1
|
Sriondee Y, Vijitvarasan P, Rattanachata A, Nakajima H, Oaew S, Cheunkar S. Real-time kinetic analysis and detection of glycated hemoglobin A1c using a quartz crystal microbalance-based aptasensor. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2024; 16:599-607. [PMID: 38197200 DOI: 10.1039/d3ay01842c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/11/2024]
Abstract
Glycated hemoglobin (HbA1c) has been an important biomarker for long-term diagnosis and monitoring of diabetes mellitus. The development of a rapid, reliable, and less sophisticated device to measure HbA1c is imperative to facilitate efficient early-care diabetes management. To date, no existing aptamer-based biosensor (aptasensor) for detecting HbA1c has been developed using a quartz crystal microbalance (QCM). In this study, the aptamer specific to HbA1c as a novel biosensing receptor was covalently functionalized onto a QCM substrate via mixed self-assembled monolayers (SAMs). A portable QCM equipped with a liquid-flow module was used to investigate the biospecificity, sensitivity, and interaction dynamics of the aptamer functionalized surfaces. The real-time kinetic analysis of HbA1c binding to the surface-functionalized aptamers revealed "on" and "off" binding rates of 4.19 × 104 M-1 s-1 and 2.43 × 10-3 s-1, respectively. These kinetic parameters imply that the QCM-based aptasensor specifically recognizes HbA1c with an equilibrium dissociation constant as low as 57.99 nM. The linear detection of HbA1c spanned from 13 to 108 nM, with a limit of detection (LOD) of 26.29 nM. Moreover, the spiked plasma sample analysis offered compelling evidence that this aptasensor is a promising technique for developing a point-of-care device for diabetes mellitus.
Collapse
Affiliation(s)
- Yossawadee Sriondee
- Division of Biotechnology, School of Bioresources and Technology, King Mongkut's University of Technology Thonburi, Bangkok 10150, Thailand.
| | | | | | - Hideki Nakajima
- Synchrotron Light Research Institute, Nakhon Ratchasima, 30000, Thailand
| | - Sukunya Oaew
- Biochemical Engineering and Systems Biology Research Group, National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency, King Mongkut's University of Technology Thonburi, Bangkok 10150, Thailand.
| | - Sarawut Cheunkar
- Division of Biotechnology, School of Bioresources and Technology, King Mongkut's University of Technology Thonburi, Bangkok 10150, Thailand.
| |
Collapse
|
2
|
Pleiko K, Haugas M, Parfejevs V, Pantelejevs T, Parisini E, Teesalu T, Riekstina U. Targeting triple-negative breast cancer cells with a β1-integrin binding aptamer. MOLECULAR THERAPY. NUCLEIC ACIDS 2023; 33:871-884. [PMID: 37680989 PMCID: PMC10481362 DOI: 10.1016/j.omtn.2023.08.015] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Accepted: 08/14/2023] [Indexed: 09/09/2023]
Abstract
Targeted therapies have increased the treatment options for triple-negative breast cancer patients. However, the paucity of targetable biomarkers and tumor heterogeneity have limited the ability of precision-guided interventions to live up to their full potential. As affinity-targeting ligands, aptamers show high selectivity toward target molecules. Compared with antibodies, aptamers have lower molecular weight, increased stability during transportation, reduced immunogenicity, and increased tissue uptake. Recently, we reported discovery of the GreenB1 aptamer, which is internalized in cultured triple-negative MDA-MB-231 human breast cancer cells. We show that the GreenB1 aptamer specifically targets β1-integrin, a protein linked previously to breast cancer cell invasiveness and migration. Aptamer binds to β1-integrin with low nanomolar affinity. Our findings suggest potential applications for GreenB1-guided precision agents for diagnosis and therapy of cancers overexpressing β1-integrin.
