1
|
Huang EYW, Kuang F, Wu H, Yu CX, Chen X, Vasku G, Nguyen LTA, Jeppe KJ, Coussens AK, Kwai BX, Leung IK. An integrated structural and biophysical approach to study carbon metabolism in Mycobacterium tuberculosis. QRB DISCOVERY 2025; 6:e15. [PMID: 40395558 PMCID: PMC12088919 DOI: 10.1017/qrd.2025.6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2025] [Revised: 02/23/2025] [Accepted: 03/04/2025] [Indexed: 05/22/2025] Open
Abstract
Metabolic enzymes are the catalysts that drive the biochemical reactions essential for sustaining life. Many of these enzymes are tightly regulated by feedback mechanisms. To fully understand their roles and modulation, it is crucial to investigate the relationship between their structure, catalytic mechanism, and function. In this perspective, by using three examples from our studies on Mycobacterium tuberculosis (Mtb) isocitrate lyase and related proteins, we highlight how an integrated approach combining structural, activity, and biophysical data provides insights into their biological functions. These examples underscore the importance of employing fast-fail experiments at the early stages of a research project, emphasise the value of complementary techniques in validating findings, and demonstrate how in vitro data combined with chemical, biochemical, and physiological knowledge can lead to a broader understanding of metabolic adaptations in pathogenic bacteria. Finally, we address the unexplored questions in Mtb metabolism and discuss how we expand our approach to include microbiological and bioanalytical techniques to further our understanding. Such an integrated and interdisciplinary strategy has the potential to uncover novel regulatory mechanisms and identify new therapeutic opportunities for the eradication of tuberculosis. The approach can also be broadly applied to investigate other biochemical networks and complex biological systems.
Collapse
Affiliation(s)
- Evelyn Y.-W. Huang
- School of Chemistry and Bio21 Molecular Science & Biotechnology Institute, The University of Melbourne, Parkville, VIC, Australia
| | - Francis Kuang
- School of Chemistry and Bio21 Molecular Science & Biotechnology Institute, The University of Melbourne, Parkville, VIC, Australia
| | - Haozhe Wu
- School of Chemistry and Bio21 Molecular Science & Biotechnology Institute, The University of Melbourne, Parkville, VIC, Australia
| | - Chai Xin Yu
- School of Chemistry and Bio21 Molecular Science & Biotechnology Institute, The University of Melbourne, Parkville, VIC, Australia
| | - Xiaoxu Chen
- School of Chemistry and Bio21 Molecular Science & Biotechnology Institute, The University of Melbourne, Parkville, VIC, Australia
| | - Glenda Vasku
- School of Chemistry and Bio21 Molecular Science & Biotechnology Institute, The University of Melbourne, Parkville, VIC, Australia
| | - Le Thao Anh Nguyen
- School of Chemistry and Bio21 Molecular Science & Biotechnology Institute, The University of Melbourne, Parkville, VIC, Australia
| | - Katherine J. Jeppe
- Monash Proteomics and Metabolomics Platform, Monash University, Melbourne, VIC, Australia
- Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Melbourne, VIC, Australia
| | - Anna K. Coussens
- Infectious Diseases and Immune Defence Division, Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC, Australia
- Department of Medical Biology, The University of Melbourne, Parkville, VIC, Australia
| | - Brooke X.C. Kwai
- Medicinal Chemistry, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, Australia
| | - Ivanhoe K.H. Leung
- School of Chemistry and Bio21 Molecular Science & Biotechnology Institute, The University of Melbourne, Parkville, VIC, Australia
| |
Collapse
|
2
|
Jones BS, Pareek V, Hu DD, Weaver SD, Syska C, Galfano G, Champion MM, Champion PA. N - acetyl-transferases required for iron uptake and aminoglycoside resistance promote virulence lipid production in M. marinum. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.05.602253. [PMID: 39005365 PMCID: PMC11245092 DOI: 10.1101/2024.07.05.602253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/16/2024]
Abstract
Phagosomal lysis is a key aspect of mycobacterial infection of host macrophages. Acetylation is a protein modification mediated enzymatically by N-acetyltransferases (NATs) that impacts bacterial pathogenesis and physiology. To identify NATs required for lytic activity, we leveraged Mycobacterium marinum, a nontubercular pathogen and an established model for M. tuberculosis. M. marinum hemolysis is a proxy for phagolytic activity. We generated M. marinum strains with deletions in conserved NAT genes and screened for hemolytic activity. Several conserved lysine acetyltransferases (KATs) contributed to hemolysis. Hemolysis is mediated by the ESX-1 secretion system and by phthiocerol dimycocerosate (PDIM), a virulence lipid. For several strains, the hemolytic activity was restored by the addition of second copy of the ESX-1 locus. Using thin-layer chromatography (TLC), we found a single NAT required for PDIM and phenolic glycolipid (PGL) production. MbtK is a conserved KAT required for mycobactin siderophore synthesis and