1
|
Rahman TT, Wood N, Akib YM, Qin H, Pei Z. Experimental Study on Compatibility of Human Bronchial Epithelial Cells in Collagen-Alginate Bioink for 3D Printing. Bioengineering (Basel) 2024; 11:862. [PMID: 39329604 PMCID: PMC11429095 DOI: 10.3390/bioengineering11090862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Revised: 07/29/2024] [Accepted: 08/21/2024] [Indexed: 09/28/2024] Open
Abstract
This paper reports an experimental study on the compatibility of human bronchial epithelial (HBE) cells in a collagen-alginate bioink. The compatibility was assessed using the culture well method with three bioink compositions prepared from a 10% alginate solution and neutralized TeloCol-10 mg/mL collagen stock solution. Cell viability, quantified by (live cell count-dead cell count)/live cell count within the HBE cell-laden hydrogel, was evaluated using the live/dead assay method from Day 0 to Day 6. Experimental results demonstrated that the collagen-alginate 4:1 bioink composition exhibited the highest cell viability on Day 6 (85%), outperforming the collagen-alginate 1:4 bioink composition and the alginate bioink composition, which showed cell viability of 75% and 45%, respectively. Additionally, the live cell count was highest for the collagen-alginate 4:1 bioink composition on Day 0, a trend that persisted through Days 1 to 6, underscoring its superior performance in maintaining cell viability and promoting cell proliferation. These findings show that the compatibility of HBE cells with the collagen-alginate 4:1 bioink composition was higher compared with the other two bioink compositions.
Collapse
Affiliation(s)
- Taieba Tuba Rahman
- Department of Industrial & Systems Engineering, Texas A&M University, College Station, TX 77843, USA; (Y.M.A.); (Z.P.)
| | - Nathan Wood
- Department of Biology, Texas A&M University, College Station, TX 77843, USA; (N.W.); (H.Q.)
| | - Yeasir Mohammad Akib
- Department of Industrial & Systems Engineering, Texas A&M University, College Station, TX 77843, USA; (Y.M.A.); (Z.P.)
| | - Hongmin Qin
- Department of Biology, Texas A&M University, College Station, TX 77843, USA; (N.W.); (H.Q.)
| | - Zhijian Pei
- Department of Industrial & Systems Engineering, Texas A&M University, College Station, TX 77843, USA; (Y.M.A.); (Z.P.)
| |
Collapse
|
2
|
Kang Q, He L, Zhang Y, Zhong Z, Tan W. Immune-inflammatory modulation by natural products derived from edible and medicinal herbs used in Chinese classical prescriptions. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 130:155684. [PMID: 38788391 DOI: 10.1016/j.phymed.2024.155684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 01/29/2024] [Accepted: 04/24/2024] [Indexed: 05/26/2024]
Abstract
BACKGROUND Edible and medicinal herbs1 (EMHs) refer to a class of substances with dual attribution of food and medicine. These substances are traditionally used as food and also listed in many international pharmacopoeias, including the European Pharmacopoeia, the United States Pharmacopoeia, and the Chinese Pharmacopoeia. Some classical formulas that are widely used in traditional Chinese medicine include a series of EMHs, which have been shown to be effective with obvious characteristics and advantages. Notably, these EMHs and Chinese classical prescriptions2 (CCPs) have also attracted attention in international herbal medicine research because of their low toxicity and high efficiency as well as the rich body of experience for their long-term clinical use. PURPOSE Our purpose is to explore the potential therapeutic effect of EMHs with immune-inflammatory modulation for the study of modern cancer drugs. STUDY DESIGN In the present study, we present a detailed account of some EMHs used in CCPs that have shown considerable research potential in studies exploring modern drugs with immune-inflammatory modulation. METHODS Approximately 500 publications in the past 30 years were collected from PubMed, Web of Science and ScienceDirect using the keywords, such as natural products, edible and medicinal herbs, Chinese medicine, classical prescription, immune-inflammatory, tumor microenvironment and some related synonyms. The active ingredients instead of herbal extracts or botanical mixtures were focused on and the research conducted over the past decade were discussed emphatically and analyzed comprehensively. RESULTS More than ten natural products derived from EMHs used in CCPs are discussed and their immune-inflammatory modulation activities, including enhancing antitumor immunity, regulating inflammatory signaling pathways, lowering the proportion of immunosuppressive cells, inhibiting the secretion of proinflammatory cytokines, immunosuppressive factors, and inflammatory mediators, are summarized. CONCLUSION Our findings demonstrate the immune-inflammatory modulating role of those EMHs used in CCPs and provide new ideas for cancer treatment in clinical settings.
