1
|
Cebeci S, Polat T, Ünübol N. Roles of NET Peptides With Known Antimicrobial Activity and Toxicity in Immune Response. J Immunol Res 2024; 2024:5528446. [PMID: 39759156 PMCID: PMC11698612 DOI: 10.1155/jimr/5528446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2024] [Accepted: 11/09/2024] [Indexed: 01/07/2025] Open
Abstract
Antimicrobial peptides (AMPs) are crucial components of the innate immune system in all living organisms, playing a vital role in the body's defense against diseases and infections. The immune system's primary functions include preventing disease-causing agents from entering the body and eliminating them without causing harm. These peptides exhibit broad-spectrum activity against bacteria, viruses, fungi, parasites, and cancer cells. They are secreted by innate and epithelial cells and contribute to host defense by inducing cellular activities such as cell migration, proliferation, differentiation, cytokine production, angiogenesis, and wound healing. In response to the growing challenge of bacterial resistance to antimicrobial agents, alternative drugs and new antibacterial molecules are being explored. In a previous study, NET AMPs were synthesized and their antimicrobial effects were determined. The current study extends this work by assessing the effects of these peptides on the immune system through cell culture experiments and ELISA. Specifically, the study investigated how different concentrations of these peptides influence the secretion of interleukin-6 (IL-6), tumor necrosis factor-α (TNF-α), and interferon-γ (IFN-γ) in mouse macrophages. Among the synthesized peptides, NET1 and NET2 demonstrated low cytotoxicity in TIB-71 RAW 264.7 macrophages. These peptides induced an anti-inflammatory response and reduced IL-6 expression in the absence of LPS stimulation, while simultaneously increasing IFN-γ and TNF-α secretion. These findings suggest that NET1 and NET2 peptides possess both anti-inflammatory and pro-inflammatory properties, highlighting their potential role in modulating immune responses.
Collapse
Affiliation(s)
- Sinan Cebeci
- Department of Medical Biotechnology, Institute of Health Sciences, Acibadem Mehmet Ali Aydinlar University, Istanbul, Türkiye
| | - Tuba Polat
- Department of Medical Biotechnology, Institute of Health Sciences, Acibadem Mehmet Ali Aydinlar University, Istanbul, Türkiye
| | - Nihan Ünübol
- Department of Medical Microbiology, School of Medicine, Acibadem Mehmet Ali Aydinlar University, Istanbul, Türkiye
- Medical Laboratory Technician Program, Vocational School of Health Services, Acibadem Mehmet Ali Aydinlar University, Istanbul, Türkiye
| |
Collapse
|
2
|
Krishnan M, Choi J, Jang A, Yoon YK, Kim Y. Antiseptic 9-Meric Peptide with Potency against Carbapenem-Resistant Acinetobacter baumannii Infection. Int J Mol Sci 2021; 22:12520. [PMID: 34830401 PMCID: PMC8621208 DOI: 10.3390/ijms222212520] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2021] [Revised: 11/17/2021] [Accepted: 11/17/2021] [Indexed: 11/18/2022] Open
Abstract
Carbapenem-resistant A. baumannii (CRAB) infection can cause acute host reactions that lead to high-fatality sepsis, making it important to develop new therapeutic options. Previously, we developed a short 9-meric peptide, Pro9-3D, with significant antibacterial and cytotoxic effects. In this study, we attempted to produce safer peptide antibiotics against CRAB by reversing the parent sequence to generate R-Pro9-3 and R-Pro9-3D. Among the tested peptides, R-Pro9-3D had the most rapid and effective antibacterial activity against Gram-negative bacteria, particularly clinical CRAB isolates. Analyses of antimicrobial mechanisms based on lipopolysaccharide (LPS)-neutralization, LPS binding, and membrane depolarization, as well as SEM ultrastructural investigations, revealed that R-Pro9-3D binds strongly to LPS and impairs the membrane integrity of CRAB by effectively permeabilizing its outer membrane. R-Pro9-3D was also less cytotoxic and had better proteolytic stability than Pro9-3D and killed biofilm forming CRAB. As an LPS-neutralizing peptide, R-Pro9-3D effectively reduced LPS-induced pro-inflammatory cytokine levels in RAW 264.7 cells. The antiseptic abilities of R-Pro9-3D were also investigated using a mouse model of CRAB-induced sepsis, which revealed that R-Pro9-3D reduced multiple organ damage and attenuated systemic infection by acting as an antibacterial and immunosuppressive agent. Thus, R-Pro9-3D displays potential as a novel antiseptic peptide for treating Gram-negative CRAB infections.