virulence. Mycobactin J exogenously complemented PDIM/PGL production in the Δ mbtK strain. The Δ mbtK M. marinum strain was attenuated in macrophage and Galleria mellonella infection models. Constitutive expression of either eis or papA5, which encode a KAT required for aminoglycoside resistance and a PDIM/PGL biosynthetic enzyme, rescued PDIM/PGL production and virulence of the Δ mbtK strain. Eis N-terminally acetylated PapA5 in vitro , supporting a mechanism for restored lipid production. Overall, our study establishes connections between the MbtK and Eis NATs, and between iron uptake and PDIM and PGL synthesis in M. marinum . Our findings underscore the multifunctional nature of mycobacterial NATs and their connection to key virulence pathways. Significance Statement Acetylation is a modification of protein N-termini, lysine residues, antibiotics and lipids. Many of the enzymes that promote acetylation belong to the GNAT family of proteins. M. marinum is a well-established as a model to understand how M. tuberculosis causes tuberculosis. In this study we sought to identify conserved GNAT proteins required for early stages of mycobacterial infection. Using M. marinum, we determined that several GNAT proteins are required for the lytic activity of M. marinum. We uncovered previously unknown connections between acetyl-transferases required for iron uptake and antimicrobial resistance, and the production of the unique mycobacterial lipids, PDIM and PGLOur data support that acetyl-transferases from the GNAT family are interconnected, and have activities beyond those previously reported.
Collapse
|
3
|
Huang Y, Zhu C, Pan L, Zhang Z. The role of Mycobacterium tuberculosis acetyltransferase and protein acetylation modifications in tuberculosis. Front Cell Infect Microbiol 2023; 13:1218583. [PMID: 37560320 PMCID: PMC10407107 DOI: 10.3389/fcimb.2023.1218583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Accepted: 06/29/2023] [Indexed: 08/11/2023] Open
Abstract
Tuberculosis (TB) is a widespread infectious disease caused by Mycobacterium tuberculosis (M. tb), which has been a significant burden for a long time. Post-translational modifications (PTMs) are essential for protein function in both eukaryotic and prokaryotic cells. This review focuses on the contribution of protein acetylation to the function of M. tb and its infected macrophages. The acetylation of M. tb proteins plays a critical role in virulence, drug resistance, regulation of metabolism, and host anti-TB immune response. Similarly, the PTMs of host proteins induced by M. tb are crucial for the development, treatment, and prevention of diseases. Host protein acetylation induced by M. tb is significant in regulating host immunity against TB, which substantially affects the disease's development. The review summarizes the functions and mechanisms of M. tb acetyltransferase in virulence and drug resistance. It also discusses the role and mechanism of M. tb in regulating host protein acetylation and immune response regulation. Furthermore, the current scenario of isoniazid usage in M. tb therapy treatment is examined. Overall, this review provides valuable information that can serve as a preliminary basis for studying pathogenic research, developing new drugs, exploring in-depth drug resistance mechanisms, and providing precise treatment for TB.
Collapse
Affiliation(s)
| | | | - Liping Pan
- Laboratory of Molecular Biology, Beijing Key Laboratory for Drug Resistant Tuberculosis Research, Beijing TB and Thoracic Tumor Research Institute, Beijing Chest Hospital, Capital Medical University, Beijing, China
| | - Zongde Zhang
- Laboratory of Molecular Biology, Beijing Key Laboratory for Drug Resistant Tuberculosis Research, Beijing TB and Thoracic Tumor Research Institute, Beijing Chest Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
4
|
Yang P, Liu W, Chen Y, Gong AD. Engineering the glyoxylate cycle for chemical bioproduction. Front Bioeng Biotechnol 2022; 10:1066651. [PMID: 36532595 PMCID: PMC9755347 DOI: 10.3389/fbioe.2022.1066651] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Accepted: 11/17/2022] [Indexed: 07/24/2023] Open
Abstract
With growing concerns about environmental issues and sustainable economy, bioproduction of chemicals utilizing microbial cell factories provides an eco-friendly alternative to current petro-based processes. Creating high-performance strains (with high titer, yield, and productivity) through metabolic engineering strategies is critical for cost-competitive production. Commonly, it is inevitable to fine-tuning or rewire the endogenous or heterologous pathways in such processes. As an important pathway involved in the synthesis of many kinds of chemicals, the potential of the glyoxylate cycle in metabolic engineering has been studied extensively these years. Here, we review the metabolic regulation of the glyoxylate cycle and summarize recent achievements in microbial production of chemicals through tuning of the glyoxylate cycle, with a focus on studies implemented in model microorganisms. Also, future prospects for bioproduction of glyoxylate cycle-related chemicals are discussed.