Collapse
Affiliation(s)
- Qianming Kang
- School of Pharmacy, Lanzhou University, Lanzhou 730000, China
| | - Luying He
- School of Pharmacy, Lanzhou University, Lanzhou 730000, China
| | - Yang Zhang
- School of Pharmacy, Lanzhou University, Lanzhou 730000, China
| | - Zhangfeng Zhong
- Macao Centre for Research and Development in Chinese Medicine, State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao SAR 999078, China.
| | - Wen Tan
- School of Pharmacy, Lanzhou University, Lanzhou 730000, China.
| |
Collapse
|
3
|
Qiu W, He H, Fan L, Feng X, Li M, Dong C, Li Z, Liu W, Liang R, Zhang Y, Zhang Y, Gu P, Wang B, Chen W. Ambient temperature exposure causes lung function impairment: The evidence from Controlled Temperature Study in Healthy Subjects (CTSHS). Int J Hyg Environ Health 2023; 252:114214. [PMID: 37392524 DOI: 10.1016/j.ijheh.2023.114214] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 06/14/2023] [Accepted: 06/23/2023] [Indexed: 07/03/2023]
Abstract
BACKGROUND The effect of non-optimal ambient temperatures (low and high temperatures) on lung function and the underlying mechanisms remains unclear. METHODS Forty-three (20 males, 23 females) healthy non-obese volunteers with an average of 23.9 years participated in the controlled temperature study. All volunteers underwent three temperature exposures in a sequence (moderate [18 °C], low [6 °C], and high [30 °C] temperatures) lasting 12 h with air pollutants controlled. lung function parameters (forced vital capacity [FVC], forced expiratory volume in 1 s [FEV1], and peak expiratory flow [PEF]) were determined in each exposure. Blood and urine samples were collected after each exposure and assayed for inflammatory markers [C-reactive protein (CRP), procalcitonin (PCT), platelet-lymphocyte ratio (PLR), and neutrophil-lymphocyte ratio (NLR)] and oxidative damage markers [protein carbonylation (PCO), 4-hydroxy-2-nominal-mercapturic acid (HNE-MA), 8-iso-prostaglandin-F2α (8-isoPGF2α), and 8-hydroxy-2-deoxyguanosine (8-OHdG)]. Mixed-effects models were constructed to assess the changes of the above indexes under low or high temperatures relative to moderate temperature, and then the repeated measures correlation analyses were performed. RESULTS Compared with moderate temperature, a 2.20% and 2.59% net decrease in FVC, FEV1, and a 5.68% net increase for PEF were observed under low-temperature exposure, while a 1.59% net decrease in FVC and a 7.29% net increase in PEF under high-temperature exposure were found (all P < 0.05). In addition, low temperature elevated inflammatory markers (PCT, PLR, and NLR) and oxidative damage markers (8-isoPGF2α, 8-OHdG), and high temperature elevated HNE-MA. Repeated measures correlation analyses revealed that PCT (r = -0.33) and NLR (r = -0.31) were negatively correlated with FVC and HNE-MA (r = -0.35) and 8-OHdG (r = -0.31) were negatively correlated with the FEV1 under low-temperature exposure (all P < 0.05). CONCLUSION Non-optimal ambient temperatures exposure alters lung function, inflammation, and oxidative damage. Inflammation and oxidative damage might be involved in low temperature-related lung function reduction.
Collapse
Affiliation(s)
- Weihong Qiu
- Department of Epidemiology and Health Statistics, School of Public Health, Fujian Medical University, Fuzhou, 350122, China; Department of Occupational & Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China
| | - Heng He
- Department of Epidemiology and Health Statistics, School of Public Health, Fujian Medical University, Fuzhou, 350122, China
| | - Lieyang Fan
- Department of Occupational & Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China
| | - Xiaobing Feng
- Department of Occupational & Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China
| | - Minjing Li
- Department of Occupational & Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China
| | - Chaoqian Dong
- Department of Occupational & Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China
| | - Zhenzhen Li
- Department of Epidemiology and Health Statistics, School of Public Health, Fujian Medical University, Fuzhou, 350122, China
| | - Wei Liu
- Department of Occupational & Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China
| | - Ruyi Liang
- Department of Occupational & Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China
| | - Yingdie Zhang
- Department of Occupational & Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China
| | - Yongfang Zhang
- Department of Occupational & Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China
| | - Pei Gu
- Department of Occupational & Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China
| | - Bin Wang
- Department of Occupational & Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China
| | - Weihong Chen
- Department of Occupational & Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China.