Collapse
Affiliation(s)
- Karlis Pleiko
- Faculty of Medicine, University of Latvia, House of Science, Jelgavas Str. 3, 1004 Riga, Latvia
- Laboratory of Precision- and Nanomedicine, Institute of Biomedicine and Translational Medicine, University of Tartu, 50411 Tartu, Estonia
| | - Maarja Haugas
- Laboratory of Precision- and Nanomedicine, Institute of Biomedicine and Translational Medicine, University of Tartu, 50411 Tartu, Estonia
| | - Vadims Parfejevs
- Faculty of Medicine, University of Latvia, House of Science, Jelgavas Str. 3, 1004 Riga, Latvia
| | | | - Emilio Parisini
- Latvian Institute of Organic Synthesis, Aizkraukles 21, 1006 Riga, Latvia
- Department of Chemistry “G. Ciamician”, University of Bologna, Via Selmi 2, 40126 Bologna, Italy
| | - Tambet Teesalu
- Laboratory of Precision- and Nanomedicine, Institute of Biomedicine and Translational Medicine, University of Tartu, 50411 Tartu, Estonia
- Materials Research Laboratory, University of California, Santa Barbara, Santa Barbara, CA 93106, USA
| | - Una Riekstina
- Faculty of Medicine, University of Latvia, House of Science, Jelgavas Str. 3, 1004 Riga, Latvia
| |
Collapse
|
3
|
Kumar A, Ahmad A, Ansari MM, Gowd V, Rashid S, Chaudhary AA, Rudayni HA, Alsalamah SA, Khan R. Functionalized-DNA nanostructures as potential targeted drug delivery systems for cancer therapy. Semin Cancer Biol 2022; 86:54-68. [PMID: 36087856 DOI: 10.1016/j.semcancer.2022.09.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 09/01/2022] [Accepted: 09/03/2022] [Indexed: 01/14/2023]
Abstract
Seeman's pioneer idea has led to the foundation of DNA nanostructures, resulting in a remarkable advancement in DNA nanotechnology. Over the last few decades, remarkable advances in drug delivery techniques have resulted in the self-assembly of DNA for encapsulating candidate drug molecules. The nuclear targeting capability of DNA nanostructures is lies within their high spatial addressability and tremendous potential for active targeting. However, effective programming and assembling those DNA molecules remains a challenge, making the path to DNA nanostructures for real-world applications difficult. Because of their small size, most nanostructures are self-capable of infiltrating into the tumor cellular environment. Furthermore, to enable controlled and site-specific delivery of encapsulated drug molecules, DNA nanostructures are functionalized with special moieties that allow them to bind specific targets and release cargo only at targeted sites rather than non-specific sites, resulting in the prevention/limitation of cellular toxicity. In light of this, the current review seeks to shed light on the versatility of the DNA molecule as a targeting and encapsulating moiety for active drugs in order to achieve controlled and specific drug release with spatial and temporal precision. Furthermore, this review focused on the challenges associated with the construction of DNA nanostructures as well as the most recent advances in the functionalization of DNA nanostructures using various materials for controlled and targeted delivery of medications for cancer therapy.
Collapse
Affiliation(s)
- Ajay Kumar
- Chemical Biology Unit, Institute of Nano Science and Technology, Knowledge City, Sector-81, Mohali 140306, Punjab, India
| | - Anas Ahmad
- Chemical Biology Unit, Institute of Nano Science and Technology, Knowledge City, Sector-81, Mohali 140306, Punjab, India
| | - Md Meraj Ansari
- Centre for Pharmaceutical Nanotechnology, Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research, S.A.S Nagar, Sector 67, Mohali, Punjab 160062, India
| | - Vemana Gowd
- Chemical Biology Unit, Institute of Nano Science and Technology, Knowledge City, Sector-81, Mohali 140306, Punjab, India
| | - Summya Rashid
- Department of Pharmacology & Toxicology, College of Pharmacy, Prince Sattam Bin Abdulaziz University, P.O. Box 173, Al-Kharj 11942, Saudi Arabia
| | - Anis Ahmad Chaudhary
- Department of Biology, College of Science, Imam Mohammad Ibn Saud Islamic University (IMSIU), P.O. Box 90950, Riyadh, 11623, Saudi Arabia
| | - Hassan Ahmed Rudayni
- Department of Biology, College of Science, Imam Mohammad Ibn Saud Islamic University (IMSIU), P.O. Box 90950, Riyadh, 11623, Saudi Arabia
| | - Sulaiman A Alsalamah
- Department of Biology, College of Science, Imam Mohammad Ibn Saud Islamic University (IMSIU), P.O. Box 90950, Riyadh, 11623, Saudi Arabia
| | - Rehan Khan
- Chemical Biology Unit, Institute of Nano Science and Technology, Knowledge City, Sector-81, Mohali 140306, Punjab, India.
