were consistently discriminative between the two labeled behavioral states across participants. Mainly, θ, α, and low and high γ in the postcentral gyrus, precentral gyrus, and temporal lobe showed significant classification performance and feature consistency across participants. Subject-specific performance exceeded 70%. Combining neural activity from multiple cortical regions generally does not improve decoding performance, suggesting that information regarding the behavioral state is non-additive as a function of the cortical region. Significance To the best of our knowledge, this is the first attempt to identify specific spectro-spatial neural correlates that consistently decode naturalistic and active behavioral states. The aim of this work is to serve as an initial starting point for developing brain-computer interfaces that can be generalized in a realistic setting and to further our understanding of the neural correlates of naturalistic behavior in humans.
Collapse
Affiliation(s)
- Abdulwahab Alasfour
- Department of Electrical Engineering, College of Engineering and Petroleum, Kuwait University, Kuwait City, Kuwait
| | - Vikash Gilja
- Department of Electrical and Computer Engineering, University of California, San Diego, CA, United States
| |
Collapse
|
5
|
Subash P, Gray A, Boswell M, Cohen SL, Garner R, Salehi S, Fisher C, Hobel S, Ghosh S, Halchenko Y, Dichter B, Poldrack RA, Markiewicz C, Hermes D, Delorme A, Makeig S, Behan B, Sparks A, Arnott SR, Wang Z, Magnotti J, Beauchamp MS, Pouratian N, Toga AW, Duncan D. A comparison of neuroelectrophysiology databases. Sci Data 2023; 10:719. [PMID: 37857685 PMCID: PMC10587056 DOI: 10.1038/s41597-023-02614-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Accepted: 10/02/2023] [Indexed: 10/21/2023] Open
Abstract
As data sharing has become more prevalent, three pillars - archives, standards, and analysis tools - have emerged as critical components in facilitating effective data sharing and collaboration. This paper compares four freely available intracranial neuroelectrophysiology data repositories: Data Archive for the BRAIN Initiative (DABI), Distributed Archives for Neurophysiology Data Integration (DANDI), OpenNeuro, and Brain-CODE. The aim of this review is to describe archives that provide researchers with tools to store, share, and reanalyze both human and non-human neurophysiology data based on criteria that are of interest to the neuroscientific community. The Brain Imaging Data Structure (BIDS) and Neurodata Without Borders (NWB) are utilized by these archives to make data more accessible to researchers by implementing a common standard. As the necessity for integrating large-scale analysis into data repository platforms continues to grow within the neuroscientific community, this article will highlight the various analytical and customizable tools developed within the chosen archives that may advance the field of neuroinformatics.
Collapse
Affiliation(s)
- Priyanka Subash
- Laboratory of Neuro Imaging, USC Stevens Neuroimaging and Informatics Institute, Keck School of Medicine of USC, University of Southern California, 2025 Zonal Avenue, Los Angeles, CA, 90033, USA
| | - Alex Gray
- Laboratory of Neuro Imaging, USC Stevens Neuroimaging and Informatics Institute, Keck School of Medicine of USC, University of Southern California, 2025 Zonal Avenue, Los Angeles, CA, 90033, USA
| | - Misque Boswell
- Laboratory of Neuro Imaging, USC Stevens Neuroimaging and Informatics Institute, Keck School of Medicine of USC, University of Southern California, 2025 Zonal Avenue, Los Angeles, CA, 90033, USA
| | - Samantha L Cohen
- Laboratory of Neuro Imaging, USC Stevens Neuroimaging and Informatics Institute, Keck School of Medicine of USC, University of Southern California, 2025 Zonal Avenue, Los Angeles, CA, 90033, USA
| | - Rachael Garner
- Laboratory of Neuro Imaging, USC Stevens Neuroimaging and Informatics Institute, Keck School of Medicine of USC, University of Southern California, 2025 Zonal Avenue, Los Angeles, CA, 90033, USA
| | - Sana Salehi