| |
Collapse
|
4
|
Godbole NM, Chowdhury AA, Chataut N, Awasthi S. Tight Junctions, the Epithelial Barrier, and Toll-like Receptor-4 During Lung Injury. Inflammation 2022; 45:2142-2162. [PMID: 35779195 PMCID: PMC9649847 DOI: 10.1007/s10753-022-01708-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 05/31/2022] [Accepted: 06/13/2022] [Indexed: 11/25/2022]
Abstract
Lung epithelium is constantly exposed to the environment and is critically important for the orchestration of initial responses to infectious organisms, toxins, and allergic stimuli, and maintenance of normal gaseous exchange and pulmonary function. The integrity of lung epithelium, fluid balance, and transport of molecules is dictated by the tight junctions (TJs). The TJs are formed between adjacent cells. We have focused on the topic of the TJ structure and function in lung epithelial cells. This review includes a summary of the last twenty years of literature reports published on the disrupted TJs and epithelial barrier in various lung conditions and expression and regulation of specific TJ proteins against pathogenic stimuli. We discuss the molecular signaling and crosstalk among signaling pathways that control the TJ structure and function. The Toll-like receptor-4 (TLR4) recognizes the pathogen- and damage-associated molecular patterns released during lung injury and inflammation and coordinates cellular responses. The molecular aspects of TLR4 signaling in the context of TJs or the epithelial barrier are not fully known. We describe the current knowledge and possible networking of the TLR4-signaling with cellular and molecular mechanisms of TJs, lung epithelial barrier function, and resistance to treatment strategies.
Collapse
Affiliation(s)
- Nachiket M Godbole
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Oklahoma Health Sciences Center, 1110 N. Stonewall Avenue, Oklahoma City, OK, 73117, USA
| | - Asif Alam Chowdhury
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Oklahoma Health Sciences Center, 1110 N. Stonewall Avenue, Oklahoma City, OK, 73117, USA
| | - Neha Chataut
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Oklahoma Health Sciences Center, 1110 N. Stonewall Avenue, Oklahoma City, OK, 73117, USA
| | - Shanjana Awasthi
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Oklahoma Health Sciences Center, 1110 N. Stonewall Avenue, Oklahoma City, OK, 73117, USA.
| |
Collapse
|
5
|
Advancing the Regulation of Traditional and Complementary Medicine Products: A Comparison of Five Regulatory Systems on Traditional Medicines with a Long History of Use. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2021; 2021:5833945. [PMID: 34745290 PMCID: PMC8566035 DOI: 10.1155/2021/5833945] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Accepted: 10/12/2021] [Indexed: 11/29/2022]
Abstract
Background An appropriate regulatory system to ensure and promote the quality, safety, and efficacy of the products of traditional medicine (TM) and complementary medicine (CM) is critical to not only public health but also economic growth. The regulatory approach and evaluation standards for TM/CM products featured with a long history of use are yet to be developed. This study aims to investigate and compare the existing regulatory approaches for TM/CM products with a long history of use. Method A mixed approach of documentary analysis involving official and legal documents from official websites, as well as a scoping review of scholarly work in scientific databases about regulatory systems of TM/CM products in China, Hong Kong, Taiwan, Japan, and Korea, was employed in this study and used for comparison. Results For registration purposes, all five regulatory systems recognized the history of use as part of the totality of evidence when evaluating the safety and efficacy of TM/CM products with a long history of use. Generally, the list of classic formulas is predefined and bound to the formulas recommended in the prescribed list of ancient medical textbooks. Expedited pathways are usually in place and scientific data of nonclinical and clinical studies may be exempted. At the same time, additional restrictions with the scope of products constitute a comprehensive approach in the regulation. Quality assurance and postmarketing safety surveillance were found to be the major focus across the regulatory schemes investigated in this study. Conclusion The regulatory systems investigated in this study allow less stringent registration requirements for TM/CM products featured with a long history of use, assuming safety and efficacy to be plausible based on historic use. Considering the safety and efficacy of these products, regulatory standards should emphasize the technical requirements for quality control and postmarket surveillance.