Collapse
|
5
|
Mycobacterium tuberculosis Acetyltransferase Suppresses Oxidative Stress by Inducing Peroxisome Formation in Macrophages. Int J Mol Sci 2022; 23:ijms23052584. [PMID: 35269727 PMCID: PMC8909987 DOI: 10.3390/ijms23052584] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 11/20/2021] [Accepted: 11/20/2021] [Indexed: 02/01/2023] Open
Abstract
Mycobacterium tuberculosis (Mtb) inhibits host oxidative stress responses facilitating its survival in macrophages; however, the underlying molecular mechanisms are poorly understood. Here, we identified a Mtb acetyltransferase (Rv3034c) as a novel counter actor of macrophage oxidative stress responses by inducing peroxisome formation. An inducible Rv3034c deletion mutant of Mtb failed to induce peroxisome biogenesis, expression of the peroxisomal β-oxidation pathway intermediates (ACOX1, ACAA1, MFP2) in macrophages, resulting in reduced intracellular survival compared to the parental strain. This reduced virulence phenotype was rescued by repletion of Rv3034c. Peroxisome induction depended on the interaction between Rv3034c and the macrophage mannose receptor (MR). Interaction between Rv3034c and MR induced expression of the peroxisomal biogenesis proteins PEX5p, PEX13p, PEX14p, PEX11β, PEX19p, the peroxisomal membrane lipid transporter ABCD3, and catalase. Expression of PEX14p and ABCD3 was also enhanced in lungs from Mtb aerosol-infected mice. This is the first report that peroxisome-mediated control of ROS balance is essential for innate immune responses to Mtb but can be counteracted by the mycobacterial acetyltransferase Rv3034c. Thus, peroxisomes represent interesting targets for host-directed therapeutics to tuberculosis.
Collapse
|
6
|
Integrated mass spectrometry-based multi-omics for elucidating mechanisms of bacterial virulence. Biochem Soc Trans 2021; 49:1905-1926. [PMID: 34374408 DOI: 10.1042/bst20191088] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Revised: 07/19/2021] [Accepted: 07/21/2021] [Indexed: 11/17/2022]
Abstract
Despite being considered the simplest form of life, bacteria remain enigmatic, particularly in light of pathogenesis and evolving antimicrobial resistance. After three decades of genomics, we remain some way from understanding these organisms, and a substantial proportion of genes remain functionally unknown. Methodological advances, principally mass spectrometry (MS), are paving the way for parallel analysis of the proteome, metabolome and lipidome. Each provides a global, complementary assay, in addition to genomics, and the ability to better comprehend how pathogens respond to changes in their internal (e.g. mutation) and external environments consistent with infection-like conditions. Such responses include accessing necessary nutrients for survival in a hostile environment where co-colonizing bacteria and normal flora are acclimated to the prevailing conditions. Multi-omics can be harnessed across temporal and spatial (sub-cellular) dimensions to understand adaptation at the molecular level. Gene deletion libraries, in conjunction with large-scale approaches and evolving bioinformatics integration, will greatly facilitate next-generation vaccines and antimicrobial interventions by highlighting novel targets and pathogen-specific pathways. MS is also central in phenotypic characterization of surface biomolecules such as lipid A, as well as aiding in the determination of protein interactions and complexes. There is increasing evidence that bacteria are capable of widespread post-translational modification, including phosphorylation, glycosylation and acetylation; with each contributing to virulence. This review focuses on the bacterial genotype to phenotype transition and surveys the recent literature showing how the genome can be validated at the proteome, metabolome and lipidome levels to provide an integrated view of organism response to host conditions.
