1
|
Kopylova GV, Kochurova AM, Beldiia EA, Slushchev AV, Nefedova VV, Ryabkova NS, Katrukha IA, Yampolskaya DS, Matyushenko AM, Shchepkin DV. Tropomodulin-Tropomyosin Interplay Modulates Interaction Between Cardiac Myosin and Thin Filaments. Biomolecules 2025; 15:727. [PMID: 40427620 PMCID: PMC12109978 DOI: 10.3390/biom15050727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2025] [Revised: 05/13/2025] [Accepted: 05/14/2025] [Indexed: 05/29/2025] Open
Abstract
Tropomodulin (Tmod) is an actin-binding protein that interacts with tropomyosin and the actin filament at the pointed end. The influence of Tmod on the thin filament activation in the myocardium is not clear. We studied the interactions of Tmod1 and Tmod4 with the cardiac tropomyosin isoforms Tpm1.1 and Tpm1.2 using size-exclusion chromatography, a pull-down assay, and cross-linking with glutaraldehyde. We found that Tmod1 and Tmod4 form complexes with both Tpm1.1 and Tpm1.2, indicating durable interactions between these proteins. The effects of both Tmods on the actin-myosin interaction were studied using an in vitro motility assay. Tmod did not affect the sliding velocity of bare F-actin. Tmod1 slightly dose-dependently decreased the sliding velocity of F-actin-Tpm1.1 filaments and had no effect on the velocity of F-actin-Tpm1.2 filaments. With ventricular myosin, Tmod1 reduced the calcium sensitivity of the sliding velocity of thin filaments containing Tpm1.1 but did not affect it with filaments containing Tpm1.2. With atrial myosin, Tmod1 decreased the calcium sensitivity of the sliding velocities of thin filaments containing both Tpm1.1 and Tpm1.2. We can conclude that Tmod takes part in the regulation of actin-myosin interactions in the myocardium through interactions with Tpm. The effect of Tmod on the activation of thin filaments depends on the protein isoforms.
Collapse
Affiliation(s)
- Galina V. Kopylova
- Institute of Immunology and Physiology of the Russian Academy of Sciences, Yekaterinburg 620049, Russia (D.V.S.)
| | - Anastasia M. Kochurova
- Institute of Immunology and Physiology of the Russian Academy of Sciences, Yekaterinburg 620049, Russia (D.V.S.)
| | - Evgeniia A. Beldiia
- Institute of Immunology and Physiology of the Russian Academy of Sciences, Yekaterinburg 620049, Russia (D.V.S.)
| | - Andrey V. Slushchev
- Research Center of Biotechnology of the Russian Academy of Sciences, Moscow 119071, Russia; (A.V.S.); (V.V.N.); (D.S.Y.)
| | - Victoria V. Nefedova
- Research Center of Biotechnology of the Russian Academy of Sciences, Moscow 119071, Russia; (A.V.S.); (V.V.N.); (D.S.Y.)
| | - Natalia S. Ryabkova
- Department of Biochemistry, Faculty of Biology, Lomonosov Moscow State University, Moscow 119991, Russia; (N.S.R.)
- HyTest Ltd., 20520 Turku, Finland
| | - Ivan A. Katrukha
- Department of Biochemistry, Faculty of Biology, Lomonosov Moscow State University, Moscow 119991, Russia; (N.S.R.)
- HyTest Ltd., 20520 Turku, Finland
| | - Daria S. Yampolskaya
- Research Center of Biotechnology of the Russian Academy of Sciences, Moscow 119071, Russia; (A.V.S.); (V.V.N.); (D.S.Y.)
| | - Alexander M. Matyushenko
- Research Center of Biotechnology of the Russian Academy of Sciences, Moscow 119071, Russia; (A.V.S.); (V.V.N.); (D.S.Y.)
| | - Daniil V. Shchepkin
- Institute of Immunology and Physiology of the Russian Academy of Sciences, Yekaterinburg 620049, Russia (D.V.S.)
| |
Collapse
|
2
|
Stigter H, Krap T, Duijst WLJM. Cell Mechanisms of Post-Mortem Excitability of Skeletal Muscle. Biomedicines 2025; 13:221. [PMID: 39857804 PMCID: PMC11762866 DOI: 10.3390/biomedicines13010221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2024] [Revised: 01/13/2025] [Accepted: 01/14/2025] [Indexed: 01/27/2025] Open
Abstract
Background/Objectives: The excitability of skeletal muscle is a less-known post-mortem supravital phenomenon in human bodies, and it can be used to estimate the post-mortem interval. We conducted a field study in the Netherlands to investigate the applicability of muscle excitability (SMR) by mechanical stimulation for estimating the post-mortem interval in daily forensic practice. Knowledge concerning the post-mortem cell mechanisms accounting for the post-mortem excitability of skeletal muscle is lacking. Cell mechanisms are the specific intracellular and biochemical processes responsible for post-mortem muscle excitability. Methods: We have studied the theoretical backgrounds of the cell mechanisms that might be responsible for post-mortem muscle excitability, by performing literature research via the databank PubMed. Results: Based on the current available literature, in our opinion the intracellular changes in muscle cells that are responsible for SMR resemble the intracellular processes responsible for muscle fatigue due to energy exhaustion in the living. Conclusions: We hypothesize two pathways, depending on the level of energy in the muscle cell, that could be responsible for post-mortem muscle excitability by mechanical stimulation.
Collapse
Affiliation(s)
- H. Stigter
- Faculty of Law and Criminology, Maastricht University, Minderbroedersberg 4–6, 6211 LK Maastricht, The Netherlands; (T.K.); (W.L.J.M.D.)
| | | | | |
Collapse
|
3
|
van der Zee TJ, Wong JD, Kuo AD. On the rate-limiting dynamics of force development in muscle. J Exp Biol 2024; 227:jeb247436. [PMID: 39263848 DOI: 10.1242/jeb.247436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Accepted: 09/05/2024] [Indexed: 09/13/2024]
Abstract
Skeletal muscles produce forces relatively slowly compared with the action potentials that excite them. The dynamics of force production are governed by multiple processes, such as calcium activation, cycling of cross-bridges between myofilaments, and contraction against elastic tissues and the body. These processes have been included piecemeal in some muscle models, but not integrated to reveal which are the most rate limiting. We therefore examined their integrative contributions to force development in two conventional types of muscle models: Hill-type and cross-bridge. We found that no combination of these processes can self-consistently reproduce classic data such as twitch and tetanus. Rather, additional dynamics are needed following calcium activation and facilitating cross-bridge cycling, such as for cooperative myofilament interaction and reconfiguration. We provisionally lump such processes into a simple first-order model of 'force facilitation dynamics' that integrate into a cross-bridge-type muscle model. The proposed model self-consistently reproduces force development for a range of excitations including twitch and tetanus and electromyography-to-force curves. The model's step response reveals relatively small timing contributions of calcium activation (3%), cross-bridge cycling (3%) and contraction (27%) to overall force development of human quadriceps, with the remainder (67%) explained by force facilitation. The same set of model parameters predicts the change in force magnitude (gain) and timing (phase delay) as a function of excitatory firing rate, or as a function of cyclic contraction frequency. Although experiments are necessary to reveal the dynamics of muscle, integrative models are useful for identifying the main rate-limiting processes.
