1
|
Chan M, Ogawa S. GPR139, an Ancient Receptor and an Emerging Target for Neuropsychiatric and Behavioral Disorders. Mol Neurobiol 2025:10.1007/s12035-025-04828-2. [PMID: 40102345 DOI: 10.1007/s12035-025-04828-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2024] [Accepted: 03/09/2025] [Indexed: 03/20/2025]
Abstract
GPR139 is an orphan G-protein-coupled receptor that is predominantly expressed in several midbrain regions, e.g., the habenula, striatum, and hypothalamus. GPR139 gene is highly conserved across vertebrate phylogenetic taxa, suggesting its fundamental importance in neurophysiology. Evidence from both animal studies and human genetic association studies has demonstrated that dysregulation of GPR139 expression and function is linked to aberrant behaviors, cognitive deficits, alterations in sleep and alertness, and substance abuse and withdrawal. Animal knockout models suggest that GPR139 plays an anti-opioid role by modulating the signaling activity of the μ-opioid receptor (MOR), as well as the intensity of withdrawal symptoms and nociception in behavioral paradigms. Modulation of GPR139 activity by surrogate agonists such as TAK-041 and JNJ-63533054 has shown promising results in experimental models; however, the use of TAK-041 in clinical trials has produced heterogeneous effects and has not met the intended primary endpoint. Here, we highlight current in vitro and in vivo studies of GPR139, its potential physiological roles, and therapeutic potential in the pathophysiology of neuropsychiatric and behavioral disorders. This review aims to focus on the current knowledge gaps to facilitate future studies that will contribute to the understanding of GPR139 as a therapeutic target for neuropsychiatric and behavioral disorders.
Collapse
Affiliation(s)
- Minyu Chan
- Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Jalan Lagoon Selatan, Bandar Sunway, 47500, Subang Jaya, Selangor, Malaysia
| | - Satoshi Ogawa
- Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Jalan Lagoon Selatan, Bandar Sunway, 47500, Subang Jaya, Selangor, Malaysia.
| |
Collapse
|
2
|
Fernandez-Acosta M, Zanini R, Heredia F, A Volonté Y, Menezes J, Prüger K, Ibarra J, Arana M, Pérez MS, Veenstra JA, Wegener C, Gontijo AM, Garelli A. Triggering and modulation of a complex behavior by a single peptidergic command neuron in Drosophila. Proc Natl Acad Sci U S A 2025; 122:e2420452122. [PMID: 40085652 PMCID: PMC11929487 DOI: 10.1073/pnas.2420452122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2024] [Accepted: 02/13/2025] [Indexed: 03/16/2025] Open
Abstract
At the end of their growth phase, Drosophila larvae remodel their bodies, glue themselves to a substrate, and harden their cuticle in preparation for metamorphosis. This process-termed pupariation-is triggered by a surge in the hormone ecdysone. Substrate attachment is achieved by a pupariation subprogram called glue expulsion and spreading behavior (GSB). An epidermis-to-CNS Dilp8-Lgr3 relaxin signaling event that occurs downstream of ecdysone is critical for unlocking progression of the pupariation motor program toward GSB, but the factors and circuits acting downstream of Lgr3 signaling remain unknown. Here, using cell-type-specific RNA interference and behavioral monitoring, we identify Myoinhibiting peptide (Mip) as a neuromodulator of multiple GSB action components, such as tetanic contraction, peristaltic contraction alternation, and head-waving. Mip is required in a pair of brain descending neurons, which act temporally downstream of Dilp8-Lgr3 signaling. Mip modulates GSB via ventral nerve cord neurons expressing its conserved receptor, sex peptide receptor (SPR). Silencing of Mip descending neurons by hyperpolarization completely abrogates GSB, while their optogenetic activation at a restricted competence time window triggers GSB-like behavior. Hence, Mip descending neurons have at least two functions: to act as GSB command neurons and to secrete Mip to modulate GSB action components. Our results provide insight into conserved aspects of Mip-SPR signaling in animals, reveal the complexity of GSB control, and contribute to the understanding of how multistep innate behaviors are coordinated in time and with other developmental processes through command neurons and neuropeptidergic signaling.
Collapse
Affiliation(s)
| | - Rebeca Zanini
- iNOVA4Health, Nova Medical School, Universidade Nova de Lisboa, Lisbon 1150-082, Portugal
- Centre for Ecology, Evolution and Environmental Changes & CHANGE - Intitute for Global Change and Sustainability, Departamento de Biologia Animal, Faculdade de Ciências, Universidade de Lisboa, Lisbon 1749-016, Portugal
| | - Fabiana Heredia
- iNOVA4Health, Nova Medical School, Universidade Nova de Lisboa, Lisbon 1150-082, Portugal
- Centre for Ecology, Evolution and Environmental Changes & CHANGE - Intitute for Global Change and Sustainability, Departamento de Biologia Animal, Faculdade de Ciências, Universidade de Lisboa, Lisbon 1749-016, Portugal
| | - Yanel A Volonté
- Instituto de Investigaciones Bioquímicas de Bahía Blanca, Consejo Nacional de Investigaciones Científicas y Técnicas and Departamento de Biología, Bioquímica y Farmacia, Universidad Nacional del Sur, Bahía Blanca B8000FWB, Argentina
| | - Juliane Menezes
- iNOVA4Health, Nova Medical School, Universidade Nova de Lisboa, Lisbon 1150-082, Portugal
- Centre for Ecology, Evolution and Environmental Changes & CHANGE - Intitute for Global Change and Sustainability, Departamento de Biologia Animal, Faculdade de Ciências, Universidade de Lisboa, Lisbon 1749-016, Portugal
| | - Katja Prüger
- iNOVA4Health, Nova Medical School, Universidade Nova de Lisboa, Lisbon 1150-082, Portugal
| | - Julieta Ibarra
- Instituto de Investigaciones Bioquímicas de Bahía Blanca, Consejo Nacional de Investigaciones Científicas y Técnicas and Departamento de Biología, Bioquímica y Farmacia, Universidad Nacional del Sur, Bahía Blanca B8000FWB, Argentina
| | - Maite Arana
- Instituto de Investigaciones Bioquímicas de Bahía Blanca, Consejo Nacional de Investigaciones Científicas y Técnicas and Departamento de Biología, Bioquímica y Farmacia, Universidad Nacional del Sur, Bahía Blanca B8000FWB, Argentina
| | - María S Pérez
- Instituto de Investigaciones Bioquímicas de Bahía Blanca, Consejo Nacional de Investigaciones Científicas y Técnicas and Departamento de Biología, Bioquímica y Farmacia, Universidad Nacional del Sur, Bahía Blanca B8000FWB, Argentina
| | - Jan A Veenstra
- Institut de Neurosciences Cognitives et Intégratives d'Aquitaine UMR 5287 CNRS, Université de Bordeaux, Bordeaux 33076, France
| | - Christian Wegener
- Julius-Maximilians-Universität Würzburg, Biocenter, Theodor-Boveri-Institute, Neurobiology and Genetics, Würzburg 97074, Germany
| | - Alisson M Gontijo
- iNOVA4Health, Nova Medical School, Universidade Nova de Lisboa, Lisbon 1150-082, Portugal
- Centre for Ecology, Evolution and Environmental Changes & CHANGE - Intitute for Global Change and Sustainability, Departamento de Biologia Animal, Faculdade de Ciências, Universidade de Lisboa, Lisbon 1749-016, Portugal
| | - Andrés Garelli
- iNOVA4Health, Nova Medical School, Universidade Nova de Lisboa, Lisbon 1150-082, Portugal
- Centre for Ecology, Evolution and Environmental Changes & CHANGE - Intitute for Global Change and Sustainability, Departamento de Biologia Animal, Faculdade de Ciências, Universidade de Lisboa, Lisbon 1749-016, Portugal
- Instituto de Investigaciones Bioquímicas de Bahía Blanca, Consejo Nacional de Investigaciones Científicas y Técnicas and Departamento de Biología, Bioquímica y Farmacia, Universidad Nacional del Sur, Bahía Blanca B8000FWB, Argentina
| |
Collapse
|
3
|
Zhang R, Chen J. Research progress on the role of orphan receptor GPR139 in neuropsychiatric behaviours. Eur J Pharmacol 2023; 960:176150. [PMID: 38059447 DOI: 10.1016/j.ejphar.2023.176150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Revised: 10/09/2023] [Accepted: 10/20/2023] [Indexed: 12/08/2023]
Abstract
The study of orphan G protein-coupled receptors (GPCRs) holds much promise for increasing our understanding of neuropsychiatric diseases and for the development of new therapeutic strategies for these diseases. GPR139 is an orphan GPCR expressed in the central nervous system, especially in areas of the brain that control movement, motivation, and reward, and those that regulate neuropsychiatric behaviour. This review provides information about the discovery, tissue expression, signal transduction pathways, and physiological functions of GPR139, as well as how GPR139 interacts with other GPCRs, which form heteromeric complexes that affect their pharmacology and function. We also discuss the utility and therapeutic potential of ligands that target GPR139, including the pharmacological properties of reported agonists and antagonists. Finally, we highlight the pathologic role of GPR139 in neuropsychiatric behaviour and its potential as a therapeutic target in neuropsychiatric disorders.