Collapse
|
7
|
Protein acetyltransferases mediate bacterial adaptation to a diverse environment. J Bacteriol 2021; 203:e0023121. [PMID: 34251868 DOI: 10.1128/jb.00231-21] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
Protein lysine acetylation is a conserved post-translational modification that modulates several cellular processes. Protein acetylation and its physiological implications are well understood in eukaryotes; however, its role is emerging in bacteria. Lysine acetylation in bacteria is fine-tuned by the concerted action of lysine acetyltransferases (KATs), protein deacetylases (KDACs), metabolic intermediates- acetyl-coenzyme A (Ac-CoA) and acetyl phosphate (AcP). AcP mediated nonenzymatic acetylation is predominant in bacteria due to its high acetyl transfer potential whereas, enzymatic acetylation by bacterial KATs (bKAT) are considered less abundant. SePat, the first bKAT discovered in Salmonella enterica, regulates the activity of the central metabolic enzyme- acetyl-CoA synthetase, through its acetylation. Recent studies have highlighted the role of bKATs in stress responses like pH tolerance, nutrient stress, persister cell formation, antibiotic resistance and pathogenesis. Bacterial genomes encode many putative bKATs of unknown biological function and significance. Detailed characterization of putative and partially characterized bKATs is important to decipher the acetylation mediated regulation in bacteria. Proper synthesis of information about the diverse roles of bKATs is missing to date, which can lead to the discovery of new antimicrobial targets in future. In this review, we provide an overview of the diverse physiological roles of known bKATs, and their mode of regulation in different bacteria. We also highlight existing gaps in the literature and present questions that may help understand the regulatory mechanisms mediated by bKATs in adaptation to a diverse habitat.
Collapse
|
8
|
Pei JF, Qi N, Li YX, Wo J, Ye BC. RegX3-Mediated Regulation of Methylcitrate Cycle in Mycobacterium smegmatis. Front Microbiol 2021; 12:619387. [PMID: 33603724 PMCID: PMC7884335 DOI: 10.3389/fmicb.2021.619387] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Accepted: 01/13/2021] [Indexed: 11/16/2022] Open
Abstract
Mycobacterium tuberculosis is a global human pathogen that infects macrophages and can establish a latent infection. Emerging evidence has established the nutrients metabolism as a key point to study the pathogenesis of M. tuberculosis and host immunity. It was reported that fatty acids and cholesterol are the major nutrient sources of M. tuberculosis in the period of infection. However, the mechanism by which M. tuberculosis utilizes lipids for maintaining life activities in nutrient-deficiency macrophages is poorly understood. Mycobacterium smegmatis is fast-growing and generally used to study its pathogenic counterpart, M. tuberculosis. In this work, we found that the phosphate sensing regulator RegX3 of M. smegmatis is required for its growing on propionate and surviving in macrophages. We further demonstrated that the expression of prpR and related genes (prpDBC) in methylcitrate cycle could be enhanced by RegX3 in response to the phosphate-starvation condition. The binding sites of the promoter region of prpR for RegX3 and PrpR were investigated. In addition, cell morphology assay showed that RegX3 is responsible for cell morphological elongation, thus promoting the proliferation and survival of M. smegmatis in macrophages. Taken together, our findings revealed a novel transcriptional regulation mechanism of RegX3 on propionate metabolism, and uncovered that the nutrients-sensing regulatory system puts bacteria at metabolic steady state by altering cell morphology. More importantly, since we observed that M. tuberculosis RegX3 also binds to the prpR operon in vitro, the RegX3-mediated regulation might be general in M. tuberculosis and other mycobacteria for nutrient sensing and environmental adaptation.
Collapse
Affiliation(s)
- Jin-Feng Pei
- Institute of Engineering Biology and Health, Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou, China
| | - Nan Qi
- Institute of Engineering Biology and Health, Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou, China
| | - Yu-Xin Li
- Lab of Biosystems and Microanalysis, State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
| | - Jing Wo
- Institute of Engineering Biology and Health, Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou, China
| | - Bang-Ce Ye
- Institute of Engineering Biology and Health, Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou, China.,Lab of Biosystems and Microanalysis, State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
| |
Collapse
|
9
|
Acetylation of Isoniazid Is a Novel Mechanism of Isoniazid Resistance in Mycobacterium tuberculosis. Antimicrob Agents Chemother 2020; 65:AAC.00456-20. [PMID: 33106268 DOI: 10.1128/aac.00456-20] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Accepted: 10/20/2020] [Indexed: 11/20/2022] Open
Abstract
Isoniazid (INH), one of the first-line drugs used for the treatment of tuberculosis, is a prodrug which is activated by the intracellular KatG enzyme of Mycobacterium tuberculosis The activated drug hinders cell wall biosynthesis by inhibiting the InhA protein. INH-resistant strains of M. tuberculosis usually have mutations in katG, inhA, ahpC, kasA, and ndh genes. However, INH-resistant strains which do not have mutations in any of these genes are reported, suggesting that these strains may adopt some other mechanism to become resistant to INH. In the present study, we characterized Rv2170, a putative acetyltransferase in M. tuberculosis, to elucidate its role in inactivating isoniazid. The purified recombinant protein was able to catalyze the transfer of the acetyl group to INH from acetyl coenzyme A (acetyl-CoA). High-performance liquid chromatography (HPLC) and liquid chromatography-mass spectrometry (LC-MS) analyses showed that following acetylation by Rv2170, INH is broken down into isonicotinic acid and acetylhydrazine. A drug susceptibility assay and confocal analysis showed that Mycobacterium smegmatis, which is susceptible to INH, is not inhibited by INH acetylated with Rv2170. Mutant proteins of Rv2170 failed to acetylate INH. Recombinant M. smegmatis and M. tuberculosis H37Ra overexpressing Rv2170 were found to be resistant to INH at MICs that inhibited wild-type strains. Besides, intracellular M. tuberculosis H37Ra overexpressing Rv2170 survived better in macrophages when treated with INH. Our results strongly indicate that Rv2170 acetylates INH, and this could be one of the strategies adopted by at least some M. tuberculosis strains to overcome INH toxicity, although this needs to be tested in INH-resistant clinical strains.