Collapse
Affiliation(s)
- Tim J van der Zee
- Biomedical Engineering Graduate Program, University of Calgary, Calgary, AB, Canada, T2N 1N4
- Faculty of Kinesiology, University of Calgary, Calgary, AB, Canada, T2N 1N4
| | - Jeremy D Wong
- Faculty of Kinesiology, University of Calgary, Calgary, AB, Canada, T2N 1N4
| | - Arthur D Kuo
- Biomedical Engineering Graduate Program, University of Calgary, Calgary, AB, Canada, T2N 1N4
- Faculty of Kinesiology, University of Calgary, Calgary, AB, Canada, T2N 1N4
| |
Collapse
|
4
|
Walcott S, Sun S, Debold EP, Herzog W. In defense of Huxley. Biophys J 2024; 123:3648-3652. [PMID: 39278223 PMCID: PMC11494490 DOI: 10.1016/j.bpj.2024.09.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 08/30/2024] [Accepted: 09/03/2024] [Indexed: 09/18/2024] Open
Affiliation(s)
- Sam Walcott
- Mathematical Sciences, Bioinformatics and Computational Biology, Worcester Polytechnic Institute, Worcester, Massachusetts.
| | - Sean Sun
- Department of Mechanical Engineering, Johns Hopkins University, Baltimore, Maryland
| | - Edward P Debold
- Department of Kinesiology, University of Massachusetts, Amherst, Massachusetts
| | - Walter Herzog
- Faculty of Kinesiology, University of Calgary, Calgary, Alberta, Canada
| |
Collapse
|
5
|
Spahiu E, Uta P, Kraft T, Nayak A, Amrute-Nayak M. Influence of native thin filament type on the regulation of atrial and ventricular myosin motor activity. J Biol Chem 2024; 300:107854. [PMID: 39369990 PMCID: PMC11570844 DOI: 10.1016/j.jbc.2024.107854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 09/11/2024] [Accepted: 09/23/2024] [Indexed: 10/08/2024] Open
Abstract
Ca2+-mediated activation of thin filaments is a crucial step in initiating striated muscle contraction. To gain mechanistic insight into this regulatory process, thin filament (TF) components and myosin motors from diverse species and tissue sources are often combined in minimal in vitro systems. The contribution of tissue-specific TF composition with native myosin motors in generating contraction speed remains unclear. To examine TF-mediated regulation, we established a procedure to purify native TFs (nTF) and myosin motors (M-II) from the same cardiac tissue samples as low as 10 mg and investigated their influence on gliding speeds and Ca2+ sensitivity. The rabbit atrial and ventricular nTFs and M-II were assessed in in vitro nTF motility experiments under varying Ca2+ concentrations. The speed-pCa relationship yielded a maximum TF speed of 2.58 μm/s for atrial (aM-II) and 1.51 μm/s for ventricular myosin (vM-II), both higher than the respective unregulated actin filament gliding speeds. The Ca2+ sensitivity was different for both protein sources. After swapping the nTFs, the ventricular TFs increased their gliding speed on atrial myosin, while the atrial nTFs reduced their gliding speed on ventricular myosin. Swapping of the nTFs decreased the calcium sensitivity for both vM-II and aM-II, indicating a strong influence of the thin filament source. These studies suggest that the nTF-myosin combination is critical to understanding the Ca2+ sensitivity of the shortening speed. Our approach is highly relevant to studying precious human cardiac samples, that is, small myectomy samples, to address the alteration of contraction speed and Ca2+ sensitivity in cardiomyopathies.
Collapse
Affiliation(s)
- Emrulla Spahiu
- Institute of Molecular and Cell Physiology, Hannover Medical School, Hannover, Germany
| | - Petra Uta
- Institute of Molecular and Cell Physiology, Hannover Medical School, Hannover, Germany
| | - Theresia Kraft
- Institute of Molecular and Cell Physiology, Hannover Medical School, Hannover, Germany
| | - Arnab Nayak
- Institute of Molecular and Cell Physiology, Hannover Medical School, Hannover, Germany.
| | - Mamta Amrute-Nayak
- Institute of Molecular and Cell Physiology, Hannover Medical School, Hannover, Germany.
| |
Collapse
|
6
|
Debold EP, Westerblad H. New insights into the cellular and molecular mechanisms of skeletal muscle fatigue: the Marion J. Siegman Award Lectureships. Am J Physiol Cell Physiol 2024; 327:C946-C958. [PMID: 39069825 DOI: 10.1152/ajpcell.00213.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 07/11/2024] [Accepted: 07/15/2024] [Indexed: 07/30/2024]
Abstract
Skeletal muscle fibers need to have mechanisms to decrease energy consumption during intense physical exercise to avoid devastatingly low ATP levels, with the formation of rigor cross bridges and defective ion pumping. These protective mechanisms inevitably lead to declining contractile function in response to intense exercise, characterizing fatigue. Through our work, we have gained insights into cellular and molecular mechanisms underlying the decline in contractile function during acute fatigue. Key mechanistic insights have been gained from studies performed on intact and skinned single muscle fibers and more recently from studies performed and single myosin molecules. Studies on intact single fibers revealed several mechanisms of impaired sarcoplasmic reticulum Ca2+ release and experiments on single myosin molecules provide direct evidence of how putative agents of fatigue impact myosin's ability to generate force and motion. We conclude that changes in metabolites due to an increased dependency on anaerobic metabolism (e.g., accumulation of inorganic phosphate ions and H+) act to directly and indirectly (via decreased Ca2+ activation) inhibit myosin's force and motion-generating capacity. These insights into the acute mechanisms of fatigue may help improve endurance training strategies and reveal potential targets for therapies to attenuate fatigue in chronic diseases.