Collapse
Affiliation(s)
- Rumin Zhang
- Neurobiology Key Laboratory of Jining Medical University, Jining, 272067, China; School of Mental Health, Jining Medical University, Jining, 272067, China
| | - Jing Chen
- Neurobiology Key Laboratory of Jining Medical University, Jining, 272067, China; School of Mental Health, Jining Medical University, Jining, 272067, China; Division of Biomedical Sciences, Warwick Medical School, University of Warwick, Coventry, CV47AL, UK.
| |
Collapse
|
4
|
Papadourakis M, Sinenka H, Matricon P, Hénin J, Brannigan G, Pérez-Benito L, Pande V, van Vlijmen H, de Graaf C, Deflorian F, Tresadern G, Cecchini M, Cournia Z. Alchemical Free Energy Calculations on Membrane-Associated Proteins. J Chem Theory Comput 2023; 19:7437-7458. [PMID: 37902715 PMCID: PMC11017255 DOI: 10.1021/acs.jctc.3c00365] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Indexed: 10/31/2023]
Abstract
Membrane proteins have diverse functions within cells and are well-established drug targets. The advances in membrane protein structural biology have revealed drug and lipid binding sites on membrane proteins, while computational methods such as molecular simulations can resolve the thermodynamic basis of these interactions. Particularly, alchemical free energy calculations have shown promise in the calculation of reliable and reproducible binding free energies of protein-ligand and protein-lipid complexes in membrane-associated systems. In this review, we present an overview of representative alchemical free energy studies on G-protein-coupled receptors, ion channels, transporters as well as protein-lipid interactions, with emphasis on best practices and critical aspects of running these simulations. Additionally, we analyze challenges and successes when running alchemical free energy calculations on membrane-associated proteins. Finally, we highlight the value of alchemical free energy calculations calculations in drug discovery and their applicability in the pharmaceutical industry.
Collapse
Affiliation(s)
- Michail Papadourakis
- Biomedical
Research Foundation, Academy of Athens, 4 Soranou Ephessiou, 11527 Athens, Greece
| | - Hryhory Sinenka
- Institut
de Chimie de Strasbourg, UMR7177, CNRS, Université de Strasbourg, F-67083 Strasbourg Cedex, France
| | - Pierre Matricon
- Sosei
Heptares, Steinmetz Building,
Granta Park, Great Abington, Cambridge CB21 6DG, United
Kingdom
| | - Jérôme Hénin
- Laboratoire
de Biochimie Théorique UPR 9080, CNRS and Université Paris Cité, 75005 Paris, France
| | - Grace Brannigan
- Center
for Computational and Integrative Biology, Rutgers University−Camden, Camden, New Jersey 08103, United States of America
- Department
of Physics, Rutgers University−Camden, Camden, New Jersey 08102, United States
of America
| | - Laura Pérez-Benito
- CADD,
In Silico Discovery, Janssen Research &
Development, Turnhoutseweg 30, 2340 Beerse, Belgium
| | - Vineet Pande
- CADD,
In Silico Discovery, Janssen Research &
Development, Turnhoutseweg 30, 2340 Beerse, Belgium
| | - Herman van Vlijmen
- CADD,
In Silico Discovery, Janssen Research &
Development, Turnhoutseweg 30, 2340 Beerse, Belgium
| | - Chris de Graaf
- Sosei
Heptares, Steinmetz Building,
Granta Park, Great Abington, Cambridge CB21 6DG, United
Kingdom
| | - Francesca Deflorian
- Sosei
Heptares, Steinmetz Building,
Granta Park, Great Abington, Cambridge CB21 6DG, United
Kingdom
| | - Gary Tresadern
- CADD,
In Silico Discovery, Janssen Research &
Development, Turnhoutseweg 30, 2340 Beerse, Belgium
| | - Marco Cecchini
- Institut
de Chimie de Strasbourg, UMR7177, CNRS, Université de Strasbourg, F-67083 Strasbourg Cedex, France
| | - Zoe Cournia
- Biomedical
Research Foundation, Academy of Athens, 4 Soranou Ephessiou, 11527 Athens, Greece
| |
Collapse
|
5
|
Pallareti L, Rath TF, Trapkov B, Tsonkov T, Nielsen AT, Harpsøe K, Gentry PR, Bräuner-Osborne H, Gloriam DE, Foster SR. Pharmacological characterization of novel small molecule agonists and antagonists for the orphan receptor GPR139. Eur J Pharmacol 2023; 943:175553. [PMID: 36736525 DOI: 10.1016/j.ejphar.2023.175553] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 01/19/2023] [Accepted: 01/25/2023] [Indexed: 02/05/2023]
Abstract
The orphan G protein-coupled receptor GPR139 is predominantly expressed in the central nervous system and has attracted considerable interest as a therapeutic target. However, the biological role of this receptor remains somewhat elusive, in part due to the lack of quality pharmacological tools to investigate GPR139 function. In an effort to understand GPR139 signaling and to identify improved compounds, in this study we performed virtual screening and analog searches, in combination with multiple pharmacological assays. We characterized GPR139-dependent signaling using previously published reference agonists in Ca2+ mobilization and inositol monophosphate accumulation assays, as well as a novel real-time GPR139 internalization assay. For the four reference agonists tested, the rank order of potency was conserved across signaling and internalization assays: JNJ-63533054 > Compound 1a » Takeda > AC4 > DL43, consistent with previously reported values. We noted an increased efficacy of JNJ-63533054-mediated inositol monophosphate signaling and internalization, relative to Compound 1a. We then performed virtual screening for GPR139 agonist and antagonist compounds that were screened and validated in GPR139 functional assays. We identified four GPR139 agonists that were active in all assays, with similar or reduced potency relative to known compounds. Likewise, compound analogs selected based on GPR139 agonist and antagonist substructure searches behaved similarly to their parent compounds. Thus, we have characterized GPR139 signaling for multiple new ligands using G protein-dependent assays and a new real-time internalization assay. These data add to the GPR139 tool compound repertoire, which could be optimized in future medical chemistry campaigns.
Collapse
Affiliation(s)
- Lisa Pallareti
- Department of Drug Design and Pharmacology, University of Copenhagen, Copenhagen, Denmark
| | - Tine F Rath
- Department of Drug Design and Pharmacology, University of Copenhagen, Copenhagen, Denmark
| | - Boris Trapkov
- Department of Drug Design and Pharmacology, University of Copenhagen, Copenhagen, Denmark
| | - Tsonko Tsonkov
- Department of Drug Design and Pharmacology, University of Copenhagen, Copenhagen, Denmark
| | - Anders Thorup Nielsen
- Department of Drug Design and Pharmacology, University of Copenhagen, Copenhagen, Denmark
| | - Kasper Harpsøe
- Department of Drug Design and Pharmacology, University of Copenhagen, Copenhagen, Denmark
| | - Patrick R Gentry
- Department of Drug Design and Pharmacology, University of Copenhagen, Copenhagen, Denmark
| | - Hans Bräuner-Osborne
- Department of Drug Design and Pharmacology, University of Copenhagen, Copenhagen, Denmark
| | - David E Gloriam
- Department of Drug Design and Pharmacology, University of Copenhagen, Copenhagen, Denmark.
| | - Simon R Foster
- Department of Drug Design and Pharmacology, University of Copenhagen, Copenhagen, Denmark; Monash Biomedicine Discovery Institute, Cardiovascular Disease Program, Department of Pharmacology, Monash University, Clayton, VIC, Australia; QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia.