Collapse
|
10
|
Bonds AC, Yuan T, Werman JM, Jang J, Lu R, Nesbitt NM, Garcia-Diaz M, Sampson NS. Post-translational Succinylation of Mycobacterium tuberculosis Enoyl-CoA Hydratase EchA19 Slows Catalytic Hydration of Cholesterol Catabolite 3-Oxo-chol-4,22-diene-24-oyl-CoA. ACS Infect Dis 2020; 6:2214-2224. [PMID: 32649175 DOI: 10.1021/acsinfecdis.0c00329] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Cholesterol is a major carbon source for Mycobacterium tuberculosis (Mtb) during infection, and cholesterol utilization plays a significant role in persistence and virulence within host macrophages. Elucidating the mechanism by which cholesterol is degraded may permit the identification of new therapeutic targets. Here, we characterized EchA19 (Rv3516), an enoyl-CoA hydratase involved in cholesterol side-chain catabolism. Steady-state kinetics assays demonstrated that EchA19 preferentially hydrates cholesterol enoyl-CoA metabolite 3-oxo-chol-4,22-diene-24-oyl-CoA, an intermediate of side-chain β-oxidation. In addition, succinyl-CoA, a downstream catabolite of propionyl-CoA that forms during cholesterol degradation, covalently modifies targeted mycobacterial proteins, including EchA19. Inspection of a 1.9 Å resolution X-ray crystallography structure of Mtb EchA19 suggests that succinylation of Lys132 and Lys139 may perturb enzymatic activity by modifying the entrance to the substrate binding site. Treatment of EchA19 with succinyl-CoA revealed that these two residues are hotspots for succinylation. Replacement of these specific lysine residues with negatively charged glutamate reduced the rate of catalytic hydration of 3-oxo-chol-4,22-diene-24-oyl-CoA by EchA19, as does succinylation of EchA19. Our findings suggest that succinylation is a negative feedback regulator of cholesterol metabolism, thereby adding another layer of complexity to Mtb physiology in the host. These regulatory pathways are potential noncatabolic targets for antimicrobial drugs.
Collapse
Affiliation(s)
- Amber C. Bonds
- Department of Pharmacological Sciences, Stony Brook University, Stony Brook, New York 11794-8651
| | - Tianao Yuan
- Department of Chemistry, Stony Brook University, Stony Brook, New York 11794-3400
| | - Joshua M. Werman
- Department of Chemistry, Stony Brook University, Stony Brook, New York 11794-3400
| | - Jungwon Jang
- Department of Chemistry, Stony Brook University, Stony Brook, New York 11794-3400
| | - Rui Lu
- Department of Chemistry, Stony Brook University, Stony Brook, New York 11794-3400
| | - Natasha M. Nesbitt
- Department of Chemistry, Stony Brook University, Stony Brook, New York 11794-3400
| | - Miguel Garcia-Diaz
- Department of Pharmacological Sciences, Stony Brook University, Stony Brook, New York 11794-8651
| | - Nicole S. Sampson
- Department of Chemistry, Stony Brook University, Stony Brook, New York 11794-3400
| |
Collapse
|
11
|
Aguilera J, Karki CB, Li L, Vazquez Reyes S, Estevao I, Grajeda BI, Zhang Q, Arico CD, Ouellet H, Sun J. Nα-Acetylation of the virulence factor EsxA is required for mycobacterial cytosolic translocation and virulence. J Biol Chem 2020; 295:5785-5794. [PMID: 32169899 PMCID: PMC7186180 DOI: 10.1074/jbc.ra119.012497] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2019] [Revised: 03/11/2020] [Indexed: 12/23/2022] Open
Abstract
The Mycobacterium tuberculosis virulence factor EsxA and its chaperone EsxB are secreted as a heterodimer (EsxA:B) and are crucial for mycobacterial escape from phagosomes and cytosolic translocation. Current findings support the idea that for EsxA to interact with host membranes, EsxA must dissociate from EsxB at low pH. However, the molecular mechanism by which the EsxA:B heterodimer separates is not clear. In the present study, using liposome-leakage and cytotoxicity assays, LC-MS/MS-based proteomics, and CCF-4 FRET analysis, we obtained evidence that the Nα-acetylation of the Thr-2 residue on EsxA, a post-translational modification that is present in mycobacteria but absent in Escherichia coli, is required for the EsxA:B separation. Substitutions at Thr-2 that precluded Nα-acetylation inhibited the heterodimer separation and hence prevented EsxA from interacting with the host membrane, resulting in attenuated mycobacterial cytosolic translocation and virulence. Molecular dynamics simulations revealed that at low pH, the Nα-acetylated Thr-2 makes direct and frequent "bind-and-release" contacts with EsxB, which generates a force that pulls EsxB away from EsxA. In summary, our findings provide evidence that the Nα-acetylation at Thr-2 of EsxA facilitates dissociation of the EsxA:B heterodimer required for EsxA membrane permeabilization and mycobacterial cytosolic translocation and virulence.