Collapse
Affiliation(s)
- Manigandan Krishnan
- Department of Bioscience and Biotechnology, Konkuk University, Seoul 05029, Korea; (M.K.); (J.C.); (A.J.)
| | - Joonhyeok Choi
- Department of Bioscience and Biotechnology, Konkuk University, Seoul 05029, Korea; (M.K.); (J.C.); (A.J.)
| | - Ahjin Jang
- Department of Bioscience and Biotechnology, Konkuk University, Seoul 05029, Korea; (M.K.); (J.C.); (A.J.)
| | - Young Kyung Yoon
- Department of Internal Medicine, Division of Infectious Diseases, College of Medicine, Korea University Anam Hospital, Korea University, Seoul 02841, Korea;
| | - Yangmee Kim
- Department of Bioscience and Biotechnology, Konkuk University, Seoul 05029, Korea; (M.K.); (J.C.); (A.J.)
| |
Collapse
|
3
|
Shin YP, Lee JH, Choi RY, Lee HJ, Baek M, Kim IW, Seo M, Kim MA, Kim SH, Hwang JS. Antiseptic effect of antimicrobial peptide psacotheasin 2 derived from the yellow-spotted longicorn beetle (Psacothea hilaris). DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2021; 123:104140. [PMID: 34033840 DOI: 10.1016/j.dci.2021.104140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 05/05/2021] [Accepted: 05/18/2021] [Indexed: 06/12/2023]
Abstract
Given the challenges posed by antibiotic resistant microbes and the high mortality rate associated with sepsis, there is an urgent need to develop novel peptide antibiotics that exhibit both antimicrobial and anti-inflammatory activities. Herein, we evaluated antimicrobial activity and anti-inflammatory activity of psacotheasin 2, one of the antimicrobial peptide candidates identified previously using an in silico analysis on the transcriptome of Psacothea hilaris. In addition to exhibiting antimicrobial activities against microorganisms without inducing hemolysis, psacotheasin 2 also decreased the nitric oxide production in lipopolysaccharide (LPS)-induced Raw264.7 cells. Moreover, ELISA and western blot analysis revealed that psacotheasin 2 reduced the expression levels of pro-inflammatory enzymes such as inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2). Further, we found that psacotheasin 2 markedly reduced the expression levels of pro-inflammatory cytokines (IL-6 and IL-1β) by regulating mitogen-activated protein kinases (MAPKs) and nuclear factor-kB (NF-kB) signaling in LPS-induced Raw264.7 cells. We also confirmed that the binding of psacotheasin 2 to bacterial cell membranes occurs via a specific interaction with LPS. In mouse models of LPS-induced shock, psacotheasin 2 significantly enhanced the survival rate and recovered weight by attenuating pro-inflammatory cytokines. Thus, psacotheasin 2 could be a promising candidate as a peptide antiseptic agent.