| |
Collapse
|
4
|
Krissanaprasit A, Key CM, Pontula S, LaBean TH. Self-Assembling Nucleic Acid Nanostructures Functionalized with Aptamers. Chem Rev 2021; 121:13797-13868. [PMID: 34157230 DOI: 10.1021/acs.chemrev.0c01332] [Citation(s) in RCA: 76] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Researchers have worked for many decades to master the rules of biomolecular design that would allow artificial biopolymer complexes to self-assemble and function similarly to the diverse biochemical constructs displayed in natural biological systems. The rules of nucleic acid assembly (dominated by Watson-Crick base-pairing) have been less difficult to understand and manipulate than the more complicated rules of protein folding. Therefore, nucleic acid nanotechnology has advanced more quickly than de novo protein design, and recent years have seen amazing progress in DNA and RNA design. By combining structural motifs with aptamers that act as affinity handles and add powerful molecular recognition capabilities, nucleic acid-based self-assemblies represent a diverse toolbox for use by bioengineers to create molecules with potentially revolutionary biological activities. In this review, we focus on the development of self-assembling nucleic acid nanostructures that are functionalized with nucleic acid aptamers and their great potential in wide ranging application areas.
Collapse
Affiliation(s)
- Abhichart Krissanaprasit
- Department of Materials Science and Engineering, College of Engineering, North Carolina State University, Raleigh, North Carolina 27695, United States
| | - Carson M Key
- Department of Biomedical Engineering, Duke University, Durham, North Carolina 27708, United States
| | - Sahil Pontula
- Department of Physics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States.,Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Thomas H LaBean
- Department of Materials Science and Engineering, College of Engineering, North Carolina State University, Raleigh, North Carolina 27695, United States
| |
Collapse
|
5
|
Lopes-Nunes J, Oliveira PA, Cruz C. G-Quadruplex-Based Drug Delivery Systems for Cancer Therapy. Pharmaceuticals (Basel) 2021; 14:671. [PMID: 34358097 PMCID: PMC8308530 DOI: 10.3390/ph14070671] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2021] [Revised: 07/10/2021] [Accepted: 07/12/2021] [Indexed: 12/15/2022] Open
Abstract
G-quadruplexes (G4s) are a class of nucleic acids (DNA and RNA) with single-stranded G-rich sequences. Owing to the selectivity of some G4s, they are emerging as targeting agents to overtake side effects of several potential anticancer drugs, and delivery systems of small molecules to malignant cells, through their high affinity or complementarity to specific targets. Moreover, different systems are being used to improve their potential, such as gold nano-particles or liposomes. Thus, the present review provides relevant data about the different studies with G4s as drug delivery systems and the challenges that must be overcome in the future research.
Collapse
Affiliation(s)
- Jéssica Lopes-Nunes
- CICS-UBI-Centro de Investigação em Ciências da Saúde, Universidade da Beira Interior, Av. Infante D. Henrique, 6200-506 Covilhã, Portugal;
| | - Paula A. Oliveira
- Centre for Research and Technology of Agro-Environmental and Biological Sciences (CITAB), Inov4Agro, University of Trás-os-Montes and Alto Douro (UTAD), Quinta de Prados, 5000-801 Vila Real, Portugal;
| | - Carla Cruz
- CICS-UBI-Centro de Investigação em Ciências da Saúde, Universidade da Beira Interior, Av. Infante D. Henrique, 6200-506 Covilhã, Portugal;
| |
Collapse
|
6
|
He F, Wen N, Xiao D, Yan J, Xiong H, Cai S, Liu Z, Liu Y. Aptamer-Based Targeted Drug Delivery Systems: Current Potential and Challenges. Curr Med Chem 2020; 27:2189-2219. [PMID: 30295183 DOI: 10.2174/0929867325666181008142831] [Citation(s) in RCA: 120] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2018] [Revised: 08/04/2018] [Accepted: 08/15/2018] [Indexed: 02/06/2023]
Abstract
Aptamers are single-stranded DNA or RNA with 20-100 nucleotides in length that can specifically bind to target molecules via formed three-dimensional structures. These innovative targeting molecules have attracted an increasing interest in the biomedical field. Compared to traditional protein antibodies, aptamers have several advantages, such as small size, high binding affinity, specificity, good biocompatibility, high stability and low immunogenicity, which all contribute to their wide application in the biomedical field. Aptamers can bind to the receptors on the cell membrane and mediate themselves or conjugated nanoparticles to enter into cells. Therefore, aptamers can be served as ideal targeting ligands for drug delivery. Since their excellent properties, different aptamer-mediated drug delivery systems had been developed for cancer therapy. This review provides a brief overview of recent advances in drug delivery systems based on aptamers. The advantages, challenges and future prospectives are also discussed.