Collapse
Affiliation(s)
- Javier Aguilera
- Department of Biological Sciences, University of Texas at El Paso, El Paso, Texas 79968; Border Biomedical Research Center, University of Texas at El Paso, El Paso, Texas 79968
| | - Chitra B Karki
- Department of Physics, University of Texas at El Paso, El Paso, Texas 79968
| | - Lin Li
- Department of Physics, University of Texas at El Paso, El Paso, Texas 79968
| | - Salvador Vazquez Reyes
- Department of Biological Sciences, University of Texas at El Paso, El Paso, Texas 79968; Border Biomedical Research Center, University of Texas at El Paso, El Paso, Texas 79968
| | - Igor Estevao
- Department of Biological Sciences, University of Texas at El Paso, El Paso, Texas 79968; Border Biomedical Research Center, University of Texas at El Paso, El Paso, Texas 79968
| | - Brian I Grajeda
- Department of Biological Sciences, University of Texas at El Paso, El Paso, Texas 79968; Border Biomedical Research Center, University of Texas at El Paso, El Paso, Texas 79968
| | - Qi Zhang
- Department of Biological Sciences, University of Texas at El Paso, El Paso, Texas 79968; Border Biomedical Research Center, University of Texas at El Paso, El Paso, Texas 79968
| | - Chenoa D Arico
- Department of Biological Sciences, University of Texas at El Paso, El Paso, Texas 79968; Border Biomedical Research Center, University of Texas at El Paso, El Paso, Texas 79968
| | - Hugues Ouellet
- Department of Biological Sciences, University of Texas at El Paso, El Paso, Texas 79968; Border Biomedical Research Center, University of Texas at El Paso, El Paso, Texas 79968
| | - Jianjun Sun
- Department of Biological Sciences, University of Texas at El Paso, El Paso, Texas 79968; Border Biomedical Research Center, University of Texas at El Paso, El Paso, Texas 79968.
| |
Collapse
|
12
|
Hou M, Zhuang J, Fan S, Wang H, Guo C, Yao H, Lin D, Liao X. Biophysical and functional characterizations of recombinant RimI acetyltransferase from Mycobacterium tuberculosis. Acta Biochim Biophys Sin (Shanghai) 2019; 51:960-968. [PMID: 31389995 DOI: 10.1093/abbs/gmz075] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Revised: 06/16/2019] [Accepted: 06/18/2019] [Indexed: 01/07/2023] Open
Abstract
Nα-acetylation is a universal protein modification related to a wide range of physiological processes in eukaryotes and prokaryotes. RimI, an Nα-acetyltransferase in Mycobacterium tuberculosis, is responsible for the acetylation of the α-amino group of the N-terminal residue in the ribosomal protein S18. Despite growing evidence that protein acetylation may be correlated with the pathogenesis of tuberculosis, no structural information is yet available for mechanistically understanding the MtRimI acetylation. To enable structural studies for MtRimI, we constructed a serial of recombinant MtRimI proteins and assessed their biochemical properties. We then chose an optimal construct MtRimIC21A4-153 and expressed and purified the truncated high-quality protein for further biophysical and functional characterizations. The 2D 1H-15N heteronuclear single quantum coherence spectrum of MtRimIC21A4-153 exhibits wider chemical shift dispersion and favorable peak isolation, indicating that MtRimIC21A4-153 is amendable for further structural determination. Moreover, bio-layer interferometry experiments showed that MtRimIC21A4-153 possessed similar micromolar affinity to full-length MtRimI for binding the hexapeptide substrate Ala-Arg-Tyr-Phe-Arg-Arg. Enzyme kinetic assays also exhibited that MtRimIC21A4-153 had almost identical enzymatic activity to MtRimI, indicating insignificant influence of the recombinant variations on enzymatic functions. Furthermore, binding sites of the peptide were predicted by molecular docking approach, suggesting that this substrate binds to MtRimI primarily through electrostatic and hydrogen bonding interactions. Our results lay a foundation for the further structural determination and dynamics detection of MtRimI.