| |
Collapse
|
6
|
The orphan G protein-coupled receptor, GPR139, is expressed in the hypothalamus and is involved in the regulation of body mass, blood glucose, and insulin. Neurosci Lett 2023; 792:136955. [PMID: 36347339 DOI: 10.1016/j.neulet.2022.136955] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 10/19/2022] [Accepted: 11/01/2022] [Indexed: 11/06/2022]
Abstract
GPR139 is an orphan G-protein-coupled receptor that is expressed in restricted areas of the nervous system, including the hypothalamus. In this study, we hypothesized that GPR139 could be involved in the regulation of energy balance and metabolism. In the first part of the study, we confirmed that GPR139 is expressed in the hypothalamus and particularly in proopiomelanocortin and agouti-related peptide neurons of the mediobasal hypothalamus. Using a lentivirus with a short-hairpin RNA, we inhibited the expression of GPR139 bilaterally in the mediobasal hypothalamus of mice. The intervention promoted a 40% reduction in the hypothalamic expression of GPR139, which was accompanied by an increase in body mass, a reduction in fasting blood glucose levels, and an increase in insulin levels. In the hypothalamus, inhibition of GPR139 was accompanied by a reduction in the expression of orexin. As previous studies using a pharmacological antagonist of orexin showed a beneficial impact on type 2 diabetes and glucose metabolism, we propose that the inhibition of hypothalamic GPR139 could be acting indirectly through the orexin system to control systemic glucose and insulin. In conclusion, this study advances the characterization of GPR139 in the hypothalamus, demonstrating its involvement in the regulation of body mass, blood insulin, and glycemia.
Collapse
|
7
|
Alachkar A. Aromatic patterns: Tryptophan aromaticity as a catalyst for the emergence of life and rise of consciousness. Phys Life Rev 2022; 42:93-114. [PMID: 35905538 DOI: 10.1016/j.plrev.2022.07.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Accepted: 07/12/2022] [Indexed: 11/28/2022]
Abstract
Sunlight held the key to the origin of life on Earth. The earliest life forms, cyanobacteria, captured the sunlight to generate energy through photosynthesis. Life on Earth evolved in accordance with the circadian rhythms tied to sensitivity to sunlight patterns. A unique feature of cyanobacterial photosynthetic proteins and circadian rhythms' molecules, and later of nearly all photon-sensing molecules throughout evolution, is that the aromatic amino acid tryptophan (Trp) resides at the center of light-harvesting active sites. In this perspective, I review the literature and integrate evidence from different scientific fields to explore the role Trp plays in photon-sensing capabilities of living organisms through its resonance delocalization of π-electrons. The observations presented here are the product of apparently unrelated phenomena throughout evolution, but nevertheless share consistent patterns of photon-sensing by Trp-containing and Trp-derived molecules. I posit the unique capacity to transfer electrons during photosynthesis in the earliest life forms is conferred to Trp due to its aromaticity. I propose this ability evolved to assume more complex functions, serving as a host for mechanisms underlying mental aptitudes - a concept which provides a theoretical basis for defining the neural correlates of consciousness. The argument made here is that Trp aromaticity may have allowed for the inception of the mechanistic building blocks used to fabricate complexity in higher forms of life. More specifically, Trp aromatic non-locality may have acted as a catalyst for the emergence of consciousness by instigating long-range synchronization and stabilizing the large-scale coherence of neural networks, which mediate functional brain activity. The concepts proposed in this perspective provide a conceptual foundation that invites further interdisciplinary dialogue aimed at examining and defining the role of aromaticity (beyond Trp) in the emergence of life and consciousness.
Collapse
Affiliation(s)
- Amal Alachkar
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, University of California, Irvine, CA 92697, USA; UC Irvine Center for the Neurobiology of Learning and Memory, University of California-Irvine, Irvine, CA 92697, USA; Institute for Genomics and Bioinformatics, School of Information and Computer Sciences, University of California, Irvine, CA 92697, USA.
| |
Collapse
|
8
|
The role of orphan receptor GPR139 in neuropsychiatric behavior. Neuropsychopharmacology 2022; 47:902-913. [PMID: 33479510 PMCID: PMC8882194 DOI: 10.1038/s41386-021-00962-2] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Revised: 01/01/2021] [Accepted: 01/05/2021] [Indexed: 01/30/2023]
Abstract
Orphan G protein Coupled Receptors (GPCRs) present attractive targets both for understanding neuropsychiatric diseases and for development of novel therapeutics. GPR139 is an orphan GPCR expressed in select brain circuits involved in controlling movement, motivation and reward. It has been linked to the opioid and dopamine neuromodulatory systems; however, its role in animal behavior and neuropsychiatric processes is poorly understood. Here we present a comprehensive behavioral characterization of a mouse model with a GPR139 null mutation. We show that loss of GPR139 in mice results in delayed onset hyperactivity and prominent neuropsychiatric manifestations including elevated stereotypy, increased anxiety-related traits, delayed acquisition of operant responsiveness, disruption of cued fear conditioning and social interaction deficits. Furthermore, mice lacking GPR139 exhibited complete loss of pre-pulse inhibition and developed spontaneous 'hallucinogenic' head-twitches, altogether suggesting schizophrenia-like symptomatology. Remarkably, a number of these behavioral deficits could be rescued by the administration of μ-opioid and D2 dopamine receptor (D2R) antagonists: naltrexone and haloperidol, respectively, suggesting that loss of neuropsychiatric manifestations in mice lacking GPR139 are driven by opioidergic and dopaminergic hyper-functionality. The inhibitory influence of GPR139 on D2R signaling was confirmed in cell-based functional assays. These observations define the role of GPR139 in controlling behavior and implicate in vivo actions of this receptor in the neuropsychiatric process with schizophrenia-like pathology.
Collapse
|
9
|
Molecular insights into ligand recognition and G protein coupling of the neuromodulatory orphan receptor GPR139. Cell Res 2021; 32:210-213. [PMID: 34916631 PMCID: PMC8807744 DOI: 10.1038/s41422-021-00591-w] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2021] [Accepted: 11/04/2021] [Indexed: 11/08/2022] Open
|
10
|
Strassheim D, Sullivan T, Irwin DC, Gerasimovskaya E, Lahm T, Klemm DJ, Dempsey EC, Stenmark KR, Karoor V. Metabolite G-Protein Coupled Receptors in Cardio-Metabolic Diseases. Cells 2021; 10:3347. [PMID: 34943862 PMCID: PMC8699532 DOI: 10.3390/cells10123347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2021] [Revised: 11/10/2021] [Accepted: 11/18/2021] [Indexed: 12/15/2022] Open
Abstract
G protein-coupled receptors (GPCRs) have originally been described as a family of receptors activated by hormones, neurotransmitters, and other mediators. However, in recent years GPCRs have shown to bind endogenous metabolites, which serve functions other than as signaling mediators. These receptors respond to fatty acids, mono- and disaccharides, amino acids, or various intermediates and products of metabolism, including ketone bodies, lactate, succinate, or bile acids. Given that many of these metabolic processes are dysregulated under pathological conditions, including diabetes, dyslipidemia, and obesity, receptors of endogenous metabolites have also been recognized as potential drug targets to prevent and/or treat metabolic and cardiovascular diseases. This review describes G protein-coupled receptors activated by endogenous metabolites and summarizes their physiological, pathophysiological, and potential pharmacological roles.
Collapse
Affiliation(s)
- Derek Strassheim
- Department of Medicine Cardiovascular and Pulmonary Research Laboratory, University of Colorado Denver, Denver, CO 80204, USA; (D.S.); (T.S.); (D.C.I.); (E.G.); (D.J.K.); (E.C.D.); (K.R.S.)
| | - Timothy Sullivan
- Department of Medicine Cardiovascular and Pulmonary Research Laboratory, University of Colorado Denver, Denver, CO 80204, USA; (D.S.); (T.S.); (D.C.I.); (E.G.); (D.J.K.); (E.C.D.); (K.R.S.)
| | - David C. Irwin
- Department of Medicine Cardiovascular and Pulmonary Research Laboratory, University of Colorado Denver, Denver, CO 80204, USA; (D.S.); (T.S.); (D.C.I.); (E.G.); (D.J.K.); (E.C.D.); (K.R.S.)
| | - Evgenia Gerasimovskaya
- Department of Medicine Cardiovascular and Pulmonary Research Laboratory, University of Colorado Denver, Denver, CO 80204, USA; (D.S.); (T.S.); (D.C.I.); (E.G.); (D.J.K.); (E.C.D.); (K.R.S.)
| | - Tim Lahm
- Division of Pulmonary, Critical Care and Sleep Medicine, National Jewish Health Denver, Denver, CO 80206, USA;
- Rocky Mountain Regional VA Medical Center, Aurora, CO 80045, USA
| | - Dwight J. Klemm
- Department of Medicine Cardiovascular and Pulmonary Research Laboratory, University of Colorado Denver, Denver, CO 80204, USA; (D.S.); (T.S.); (D.C.I.); (E.G.); (D.J.K.); (E.C.D.); (K.R.S.)