Collapse
Affiliation(s)
- Yong Pyo Shin
- Department of Agricultural Biology, National Institute of Agricultural Sciences, Rural Development Administration, Wanju, 55365, South Korea
| | - Joon Ha Lee
- Department of Agricultural Biology, National Institute of Agricultural Sciences, Rural Development Administration, Wanju, 55365, South Korea
| | - Ra-Yeong Choi
- Department of Agricultural Biology, National Institute of Agricultural Sciences, Rural Development Administration, Wanju, 55365, South Korea
| | - Hwa Jeong Lee
- Department of Agricultural Biology, National Institute of Agricultural Sciences, Rural Development Administration, Wanju, 55365, South Korea
| | - Minhee Baek
- Department of Agricultural Biology, National Institute of Agricultural Sciences, Rural Development Administration, Wanju, 55365, South Korea
| | - In-Woo Kim
- Department of Agricultural Biology, National Institute of Agricultural Sciences, Rural Development Administration, Wanju, 55365, South Korea
| | - Minchul Seo
- Department of Agricultural Biology, National Institute of Agricultural Sciences, Rural Development Administration, Wanju, 55365, South Korea
| | - Mi-Ae Kim
- Department of Agricultural Biology, National Institute of Agricultural Sciences, Rural Development Administration, Wanju, 55365, South Korea
| | - Seong Hyun Kim
- Department of Agricultural Biology, National Institute of Agricultural Sciences, Rural Development Administration, Wanju, 55365, South Korea
| | - Jae Sam Hwang
- Department of Agricultural Biology, National Institute of Agricultural Sciences, Rural Development Administration, Wanju, 55365, South Korea.
| |
Collapse
|
4
|
Synergistic Effect of Frog Skin Antimicrobial Peptides in Combination with Antibiotics Against Multi host Gram-Negative Pathogens. Int J Pept Res Ther 2021. [DOI: 10.1007/s10989-021-10189-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
5
|
Krishnan M, Choi J, Choi S, Kim Y. Anti-Endotoxin 9-Meric Peptide with Therapeutic Potential for the Treatment of Endotoxemia. J Microbiol Biotechnol 2021; 31:25-32. [PMID: 33263333 PMCID: PMC9705858 DOI: 10.4014/jmb.2011.11011] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Revised: 11/17/2020] [Accepted: 11/17/2020] [Indexed: 12/15/2022]
Abstract
Inflammatory reactions activated by lipopolysaccharide (LPS) of gram-negative bacteria can lead to severe septic shock. With the recent emergence of multidrug-resistant gram-negative bacteria and a lack of efficient ways to treat resulting infections, there is a need to develop novel anti-endotoxin agents. Antimicrobial peptides have been noticed as potential therapeutic molecules for bacterial infection and as candidates for new antibiotic drugs. We previously designed the 9-meric antimicrobial peptide Pro9-3 and it showed high antimicrobial activity against gram-negative bacteria. Here, to further examine its potency as an anti-endotoxin agent, we examined the antiendotoxin activities of Pro9-3 and elucidated its mechanism of action. We performed a dye-leakage experiment and BODIPY-TR cadaverine and limulus amebocyte lysate assays for Pro9-3 as well as its lysine-substituted analogue and their enantiomers. The results confirmed that Pro9-3 targets the bacterial membrane and the arginine residues play key roles in its antimicrobial activity. Pro9-3 showed excellent LPS-neutralizing activity and LPS-binding properties, which were superior to those of other peptides. Saturation transfer difference-nuclear magnetic resonance experiments to explore the interaction between LPS and Pro9-3 revealed that Trp3 and Tlr7 in Pro9-3 are critical for attracting Pro9-3 to the LPS in the gram-negative bacterial membrane. Moreover, the anti-septic effect of Pro9-3 in vivo was investigated using an LPS-induced endotoxemia mouse model, demonstrating its dual activities: antibacterial activity against gram-negative bacteria and immunosuppressive effect preventing LPS-induced endotoxemia. Collectively, these results confirmed the therapeutic potential of Pro9-3 against infection of gram-negative bacteria.