Collapse
Affiliation(s)
- Meijing Hou
- Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Jie Zhuang
- Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Shihui Fan
- Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Huilin Wang
- Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Chenyun Guo
- Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Hongwei Yao
- Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Donghai Lin
- Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Xinli Liao
- Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| |
Collapse
|
13
|
Christensen DG, Baumgartner JT, Xie X, Jew KM, Basisty N, Schilling B, Kuhn ML, Wolfe AJ. Mechanisms, Detection, and Relevance of Protein Acetylation in Prokaryotes. mBio 2019; 10:e02708-18. [PMID: 30967470 PMCID: PMC6456759 DOI: 10.1128/mbio.02708-18] [Citation(s) in RCA: 107] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Posttranslational modification of a protein, either alone or in combination with other modifications, can control properties of that protein, such as enzymatic activity, localization, stability, or interactions with other molecules. N-ε-Lysine acetylation is one such modification that has gained attention in recent years, with a prevalence and significance that rival those of phosphorylation. This review will discuss the current state of the field in bacteria and some of the work in archaea, focusing on both mechanisms of N-ε-lysine acetylation and methods to identify, quantify, and characterize specific acetyllysines. Bacterial N-ε-lysine acetylation depends on both enzymatic and nonenzymatic mechanisms of acetylation, and recent work has shed light into the regulation of both mechanisms. Technological advances in mass spectrometry have allowed researchers to gain insight with greater biological context by both (i) analyzing samples either with stable isotope labeling workflows or using label-free protocols and (ii) determining the true extent of acetylation on a protein population through stoichiometry measurements. Identification of acetylated lysines through these methods has led to studies that probe the biological significance of acetylation. General and diverse approaches used to determine the effect of acetylation on a specific lysine will be covered.
Collapse
Affiliation(s)
- D G Christensen
- Department of Microbiology and Immunology, Loyola University Chicago, Health Sciences Division, Stritch School of Medicine, Maywood, Illinois, USA
| | - J T Baumgartner
- Department of Chemistry and Biochemistry, San Francisco State University, San Francisco, California, USA
| | - X Xie
- Buck Institute for Research on Aging, Novato, California, USA
| | - K M Jew
- Department of Chemistry and Biochemistry, San Francisco State University, San Francisco, California, USA
| | - N Basisty
- Buck Institute for Research on Aging, Novato, California, USA
| | - B Schilling
- Buck Institute for Research on Aging, Novato, California, USA
| | - M L Kuhn
- Department of Chemistry and Biochemistry, San Francisco State University, San Francisco, California, USA
| | - A J Wolfe
- Department of Microbiology and Immunology, Loyola University Chicago, Health Sciences Division, Stritch School of Medicine, Maywood, Illinois, USA
| |
Collapse
|
14
|
Abstract
2017 marks the 60th anniversary of Krebs’ seminal paper on the glyoxylate shunt (and coincidentally, also the 80th anniversary of his discovery of the citric acid cycle). Sixty years on, we have witnessed substantial developments in our understanding of how flux is partitioned between the glyoxylate shunt and the oxidative decarboxylation steps of the citric acid cycle. The last decade has shown us that the beautifully elegant textbook mechanism that regulates carbon flux through the shunt in E. coli is an oversimplification of the situation in many other bacteria. The aim of this review is to assess how this new knowledge is impacting our understanding of flux control at the TCA cycle/glyoxylate shunt branch point in a wider range of genera, and to summarize recent findings implicating a role for the glyoxylate shunt in cellular functions other than metabolism.