- Rocky Mountain Regional VA Medical Center, Aurora, CO 80045, USA
- Division of Pulmonary Sciences and Critical Care Medicine, School of Medicine, University of Colorado, Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Edward C. Dempsey
- Department of Medicine Cardiovascular and Pulmonary Research Laboratory, University of Colorado Denver, Denver, CO 80204, USA; (D.S.); (T.S.); (D.C.I.); (E.G.); (D.J.K.); (E.C.D.); (K.R.S.)
- Rocky Mountain Regional VA Medical Center, Aurora, CO 80045, USA
- Division of Pulmonary Sciences and Critical Care Medicine, School of Medicine, University of Colorado, Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Kurt R. Stenmark
- Department of Medicine Cardiovascular and Pulmonary Research Laboratory, University of Colorado Denver, Denver, CO 80204, USA; (D.S.); (T.S.); (D.C.I.); (E.G.); (D.J.K.); (E.C.D.); (K.R.S.)
| | - Vijaya Karoor
- Department of Medicine Cardiovascular and Pulmonary Research Laboratory, University of Colorado Denver, Denver, CO 80204, USA; (D.S.); (T.S.); (D.C.I.); (E.G.); (D.J.K.); (E.C.D.); (K.R.S.)
- Division of Pulmonary, Critical Care and Sleep Medicine, National Jewish Health Denver, Denver, CO 80206, USA;
- Division of Pulmonary Sciences and Critical Care Medicine, School of Medicine, University of Colorado, Anschutz Medical Campus, Aurora, CO 80045, USA
| |
Collapse
|
11
|
Jespers W, Heitman LH, IJzerman AP, Sotelo E, van Westen GJP, Åqvist J, Gutiérrez-de-Terán H. Deciphering conformational selectivity in the A2A adenosine G protein-coupled receptor by free energy simulations. PLoS Comput Biol 2021; 17:e1009152. [PMID: 34818333 PMCID: PMC8654218 DOI: 10.1371/journal.pcbi.1009152] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 12/08/2021] [Accepted: 11/11/2021] [Indexed: 12/25/2022] Open
Abstract
Transmembranal G Protein-Coupled Receptors (GPCRs) transduce extracellular chemical signals to the cell, via conformational change from a resting (inactive) to an active (canonically bound to a G-protein) conformation. Receptor activation is normally modulated by extracellular ligand binding, but mutations in the receptor can also shift this equilibrium by stabilizing different conformational states. In this work, we built structure-energetic relationships of receptor activation based on original thermodynamic cycles that represent the conformational equilibrium of the prototypical A2A adenosine receptor (AR). These cycles were solved with efficient free energy perturbation (FEP) protocols, allowing to distinguish the pharmacological profile of different series of A2AAR agonists with different efficacies. The modulatory effects of point mutations on the basal activity of the receptor or on ligand efficacies could also be detected. This methodology can guide GPCR ligand design with tailored pharmacological properties, or allow the identification of mutations that modulate receptor activation with potential clinical implications. The design of new ligands as chemical modulators of G protein-coupled receptors (GPCRs) has benefited considerably during the last years of advances in both the structural and computational biology disciplines. Within the last area, the use of free energy calculation methods has arisen as a computational tool to predict ligand affinities to explain structure-affinity relationships and guide lead optimization campaigns. However, our comprehension of the structural determinants of ligands with different pharmacological profile is scarce, and knowledge of the chemical modifications associated with an agonistic or antagonistic profile would be extremely valuable. We herein report an original implementation of the thermodynamic cycles associated with free energy perturbation (FEP) simulations, to mimic the conformational equilibrium between active and inactive GPCRs, and establish a framework to describe pharmacological profiles as a function of the ligands selectivity for a given receptor conformation. The advantage of this method resides into its simplicity of use, and the only consideration of active and inactive conformations of the receptor, with no simulation of the transitions between them. This model can accurately predict the pharmacological profile of series of full and partial agonists as opposed to antagonists of the A2A adenosine receptor, and moreover, how certain mutations associated with modulation of basal activity can influence this pharmacological profiles, which enables our understanding of such clinically relevant mutations.
Collapse
Affiliation(s)
- Willem Jespers
- Department of Cell and Molecular Biology, Uppsala University, Biomedical Center (BMC), Uppsala, Sweden
- Drug Discovery and Safety, Leiden Academic Centre for Drug Research, Leiden, The Netherlands
- * E-mail: (WJ); (HGT)
| | - Laura H. Heitman
- Drug Discovery and Safety, Leiden Academic Centre for Drug Research, Leiden, The Netherlands
- Oncode Institute, Leiden, Leiden
| | - Adriaan P. IJzerman
- Drug Discovery and Safety, Leiden Academic Centre for Drug Research, Leiden, The Netherlands
| | - Eddy Sotelo
- Centro Singular de Investigación en Química Biolóxica y Materiais Moleculares (CIQUS), Santiago de Compostela, Spain
- Departamento de Química Orgánica, Facultade de Farmacia, Universidade de Santiago de Compostela, Santiago de Compostela, Spain
| | - Gerard J. P. van Westen
- Drug Discovery and Safety, Leiden Academic Centre for Drug Research, Leiden, The Netherlands
| | - Johan Åqvist
- Department of Cell and Molecular Biology, Uppsala University, Biomedical Center (BMC), Uppsala, Sweden
| | - Hugo Gutiérrez-de-Terán
- Department of Cell and Molecular Biology, Uppsala University, Biomedical Center (BMC), Uppsala, Sweden
- Science for Life Laboratories, BMC, Uppsala, Sweden
- * E-mail: (WJ); (HGT)
| |
Collapse
|
12
|
Reichard HA, Schiffer HH, Monenschein H, Atienza JM, Corbett G, Skaggs AW, Collia DR, Ray WJ, Serrats J, Bliesath J, Kaushal N, Lam BP, Amador-Arjona A, Rahbaek L, McConn DJ, Mulligan VJ, Brice N, Gaskin PLR, Cilia J, Hitchcock S. Discovery of TAK-041: a Potent and Selective GPR139 Agonist Explored for the Treatment of Negative Symptoms Associated with Schizophrenia. J Med Chem 2021; 64:11527-11542. [PMID: 34260228 DOI: 10.1021/acs.jmedchem.1c00820] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The orphan G-protein-coupled receptor GPR139 is highly expressed in the habenula, a small brain nucleus that has been linked to depression, schizophrenia (SCZ), and substance-use disorder. High-throughput screening and a medicinal chemistry structure-activity relationship strategy identified a novel series of potent and selective benzotriazinone-based GPR139 agonists. Herein, we describe the chemistry optimization that led to the discovery and validation of multiple potent and selective in vivo GPR139 agonist tool compounds, including our clinical candidate TAK-041, also known as NBI-1065846 (compound 56). The pharmacological characterization of these GPR139 agonists in vivo demonstrated GPR139-agonist-dependent modulation of habenula cell activity and revealed consistent in vivo efficacy to rescue social interaction deficits in the BALB/c mouse strain. The clinical GPR139 agonist TAK-041 is being explored as a novel drug to treat negative symptoms in SCZ.