Collapse
|
6
|
Nishi A, Kaifuchi N, Shimobori C, Ohbuchi K, Iizuka S, Sugiyama A, Ogura K, Yamamoto M, Kuroki H, Nabeshima S, Yachie A, Matsuoka Y, Kitano H. Effects of maoto (ma-huang-tang) on host lipid mediator and transcriptome signature in influenza virus infection. Sci Rep 2021; 11:4232. [PMID: 33608574 PMCID: PMC7896050 DOI: 10.1038/s41598-021-82707-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Accepted: 01/22/2021] [Indexed: 01/27/2023] Open
Abstract
Maoto, a traditional kampo medicine, has been clinically prescribed for influenza infection and is reported to relieve symptoms and tissue damage. In this study, we evaluated the effects of maoto as an herbal multi-compound medicine on host responses in a mouse model of influenza infection. On the fifth day of oral administration to mice intranasally infected with influenza virus [A/PR/8/34 (H1N1)], maoto significantly improved survival rate, decreased viral titer, and ameliorated the infection-induced phenotype as compared with control mice. Analysis of the lung and plasma transcriptome and lipid mediator metabolite profile showed that maoto altered the profile of lipid mediators derived from ω-6 and ω-3 fatty acids to restore a normal state, and significantly up-regulated the expression of macrophage- and T-cell-related genes. Collectively, these results suggest that maoto regulates the host’s inflammatory response by altering the lipid mediator profile and thereby ameliorating the symptoms of influenza.
Collapse
Affiliation(s)
- Akinori Nishi
- Tsumura Kampo Research Laboratories, Tsumura & Co., Ibaraki, Japan.
| | - Noriko Kaifuchi
- Tsumura Kampo Research Laboratories, Tsumura & Co., Ibaraki, Japan
| | - Chika Shimobori
- Tsumura Kampo Research Laboratories, Tsumura & Co., Ibaraki, Japan
| | - Katsuya Ohbuchi
- Tsumura Kampo Research Laboratories, Tsumura & Co., Ibaraki, Japan
| | - Seiichi Iizuka
- Tsumura Kampo Research Laboratories, Tsumura & Co., Ibaraki, Japan
| | - Aiko Sugiyama
- Tsumura Kampo Research Laboratories, Tsumura & Co., Ibaraki, Japan
| | - Keisuke Ogura
- Tsumura Kampo Research Laboratories, Tsumura & Co., Ibaraki, Japan
| | | | - Haruo Kuroki
- Sotobo Children's Clinic, Medical Corporation Shigyo-No-Kai, Isumi, Chiba, Japan
| | | | - Ayako Yachie
- The Systems Biology Institute, Shinagawa, Tokyo, Japan
| | | | | |
Collapse
|
7
|
Amentoflavone ameliorates cold stress-induced inflammation in lung by suppression of C3/BCR/NF-κB pathways. BMC Immunol 2019; 20:49. [PMID: 31888465 PMCID: PMC6937961 DOI: 10.1186/s12865-019-0331-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Accepted: 12/22/2019] [Indexed: 12/16/2022] Open
Abstract
Background Cold stress, which may lead to local and systemic injury, is reported to be related to the immune system, especially the complement system. At present, the lack of effective treatment is a critical issue. Amentoflavone (AF), which can inhibit cold stress-induced inflammation in lung by multiple mechanisms, is the main therapeutic ingredient in plants of the genus Selaginella. Results In the current study, we found that cold could induce lung inflammation related to the complement system and its downstream pathways. AF treatment significantly inhibited lung inflammation from cold exposure. We presented evidence that AF can bind to complement component 3 (C3) to regulate inflammation-related pathways involving Lck/Yes novel tyrosine kinase (Lyn), protein kinase B (Akt), nuclear factor-κB (NF-κB) and immune factors. Moreover, 30 mg/kg of AF caused significantly greater improvement than 15 mg/kg in reducing the level of C3 in lung tissue. Conclusions AF can protect lung tissue from cold exposure. The protective effect may be achieved by inhibition of C3 and negative regulation of the B cell receptor (BCR)/NF-κB signaling pathways and high mobility group box 1 (HMGB1), which ultimately ameliorates the inflammatory response.
Collapse
|
8
|
Eng YS, Lee CH, Lee WC, Huang CC, Chang JS. Unraveling the Molecular Mechanism of Traditional Chinese Medicine: Formulas Against Acute Airway Viral Infections as Examples. Molecules 2019; 24:E3505. [PMID: 31569633 PMCID: PMC6804036 DOI: 10.3390/molecules24193505] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Revised: 09/12/2019] [Accepted: 09/21/2019] [Indexed: 02/04/2023] Open
Abstract
Herbal medicine, including traditional Chinese medicine (TCM), is widely used worldwide. Herbs and TCM formulas contain numerous active molecules. Basically, they are a kind of cocktail therapy. Herb-drug, herb-food, herb-herb, herb-microbiome, and herb-disease interactions are complex. There is potential for both benefit and harm, so only after understanding more of their mechanisms and clinical effects can herbal medicine and TCM be helpful to users. Many pharmacologic studies have been performed to unravel the molecular mechanisms; however, basic and clinical studies of good validity are still not enough to translate experimental results into clinical understanding and to provide tough evidence for better use of herbal medicines. There are still issues regarding the conflicting pharmacologic effects, pharmacokinetics, drug interactions, adverse and clinical effects of herbal medicine and TCM. Understanding study validation, pharmacologic effects, drug interactions, indications and clinical effects, adverse effects and limitations, can all help clinicians in providing adequate suggestions to patients. At present, it would be better to use herbs and TCM formulas according to their traditional indications matching the disease pathophysiology and their molecular mechanisms. To unravel the molecular mechanisms and understand the benefits and harms of herbal medicine and TCM, there is still much work to be done.