Collapse
Affiliation(s)
- Edward P Debold
- Muscle Biophysics Lab, Department of Kinesiology, University of Massachusetts, Amherst, Massachusetts, United States
| | - Håkan Westerblad
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
7
|
Liu S, Marang C, Woodward M, Joumaa V, Leonard T, Scott B, Debold E, Herzog W, Walcott S. Modeling thick filament activation suggests a molecular basis for force depression. Biophys J 2024; 123:555-571. [PMID: 38291752 PMCID: PMC10938083 DOI: 10.1016/j.bpj.2024.01.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 12/05/2023] [Accepted: 01/22/2024] [Indexed: 02/01/2024] Open
Abstract
Multiscale models aiming to connect muscle's molecular and cellular function have been difficult to develop, in part due to a lack of self-consistent multiscale data. To address this gap, we measured the force response from single, skinned rabbit psoas muscle fibers to ramp shortenings and step stretches performed on the plateau region of the force-length relationship. We isolated myosin from the same muscles and, under similar conditions, performed single-molecule and ensemble measurements of myosin's ATP-dependent interaction with actin using laser trapping and in vitro motility assays. We fit the fiber data by developing a partial differential equation model that includes thick filament activation, whereby an increase in force on the thick filament pulls myosin out of an inhibited state. The model also includes a series elastic element and a parallel elastic element. This parallel elastic element models a titin-actin interaction proposed to account for the increase in isometric force after stretch (residual force enhancement). By optimizing the model fit to a subset of our fiber measurements, we specified seven unknown parameters. The model then successfully predicted the remainder of our fiber measurements and also our molecular measurements from the laser trap and in vitro motility. The success of the model suggests that our multiscale data are self-consistent and can serve as a testbed for other multiscale models. Moreover, the model captures the decrease in isometric force observed in our muscle fibers after active shortening (force depression), suggesting a molecular mechanism for force depression, whereby a parallel elastic element combines with thick filament activation to decrease the number of cycling cross-bridges.
Collapse
Affiliation(s)
- Shuyue Liu
- Faculty of Kinesiology, University of Calgary, Calgary, Alberta
| | - Chris Marang
- Department of Kinesiology, University of Massachusetts, Amherst, Massachusetts
| | - Mike Woodward
- Department of Kinesiology, University of Massachusetts, Amherst, Massachusetts
| | - Venus Joumaa
- Faculty of Kinesiology, University of Calgary, Calgary, Alberta
| | - Tim Leonard
- Faculty of Kinesiology, University of Calgary, Calgary, Alberta
| | - Brent Scott
- Department of Kinesiology, University of Massachusetts, Amherst, Massachusetts
| | - Edward Debold
- Department of Kinesiology, University of Massachusetts, Amherst, Massachusetts
| | - Walter Herzog
- Faculty of Kinesiology, University of Calgary, Calgary, Alberta
| | - Sam Walcott
- Mathematical Sciences, Bioinformatics and Computational Biology, Worcester Polytechnic Institute, Worcester, Massachusetts.
| |
Collapse
|
8
|
Garg A, Lavine KJ, Greenberg MJ. Assessing Cardiac Contractility From Single Molecules to Whole Hearts. JACC Basic Transl Sci 2024; 9:414-439. [PMID: 38559627 PMCID: PMC10978360 DOI: 10.1016/j.jacbts.2023.07.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 07/14/2023] [Accepted: 07/14/2023] [Indexed: 04/04/2024]
Abstract
Fundamentally, the heart needs to generate sufficient force and power output to dynamically meet the needs of the body. Cardiomyocytes contain specialized structures referred to as sarcomeres that power and regulate contraction. Disruption of sarcomeric function or regulation impairs contractility and leads to cardiomyopathies and heart failure. Basic, translational, and clinical studies have adapted numerous methods to assess cardiac contraction in a variety of pathophysiological contexts. These tools measure aspects of cardiac contraction at different scales ranging from single molecules to whole organisms. Moreover, these studies have revealed new pathogenic mechanisms of heart disease leading to the development of novel therapies targeting contractility. In this review, the authors explore the breadth of tools available for studying cardiac contractile function across scales, discuss their strengths and limitations, highlight new insights into cardiac physiology and pathophysiology, and describe how these insights can be harnessed for therapeutic candidate development and translational.
Collapse
Affiliation(s)
- Ankit Garg
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, Missouri, USA
- Center for Cardiovascular Research, Division of Cardiology, Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Kory J. Lavine
- Center for Cardiovascular Research, Division of Cardiology, Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Michael J. Greenberg
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, Missouri, USA
| |
Collapse
|
9
|
Ishii S, Oyama K, Kobirumaki-Shimozawa F, Nakanishi T, Nakahara N, Suzuki M, Ishiwata S, Fukuda N. Myosin and tropomyosin-troponin complementarily regulate thermal activation of muscles. J Gen Physiol 2023; 155:e202313414. [PMID: 37870863 PMCID: PMC10591409 DOI: 10.1085/jgp.202313414] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 09/04/2023] [Accepted: 10/03/2023] [Indexed: 10/24/2023] Open
Abstract
Contraction of striated muscles is initiated by an increase in cytosolic Ca2+ concentration, which is regulated by tropomyosin and troponin acting on actin filaments at the sarcomere level. Namely, Ca2+-binding to troponin C shifts the "on-off" equilibrium of the thin filament state toward the "on" state, promoting actomyosin interaction; likewise, an increase in temperature to within the body temperature range shifts the equilibrium to the on state, even in the absence of Ca2+. Here, we investigated the temperature dependence of sarcomere shortening along isolated fast skeletal myofibrils using optical heating microscopy. Rapid heating (25 to 41.5°C) within 2 s induced reversible sarcomere shortening in relaxing solution. Further, we investigated the temperature-dependence of the sliding velocity of reconstituted fast skeletal or cardiac thin filaments on fast skeletal or β-cardiac myosin in an in vitro motility assay within the body temperature range. We found that (a) with fast skeletal thin filaments on fast skeletal myosin, the temperature dependence was comparable to that obtained for sarcomere shortening in fast skeletal myofibrils (Q10 ∼8), (b) both types of thin filaments started to slide at lower temperatures on fast skeletal myosin than on β-cardiac myosin, and (c) cardiac thin filaments slid at lower temperatures compared with fast skeletal thin filaments on either type of myosin. Therefore, the mammalian striated muscle may be fine-tuned to contract efficiently via complementary regulation of myosin and tropomyosin-troponin within the body temperature range, depending on the physiological demands of various circumstances.