Collapse
Affiliation(s)
- Stephen K. Dolan
- Department of Biochemistry, University of Cambridge, Cambridge CB2 1QW, United Kingdom;,
| | - Martin Welch
- Department of Biochemistry, University of Cambridge, Cambridge CB2 1QW, United Kingdom;,
| |
Collapse
|
15
|
Bonds AC, Sampson NS. More than cholesterol catabolism: regulatory vulnerabilities in Mycobacterium tuberculosis. Curr Opin Chem Biol 2018; 44:39-46. [PMID: 29906645 DOI: 10.1016/j.cbpa.2018.05.012] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2018] [Accepted: 05/09/2018] [Indexed: 11/17/2022]
Abstract
Mycobacterium tuberculosis (Mtb) is the epitome of persistent. Mtb is the pathogen that causes tuberculosis, the leading cause of death by infection worldwide. The success of this pathogen is due in part to its clever ability to adapt to its host environment and its effective manipulation of the host immune system. A major contributing factor to the survival and virulence of Mtb is its acquisition and metabolism of host derived lipids including cholesterol. Accumulating evidence suggests that the catabolism of cholesterol during infection is highly regulated by cholesterol catabolites. We review what is known about how regulation interconnects with cholesterol catabolism. This framework provides support for an indirect approach to drug development that targets Mtb cholesterol metabolism through dysregulation of nutrient utilization pathways.
Collapse
Affiliation(s)
- Amber C Bonds
- Molecular and Cellular Pharmacology Program, Stony Brook University, Stony Brook, NY 11794-8651, United States
| | - Nicole S Sampson
- Department of Chemistry, Stony Brook University, Stony Brook, NY 11794-3400, United States.
| |
Collapse
|
16
|
Birhanu AG, Yimer SA, Holm-Hansen C, Norheim G, Aseffa A, Abebe M, Tønjum T. N ε- and O-Acetylation in Mycobacterium tuberculosis Lineage 7 and Lineage 4 Strains: Proteins Involved in Bioenergetics, Virulence, and Antimicrobial Resistance Are Acetylated. J Proteome Res 2017; 16:4045-4059. [PMID: 28920697 DOI: 10.1021/acs.jproteome.7b00429] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Increasing evidence demonstrates that lysine acetylation is involved in Mycobacterium tuberculosis (Mtb) virulence and pathogenesis. However, previous investigations in Mtb have only monitored acetylation at lysine residues using selected reference strains. We analyzed the global Nε- and O-acetylation of three Mtb isolates: two lineage 7 clinical isolates and the lineage 4 H37Rv reference strain. Quantitative acetylome analysis resulted in identification of 2490 class-I acetylation sites, 2349 O-acetylation and 141 Nε-acetylation sites, derived from 953 unique proteins. Mtb O-acetylation was thereby significantly more abundant than Nε-acetylation. The acetylated proteins were found to be involved in central metabolism, translation, stress responses, and antimicrobial drug resistance. Notably, 261 acetylation sites on 165 proteins were differentially regulated between lineage 7 and lineage 4 strains. A total of 257 acetylation sites on 161 proteins were hypoacetylated in lineage 7 strains. These proteins are involved in Mtb growth, virulence, bioenergetics, host-pathogen interactions, and stress responses. This study provides the first global analysis of O-acetylated proteins in Mtb. This quantitative acetylome data expand the current understanding regarding the nature and diversity of acetylated proteins in Mtb and open a new avenue of research for exploring the role of protein acetylation in Mtb physiology.
Collapse
Affiliation(s)
- Alemayehu Godana Birhanu
- Department of Microbiology, University of Oslo , P.O. Box 4950, Nydalen, NO-0424 Oslo, Norway.,Addis Ababa University , Institute of Biotechnology, P.O. Box 1176, Addis Ababa, Ethiopia
| | - Solomon Abebe Yimer
- Department of Microbiology, University of Oslo , P.O. Box 4950, Nydalen, NO-0424 Oslo, Norway.,Department of Microbiology, Oslo University Hospital , P.O. Box 4950, Nydalen, NO-0424 Oslo, Norway
| | - Carol Holm-Hansen
- Infection Control and Environmental Health, Norwegian Institute of Public Health , P.O. Box 4404, Nydalen, NO-0403 Oslo, Norway
| | - Gunnstein Norheim
- Infection Control and Environmental Health, Norwegian Institute of Public Health , P.O. Box 4404, Nydalen, NO-0403 Oslo, Norway
| | - Abraham Aseffa
- Armauer Hansen Research Institute , Jimma Road, P.O. Box 1005, Addis Ababa, Ethiopia
| | - Markos Abebe
- Armauer Hansen Research Institute , Jimma Road, P.O. Box 1005, Addis Ababa, Ethiopia
| | - Tone Tønjum
- Department of Microbiology, University of Oslo , P.O. Box 4950, Nydalen, NO-0424 Oslo, Norway.,Department of Microbiology, Oslo University Hospital , P.O. Box 4950, Nydalen, NO-0424 Oslo, Norway
| |
Collapse
|