Collapse
Affiliation(s)
- Holly A Reichard
- Takeda California, Inc., 9625 Towne Centre Drive, San Diego, California 92121, United States
| | - Hans H Schiffer
- Takeda California, Inc., 9625 Towne Centre Drive, San Diego, California 92121, United States
| | - Holger Monenschein
- Takeda California, Inc., 9625 Towne Centre Drive, San Diego, California 92121, United States
| | - Josephine M Atienza
- Takeda California, Inc., 9625 Towne Centre Drive, San Diego, California 92121, United States
| | - Gerard Corbett
- Takeda Cambridge Ltd., 418 Cambridge Science Park, Cambridge, Cambridgeshire CB4 0PZ, U.K
| | - Alton W Skaggs
- Takeda California, Inc., 9625 Towne Centre Drive, San Diego, California 92121, United States
| | - Deanna R Collia
- Takeda California, Inc., 9625 Towne Centre Drive, San Diego, California 92121, United States
| | - William J Ray
- Takeda California, Inc., 9625 Towne Centre Drive, San Diego, California 92121, United States
| | - Jordi Serrats
- Takeda California, Inc., 9625 Towne Centre Drive, San Diego, California 92121, United States
| | - Joshua Bliesath
- Takeda California, Inc., 9625 Towne Centre Drive, San Diego, California 92121, United States
| | - Nidhi Kaushal
- Takeda California, Inc., 9625 Towne Centre Drive, San Diego, California 92121, United States
| | - Betty P Lam
- Takeda California, Inc., 9625 Towne Centre Drive, San Diego, California 92121, United States
| | - Alejandro Amador-Arjona
- Takeda California, Inc., 9625 Towne Centre Drive, San Diego, California 92121, United States
| | - Lisa Rahbaek
- Takeda California, Inc., 9625 Towne Centre Drive, San Diego, California 92121, United States
| | - Donavon J McConn
- Takeda California, Inc., 9625 Towne Centre Drive, San Diego, California 92121, United States
| | - Victoria J Mulligan
- Takeda Cambridge Ltd., 418 Cambridge Science Park, Cambridge, Cambridgeshire CB4 0PZ, U.K
| | - Nicola Brice
- Takeda Cambridge Ltd., 418 Cambridge Science Park, Cambridge, Cambridgeshire CB4 0PZ, U.K
| | - Philip L R Gaskin
- Takeda Cambridge Ltd., 418 Cambridge Science Park, Cambridge, Cambridgeshire CB4 0PZ, U.K
| | - Jackie Cilia
- Takeda Cambridge Ltd., 418 Cambridge Science Park, Cambridge, Cambridgeshire CB4 0PZ, U.K
| | - Stephen Hitchcock
- Takeda California, Inc., 9625 Towne Centre Drive, San Diego, California 92121, United States
| |
Collapse
|
13
|
Jespers W, Åqvist J, Gutiérrez-de-Terán H. Free Energy Calculations for Protein-Ligand Binding Prediction. Methods Mol Biol 2021; 2266:203-226. [PMID: 33759129 DOI: 10.1007/978-1-0716-1209-5_12] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Computational prediction of protein-ligand binding involves initial determination of the binding mode and subsequent evaluation of the strength of the protein-ligand interactions, which directly correlates with ligand binding affinities. As a consequence of increasing computer power, rigorous approaches to calculate protein-ligand binding affinities, such as free energy perturbation (FEP) methods, are becoming an essential part of the toolbox of computer-aided drug design. In this chapter, we provide a general overview of these methods and introduce the QFEP modules, which are open-source API workflows based on our molecular dynamics (MD) package Q. The module QligFEP allows estimation of relative binding affinities along ligand series, while QresFEP is a module to estimate binding affinity shifts caused by single-point mutations of the protein. We herein provide guidelines for the use of each of these modules based on data extracted from ligand-design projects. While these modules are stand-alone, the combined use of the two workflows in a drug-design project yields complementary perspectives of the ligand binding problem, providing two sides of the same coin. The selected case studies illustrate how to use QFEP to approach the two key questions associated with ligand binding prediction: identifying the most favorable binding mode from different alternatives and establishing structure-affinity relationships that allow the rational optimization of hit compounds.
Collapse
Affiliation(s)
- Willem Jespers
- Department of Cell and Molecular Biology, Biomedical Center, Uppsala University, Uppsala, Sweden
| | - Johan Åqvist
- Department of Cell and Molecular Biology, Biomedical Center, Uppsala University, Uppsala, Sweden
| | - Hugo Gutiérrez-de-Terán
- Department of Cell and Molecular Biology, Biomedical Center, Uppsala University, Uppsala, Sweden.
| |
Collapse
|
14
|
Jespers W, Verdon G, Azuaje J, Majellaro M, Keränen H, García‐Mera X, Congreve M, Deflorian F, de Graaf C, Zhukov A, Doré AS, Mason JS, Åqvist J, Cooke RM, Sotelo E, Gutiérrez‐de‐Terán H. X-Ray Crystallography and Free Energy Calculations Reveal the Binding Mechanism of A 2A Adenosine Receptor Antagonists. Angew Chem Int Ed Engl 2020; 59:16536-16543. [PMID: 32542862 PMCID: PMC7540567 DOI: 10.1002/anie.202003788] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Revised: 05/18/2020] [Indexed: 01/04/2023]
Abstract
We present a robust protocol based on iterations of free energy perturbation (FEP) calculations, chemical synthesis, biophysical mapping and X-ray crystallography to reveal the binding mode of an antagonist series to the A2A adenosine receptor (AR). Eight A2A AR binding site mutations from biophysical mapping experiments were initially analyzed with sidechain FEP simulations, performed on alternate binding modes. The results distinctively supported one binding mode, which was subsequently used to design new chromone derivatives. Their affinities for the A2A AR were experimentally determined and investigated through a cycle of ligand-FEP calculations, validating the binding orientation of the different chemical substituents proposed. Subsequent X-ray crystallography of the A2A AR with a low and a high affinity chromone derivative confirmed the predicted binding orientation. The new molecules and structures here reported were driven by free energy calculations, and provide new insights on antagonist binding to the A2A AR, an emerging target in immuno-oncology.
Collapse
Affiliation(s)
- Willem Jespers
- Department of Cell and Molecular BiologyUppsala University, BMC, Biomedical CenterBox 596UppsalaSweden
| | - Grégory Verdon
- Sosei HeptaresSteinmetz Granta Park, Great AbingtonCambridgeCB21 6DGUK
| | - Jhonny Azuaje
- Departament of Organic ChemistryFaculty of FarmacyUniversidade de Santiago de CompostelaSpain
- Centro Singular de Investigación en Química Biolóxica y Materiais Moleculares (CIQUS)Universidade de Santiago de CompostelaSpain
| | - Maria Majellaro
- Departament of Organic ChemistryFaculty of FarmacyUniversidade de Santiago de CompostelaSpain
- Centro Singular de Investigación en Química Biolóxica y Materiais Moleculares (CIQUS)Universidade de Santiago de CompostelaSpain
| | - Henrik Keränen
- Department of Cell and Molecular BiologyUppsala University, BMC, Biomedical CenterBox 596UppsalaSweden
- Present address: H. Lundbeck A/SOttiliavej 92500ValbyDenmark
| | - Xerardo García‐Mera
- Departament of Organic ChemistryFaculty of FarmacyUniversidade de Santiago de CompostelaSpain
| | - Miles Congreve
- Sosei HeptaresSteinmetz Granta Park, Great AbingtonCambridgeCB21 6DGUK
| | | | - Chris de Graaf
- Sosei HeptaresSteinmetz Granta Park, Great AbingtonCambridgeCB21 6DGUK
| | - Andrei Zhukov
- Sosei HeptaresSteinmetz Granta Park, Great AbingtonCambridgeCB21 6DGUK
| | - Andrew S. Doré
- Sosei HeptaresSteinmetz Granta Park, Great AbingtonCambridgeCB21 6DGUK
| | - Jonathan S. Mason
- Sosei HeptaresSteinmetz Granta Park, Great AbingtonCambridgeCB21 6DGUK
| | - Johan Åqvist
- Department of Cell and Molecular BiologyUppsala University, BMC, Biomedical CenterBox 596UppsalaSweden
| | - Robert M. Cooke
- Sosei HeptaresSteinmetz Granta Park, Great AbingtonCambridgeCB21 6DGUK
| | - Eddy Sotelo
- Departament of Organic ChemistryFaculty of FarmacyUniversidade de Santiago de CompostelaSpain
- Centro Singular de Investigación en Química Biolóxica y Materiais Moleculares (CIQUS)Universidade de Santiago de CompostelaSpain
| | - Hugo Gutiérrez‐de‐Terán
- Department of Cell and Molecular BiologyUppsala University, BMC, Biomedical CenterBox 596UppsalaSweden
| |
Collapse
|
15
|
Jespers W, Verdon G, Azuaje J, Majellaro M, Keränen H, García‐Mera X, Congreve M, Deflorian F, Graaf C, Zhukov A, Doré AS, Mason JS, Åqvist J, Cooke RM, Sotelo E, Gutiérrez‐de‐Terán H. X‐Ray Crystallography and Free Energy Calculations Reveal the Binding Mechanism of A
2A
Adenosine Receptor Antagonists. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202003788] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Willem Jespers
- Department of Cell and Molecular BiologyUppsala University, BMC, Biomedical Center Box 596 Uppsala Sweden
| | - Grégory Verdon
- Sosei Heptares Steinmetz Granta Park, Great Abington Cambridge CB21 6DG UK