Collapse
Affiliation(s)
- Shuya Ishii
- Foundational Quantum Technology Research Directorate, National Institutes for Quantum Science and Technology, Gunma, Japan
- Department of Cell Physiology, The Jikei University School of Medicine, Tokyo, Japan
| | - Kotaro Oyama
- Foundational Quantum Technology Research Directorate, National Institutes for Quantum Science and Technology, Gunma, Japan
- Department of Cell Physiology, The Jikei University School of Medicine, Tokyo, Japan
| | | | - Tomohiro Nakanishi
- Department of Cell Physiology, The Jikei University School of Medicine, Tokyo, Japan
- Department of Anesthesiology, The Jikei University School of Medicine, Tokyo, Japan
| | - Naoya Nakahara
- Department of Molecular Physiology, The Jikei University School of Medicine, Tokyo, Japan
| | - Madoka Suzuki
- Institute for Protein Research, Osaka University, Osaka, Japan
| | - Shin’ichi Ishiwata
- Department of Physics, Faculty of Science and Engineering, Waseda University, Tokyo, Japan
| | - Norio Fukuda
- Department of Cell Physiology, The Jikei University School of Medicine, Tokyo, Japan
| |
Collapse
|
10
|
Liu S, Marang C, Woodward M, Joumaa V, Leonard T, Scott B, Debold E, Herzog W, Walcott S. Modeling Thick Filament Activation Suggests a Molecular Basis for Force Depression. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.09.27.559764. [PMID: 37808737 PMCID: PMC10557758 DOI: 10.1101/2023.09.27.559764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/10/2023]
Abstract
Multiscale models aiming to connect muscle's molecular and cellular function have been difficult to develop, in part, due to a lack of self-consistent multiscale data. To address this gap, we measured the force response from single skinned rabbit psoas muscle fibers to ramp shortenings and step stretches performed on the plateau region of the force-length relationship. We isolated myosin from the same muscles and, under similar conditions, performed single molecule and ensemble measurements of myosin's ATP-dependent interaction with actin using laser trapping and in vitro motility assays. We fit the fiber data by developing a partial differential equation model that includes thick filament activation, whereby an increase in force on the thick filament pulls myosin out of an inhibited state. The model also includes a series elastic element and a parallel elastic element. This parallel elastic element models a titin-actin interaction proposed to account for the increase in isometric force following stretch (residual force enhancement). By optimizing the model fit to a subset of our fiber measurements, we specified seven unknown parameters. The model then successfully predicted the remainder of our fiber measurements and also our molecular measurements from the laser trap and in vitro motility. The success of the model suggests that our multiscale data are self-consistent and can serve as a testbed for other multiscale models. Moreover, the model captures the decrease in isometric force observed in our muscle fibers after active shortening (force depression), suggesting a molecular mechanism for force depression, whereby a parallel elastic element combines with thick filament activation to decrease the number of cycling cross-bridges.
Collapse
Affiliation(s)
- Shuyue Liu
- Faculty of Kinesiology, University of Calgary, Calgary, Alberta, Canada
| | - Chris Marang
- Department of Kinesiology, University of Massachusetts, Amherst, Massachusetts, USA
| | - Mike Woodward
- Department of Kinesiology, University of Massachusetts, Amherst, Massachusetts, USA
| | - Venus Joumaa
- Faculty of Kinesiology, University of Calgary, Calgary, Alberta, Canada
| | - Tim Leonard
- Faculty of Kinesiology, University of Calgary, Calgary, Alberta, Canada
| | - Brent Scott
- Department of Kinesiology, University of Massachusetts, Amherst, Massachusetts, USA
| | - Edward Debold
- Department of Kinesiology, University of Massachusetts, Amherst, Massachusetts, USA
| | - Walter Herzog
- Faculty of Kinesiology, University of Calgary, Calgary, Alberta, Canada
| | - Sam Walcott
- Mathematical Sciences, Bioinformatics and Computational Biology, Worcester Polytechnic Institute, Worcester, Massachusetts, USA
| |
Collapse
|
11
|
Clippinger Schulte SR, Scott B, Barrick SK, Stump WT, Blackwell T, Greenberg MJ. Single-molecule mechanics and kinetics of cardiac myosin interacting with regulated thin filaments. Biophys J 2023; 122:2544-2555. [PMID: 37165621 PMCID: PMC10323011 DOI: 10.1016/j.bpj.2023.05.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 04/18/2023] [Accepted: 05/05/2023] [Indexed: 05/12/2023] Open
Abstract
The cardiac cycle is a tightly regulated process wherein the heart generates force to pump blood to the body during systole and then relaxes during diastole. Disruption of this finely tuned cycle can lead to a range of diseases including cardiomyopathies and heart failure. Cardiac contraction is driven by the molecular motor myosin, which pulls regulated thin filaments in a calcium-dependent manner. In some muscle and nonmuscle myosins, regulatory proteins on actin tune the kinetics, mechanics, and load dependence of the myosin working stroke; however, it is not well understood whether or how thin-filament regulatory proteins tune the mechanics of the cardiac myosin motor. To address this critical gap in knowledge, we used single-molecule techniques to measure the kinetics and mechanics of the substeps of the cardiac myosin working stroke in the presence and absence of thin filament regulatory proteins. We found that regulatory proteins gate the calcium-dependent interactions between myosin and the thin filament. At physiologically relevant ATP concentrations, cardiac myosin's mechanics and unloaded kinetics are not affected by thin-filament regulatory proteins. We also measured the load-dependent kinetics of cardiac myosin at physiologically relevant ATP concentrations using an isometric optical clamp, and we found that thin-filament regulatory proteins do not affect either the identity or magnitude of myosin's primary load-dependent transition. Interestingly, at low ATP concentrations at both saturating and physiologically relevant subsaturating calcium concentrations, thin-filament regulatory proteins have a small effect on actomyosin dissociation kinetics, suggesting a mechanism beyond simple steric blocking. These results have important implications for the modeling of cardiac physiology and diseases.