Collapse
Affiliation(s)
- Fen He
- School of Chemistry and Chemical Engineering, Central South University, Changsha 410083, China
| | - Nachuan Wen
- School of Chemistry and Chemical Engineering, Central South University, Changsha 410083, China
| | - Daipeng Xiao
- School of Chemistry and Chemical Engineering, Central South University, Changsha 410083, China
| | - Jianhua Yan
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha 410013, China
| | - Hongjie Xiong
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha 410013, China
| | - Shundong Cai
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha 410013, China
| | - Zhenbao Liu
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha 410013, China
| | - Yanfei Liu
- School of Chemistry and Chemical Engineering, Central South University, Changsha 410083, China
| |
Collapse
|
7
|
Ching JY, Huang BJ, Hsu YT, Khung YL. Anti-Adhesion Behavior from Ring-Strain Amine Cyclic Monolayers Grafted on Silicon (111) Surfaces. Sci Rep 2020; 10:8758. [PMID: 32472042 PMCID: PMC7260185 DOI: 10.1038/s41598-020-65710-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Accepted: 05/07/2020] [Indexed: 01/09/2023] Open
Abstract
In this manuscript, a series of amine tagged short cyclic molecules (cyclopropylamine, cyclobutylamine, cyclopentylamine and cyclohexylamine) were thermally grafted onto p-type silicon (111) hydride surfaces via nucleophilic addition. The chemistries of these grafting were verified via XPS, AFM and sessile droplet measurements. Confocal microscopy and cell viability assay was performed on these surfaces incubated for 24 hours with triple negative breast cancer cells (MDA-MB 231), gastric adenocarcinoma cells (AGS) endometrial adenocarcinoma (Hec1A). All cell types had shown a significant reduction when incubated on these ring-strain cyclic monolayer surfaces than compared to standard controls. The expression level of focal adhesion proteins (vinculin, paxilin, talin and zyxin) were subsequently quantified for all three cell types via qPCR analysis. Cells incubate on these surface grafting were observed to have reduced levels of adhesion protein expression than compared to positive controls (collagen coating and APTES). A potential application of these anti-adhesive surfaces is the maintenance of the chondrocyte phenotype during in-vitro cell expansion. Articular chondrocytes cultured for 6 days on ring strained cyclopropane-modified surfaces was able to proliferate but had maintained a spheroid/aggregated phenotype with higher COL2A1 and ACAN gene expression. Herein, these findings had help promote grafting of cyclic monolayers as an viable alternative for producing antifouling surfaces.
Collapse
Affiliation(s)
- Jing Yuan Ching
- Department of Biological Science and Technology, China Medical University, No.91 Hsueh-Shih Road, Taichung, Taiwan
| | - Brian J Huang
- Integrative Stem Cell Center, China Medical University Hospital, Taichung, 40447, Taiwan.,Institute of New Drug Development, China Medical University, No.91 Hsueh-Shih Road, Taichung, Taiwan
| | - Yu-Ting Hsu
- Department of Biological Science and Technology, China Medical University, No.91 Hsueh-Shih Road, Taichung, Taiwan
| | - Yit Lung Khung
- Department of Biological Science and Technology, China Medical University, No.91 Hsueh-Shih Road, Taichung, Taiwan.