- Laboratory of Neuro Imaging, USC Stevens Neuroimaging and Informatics Institute, Keck School of Medicine of USC, University of Southern California, 2025 Zonal Avenue, Los Angeles, CA, 90033, USA
| | - Calvary Fisher
- Laboratory of Neuro Imaging, USC Stevens Neuroimaging and Informatics Institute, Keck School of Medicine of USC, University of Southern California, 2025 Zonal Avenue, Los Angeles, CA, 90033, USA
| | - Samuel Hobel
- Laboratory of Neuro Imaging, USC Stevens Neuroimaging and Informatics Institute, Keck School of Medicine of USC, University of Southern California, 2025 Zonal Avenue, Los Angeles, CA, 90033, USA
| | - Satrajit Ghosh
- McGovern Institute for Brain Research, MIT Brain and Cognitive Sciences, 77 Massachusetts Avenue, Cambridge, MA, 02139, USA
| | - Yaroslav Halchenko
- Department of Psychological & Brain Sciences, Center for Cognitive Neuroscience, Dartmouth Brain Imaging Center, Dartmouth College, 6207 Moore Hall, Hanover, NH, 03755, USA
| | | | - Russell A Poldrack
- Department of Psychology, Stanford University, 450 Jane Stanford Way, Stanford, CA, 94305, USA
| | - Chris Markiewicz
- Department of Psychology, Stanford University, 450 Jane Stanford Way, Stanford, CA, 94305, USA
| | - Dora Hermes
- Mayo Clinic, Department of Physiology & Biomedical Engineering, 200 1st Street SW, Rochester, MN, 55905, USA
| | - Arnaud Delorme
- Swartz Center of Computational Neuroscience, INC, University of California San Diego, La Jolla, CA, 92093, USA
| | - Scott Makeig
- Swartz Center of Computational Neuroscience, INC, University of California San Diego, La Jolla, CA, 92093, USA
| | - Brendan Behan
- Ontario Brain Institute, 1 Richmond Street West, Toronto, ON, M5H 3W4, Canada
| | | | | | - Zhengjia Wang
- Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, 3700 Hamilton Walk, Philadelphia, PA, 19104, USA
| | - John Magnotti
- Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, 3700 Hamilton Walk, Philadelphia, PA, 19104, USA
| | - Michael S Beauchamp
- Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, 3700 Hamilton Walk, Philadelphia, PA, 19104, USA
| | - Nader Pouratian
- Department of Neurological Surgery, University of Texas Southwestern Medical Center, 5303 Harry Hines Blvd, Dallas, TX, 75390, USA
| | - Arthur W Toga
- Laboratory of Neuro Imaging, USC Stevens Neuroimaging and Informatics Institute, Keck School of Medicine of USC, University of Southern California, 2025 Zonal Avenue, Los Angeles, CA, 90033, USA
| | - Dominique Duncan
- Laboratory of Neuro Imaging, USC Stevens Neuroimaging and Informatics Institute, Keck School of Medicine of USC, University of Southern California, 2025 Zonal Avenue, Los Angeles, CA, 90033, USA.
| |
Collapse
|
6
|
Ye J, Collinger JL, Wehbe L, Gaunt R. Neural Data Transformer 2: Multi-context Pretraining for Neural Spiking Activity. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.09.18.558113. [PMID: 37781630 PMCID: PMC10541112 DOI: 10.1101/2023.09.18.558113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/03/2023]
Abstract
The neural population spiking activity recorded by intracortical brain-computer interfaces (iBCIs) contain rich structure. Current models of such spiking activity are largely prepared for individual experimental contexts, restricting data volume to that collectable within a single session and limiting the effectiveness of deep neural networks (DNNs). The purported challenge in aggregating neural spiking data is the pervasiveness of context-dependent shifts in the neural data distributions. However, large scale unsupervised pretraining by nature spans heterogeneous data, and has proven to be a fundamental recipe for successful representation learning across deep learning. We thus develop Neural Data Transformer 2 (NDT2), a spatiotemporal Transformer for neural spiking activity, and demonstrate that pretraining can leverage motor BCI datasets that span sessions, subjects, and experimental tasks. NDT2 enables rapid adaptation to novel contexts in downstream decoding tasks and opens the path to deployment of pretrained DNNs for iBCI control. Code: https://github.com/joel99/context_general_bci.