Collapse
Affiliation(s)
- Sarah R Clippinger Schulte
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, Missouri
| | - Brent Scott
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, Missouri
| | - Samantha K Barrick
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, Missouri
| | - W Tom Stump
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, Missouri
| | - Thomas Blackwell
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, Missouri
| | - Michael J Greenberg
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, Missouri.
| |
Collapse
|
12
|
Clippinger Schulte SR, Scott B, Barrick SK, Stump WT, Blackwell T, Greenberg MJ. Single Molecule Mechanics and Kinetics of Cardiac Myosin Interacting with Regulated Thin Filaments. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.09.522880. [PMID: 36711892 PMCID: PMC9881944 DOI: 10.1101/2023.01.09.522880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
The cardiac cycle is a tightly regulated process wherein the heart generates force to pump blood to the body during systole and then relaxes during diastole. Disruption of this finely tuned cycle can lead to a range of diseases including cardiomyopathies and heart failure. Cardiac contraction is driven by the molecular motor myosin, which pulls regulated thin filaments in a calcium-dependent manner. In some muscle and non-muscle myosins, regulatory proteins on actin tune the kinetics, mechanics, and load dependence of the myosin working stroke; however, it is not well understood whether or how thin filament regulatory proteins tune the mechanics of the cardiac myosin motor. To address this critical gap in knowledge, we used single-molecule techniques to measure the kinetics and mechanics of the substeps of the cardiac myosin working stroke in the presence and absence of thin filament regulatory proteins. We found that regulatory proteins gate the calcium-dependent interactions between myosin and the thin filament. At physiologically relevant ATP concentrations, cardiac myosin's mechanics and unloaded kinetics are not affected by thin filament regulatory proteins. We also measured the load-dependent kinetics of cardiac myosin at physiologically relevant ATP concentrations using an isometric optical clamp, and we found that thin filament regulatory proteins do not affect either the identity or magnitude of myosin's primary load-dependent transition. Interestingly, at low ATP concentrations, thin filament regulatory proteins have a small effect on actomyosin dissociation kinetics, suggesting a mechanism beyond simple steric blocking. These results have important implications for both disease modeling and computational models of muscle contraction. Significance Statement Human heart contraction is powered by the molecular motor β-cardiac myosin, which pulls on thin filaments consisting of actin and the regulatory proteins troponin and tropomyosin. In some muscle and non-muscle systems, these regulatory proteins tune the kinetics, mechanics, and load dependence of the myosin working stroke. Despite having a central role in health and disease, it is not well understood whether the mechanics or kinetics of β-cardiac myosin are affected by regulatory proteins. We show that regulatory proteins do not affect the mechanics or load-dependent kinetics of the working stroke at physiologically relevant ATP concentrations; however, they can affect the kinetics at low ATP concentrations, suggesting a mechanism beyond simple steric blocking. This has important implications for modeling of cardiac physiology and diseases.
Collapse
|
13
|
Caremani M, Marcello M, Morotti I, Pertici I, Squarci C, Reconditi M, Bianco P, Piazzesi G, Lombardi V, Linari M. The force of the myosin motor sets cooperativity in thin filament activation of skeletal muscles. Commun Biol 2022; 5:1266. [DOI: 10.1038/s42003-022-04184-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Accepted: 10/28/2022] [Indexed: 11/19/2022] Open
Abstract
AbstractContraction of striated muscle is regulated by a dual mechanism involving both thin, actin-containing filament and thick, myosin-containing filament. Thin filament is activated by Ca2+ binding to troponin, leading to tropomyosin displacement that exposes actin sites for interaction with myosin motors, extending from the neighbouring stress-activated thick filaments. Motor attachment to actin contributes to spreading activation along the thin filament, through a cooperative mechanism, still unclear, that determines the slope of the sigmoidal relation between isometric force and pCa (−log[Ca2+]), estimated by Hill coefficient nH. We use sarcomere-level mechanics in demembranated fibres of rabbit skeletal muscle activated by Ca2+ at different temperatures (12–35 °C) to show that nH depends on the motor force at constant number of attached motors. The definition of the role of motor force provides fundamental constraints for modelling the dynamics of thin filament activation and defining the action of small molecules as possible therapeutic tools.
Collapse
|
14
|
Scott B, Marang C, Woodward M, Debold EP. Myosin's powerstroke occurs prior to the release of phosphate from the active site. Cytoskeleton (Hoboken) 2021; 78:185-198. [PMID: 34331410 DOI: 10.1002/cm.21682] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 07/15/2021] [Accepted: 07/19/2021] [Indexed: 02/06/2023]
Abstract
Myosins are a family of motor proteins responsible for various forms of cellular motility, including muscle contraction and vesicular transport. The most fundamental aspect of myosin is its ability to transduce the chemical energy from the hydrolysis of ATP into mechanical work, in the form of force and/or motion. A key unanswered question of the transduction process is the timing of the force-generating powerstroke relative to the release of phosphate (Pi ) from the active site. We examined the ability of single-headed myosin Va to generate a powerstroke in a single molecule laser trap assay while maintaining Pi in its active site, by either elevating Pi in solution or by introducing a mutation in myosin's active site (S217A) to slow Pi -release from the active site. Upon binding to the actin filament, WT myosin generated a powerstoke rapidly (≥500 s-1 ) and without a detectable delay, both in the absence and presence of 30 mM Pi . The elevated levels of Pi did, however, affect event lifetime, eliminating the longest 25% of binding events, confirming that Pi rebound to myosin's active site and accelerated detachment. The S217A construct also generated a powerstroke similar in size and rate upon binding to actin despite the slower Pi release rate. These findings provide direct evidence that myosin Va generates a powerstroke with Pi still in its active site. Therefore, the findings are most consistent with a model in which the powerstroke occurs prior to the release of Pi from the active site.
Collapse
Affiliation(s)
- Brent Scott
- Department of Kinesiology, University of Massachusetts, Amherst, Massachusetts, USA
| | - Christopher Marang
- Department of Kinesiology, University of Massachusetts, Amherst, Massachusetts, USA
| | - Mike Woodward
- Department of Kinesiology, University of Massachusetts, Amherst, Massachusetts, USA
| | - Edward P Debold
- Department of Kinesiology, University of Massachusetts, Amherst, Massachusetts, USA
| |
Collapse
|
15
|
Jarvis KJ, Bell KM, Loya AK, Swank DM, Walcott S. Force-velocity and tension transient measurements from Drosophila jump muscle reveal the necessity of both weakly-bound cross-bridges and series elasticity in models of muscle contraction. Arch Biochem Biophys 2021; 701:108809. [PMID: 33610561 PMCID: PMC7986577 DOI: 10.1016/j.abb.2021.108809] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Revised: 01/22/2021] [Accepted: 02/09/2021] [Indexed: 01/11/2023]
Abstract
Muscle contraction is a fundamental biological process where molecular interactions between the myosin molecular motor and actin filaments result in contraction of a whole muscle, a process spanning size scales differing in eight orders of magnitude. Since unique behavior is observed at every scale in between these two extremes, to fully understand muscle function it is vital to develop multi-scale models. Based on simulations of classic measurements of muscle heat generation as a function of work, and shortening rate as a function of applied force, we hypothesize that a model based on molecular measurements must be modified to include a weakly-bound interaction between myosin and actin in order to fit measurements at the muscle fiber or whole muscle scales. This hypothesis is further supported by the model's need for a weakly-bound state in order to qualitatively reproduce the force response that occurs when a muscle fiber is rapidly stretched a small distance. We tested this hypothesis by measuring steady-state force as a function of shortening velocity, and the force transient caused by a rapid length step in Drosophila jump muscle fibers. Then, by performing global parameter optimization, we quantitatively compared the predictions of two mathematical models, one lacking a weakly-bound state and one with a weakly-bound state, to these measurements. Both models could reproduce our force-velocity measurements, but only the model with a weakly-bound state could reproduce our force transient measurements. However, neither model could concurrently fit both measurements. We find that only a model that includes weakly-bound cross-bridges with force-dependent detachment and an elastic element in series with the cross-bridges is able to fit both of our measurements. This result suggests that the force response after stretch is not a reflection of distinct steps in the cross-bridge cycle, but rather arises from the interaction of cross-bridges with a series elastic element. Additionally, the model suggests that the curvature of the force-velocity relationship arises from a combination of the force-dependence of weakly- and strongly-bound cross-bridges. Overall, this work presents a minimal cross-bridge model that has predictive power at the fiber level.