Collapse
Affiliation(s)
- Manigandan Krishnan
- Department of Bioscience and Biotechnology, Konkuk University, Seoul 05029, Republic of Korea
| | - Joonhyeok Choi
- Department of Bioscience and Biotechnology, Konkuk University, Seoul 05029, Republic of Korea
| | - Sungjae Choi
- Department of Bioscience and Biotechnology, Konkuk University, Seoul 05029, Republic of Korea
| | - Yangmee Kim
- Department of Bioscience and Biotechnology, Konkuk University, Seoul 05029, Republic of Korea,Corresponding author Phone: +82-2-450-3421 Fax: +82-2-447-5987 E-mail:
| |
Collapse
|
6
|
Krishnan M, Choi J, Jang A, Kim Y. A Novel Peptide Antibiotic, Pro10-1D, Designed from Insect Defensin Shows Antibacterial and Anti-Inflammatory Activities in Sepsis Models. Int J Mol Sci 2020; 21:ijms21176216. [PMID: 32867384 PMCID: PMC7504360 DOI: 10.3390/ijms21176216] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Revised: 08/19/2020] [Accepted: 08/25/2020] [Indexed: 01/28/2023] Open
Abstract
Owing to the challenges faced by conventional therapeutics, novel peptide antibiotics against multidrug-resistant (MDR) gram-negative bacteria need to be urgently developed. We had previously designed Pro9-3 and Pro9-3D from the defensin of beetle Protaetia brevitarsis; they showed high antimicrobial activity with cytotoxicity. Here, we aimed to develop peptide antibiotics with bacterial cell selectivity and potent antibacterial activity against gram-negative bacteria. We designed 10-meric peptides with increased cationicity by adding Arg to the N-terminus of Pro9-3 (Pro10-1) and its D-enantiomeric alteration (Pro10-1D). Among all tested peptides, the newly designed Pro10-1D showed the strongest antibacterial activity against Escherichia coli, Acinetobacter baumannii, and MDR strains with resistance against protease digestion. Pro10-1D can act as a novel potent peptide antibiotic owing to its outstanding inhibitory activities against bacterial film formation with high bacterial cell selectivity. Dye leakage and scanning electron microscopy revealed that Pro10-1D targets the bacterial membrane. Pro10-1D inhibited inflammation via Toll Like Receptor 4 (TLR4)/Nuclear factor-κB (NF-κB) signaling pathways in lipopolysaccharide (LPS)-stimulated RAW264.7 cells. Furthermore, Pro10-1D ameliorated multiple-organ damage and attenuated systemic infection-associated inflammation in an E. coli K1-induced sepsis mouse model. Overall, our results suggest that Pro10-1D can potentially serve as a novel peptide antibiotic for the treatment of gram-negative sepsis.
Collapse
Affiliation(s)
| | | | | | - Yangmee Kim
- Correspondence: ; Tel.: +82-2-450-3421; Fax: +82-2-447-5987
| |
Collapse
|
7
|
Jang M, Kim J, Choi Y, Bang J, Kim Y. Antiseptic Effect of Ps-K18: Mechanism of Its Antibacterial and Anti-Inflammatory Activities. Int J Mol Sci 2019; 20:E4895. [PMID: 31581682 PMCID: PMC6801626 DOI: 10.3390/ijms20194895] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Revised: 09/29/2019] [Accepted: 09/30/2019] [Indexed: 12/16/2022] Open
Abstract
Recently, bioactive peptides have attracted attention for their therapeutic applications in the pharmaceutical industry. Among them, antimicrobial peptides are candidates for new antibiotic drugs. Since pseudin-2 (Ps), isolated from the skin of the paradoxical frog Pseudis paradoxa, shows broad-spectrum antibacterial activity with high cytotoxicity, we previously designed Ps-K18 with a Lys substitution for Leu18 in Ps, which showed high antibacterial activity and low toxicity. Here, we examined the potency of Ps-K18, aiming to develop antibiotics derived from bioactive peptides for the treatment of Gram-negative sepsis. We first investigated the antibacterial mechanism of Ps-K18 based on confocal micrographs and field emission scanning electron microscopy, confirming that Ps-K18 targets the bacterial membrane. Anti-inflammatory mechanism of Ps-K18 was investigated by secreted alkaline phosphatase reporter gene assays and RT-PCR, which revealed that Ps-K18 activates innate defense via Toll-like receptor 4-mediated nuclear factor-kappa B signaling pathways. Moreover, we investigated the antiseptic effect of Ps-K18 using a lipopolysaccharide or Escherichia coli K1-induced septic shock mouse model. Ps-K18 significantly reduced bacterial growth and inflammatory responses in the septic shock model. Ps-K18 showed low renal and liver toxicity and attenuated lung damage effectively. This study suggests that Ps-K18 is a potent peptide antibiotic that could be applied therapeutically to Gram-negative sepsis.