Collapse
Affiliation(s)
- Joel Ye
- Rehab Neural Engineering Labs, University of Pittsburgh
- Neuroscience Institute, Carnegie Mellon University
- Center for the Neural Basis of Cognition, Pittsburgh
| | - Jennifer L. Collinger
- Rehab Neural Engineering Labs, University of Pittsburgh
- Center for the Neural Basis of Cognition, Pittsburgh
- Department of Physical Medicine and Rehabilitation, University of Pittsburgh
- Department of Bioengineering, University of Pittsburgh
- Department of Biomedical Engineering, Carnegie Mellon University
| | - Leila Wehbe
- Neuroscience Institute, Carnegie Mellon University
- Center for the Neural Basis of Cognition, Pittsburgh
- Machine Learning Department, Carnegie Mellon University
| | - Robert Gaunt
- Rehab Neural Engineering Labs, University of Pittsburgh
- Center for the Neural Basis of Cognition, Pittsburgh
- Department of Physical Medicine and Rehabilitation, University of Pittsburgh
- Department of Bioengineering, University of Pittsburgh
- Department of Biomedical Engineering, Carnegie Mellon University
| |
Collapse
|
7
|
Subash P, Gray A, Boswell M, Cohen SL, Garner R, Salehi S, Fisher C, Hobel S, Ghosh S, Halchenko Y, Dichter B, Poldrack RA, Markiewicz C, Hermes D, Delorme A, Makeig S, Behan B, Sparks A, Arnott SR, Wang Z, Magnotti J, Beauchamp MS, Pouratian N, Toga AW, Duncan D. A Comparison of Neuroelectrophysiology Databases. ARXIV 2023:arXiv:2306.15041v2. [PMID: 37426452 PMCID: PMC10327244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Subscribe] [Scholar Register] [Indexed: 07/11/2023]
Abstract
As data sharing has become more prevalent, three pillars - archives, standards, and analysis tools - have emerged as critical components in facilitating effective data sharing and collaboration. This paper compares four freely available intracranial neuroelectrophysiology data repositories: Data Archive for the BRAIN Initiative (DABI), Distributed Archives for Neurophysiology Data Integration (DANDI), OpenNeuro, and Brain-CODE. The aim of this review is to describe archives that provide researchers with tools to store, share, and reanalyze both human and non-human neurophysiology data based on criteria that are of interest to the neuroscientific community. The Brain Imaging Data Structure (BIDS) and Neurodata Without Borders (NWB) are utilized by these archives to make data more accessible to researchers by implementing a common standard. As the necessity for integrating large-scale analysis into data repository platforms continues to grow within the neuroscientific community, this article will highlight the various analytical and customizable tools developed within the chosen archives that may advance the field of neuroinformatics.
Collapse
Affiliation(s)
- Priyanka Subash
- Laboratory of Neuro Imaging, USC Stevens Neuroimaging and Informatics Institute, Keck School of Medicine of USC, University of Southern California, 2025 Zonal Avenue, Los Angeles CA 90033
| | - Alex Gray
- Laboratory of Neuro Imaging, USC Stevens Neuroimaging and Informatics Institute, Keck School of Medicine of USC, University of Southern California, 2025 Zonal Avenue, Los Angeles CA 90033
| | - Misque Boswell
- Laboratory of Neuro Imaging, USC Stevens Neuroimaging and Informatics Institute, Keck School of Medicine of USC, University of Southern California, 2025 Zonal Avenue, Los Angeles CA 90033
| | - Samantha L Cohen
- Laboratory of Neuro Imaging, USC Stevens Neuroimaging and Informatics Institute, Keck School of Medicine of USC, University of Southern California, 2025 Zonal Avenue, Los Angeles CA 90033
| | - Rachael Garner
- Laboratory of Neuro Imaging, USC Stevens Neuroimaging and Informatics Institute, Keck School of Medicine of USC, University of Southern California, 2025 Zonal Avenue, Los Angeles CA 90033
| | - Sana Salehi
- Laboratory of Neuro Imaging, USC Stevens Neuroimaging and Informatics Institute, Keck School of Medicine of USC, University of Southern California, 2025 Zonal Avenue, Los Angeles CA 90033