Collapse
Affiliation(s)
- Katelyn J Jarvis
- Department of Mathematics, University of California, Davis, CA, USA
| | - Kaylyn M Bell
- Department of Biological Sciences, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY, USA
| | - Amy K Loya
- Department of Biomedical Engineering, Rensselaer Polytechnic Institute, Troy, NY, USA
| | - Douglas M Swank
- Department of Biological Sciences, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY, USA; Department of Biomedical Engineering, Rensselaer Polytechnic Institute, Troy, NY, USA
| | - Sam Walcott
- Department of Mathematical Sciences, Worcester Polytechnic Institute, Worcester, MA, USA.
| |
Collapse
|
16
|
Positional Isomers of a Non-Nucleoside Substrate Differentially Affect Myosin Function. Biophys J 2020; 119:567-580. [PMID: 32652059 DOI: 10.1016/j.bpj.2020.06.024] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Revised: 05/29/2020] [Accepted: 06/17/2020] [Indexed: 11/22/2022] Open
Abstract
Molecular motors have evolved to transduce chemical energy from ATP into mechanical work to drive essential cellular processes, from muscle contraction to vesicular transport. Dysfunction of these motors is a root cause of many pathologies necessitating the need for intrinsic control over molecular motor function. Herein, we demonstrate that positional isomerism can be used as a simple and powerful tool to control the molecular motor of muscle, myosin. Using three isomers of a synthetic non-nucleoside triphosphate, we demonstrate that myosin's force- and motion-generating capacity can be dramatically altered at both the ensemble and single-molecule levels. By correlating our experimental results with computation, we show that each isomer exerts intrinsic control by affecting distinct steps in myosin's mechanochemical cycle. Our studies demonstrate that subtle variations in the structure of an abiotic energy source can be used to control the force and motility of myosin without altering myosin's structure.
Collapse
|
17
|
Clippinger SR, Cloonan PE, Greenberg L, Ernst M, Stump WT, Greenberg MJ. Disrupted mechanobiology links the molecular and cellular phenotypes in familial dilated cardiomyopathy. Proc Natl Acad Sci U S A 2019; 116:17831-17840. [PMID: 31427533 PMCID: PMC6731759 DOI: 10.1073/pnas.1910962116] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Familial dilated cardiomyopathy (DCM) is a leading cause of sudden cardiac death and a major indicator for heart transplant. The disease is frequently caused by mutations of sarcomeric proteins; however, it is not well understood how these molecular mutations lead to alterations in cellular organization and contractility. To address this critical gap in our knowledge, we studied the molecular and cellular consequences of a DCM mutation in troponin-T, ΔK210. We determined the molecular mechanism of ΔK210 and used computational modeling to predict that the mutation should reduce the force per sarcomere. In mutant cardiomyocytes, we found that ΔK210 not only reduces contractility but also causes cellular hypertrophy and impairs cardiomyocytes' ability to adapt to changes in substrate stiffness (e.g., heart tissue fibrosis that occurs with aging and disease). These results help link the molecular and cellular phenotypes and implicate alterations in mechanosensing as an important factor in the development of DCM.
Collapse
Affiliation(s)
- Sarah R Clippinger
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, MO 63110
| | - Paige E Cloonan
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, MO 63110
| | - Lina Greenberg
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, MO 63110
| | - Melanie Ernst
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, MO 63110
| | - W Tom Stump
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, MO 63110
| | - Michael J Greenberg
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, MO 63110
| |
Collapse
|
18
|
Unger M, Debold EP. Acidosis decreases the Ca 2+ sensitivity of thin filaments by preventing the first actomyosin interaction. Am J Physiol Cell Physiol 2019; 317:C714-C718. [PMID: 31339771 DOI: 10.1152/ajpcell.00196.2019] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Intracellular acidosis is a putative agent of skeletal muscle fatigue, in part, because it depresses the calcium (Ca2+) sensitivity of the myofilaments. However, the molecular mechanism behind this depression in Ca2+ sensitivity is unknown, providing a significant challenge to a complete understanding of the fatigue process. To elucidate this mechanism, we directly determined the effect of acidosis on the ability of a single myosin molecule to bind to a regulated actin filament in a laser trap assay. Decreasing pH from 7.4 to 6.5 significantly (P < 0.05) reduced the frequency of single actomyosin-binding events at submaximal (pCa 8-pCa 6) but not at maximal Ca2+ concentration (pCa 5-pCa 4). To delineate whether this was due to a direct effect on myosin versus an indirect effect on the regulatory proteins troponin (Tn) and tropomyosin (Tm), binding frequency was also quantified in the absence of Tn and Tm. This revealed that acidosis did not significantly alter the frequency of actomyosin binding events in the absence of regulatory proteins (1.4 ± 0.15 vs. 1.4 ± 0.15 events/s for pH 7.4 and 6.5, respectively). Acidosis also did not significantly affect the size of myosin's powerstroke or the duration of binding events in the presence of regulatory proteins, at every [Ca2+]. These data suggest acidosis impedes activation of the thin filament by competitively inhibiting Ca2+ binding to TnC. This slows the rate at which myosin initially attaches to actin; therefore, less cross bridges will be bound and generating force at any given submaximal [Ca2+]. These data provide a molecular explanation for the acidosis-induced decrease in force observed at the submaximal Ca2+ concentrations that might contribute to the loss of force during muscle fatigue.