| | - Jhonny Azuaje
- Departament of Organic ChemistryFaculty of FarmacyUniversidade de Santiago de Compostela Spain
- Centro Singular de Investigación en Química Biolóxica y Materiais Moleculares (CIQUS)Universidade de Santiago de Compostela Spain
| | - Maria Majellaro
- Departament of Organic ChemistryFaculty of FarmacyUniversidade de Santiago de Compostela Spain
- Centro Singular de Investigación en Química Biolóxica y Materiais Moleculares (CIQUS)Universidade de Santiago de Compostela Spain
| | - Henrik Keränen
- Department of Cell and Molecular BiologyUppsala University, BMC, Biomedical Center Box 596 Uppsala Sweden
- Present address: H. Lundbeck A/S Ottiliavej 9 2500 Valby Denmark
| | - Xerardo García‐Mera
- Departament of Organic ChemistryFaculty of FarmacyUniversidade de Santiago de Compostela Spain
| | - Miles Congreve
- Sosei Heptares Steinmetz Granta Park, Great Abington Cambridge CB21 6DG UK
| | | | - Chris Graaf
- Sosei Heptares Steinmetz Granta Park, Great Abington Cambridge CB21 6DG UK
| | - Andrei Zhukov
- Sosei Heptares Steinmetz Granta Park, Great Abington Cambridge CB21 6DG UK
| | - Andrew S. Doré
- Sosei Heptares Steinmetz Granta Park, Great Abington Cambridge CB21 6DG UK
| | - Jonathan S. Mason
- Sosei Heptares Steinmetz Granta Park, Great Abington Cambridge CB21 6DG UK
| | - Johan Åqvist
- Department of Cell and Molecular BiologyUppsala University, BMC, Biomedical Center Box 596 Uppsala Sweden
| | - Robert M. Cooke
- Sosei Heptares Steinmetz Granta Park, Great Abington Cambridge CB21 6DG UK
| | - Eddy Sotelo
- Departament of Organic ChemistryFaculty of FarmacyUniversidade de Santiago de Compostela Spain
- Centro Singular de Investigación en Química Biolóxica y Materiais Moleculares (CIQUS)Universidade de Santiago de Compostela Spain
| | - Hugo Gutiérrez‐de‐Terán
- Department of Cell and Molecular BiologyUppsala University, BMC, Biomedical Center Box 596 Uppsala Sweden
| |
Collapse
|
16
|
Jespers W, Isaksen GV, Andberg TA, Vasile S, van Veen A, Åqvist J, Brandsdal BO, Gutiérrez-de-Terán H. QresFEP: An Automated Protocol for Free Energy Calculations of Protein Mutations in Q. J Chem Theory Comput 2019; 15:5461-5473. [DOI: 10.1021/acs.jctc.9b00538] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Willem Jespers
- Department of Cell and Molecular Biology, Biomedical Center, Uppsala University, Box 590, S-75124 Uppsala, Sweden
| | - Geir V. Isaksen
- Department of Cell and Molecular Biology, Biomedical Center, Uppsala University, Box 590, S-75124 Uppsala, Sweden
- Hylleraas Centre for Quantum Molecular Sciences, Department of Chemistry, University of Tromsø−The Arctic University of Norway, N9037 Tromsø, Norway
| | - Tor A.H. Andberg
- Hylleraas Centre for Quantum Molecular Sciences, Department of Chemistry, University of Tromsø−The Arctic University of Norway, N9037 Tromsø, Norway
| | - Silvana Vasile
- Department of Cell and Molecular Biology, Biomedical Center, Uppsala University, Box 590, S-75124 Uppsala, Sweden
| | - Amber van Veen
- Department of Cell and Molecular Biology, Biomedical Center, Uppsala University, Box 590, S-75124 Uppsala, Sweden
| | - Johan Åqvist
- Department of Cell and Molecular Biology, Biomedical Center, Uppsala University, Box 590, S-75124 Uppsala, Sweden
| | - Bjørn Olav Brandsdal
- Hylleraas Centre for Quantum Molecular Sciences, Department of Chemistry, University of Tromsø−The Arctic University of Norway, N9037 Tromsø, Norway
| | - Hugo Gutiérrez-de-Terán
- Department of Cell and Molecular Biology, Biomedical Center, Uppsala University, Box 590, S-75124 Uppsala, Sweden
| |
Collapse
|
17
|
Vedel L, Nøhr AC, Gloriam DE, Bräuner-Osborne H. Pharmacology and function of the orphan GPR139 G protein-coupled receptor. Basic Clin Pharmacol Toxicol 2019; 126 Suppl 6:35-46. [PMID: 31132229 PMCID: PMC7318219 DOI: 10.1111/bcpt.13263] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Accepted: 05/21/2019] [Indexed: 12/17/2022]
Abstract
G protein-coupled receptors (GPCRs) constitute the largest family of receptors and membrane proteins in the human genome with ~800 members of which half are olfactory. GPCRs are activated by a very broad range of endogenous signalling molecules and are involved in a plethora of physiological functions. All GPCRs contain a transmembrane domain, consisting of a bundle of seven α-helices spanning the cell membrane, and forming the majority of the known ortho- or allosteric ligand binding sites. Due to their many physiological functions and the accessible and druggable transmembrane pocket, GPCRs constitute the largest family of drug targets mediating the actions of 34% of currently marketed drugs. GPCRs activate one or more of the four G protein families (Gq/11 , Gi/o , Gs and G12/13 ) and/or ß-arrestin. About a third of the non-olfactory GPCRs are referred to as orphan receptors which means that their endogenous agonist(s) have not yet been found or firmly established. In this MiniReview, we focus on the orphan GPR139 receptor, for which the aromatic amino acids L-Trp and L-Phe as well as ACTH/α-MSH-related peptides have been proposed as endogenous agonists. GPR139 has been reported to activate several G protein pathways of which Gq/11 is the primary one. The receptor shows the highest expression in the striatum, thalamus, hypothalamus, pituitary and habenula of the human, rat and mouse CNS. We review the surrogate agonists and antagonists that have been published as well as the agonist pharmacophore and binding site. Finally, the putative physiological functions and therapeutic potential are outlined.
Collapse
Affiliation(s)
- Line Vedel
- Department of Drug Design and Pharmacology, University of Copenhagen, Copenhagen, Denmark
| | - Anne Cathrine Nøhr
- Department of Drug Design and Pharmacology, University of Copenhagen, Copenhagen, Denmark
| | - David E Gloriam
- Department of Drug Design and Pharmacology, University of Copenhagen, Copenhagen, Denmark
| | - Hans Bräuner-Osborne
- Department of Drug Design and Pharmacology, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
18
|
Kaushik AC, Gautam D, Nangraj AS, Wei DQ, Sahi S. Protection of Primary Dopaminergic Midbrain Neurons Through Impact of Small Molecules Using Virtual Screening of GPR139 Supported by Molecular Dynamic Simulation and Systems Biology. Interdiscip Sci 2019; 11:247-257. [DOI: 10.1007/s12539-019-00334-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Revised: 04/14/2019] [Accepted: 05/06/2019] [Indexed: 12/31/2022]
|
19
|
Shoblock JR, Welty N, Fraser I, Wyatt R, Lord B, Lovenberg T, Liu C, Bonaventure P. In vivo Characterization of a Selective, Orally Available, and Brain Penetrant Small Molecule GPR139 Agonist. Front Pharmacol 2019; 10:273. [PMID: 30949055 PMCID: PMC6437111 DOI: 10.3389/fphar.2019.00273] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Accepted: 03/04/2019] [Indexed: 01/08/2023] Open
Abstract
Recently, our group along with another demonstrated that GPR139 can be activated by L-phenylalanine (L-Phe) and L-tryptophan (L-Trp) at physiologically relevant concentrations. GPR139 is discretely expressed in brain, with highest expression in medial habenula. Not only are the endogenous ligands catecholamine/serotonin precursors, but GPR139 expressing areas can directly/indirectly regulate the activity of catecholamine/serotonin neurons. Thus, GPR139 appears expressed in an interconnected circuit involved in mood, motivation, and anxiety. The aim of this study was to characterize a selective and brain penetrant GPR139 agonist (JNJ-63533054) in relevant in vivo models. JNJ-63533054 was tested for its effect on c-fos activation in the habenula and dorsal striatum. In vivo microdialysis experiments were performed in freely moving rats to measure basal levels of serotonin or dopamine (DA) in prefrontal cortex (mPFC) and nucleus accumbens (NAc). Finally, the compound was profiled in behavioral models of anxiety, despair, and anhedonia. The agonist (10–30 mg/kg, p.o.) did not alter c-fos expression in medial habenula or dorsal striatum nor neurotransmitter levels in mPFC or NAc. JNJ-63533054 (10 mg/kg p.o.) produced an anhedonic-like effect on urine sniffing, but had no significant effect in tail suspension, with no interaction with imipramine, no effect on naloxone place aversion, and no effect on learned helplessness. In the marble burying test, the agonist (10 mg/kg p.o.) produced a small anxiolytic-like effect, with no interaction with fluoxetine, and no effect in elevated plus maze (EPM). Despite GPR139 high expression in medial habenula, an area with connections to limbic and catecholaminergic/serotoninergic areas, the GPR139 agonist had no effect on c-fos in medial habenula. It did not alter catecholamine/serotonin levels and had a mostly silent signal in in vivo models commonly associated with these pathways. The physiological function of GPR139 remains elusive.