| | - Calvary Fisher
- Laboratory of Neuro Imaging, USC Stevens Neuroimaging and Informatics Institute, Keck School of Medicine of USC, University of Southern California, 2025 Zonal Avenue, Los Angeles CA 90033
| | - Samuel Hobel
- Laboratory of Neuro Imaging, USC Stevens Neuroimaging and Informatics Institute, Keck School of Medicine of USC, University of Southern California, 2025 Zonal Avenue, Los Angeles CA 90033
| | - Satrajit Ghosh
- McGovern Institute for Brain Research, MIT Brain and Cognitive Sciences, 77 Massachusetts Avenue, Cambridge MA 02139
| | - Yaroslav Halchenko
- Department of Psychological & Brain Sciences, Center for Cognitive Neuroscience, Dartmouth Brain Imaging Center, Dartmouth College, 6207 Moore Hall, Hanover NH 03755
| | | | - Russell A Poldrack
- Department of Psychology, Stanford University, 450 Jane Stanford Way, Stanford CA 94305
| | - Chris Markiewicz
- Department of Psychology, Stanford University, 450 Jane Stanford Way, Stanford CA 94305
| | - Dora Hermes
- Mayo Clinic, Department of Physiology & Biomedical Engineering, 200 1st Street SW, Rochester MN 55905
| | - Arnaud Delorme
- Swartz Center of Computational Neuroscience, INC, University of California San Diego, La Jolla CA 92093
| | - Scott Makeig
- Swartz Center of Computational Neuroscience, INC, University of California San Diego, La Jolla CA 92093
| | - Brendan Behan
- Ontario Brain Institute, 1 Richmond Street West, Toronto ON M5H 3W4, Canada
| | | | | | - Zhengjia Wang
- Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, 3700 Hamilton Walk, Philadelphia PA 19104
| | - John Magnotti
- Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, 3700 Hamilton Walk, Philadelphia PA 19104
| | - Michael S Beauchamp
- Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, 3700 Hamilton Walk, Philadelphia PA 19104
| | - Nader Pouratian
- Department of Neurological Surgery, University of Texas Southwestern Medical Center, 5303 Harry Hines Blvd, Dallas TX 75390
| | - Arthur W Toga
- Laboratory of Neuro Imaging, USC Stevens Neuroimaging and Informatics Institute, Keck School of Medicine of USC, University of Southern California, 2025 Zonal Avenue, Los Angeles CA 90033
| | - Dominique Duncan
- Laboratory of Neuro Imaging, USC Stevens Neuroimaging and Informatics Institute, Keck School of Medicine of USC, University of Southern California, 2025 Zonal Avenue, Los Angeles CA 90033
| |
Collapse
|
8
|
Rübel O, Tritt A, Ly R, Dichter BK, Ghosh S, Niu L, Baker P, Soltesz I, Ng L, Svoboda K, Frank L, Bouchard KE. The Neurodata Without Borders ecosystem for neurophysiological data science. eLife 2022; 11:e78362. [PMID: 36193886 PMCID: PMC9531949 DOI: 10.7554/elife.78362] [Citation(s) in RCA: 48] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Accepted: 05/13/2022] [Indexed: 01/21/2023] Open
Abstract
The neurophysiology of cells and tissues are monitored electrophysiologically and optically in diverse experiments and species, ranging from flies to humans. Understanding the brain requires integration of data across this diversity, and thus these data must be findable, accessible, interoperable, and reusable (FAIR). This requires a standard language for data and metadata that can coevolve with neuroscience. We describe design and implementation principles for a language for neurophysiology data. Our open-source software (Neurodata Without Borders, NWB) defines and modularizes the interdependent, yet separable, components of a data language. We demonstrate NWB's impact through unified description of neurophysiology data across diverse modalities and species. NWB exists in an ecosystem, which includes data management, analysis, visualization, and archive tools. Thus, the NWB data language enables reproduction, interchange, and reuse of diverse neurophysiology data. More broadly, the design principles of NWB are generally applicable to enhance discovery across biology through data FAIRness.