Collapse
Affiliation(s)
- Matthew Unger
- Muscle Biophysics Laboratory, Department of Kinesiology, University of Massachusetts, Amherst, Massachusetts
| | - Edward P Debold
- Muscle Biophysics Laboratory, Department of Kinesiology, University of Massachusetts, Amherst, Massachusetts
| |
Collapse
|
19
|
Kieu TT, Awinda PO, Tanner BCW. Omecamtiv Mecarbil Slows Myosin Kinetics in Skinned Rat Myocardium at Physiological Temperature. Biophys J 2019; 116:2149-2160. [PMID: 31103235 DOI: 10.1016/j.bpj.2019.04.020] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Revised: 04/10/2019] [Accepted: 04/15/2019] [Indexed: 12/15/2022] Open
Abstract
Heart failure is a life-threatening condition that occurs when the heart muscle becomes weakened and cannot adequately circulate blood and nutrients around the body. Omecamtiv mecarbil (OM) is a compound that has been developed to treat systolic heart failure via targeting the cardiac myosin heavy chain to increase myocardial contractility. Biophysical and biochemical studies have found that OM increases calcium (Ca2+) sensitivity of contraction by prolonging the myosin working stroke and increasing the actin-myosin cross-bridge duty ratio. Most in vitro studies probing the effects of OM on cross-bridge kinetics and muscle force production have been conducted at subphysiological temperature, even though temperature plays a critical role in enzyme activity and cross-bridge function. Herein, we used skinned, ventricular papillary muscle strips from rats to investigate the effects of [OM] on Ca2+-activated force production, cross-bridge kinetics, and myocardial viscoelasticity at physiological temperature (37°C). We find that OM only increases myocardial contractility at submaximal Ca2+ activation levels and not maximal Ca2+ activation levels. As [OM] increased, the kinetic rate constants for cross-bridge recruitment and detachment slowed for both submaximal and maximal Ca2+-activated conditions. These findings support a mechanism by which OM increases cardiac contractility at physiological temperature via increasing cross-bridge contributions to thin-filament activation as cross-bridge kinetics slow and the duration of cross-bridge attachment increases. Thus, force only increases at submaximal Ca2+ activation due to cooperative recruitment of neighboring cross-bridges, because thin-filament activation is not already saturated. In contrast, OM does not increase myocardial force production for maximal Ca2+-activated conditions at physiological temperature because cooperative activation of thin filaments may already be saturated.
Collapse
Affiliation(s)
- Thinh T Kieu
- Department of Integrative Physiology and Neuroscience
| | | | - Bertrand C W Tanner
- Department of Integrative Physiology and Neuroscience; Washington Center for Muscle Biology, Washington State University, Pullman, Washington.
| |
Collapse
|
20
|
Ishii S, Suzuki M, Ishiwata S, Kawai M. Functional significance of HCM mutants of tropomyosin, V95A and D175N, studied with in vitro motility assays. Biophys Physicobiol 2019; 16:28-40. [PMID: 30923661 PMCID: PMC6435021 DOI: 10.2142/biophysico.16.0_28] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2018] [Accepted: 12/18/2018] [Indexed: 12/21/2022] Open
Abstract
The majority of hypertrophic cardiomyopathy (HCM) is caused by mutations in sarcomere proteins. We examined tropomyosin (Tpm)’s HCM mutants in humans, V95A and D175N, with in vitro motility assay using optical tweezers to evaluate the effects of the Tpm mutations on the actomyosin interaction at the single molecular level. Thin filaments were reconstituted using these Tpm mutants, and their sliding velocity and force were measured at varying Ca2+ concentrations. Our results indicate that the sliding velocity at pCa ≥8.0 was significantly increased in mutants, which is expected to cause a diastolic problem. The velocity that can be activated by Ca2+ decreased significantly in mutants causing a systolic problem. With sliding force, Ca2+ activatable force decreased in V95A and increased in D175N, which may cause a systolic problem. Our results further demonstrate that the duty ratio determined at the steady state of force generation in saturating [Ca2+] decreased in V95A and increased in D175N. The Ca2+ sensitivity and cooperativity were not significantly affected by the mutations. These results suggest that the two mutants modulate molecular processes of the actomyosin interaction differently, but to result in the same pathology known as HCM.
Collapse
Affiliation(s)
- Shuya Ishii
- Department of Physics, Faculty of Science and Engineering, Waseda University, Shinjuku-ku, Tokyo 169-8555, Japan
| | - Madoka Suzuki
- Institute for Protein Research, Osaka University, Suita, Osaka 565-0871, Japan.,PRESTO, Japan Science and Technology Agency (JST), Kawaguchi, Saitama 332-0012, Japan
| | - Shin'ichi Ishiwata
- Department of Physics, Faculty of Science and Engineering, Waseda University, Shinjuku-ku, Tokyo 169-8555, Japan
| | - Masataka Kawai
- Department of Anatomy and Cell Biology, College of Medicine, University of Iowa, Iowa City, IA 52242, USA
| |
Collapse
|
21
|
Jarvis K, Woodward M, Debold EP, Walcott S. Acidosis affects muscle contraction by slowing the rates myosin attaches to and detaches from actin. J Muscle Res Cell Motil 2018; 39:135-147. [PMID: 30382520 DOI: 10.1007/s10974-018-9499-7] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2018] [Accepted: 10/19/2018] [Indexed: 11/24/2022]
Abstract
The loss of muscle force and power during fatigue from intense contractile activity is associated with, and likely caused by, elevated levels of phosphate ([Formula: see text]) and hydrogen ions (decreased pH). To understand how these deficits in muscle performance occur at the molecular level, we used direct measurements of mini-ensembles of myosin generating force in the laser trap assay at pH 7.4 and 6.5. The data are consistent with a mechanochemical model in which a decrease in pH reduces myosin's detachment from actin (by slowing ADP release), increases non-productive myosin binding (by detached myosin rebinding without a powerstroke), and reduces myosin's attachment to actin (by slowing the weak-to-strong binding transition). Additional support of this mechanism is found by incorporating it into a branched pathway model for the effects of [Formula: see text] on myosin's interaction with actin. Including pH-dependence in one additional parameter (acceleration of [Formula: see text]-induced detachment), the model reproduces experimental measurements at high and low pH, and variable [Formula: see text], from the single molecule to large ensemble levels. Furthermore, when scaled up, the model predicts force-velocity relationships that are consistent with muscle fiber measurements. The model suggests that reducing pH has two opposing effects, a decrease in attachment favoring a decrease in muscle force and a decrease in detachment favoring an increase in muscle force. Depending on experimental details, the addition of [Formula: see text] can strengthen one or the other effect, resulting in either synergistic or antagonistic effects. This detailed molecular description suggests a molecular basis for contractile failure during muscle fatigue.