| |
Collapse
|
8
|
Camorani S, Fedele M, Zannetti A, Cerchia L. TNBC Challenge: Oligonucleotide Aptamers for New Imaging and Therapy Modalities. Pharmaceuticals (Basel) 2018; 11:ph11040123. [PMID: 30428522 PMCID: PMC6316260 DOI: 10.3390/ph11040123] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Revised: 11/02/2018] [Accepted: 11/09/2018] [Indexed: 12/11/2022] Open
Abstract
Compared to other breast cancers, triple-negative breast cancer (TNBC) usually affects younger patients, is larger in size, of higher grade and is biologically more aggressive. To date, conventional cytotoxic chemotherapy remains the only available treatment for TNBC because it lacks expression of the estrogen receptor (ER), progesterone receptor (PR) and epidermal growth factor receptor 2 (HER2), and no alternative targetable molecules have been identified so far. The high biological and clinical heterogeneity adds a further challenge to TNBC management and requires the identification of new biomarkers to improve detection by imaging, thus allowing the specific treatment of each individual TNBC subtype. The Systematic Evolution of Ligands by EXponential enrichment (SELEX) technique holds great promise to the search for novel targetable biomarkers, and aptamer-based molecular approaches have the potential to overcome obstacles of current imaging and therapy modalities. In this review, we highlight recent advances in oligonucleotide aptamers used as imaging and/or therapeutic agents in TNBC, discussing the potential options to discover, image and hit new actionable targets in TNBC.
Collapse
Affiliation(s)
- Simona Camorani
- Istituto per l'Endocrinologia e l'Oncologia Sperimentale G. Salvatore (IEOS), CNR, 80145 Naples, Italy.
| | - Monica Fedele
- Istituto per l'Endocrinologia e l'Oncologia Sperimentale G. Salvatore (IEOS), CNR, 80145 Naples, Italy.
| | | | - Laura Cerchia
- Istituto per l'Endocrinologia e l'Oncologia Sperimentale G. Salvatore (IEOS), CNR, 80145 Naples, Italy.
| |
Collapse
|
9
|
Ching JY, Lee CH, Khung YL. Bioactivating Silicon (100) Surfaces with Novel UV Grafting of Cyclopropylamine for Promotion of Cell Adhesion. MATERIALS 2018; 11:ma11050713. [PMID: 29724039 PMCID: PMC5978090 DOI: 10.3390/ma11050713] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/09/2018] [Revised: 04/23/2018] [Accepted: 04/29/2018] [Indexed: 01/16/2023]
Abstract
In this report, utraviolent (UV) photoionization of cyclopropylamine on silicon (100) hydride was employed to examine interfacing with three different epithelial cell types (MDA-MB 231, AGS and HEC1A). The cellular viability using this novel methodology had been quantified to evaluate the bioactivating potential of this ring-opening chemistry when compared to standardized controls (aminopropyltriethoxylamine, collagen and poly-L lysine). X-ray photospectroscopy (XPS) and atomic force microscopy (AFM) were used to characterize surface chemistry composition, while cell viability and confocal microscopy after 24 h of incubation were performed. Based on the results acquired from this novel ring-opening metastasis process, the promotion of cell adhesion and viability was found to be higher using this chemistry when compared to other conventional control groups, even for the collagen coating, without any observable issues of cytotoxicity.
Collapse
Affiliation(s)
- Jing Yuan Ching
- Department of Biological Science and Technology, China Medical University, No.91 Hsueh-Shih Road, Taichung 404, Taiwan.
| | - Chieh-Hua Lee
- Department of Biological Science and Technology, China Medical University, No.91 Hsueh-Shih Road, Taichung 404, Taiwan.
| | - Yit Lung Khung
- Department of Biological Science and Technology, China Medical University, No.91 Hsueh-Shih Road, Taichung 404, Taiwan.
| |
Collapse
|
10
|
Jeong EH, Jeong H, Jang B, Kim B, Kim M, Kwon H, Lee K, Lee H. Aptamer-incorporated DNA Holliday junction for the targeted delivery of siRNA. J IND ENG CHEM 2017. [DOI: 10.1016/j.jiec.2017.07.025] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
11
|
Guestini F, McNamara KM, Sasano H. The use of chemosensitizers to enhance the response to conventional therapy in triple-negative breast cancer patients. BREAST CANCER MANAGEMENT 2017. [DOI: 10.2217/bmt-2017-0030] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Affiliation(s)
- Fouzia Guestini
- Department of Anatomic Pathology, Graduate School of Medicine, Tohoku University, Sendai 980-8575, Japan
| | - Keely May McNamara
- Department of Anatomic Pathology, Graduate School of Medicine, Tohoku University, Sendai 980-8575, Japan
| | - Hironobu Sasano
- Department of Anatomic Pathology, Graduate School of Medicine, Tohoku University, Sendai 980-8575, Japan
| |
Collapse
|