Collapse
Affiliation(s)
- James R Shoblock
- Janssen Research & Development, LLC, San Diego, CA, United States
| | - Natalie Welty
- Janssen Research & Development, LLC, San Diego, CA, United States
| | - Ian Fraser
- Janssen Research & Development, LLC, San Diego, CA, United States
| | - Ryan Wyatt
- Janssen Research & Development, LLC, San Diego, CA, United States
| | - Brian Lord
- Janssen Research & Development, LLC, San Diego, CA, United States
| | | | - Changlu Liu
- Janssen Research & Development, LLC, San Diego, CA, United States
| | | |
Collapse
|
20
|
Identification of a novel scaffold for a small molecule GPR139 receptor agonist. Sci Rep 2019; 9:3802. [PMID: 30846711 PMCID: PMC6405842 DOI: 10.1038/s41598-019-40085-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2018] [Accepted: 02/08/2019] [Indexed: 02/07/2023] Open
Abstract
GPR139 is an orphan G protein-coupled receptor (GPCR) that is primarily expressed in the brain in regions known to regulate motor control and metabolism. Here, we screened a diverse 4,000 compound library in order to identify GPR139 agonists. We identified 11 initial hits in a calcium mobilization screen, including one compound, AC4, which contains a different chemical scaffold to what has previously been described for GPR139 agonists. Our mutagenesis data shows that AC4 interacts with the same hotspots in the binding site of GPR139 as those reported to interact with the reference agonists 1a and 7c. We additionally tested and validated 160 analogs in a calcium mobilization assay and found 5 compounds with improved potency compared to AC4. In total, we identified 36 GPR139 agonists with potencies in the nanomolar range (90–990 nM). The most potent compounds were confirmed as GPR139 agonists using an orthogonal ERK phosphorylation assay where they displayed a similar rank order of potency. Accordingly, we herein introduce multiple novel GPR139 agonists, including one with a novel chemical scaffold, which can be used as tools for future pharmacological and medicinal chemistry exploration of GPR139.
Collapse
|
21
|
Wang L, Lee G, Shih A, Kuei C, Nepomuceno D, Wennerholm M, Fan F, Wu J, Bonaventure P, Lovenberg TW, Liu C. Mutagenesis of GPR139 reveals ways to create gain or loss of function receptors. Pharmacol Res Perspect 2019; 7:e00466. [PMID: 30774960 PMCID: PMC6367278 DOI: 10.1002/prp2.466] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Revised: 01/07/2018] [Accepted: 01/08/2018] [Indexed: 01/21/2023] Open
Abstract
GPR139 is a Gq-coupled receptor activated by the essential amino acids L-tryptophan (L-Trp) and L-phenylalanine (L-Phe). We carried out mutagenesis studies of the human GPR139 receptor to identify the critical structural motifs required for GPR139 activation. We applied site-directed and high throughput random mutagenesis approaches using a double addition normalization strategy to identify novel GPR139 sequences coding receptors that have altered sensitivity to endogenous ligands. This approach resulted in GPR139 clones with gain-of-function, reduction-of-function or loss-of-function mutations. The agonist pharmacology of these mutant receptors was characterized and compared to wild-type receptor using calcium mobilization, radioligand binding, and protein expression assays. The structure-activity data were incorporated into a homology model which highlights that many of the gain-of-function mutations are either in or immediately adjacent to the purported orthosteric ligand binding site, whereas the loss-of-function mutations were largely in the intracellular G-protein binding area or were disrupters of the helix integrity. There were also some reduction-of-function mutations in the orthosteric ligand binding site. These findings may not only facilitate the rational design of novel agonists and antagonists of GPR139, but also may guide the design of transgenic animal models to study the physiological function of GPR139.
Collapse
Affiliation(s)
- Lien Wang
- Janssen Research & Development, LLCSan DiegoCalifornia
| | - Grace Lee
- Janssen Research & Development, LLCSan DiegoCalifornia
| | - Amy Shih
- Janssen Research & Development, LLCSan DiegoCalifornia
| | - Chester Kuei
- Janssen Research & Development, LLCSan DiegoCalifornia
| | | | | | - Frances Fan
- Janssen Research & Development, LLCSan DiegoCalifornia
- Present address:
UCSF Helen Diller Family Comprehensive Cancer CenterSan FranciscoCalifornia
| | - Jiejun Wu
- Janssen Research & Development, LLCSan DiegoCalifornia
| | | | | | - Changlu Liu
- Janssen Research & Development, LLCSan DiegoCalifornia
| |
Collapse
|
22
|
Xu B, Vasile S, Østergaard S, Paulsson JF, Pruner J, Åqvist J, Wulff BS, Gutiérrez-de-Terán H, Larhammar D. Elucidation of the Binding Mode of the Carboxyterminal Region of Peptide YY to the Human Y 2 Receptor. Mol Pharmacol 2018; 93:323-334. [PMID: 29367257 DOI: 10.1124/mol.117.110627] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2017] [Accepted: 01/19/2018] [Indexed: 11/22/2022] Open
Abstract
Understanding the agonist-receptor interactions in the neuropeptide Y (NPY)/peptide YY (PYY) signaling system is fundamental for the design of novel modulators of appetite regulation. We report here the results of a multidisciplinary approach to elucidate the binding mode of the native peptide agonist PYY to the human Y2 receptor, based on computational modeling, peptide chemistry and in vitro pharmacological analyses. The preserved binding orientation proposed for full-length PYY and five analogs, truncated at the amino terminus, explains our pharmacological results where truncations of the N-terminal proline helix showed little effect on peptide affinity. This was followed by receptor mutagenesis to investigate the roles of several receptor positions suggested by the modeling. As a complement, PYY-(3-36) analogs were synthesized with modifications at different positions in the common PYY/NPY C-terminal fragment (32TRQRY36-amide). The results were assessed and interpreted by molecular dynamics and Free Energy Perturbation (FEP) simulations of selected mutants, providing a detailed map of the interactions of the PYY/NPY C-terminal fragment with the transmembrane cavity of the Y2 receptor. The amidated C-terminus would be stabilized by polar interactions with Gln2886.55 and Tyr2195.39, while Gln1303.32 contributes to interactions with Q34 in the peptide and T32 is close to the tip of TM7 in the receptor. This leaves the core, α-helix of the peptide exposed to make potential interactions with the extracellular loops. This model agrees with most experimental data available for the Y2 system and can be used as a basis for optimization of Y2 receptor agonists.