Collapse
Affiliation(s)
- Oliver Rübel
- Scientific Data Division, Lawrence Berkeley National LaboratoryBerkeleyUnited States
| | - Andrew Tritt
- Applied Mathematics and Computational Research Division, Lawrence Berkeley National LaboratoryBerkeleyUnited States
| | - Ryan Ly
- Scientific Data Division, Lawrence Berkeley National LaboratoryBerkeleyUnited States
| | | | - Satrajit Ghosh
- McGovern Institute for Brain Research, Massachusetts Institute of TechnologyCambridgeUnited States
- Department of Otolaryngology - Head and Neck Surgery, Harvard Medical SchoolBostonUnited States
| | | | - Pamela Baker
- Allen Institute for Brain ScienceSeattleUnited States
| | - Ivan Soltesz
- Department of Neurosurgery, Stanford UniversityStanfordUnited States
| | - Lydia Ng
- Allen Institute for Brain ScienceSeattleUnited States
| | - Karel Svoboda
- Allen Institute for Brain ScienceSeattleUnited States
- Janelia Research Campus, Howard Hughes Medical InstituteAshburnUnited States
| | - Loren Frank
- Janelia Research Campus, Howard Hughes Medical InstituteAshburnUnited States
- Kavli Institute for Fundamental NeuroscienceSan FranciscoUnited States
- Departments of Physiology and Psychiatry University of California, San FranciscoSan FranciscoUnited States
| | - Kristofer E Bouchard
- Scientific Data Division, Lawrence Berkeley National LaboratoryBerkeleyUnited States
- Kavli Institute for Fundamental NeuroscienceSan FranciscoUnited States
- Biological Systems and Engineering Division, Lawrence Berkeley National LaboratoryBerkeleyUnited States
- Helen Wills Neuroscience Institute and Redwood Center for Theoretical Neuroscience, University of California, BerkeleyBerkeleyUnited States
- Weill NeurohubBerkeleyUnited States
| |
Collapse
|
9
|
Alasfour A, Gabriel P, Jiang X, Shamie I, Melloni L, Thesen T, Dugan P, Friedman D, Doyle W, Devinsky O, Gonda D, Sattar S, Wang S, Halgren E, Gilja V. Spatiotemporal dynamics of human high gamma discriminate naturalistic behavioral states. PLoS Comput Biol 2022; 18:e1010401. [PMID: 35939509 PMCID: PMC9387937 DOI: 10.1371/journal.pcbi.1010401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 08/18/2022] [Accepted: 07/18/2022] [Indexed: 11/18/2022] Open
Abstract
In analyzing the neural correlates of naturalistic and unstructured behaviors, features of neural activity that are ignored in a trial-based experimental paradigm can be more fully studied and investigated. Here, we analyze neural activity from two patients using electrocorticography (ECoG) and stereo-electroencephalography (sEEG) recordings, and reveal that multiple neural signal characteristics exist that discriminate between unstructured and naturalistic behavioral states such as “engaging in dialogue” and “using electronics”. Using the high gamma amplitude as an estimate of neuronal firing rate, we demonstrate that behavioral states in a naturalistic setting are discriminable based on long-term mean shifts, variance shifts, and differences in the specific neural activity’s covariance structure. Both the rapid and slow changes in high gamma band activity separate unstructured behavioral states. We also use Gaussian process factor analysis (GPFA) to show the existence of salient spatiotemporal features with variable smoothness in time. Further, we demonstrate that both temporally smooth and stochastic spatiotemporal activity can be used to differentiate unstructured behavioral states. This is the first attempt to elucidate how different neural signal features contain information about behavioral states collected outside the conventional experimental paradigm.