Collapse
Affiliation(s)
- Katelyn Jarvis
- Department of Mathematics, University of California, Davis, Davis, CA, 95616, USA
| | - Mike Woodward
- Department of Kinesiology, University of Massachusetts, Amherst, Amherst, MA, 01003, USA
| | - Edward P Debold
- Department of Kinesiology, University of Massachusetts, Amherst, Amherst, MA, 01003, USA
| | - Sam Walcott
- Department of Mathematics, University of California, Davis, Davis, CA, 95616, USA.
| |
Collapse
|
22
|
Woody MS, Greenberg MJ, Barua B, Winkelmann DA, Goldman YE, Ostap EM. Positive cardiac inotrope omecamtiv mecarbil activates muscle despite suppressing the myosin working stroke. Nat Commun 2018; 9:3838. [PMID: 30242219 PMCID: PMC6155018 DOI: 10.1038/s41467-018-06193-2] [Citation(s) in RCA: 110] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2018] [Accepted: 08/21/2018] [Indexed: 02/05/2023] Open
Abstract
Omecamtiv mecarbil (OM) is a positive cardiac inotrope in phase-3 clinical trials for treatment of heart failure. Although initially described as a direct myosin activator, subsequent studies are at odds with this description and do not explain OM-mediated increases in cardiac performance. Here we show, via single-molecule, biophysical experiments on cardiac myosin, that OM suppresses myosin's working stroke and prolongs actomyosin attachment 5-fold, which explains inhibitory actions of the drug observed in vitro. OM also causes the actin-detachment rate to become independent of both applied load and ATP concentration. Surprisingly, increased myocardial force output in the presence of OM can be explained by cooperative thin-filament activation by OM-inhibited myosin molecules. Selective suppression of myosin is an unanticipated route to muscle activation that may guide future development of therapeutic drugs.
Collapse
Affiliation(s)
- Michael S Woody
- Graduate Group in Biochemistry and Molecular Biophysics, Perelman School of Medicine, University of Pennsylvania, 700A Clinical Research Building, Philadelphia, PA, 19104-6085, USA
| | - Michael J Greenberg
- Pennsylvania Muscle Institute, Perelman School of Medicine, University of Pennsylvania, 700A Clinical Research Building, Philadelphia, PA, 19104-6085, USA.,Department of Biochemistry and Molecular Biophysics, Washington University in Saint Louis, St. Louis, 63110, MO, USA
| | - Bipasha Barua
- Department of Pathology and Laboratory Medicine, Robert Wood Johnson Medical School, Rutgers University, 675 Hoes Lane, Piscataway, NJ, 08854, USA
| | - Donald A Winkelmann
- Department of Pathology and Laboratory Medicine, Robert Wood Johnson Medical School, Rutgers University, 675 Hoes Lane, Piscataway, NJ, 08854, USA
| | - Yale E Goldman
- Pennsylvania Muscle Institute, Perelman School of Medicine, University of Pennsylvania, 700A Clinical Research Building, Philadelphia, PA, 19104-6085, USA.
| | - E Michael Ostap
- Pennsylvania Muscle Institute, Perelman School of Medicine, University of Pennsylvania, 700A Clinical Research Building, Philadelphia, PA, 19104-6085, USA.
| |
Collapse
|
23
|
Woodward M, Debold EP. Acidosis and Phosphate Directly Reduce Myosin's Force-Generating Capacity Through Distinct Molecular Mechanisms. Front Physiol 2018; 9:862. [PMID: 30042692 PMCID: PMC6048269 DOI: 10.3389/fphys.2018.00862] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2018] [Accepted: 06/18/2018] [Indexed: 12/04/2022] Open
Abstract
Elevated levels of the metabolic by-products, including acidosis (i.e., high [H+]) and phosphate (Pi) are putative agents of muscle fatigue; however, the mechanism through which they affect myosin’s function remain unclear. To elucidate these mechanisms, we directly examined the effect of acidosis (pH 6.5 vs. 7.4), alone and in combination with elevated levels of Pi on the force-generating capacity of a mini-ensemble of myosin using a laser trap assay. Acidosis decreased myosin’s average force-generating capacity by 20% (p < 0.05). The reduction was due to both a decrease in the force generated during each actomyosin interaction, as well as an increase in the number of binding events generating negative forces. Adding Pi to the acidic condition resulted in a quantitatively similar decrease in force but was solely due to an elimination of all high force-generating events (>2 pN), resulting from an acceleration of the myosin’s rate of detachment from actin. Acidosis and Pi also had distinct effects on myosin’s steady state ATPase rate with acidosis slowing it by ∼90% (p > 0.05), while the addition of Pi under acidic conditions caused a significant recovery in the ATPase rate. These data suggest that these two fatigue agents have distinct effects on myosin’s cross-bridge cycle that may underlie the synergistic effect that they have muscle force. Thus these data provide novel molecular insight into the mechanisms underlying the depressive effects of Pi and H+ on muscle contraction during fatigue.
Collapse
Affiliation(s)
- Mike Woodward
- Muscle Biophysics Lab, Department of Kinesiology, University of Massachusetts, Amherst, MA, United States
| | - Edward P Debold
- Muscle Biophysics Lab, Department of Kinesiology, University of Massachusetts, Amherst, MA, United States
| |
Collapse
|
24
|
Do Actomyosin Single-Molecule Mechanics Data Predict Mechanics of Contracting Muscle? Int J Mol Sci 2018; 19:ijms19071863. [PMID: 29941816 PMCID: PMC6073448 DOI: 10.3390/ijms19071863] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2018] [Revised: 06/19/2018] [Accepted: 06/20/2018] [Indexed: 12/15/2022] Open
Abstract
In muscle, but not in single-molecule mechanics studies, actin, myosin and accessory proteins are incorporated into a highly ordered myofilament lattice. In view of this difference we compare results from single-molecule studies and muscle mechanics and analyze to what degree data from the two types of studies agree with each other. There is reasonable correspondence in estimates of the cross-bridge power-stroke distance (7–13 nm), cross-bridge stiffness (~2 pN/nm) and average isometric force per cross-bridge (6–9 pN). Furthermore, models defined on the basis of single-molecule mechanics and solution biochemistry give good fits to experimental data from muscle. This suggests that the ordered myofilament lattice, accessory proteins and emergent effects of the sarcomere organization have only minor modulatory roles. However, such factors may be of greater importance under e.g., disease conditions. We also identify areas where single-molecule and muscle data are conflicting: (1) whether force generation is an Eyring or Kramers process with just one major power-stroke or several sub-strokes; (2) whether the myofilaments and the cross-bridges have Hookean or non-linear elasticity; (3) if individual myosin heads slip between actin sites under certain conditions, e.g., in lengthening; or (4) if the two heads of myosin cooperate.
Collapse
|