Collapse
Affiliation(s)
- Bo Xu
- Departments of Neuroscience (B.X., J.P., D.L.) and Cell and Molecular Biology (S.V., J.Å., H.G.-T.), Biomedical Centre, Uppsala University, Uppsala, Sweden; and Protein and Peptide Chemistry 2 (S.Ø.) and Obesity Research (J.F.P., B.S.W.), Novo Nordisk A/S, Måløv, Denmark
| | - Silvana Vasile
- Departments of Neuroscience (B.X., J.P., D.L.) and Cell and Molecular Biology (S.V., J.Å., H.G.-T.), Biomedical Centre, Uppsala University, Uppsala, Sweden; and Protein and Peptide Chemistry 2 (S.Ø.) and Obesity Research (J.F.P., B.S.W.), Novo Nordisk A/S, Måløv, Denmark
| | - Søren Østergaard
- Departments of Neuroscience (B.X., J.P., D.L.) and Cell and Molecular Biology (S.V., J.Å., H.G.-T.), Biomedical Centre, Uppsala University, Uppsala, Sweden; and Protein and Peptide Chemistry 2 (S.Ø.) and Obesity Research (J.F.P., B.S.W.), Novo Nordisk A/S, Måløv, Denmark
| | - Johan F Paulsson
- Departments of Neuroscience (B.X., J.P., D.L.) and Cell and Molecular Biology (S.V., J.Å., H.G.-T.), Biomedical Centre, Uppsala University, Uppsala, Sweden; and Protein and Peptide Chemistry 2 (S.Ø.) and Obesity Research (J.F.P., B.S.W.), Novo Nordisk A/S, Måløv, Denmark
| | - Jasna Pruner
- Departments of Neuroscience (B.X., J.P., D.L.) and Cell and Molecular Biology (S.V., J.Å., H.G.-T.), Biomedical Centre, Uppsala University, Uppsala, Sweden; and Protein and Peptide Chemistry 2 (S.Ø.) and Obesity Research (J.F.P., B.S.W.), Novo Nordisk A/S, Måløv, Denmark
| | - Johan Åqvist
- Departments of Neuroscience (B.X., J.P., D.L.) and Cell and Molecular Biology (S.V., J.Å., H.G.-T.), Biomedical Centre, Uppsala University, Uppsala, Sweden; and Protein and Peptide Chemistry 2 (S.Ø.) and Obesity Research (J.F.P., B.S.W.), Novo Nordisk A/S, Måløv, Denmark
| | - Birgitte S Wulff
- Departments of Neuroscience (B.X., J.P., D.L.) and Cell and Molecular Biology (S.V., J.Å., H.G.-T.), Biomedical Centre, Uppsala University, Uppsala, Sweden; and Protein and Peptide Chemistry 2 (S.Ø.) and Obesity Research (J.F.P., B.S.W.), Novo Nordisk A/S, Måløv, Denmark
| | - Hugo Gutiérrez-de-Terán
- Departments of Neuroscience (B.X., J.P., D.L.) and Cell and Molecular Biology (S.V., J.Å., H.G.-T.), Biomedical Centre, Uppsala University, Uppsala, Sweden; and Protein and Peptide Chemistry 2 (S.Ø.) and Obesity Research (J.F.P., B.S.W.), Novo Nordisk A/S, Måløv, Denmark
| | - Dan Larhammar
- Departments of Neuroscience (B.X., J.P., D.L.) and Cell and Molecular Biology (S.V., J.Å., H.G.-T.), Biomedical Centre, Uppsala University, Uppsala, Sweden; and Protein and Peptide Chemistry 2 (S.Ø.) and Obesity Research (J.F.P., B.S.W.), Novo Nordisk A/S, Måløv, Denmark
| |
Collapse
|
23
|
Nepomuceno D, Kuei C, Dvorak C, Lovenberg T, Liu C, Bonaventure P. Re-evaluation of Adrenocorticotropic Hormone and Melanocyte Stimulating Hormone Activation of GPR139 in Vitro. Front Pharmacol 2018; 9:157. [PMID: 29599718 PMCID: PMC5863515 DOI: 10.3389/fphar.2018.00157] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Accepted: 02/13/2018] [Indexed: 01/17/2023] Open
Abstract
It is now well established that GPR139, a G-protein coupled receptor exclusively expressed in the brain and pituitary, is activated by the essential amino acids L-tryptophan (L-Trp) and L-phenylalanine (L-Phe) via Gαq-coupling. The in vitro affinity and potency values of L-Trp and L-Phe are within the physiological concentration ranges of L-Trp and L-Phe. A recent paper suggests that adrenocorticotropic hormone (ACTH), α and β melanocyte stimulating hormones (α-MSH and β-MSH) and derivatives α-MSH1-9/α-MSH1-10 can also activate GPR139 in vitro. We tested this hypothesis using guanosine 5′-O-(3-[35S]thio)-triphosphate binding (GTPγS), calcium mobilization and [3H]JNJ-63533054 radioligand binding assays. In the GTPγS binding assay, α-MSH, α-MSH1-9/α-MSH1-10, and β-MSH had no effect on [35S]GTPγS incorporation in cell membranes expressing GPR139 up to 30 μM in contrast to the concentration dependent activation produced by L-Trp, JNJ-63533054, and TC-09311 (two small molecule GPR139 agonists). ACTH slightly decreased the basal level of [35S]GTPγS incorporation at 30 μM. In the GPR139 radioligand binding assay, a moderate displacement of [3H]JNJ-63533054 binding by ACTH and β-MSH was observed at 30 μM (40 and 30%, respectively); α-MSH, α-MSH1-9/α-MSH1-10 did not displace any specific binding at 30 μM. In three different host cell lines stably expressing GPR139, α-MSH, and β-MSH did not stimulate calcium mobilization in contrast to L-Trp, JNJ-63533054, and TC-09311. ACTH, α-MSH1-9/α-MSH1-10 only weakly stimulated calcium mobilization at 30 μM (<50% of EC100). We then co-transfected GPR139 with the three melanocortin (MC) receptors (MC3R, MC4R, and MC5R) to test the hypothesis that ACTH, α-MSH, and β-MSH might stimulate calcium mobilization through a MCR/GPR139 interaction. All three MC peptides stimulated calcium response in cells co-transfected with GPR139 and MC3R, MC4R, or MC5R. The MC peptides did not stimulate calcium response in cells expressing MC3R or MC5R alone consistent with the Gs signaling transduction pathway of these receptors. In agreement with the previously reported multiple signaling pathways of MC4R, including Gq transduction pathway, the MC peptides produced a calcium response in cells expressing MC4R alone. Together, our findings do not support that GPR139 is activated by ACTH, α-MSH, and β-MSH at physiologically relevant concentration but we did unravel an in vitro interaction between GPR139 and the MCRs.
Collapse
Affiliation(s)
- Diane Nepomuceno
- Janssen Research and Development, LLC, San Diego, CA, United States
| | - Chester Kuei
- Janssen Research and Development, LLC, San Diego, CA, United States
| | - Curt Dvorak
- Janssen Research and Development, LLC, San Diego, CA, United States
| | | | - Changlu Liu
- Janssen Research and Development, LLC, San Diego, CA, United States
| | | |
Collapse
|
24
|
The G protein-coupled receptors deorphanization landscape. Biochem Pharmacol 2018; 153:62-74. [PMID: 29454621 DOI: 10.1016/j.bcp.2018.02.016] [Citation(s) in RCA: 64] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2017] [Accepted: 02/13/2018] [Indexed: 12/14/2022]
Abstract
G protein-coupled receptors (GPCRs) are usually highlighted as being both the largest family of membrane proteins and the most productive source of drug targets. However, most of the GPCRs are understudied and hence cannot be used immediately for innovative therapeutic strategies. Besides, there are still around 100 orphan receptors, with no described endogenous ligand and no clearly defined function. The race to discover new ligands for these elusive receptors seems to be less intense than before. Here, we present an update of the various strategies employed to assign a function to these receptors and to discover new ligands. We focus on the recent advances in the identification of endogenous ligands with a detailed description of newly deorphanized receptors. Replication being a key parameter in these endeavors, we also discuss the latest controversies about problematic ligand-receptor pairings. In this context, we propose several recommendations in order to strengthen the reporting of new ligand-receptor pairs.
Collapse
|
25
|
Structure-Based Design of Potent and Selective Ligands at the Four Adenosine Receptors. Molecules 2017; 22:molecules22111945. [PMID: 29125553 PMCID: PMC6150288 DOI: 10.3390/molecules22111945] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2017] [Revised: 11/07/2017] [Accepted: 11/08/2017] [Indexed: 12/19/2022] Open
Abstract
The four receptors that signal for adenosine, A1, A2A, A2B and A3 ARs, belong to the superfamily of G protein-coupled receptors (GPCRs). They mediate a number of (patho)physiological functions and have attracted the interest of the biopharmaceutical sector for decades as potential drug targets. The many crystal structures of the A2A, and lately the A1 ARs, allow for the use of advanced computational, structure-based ligand design methodologies. Over the last decade, we have assessed the efficient synthesis of novel ligands specifically addressed to each of the four ARs. We herein review and update the results of this program with particular focus on molecular dynamics (MD) and free energy perturbation (FEP) protocols. The first in silico mutagenesis on the A1AR here reported allows understanding the specificity and high affinity of the xanthine-antagonist 8-Cyclopentyl-1,3-dipropylxanthine (DPCPX). On the A2AAR, we demonstrate how FEP simulations can distinguish the conformational selectivity of a recent series of partial agonists. These novel results are complemented with the revision of the first series of enantiospecific antagonists on the A2BAR, and the use of FEP as a tool for bioisosteric design on the A3AR.
Collapse
|