Collapse
Affiliation(s)
- Abdulwahab Alasfour
- Department of Electrical Engineering, Kuwait University, Kuwait City, Kuwait
- Department of Electrical and Computer Engineering, UC San Diego, San Diego, California, United States of America
- * E-mail:
| | - Paolo Gabriel
- Department of Electrical and Computer Engineering, UC San Diego, San Diego, California, United States of America
| | - Xi Jiang
- Department of Neurosciences, UC San Diego, San Diego, California, United States of America
| | - Isaac Shamie
- Department of Neurosciences, UC San Diego, San Diego, California, United States of America
| | - Lucia Melloni
- Comprehensive Epilepsy Center, Department of Neurology, New York University Grossman School of Medicine, New York City, New York, United States of America
| | - Thomas Thesen
- Comprehensive Epilepsy Center, Department of Neurology, New York University Grossman School of Medicine, New York City, New York, United States of America
- Department of Biomedical Sciences, College of Medicine, University of Houston, Houston, Texas, United States of America
| | - Patricia Dugan
- Comprehensive Epilepsy Center, Department of Neurology, New York University Grossman School of Medicine, New York City, New York, United States of America
| | - Daniel Friedman
- Comprehensive Epilepsy Center, Department of Neurology, New York University Grossman School of Medicine, New York City, New York, United States of America
| | - Werner Doyle
- Comprehensive Epilepsy Center, Department of Neurology, New York University Grossman School of Medicine, New York City, New York, United States of America
| | - Orin Devinsky
- Comprehensive Epilepsy Center, Department of Neurology, New York University Grossman School of Medicine, New York City, New York, United States of America
| | - David Gonda
- Department of Neurosciences, UC San Diego, San Diego, California, United States of America
- Rady Children’s Hospital San Diego, San Diego, California, United States of America
| | - Shifteh Sattar
- Department of Neurosciences, UC San Diego, San Diego, California, United States of America
- Rady Children’s Hospital San Diego, San Diego, California, United States of America
| | - Sonya Wang
- Rady Children’s Hospital San Diego, San Diego, California, United States of America
- Department of Neurology, University of Minnesota Medical School, Minneapolis, Minnesota, United States of America
| | - Eric Halgren
- Department of Neurosciences, UC San Diego, San Diego, California, United States of America
| | - Vikash Gilja
- Department of Electrical and Computer Engineering, UC San Diego, San Diego, California, United States of America
| |
Collapse
|
10
|
Peterson SM, Rao RPN, Brunton BW. Learning neural decoders without labels using multiple data streams. J Neural Eng 2022; 19. [PMID: 35905727 DOI: 10.1088/1741-2552/ac857c] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2022] [Accepted: 07/29/2022] [Indexed: 11/11/2022]
Abstract
OBJECTIVE Recent advances in neural decoding have accelerated the development of brain-computer interfaces aimed at assisting users with everyday tasks such as speaking, walking, and manipulating objects. However, current approaches for training neural decoders commonly require large quantities of labeled data, which can be laborious or infeasible to obtain in real-world settings. Alternatively, self-supervised models that share self-generated pseudo-labels between two data streams have shown exceptional performance on unlabeled audio and video data, but it remains unclear how well they extend to neural decoding. APPROACH We learn neural decoders without labels by leveraging multiple simultaneously recorded data streams, including neural, kinematic, and physiological signals. Specifically, we apply cross-modal, self-supervised deep clustering to train decoders that can classify movements from brain recordings. After training, we then isolate the decoders for each input data stream and compare the accuracy of decoders trained using cross-modal deep clustering against supervised and unimodal, self-supervised models. MAIN RESULTS We find that sharing pseudo-labels between two data streams during training substantially increases decoding performance compared to unimodal, self-supervised models, with accuracies approaching those of supervised decoders trained on labeled data. Next, we extend cross-modal decoder training to three or more modalities, achieving state-of-the-art neural decoding accuracy that matches or slightly exceeds the performance of supervised models. Significance: We demonstrate that cross-modal, self-supervised decoding can be applied to train neural decoders when few or no labels are available and extend the cross-modal framework to share information among three or more data streams, further improving self-supervised training.
Collapse
Affiliation(s)
- Steven M Peterson
- Biology, University of Washington, 4000 15th Ave NE, Seattle, Washington, 98195, UNITED STATES
| | - Rajesh P N Rao
- Department of Computer Science and Engineering College of Engineering, University of Washington, Box 352350, Seattle, Washington, 98195, UNITED STATES
| | - Bingni W Brunton
- University of Washington, 4000 15th Ave NE, Seattle, Washington, 98195, UNITED STATES
| |
Collapse
|