Collapse
Affiliation(s)
- Mihee Jang
- Department of Bioscience and Biotechnology, Research Institute for Bioactive-Metabolome Network, Konkuk University, Seoul 05029, Korea.
| | - Jieun Kim
- Department of Bioscience and Biotechnology, Research Institute for Bioactive-Metabolome Network, Konkuk University, Seoul 05029, Korea.
| | - Yujin Choi
- Chuncheon Center, Korea Basic Science Institute, Chuncheon 24341, Korea.
| | - JeongKyu Bang
- Protein Structure Group, Korea Basic Science Institute, Ochang, Cheongju, Chung-Buk 28199, Korea.
| | - Yangmee Kim
- Department of Bioscience and Biotechnology, Research Institute for Bioactive-Metabolome Network, Konkuk University, Seoul 05029, Korea.
| |
Collapse
|
8
|
Kim TH, Kang MS, Mandakhbayar N, El-Fiqi A, Kim HW. Anti-inflammatory actions of folate-functionalized bioactive ion-releasing nanoparticles imply drug-free nanotherapy of inflamed tissues. Biomaterials 2019; 207:23-38. [DOI: 10.1016/j.biomaterials.2019.03.034] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2018] [Revised: 03/21/2019] [Accepted: 03/22/2019] [Indexed: 01/04/2023]
|
9
|
Target Proteins of Phloretin for Its Anti-Inflammatory and Antibacterial Activities Against Propionibacterium acnes-Induced Skin Infection. Molecules 2019; 24:molecules24071319. [PMID: 30987239 PMCID: PMC6479541 DOI: 10.3390/molecules24071319] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Revised: 03/25/2019] [Accepted: 04/02/2019] [Indexed: 12/17/2022] Open
Abstract
Phloretin is a natural chalcone with antibacterial and anti-inflammatory effects. This study investigated the anti-acne activity of phloretin against Propionibacterium acnes-induced skin infection and the potential target proteins of its anti-inflammatory and antibacterial effects. Phloretin potently inhibited the growth of P. acnes and P. acnes-induced Toll-like receptor (TLR) 2-mediated inflammatory signaling in human keratinocytes. Secreted embryonic alkaline phosphatase assay confirmed that the anti-inflammatory activity of phloretin is associated with the P. acnes-stimulated TLR2-mediated NF-κB signaling pathway. Phloretin significantly decreased the level of phosphorylated c-Jun N-terminal kinase (JNK), showing a binding affinity of 1.184 × 10−5 M−1. We also found that phloretin binds with micromolar affinity to P. acnes β-ketoacyl acyl carrier protein (ACP) synthase III (KAS III), an enzyme involved in fatty acid synthesis. Conformation-sensitive native polyacrylamide gel electrophoresis showed that phloretin reduced KAS III-mediated 3-ketoacyl ACP production by over 66%. A docking study revealed that phloretin interacts with the active sites of JNK1 and KAS III, suggesting their involvement in P. acnes-induced inflammation and their potential as targets for the antibacterial activity of phloretin. These results demonstrate that phloretin may be useful in the prevention or treatment of P. acnes infection.