Collapse
Affiliation(s)
- Yi Shin Eng
- Department of Traditional Chinese Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 80708, Taiwan.
| | - Chien Hsing Lee
- Department of Pharmacology, Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan.
- Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 80708, Taiwan.
| | - Wei Chang Lee
- Graduate Institute of Clinical Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 0708, Taiwan.
| | - Ching Chun Huang
- Department of Traditional Chinese Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 80708, Taiwan.
| | - Jung San Chang
- Division of Gastroenterology, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 80708, Taiwan.
- Department of Renal Care, College of Medicine, Kaohsiung Medical University, 100 Shih-Chuan 1st Road, Kaohsiung 80708, Taiwan.
| |
Collapse
|
9
|
Jiao J, Wu J, Wang J, Guo Y, Gao L, Liang H, Huang J, Wang J. Ma Huang Tang ameliorates bronchial asthma symptoms through the TLR9 pathway. PHARMACEUTICAL BIOLOGY 2018; 56:580-593. [PMID: 30415587 PMCID: PMC6237163 DOI: 10.1080/13880209.2018.1517184] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
CONTEXT Ma Huang Tang (MHT) has been used to treat influenza, fever, bronchial asthma, etc. as a traditional Chinese medication. However, the anti-inflammation mechanism of MHT remains unclear. OBJECTIVE The study identifies the possible mechanisms of MHT on ovalbumin (OVA)-induced acute bronchial asthma in mice. MATERIALS AND METHODS First, an asthma-related protein-protein interaction (PPI) network was constructed. And then, the acute bronchial asthma mice models were established by exposing to aerosolized 1% ovalbumin for 30 min/day for 1 week, and the mice were administered 2.0, 4.0, or 8.0 g/kg of MHT daily. To evaluate therapeutic effect, sensitization time, abdominal breathing time, eosinophils in bronchoalveolar lavage fluid, and tissue and trachea pathology were examined. Related genes were measured using RNA sequencing (RNA-seq). The expression levels of TLR9 in lung and trachea tissues were determined by immunohistochemical staining. RESULTS MHT had a LD50 = 19.2 g/kg against asthma, while MHT at high doses (8 g/kg) effectively extended the sensitization time and abdominal breathing time and alleviated OVA-induced eosinophilic airway inflammation and mitigated pathological changes. The RNA-seq assay showed that the high-dose MHT resulted in a significant decrease in the levels of TLR9, TRAF6, TAB2, etc. in the lung tissue. Immunohistochemical assay confirmed the down-regulated of TLR9. Molecular docking revealed that six MHT compounds potentially mediated the TLR9 signaling pathway. DISCUSSION AND CONCLUSIONS MHT could mitigate the pathological changes of acute asthma-like syndrome through inhibition of the TLR9 pathway. Results of this study may provide a reference for the development of a novel therapy for patients with allergic asthma.
Collapse
Affiliation(s)
- Jiayuan Jiao
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, China
- Pharmaceutical Research Laboratory, Shenyang Research Institute of Chemical Industry Co., Ltd, Shenyang, China
| | - Jiming Wu
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, China
- School of Chemistry and Pharmaceutical Engineering, Jilin Institute of Chemical Technology, Jilin, China
| | - Jiali Wang
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, China
| | - Yaping Guo
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, China
| | - Le Gao
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, China
| | - Honggang Liang
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, China
| | - Jian Huang
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, China
- Department of Medicinal Chemistry and Natural Medicine Chemistry (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China), Harbin Medical University, Harbin, P. R. China
- CONTACT Jian Huang School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Jinhui Wang
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, China
- Department of Medicinal Chemistry and Natural Medicine Chemistry (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China), Harbin Medical University, Harbin, P. R. China
- Jinhui Wang Department of Medicinal Chemistry and Natural Medicine Chemistry State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Harbin Medical University, Harbin, P. R. China
| |
Collapse
|