Collapse
|
10
|
Development of a novel short 12-meric papiliocin-derived peptide that is effective against Gram-negative sepsis. Sci Rep 2019; 9:3817. [PMID: 30846839 PMCID: PMC6405874 DOI: 10.1038/s41598-019-40577-8] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Accepted: 02/19/2019] [Indexed: 01/08/2023] Open
Abstract
The development of novel peptide antibiotics with potent activity against multidrug-resistant Gram-negative bacteria and anti-septic activity is urgently needed. In this study, we designed short, 12-meric antimicrobial peptides by substituting amino acids from the N-terminal 12 residues of the papiliocin (Pap12-1) peptide to alter cationicity and amphipathicity and improve antibacterial activity and bacterial membrane interactions. Pap12-6, with an amphipathic α-helical structure and Trp12 at the C-terminus, showed broad-spectrum antibacterial activity, especially against multidrug-resistant Gram-negative bacteria. Dye leakage, membrane depolarization, and electron microscopy data proved that Pap12-6 kills bacteria by permeabilizing the bacterial membrane. Additionally, Pap12-6 significantly reduced the secretion of NO, TNF-α, and IL-6 and secreted alkaline phosphatase reporter gene activity confirmed that Pap12-6 shows anti-inflammatory activity via a TLR4-mediated NF-κB signaling pathway. In a mouse sepsis model, Pap12-6 significantly improved survival, reduced bacterial growth in organs, and reduced LPS and inflammatory cytokine levels in the serum and organs. Pap12-6 showed minimal cytotoxicity towards mammalian cells and controlled liver and kidney damage, proving its high bacterial selectivity. Our results suggest that Pap12-6 is a promising peptide antibiotic for the therapeutic treatment of Gram-negative sepsis via dual bactericidal and immunomodulatory effects on the host.
Collapse
|
11
|
Balasubramanian PK, Kim J, Son K, Durai P, Kim Y. 3,6-Dihydroxyflavone: A Potent Inhibitor with Anti-Inflammatory Activity Targeting Toll-like Receptor 2. B KOREAN CHEM SOC 2018. [DOI: 10.1002/bkcs.11644] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Affiliation(s)
| | - Jieun Kim
- Department of Bioscience and Biotechnology; Konkuk University; Seoul 05029 South Korea
| | - Kkabi Son
- Department of Bioscience and Biotechnology; Konkuk University; Seoul 05029 South Korea
| | | | - Yangmee Kim
- Department of Bioscience and Biotechnology; Konkuk University; Seoul 05029 South Korea
| |
Collapse
|
12
|
Pse-T2, an Antimicrobial Peptide with High-Level, Broad-Spectrum Antimicrobial Potency and Skin Biocompatibility against Multidrug-Resistant Pseudomonas aeruginosa Infection. Antimicrob Agents Chemother 2018; 62:AAC.01493-18. [PMID: 30323036 DOI: 10.1128/aac.01493-18] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Accepted: 09/30/2018] [Indexed: 02/06/2023] Open
Abstract
Pseudin-2, isolated from the frog Pseudis paradoxa, exhibits potent antibacterial activity but also cytotoxicity. In an effort to develop clinically applicable antimicrobial peptides (AMPs), we designed pseudin-2 analogs with Lys substitutions, resulting in elevated amphipathic α-helical structure and cationicity. In addition, truncated analogs of pseudin-2 and Lys-substituted peptides were synthesized to produce linear 18-residue amphipathic α-helices, which were further investigated for their mechanism and functions. These truncated analogs exhibited higher antimicrobial activity and lower cytotoxicity than pseudin-2. In particular, Pse-T2 showed marked pore formation, permeabilization of the outer/inner bacterial membranes, and DNA binding. Fluorescence spectroscopy and scanning electron microscopy showed that Pse-T2 kills bacterial cells by disrupting membrane integrity. In vivo, wounds infected with multidrug-resistant (MDR) Pseudomonas aeruginosa healed significantly faster when treated with Pse-T2 than did untreated wounds or wounds treated with ciprofloxacin. Moreover, Pse-T2 facilitated infected-wound closure by reducing inflammation through suppression of interleukin-1β (IL-1β), IL-6, and tumor necrosis factor alpha (TNF-α). These data suggest that the small antimicrobial peptide Pse-T2 could be useful for future development of therapeutic agents effective against MDR bacterial strains.
Collapse
|
13
|
Phloretin as a Potent Natural TLR2/1 Inhibitor Suppresses TLR2-Induced Inflammation. Nutrients 2018; 10:nu10070868. [PMID: 29976865 PMCID: PMC6073418 DOI: 10.3390/nu10070868] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2018] [Revised: 06/22/2018] [Accepted: 07/02/2018] [Indexed: 12/18/2022] Open
Abstract
Toll-like receptor 2 (TLR2) responses are involved in various inflammatory immune disorders. Phloretin is a naturally occurring dietary flavonoid that is abundant in fruit. Here, we investigated whether the anti-inflammatory activity of phloretin is mediated through TLR2 pathways, and whether phloretin acts as an inhibitor of TLR2/1 heterodimerization using the TLR2/1 agonist Pam3CSK4. We tested the effects of phloretin on tumor necrosis factor (TNF)-α production induced by various TLRs using known TLR-specific agonists. Phloretin significantly inhibited Pam3CSK4-induced TRL2/1 signaling in Raw264.7 cells compared to TLR signaling induced by the other agonists tested. Therefore, we further tested the effects of phloretin in human embryonic kidney (HEK) 293-hTLR2 cells induced by Pam3CSK4, and confirmed that phloretin has comparable inhibition of TLR2/1 heterodimerization to that induced by the known TLR2 inhibitor CU-CPT22. Moreover, phloretin reduced the secretion of the inflammatory cytokines TNF-α and interleukin (IL)-8 in Pam3CSK4-induced HEK293-hTLR2 cells, whereas it did not significantly reduce these cytokines under Pam2CSK4-induced activation. Western blot results showed that phloretin significantly suppressed Pam3CSK4-induced TLR2 and NF-κB p65 expression. The molecular interactions between phloretin and TLR2 were investigated using bio-layer interferometry and in silico docking. Phloretin bound to TLR2 with micromolar binding affinity, and we proposed a binding model of phloretin at the TLR2–TLR1 interface. Overall, we confirmed that phloretin inhibits the heterodimerization of TLR2/1, highlighting TLR2 signaling as a therapeutic target for treating TLR2-mediated inflammatory immune diseases.
Collapse
|
14
|
Park J, Kang HK, Choi MC, Chae JD, Son BK, Chong YP, Seo CH, Park Y. Antibacterial activity and mechanism of action of analogues derived from the antimicrobial peptide mBjAMP1 isolated from Branchiostoma japonicum. J Antimicrob Chemother 2018; 73:2054-2063. [DOI: 10.1093/jac/dky144] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2017] [Accepted: 03/21/2018] [Indexed: 12/12/2022] Open
Affiliation(s)
- Jonggwan Park
- Department of Bioinformatics, Kongju National University, Kongju, South Korea
| | - Hee Kyoung Kang
- Department of Biomedical Science, Chosun University, Gwangju, South Korea
| | - Moon-Chang Choi
- Department of Biomedical Science, Chosun University, Gwangju, South Korea
| | - Jeong Don Chae
- Department of Laboratory Medicine, Eulji University-Eulji General Hospital, Seoul, Republic of Korea
| | - Byoung Kwan Son
- Department of Internal Medicine, Eulji University-Eulji General Hospital, Seoul, Republic of Korea
| | - Yong Pil Chong
- Department of Infectious Disease, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Chang Ho Seo
- Department of Bioinformatics, Kongju National University, Kongju, South Korea
| | - Yoonkyung Park
- Department of Biomedical Science, Chosun University, Gwangju, South Korea
| |
Collapse
|
15
|
Jeon D, Jacob B, Kwak C, Kim Y. Short Antimicrobial Peptides Exhibiting Antibacterial and Anti-Inflammatory Activities Derived from the N-Terminal Helix of Papiliocin. B KOREAN CHEM SOC 2017. [DOI: 10.1002/bkcs.11277] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Dasom Jeon
- Department of Bioscience and Biotechnology; Konkuk University; Seoul 143-701 Korea
| | - Binu Jacob
- Department of Bioscience and Biotechnology; Konkuk University; Seoul 143-701 Korea
| | - Chulhee Kwak
- Department of Bioscience and Biotechnology; Konkuk University; Seoul 143-701 Korea
| | - Yangmee Kim
- Department of Bioscience and Biotechnology; Konkuk University; Seoul 143-701 Korea
| |
Collapse
|