1
|
Kim JH, Yoon H, Viswanath S, Dagdeviren C. Conformable Piezoelectric Devices and Systems for Advanced Wearable and Implantable Biomedical Applications. Annu Rev Biomed Eng 2025; 27:255-282. [PMID: 40310886 DOI: 10.1146/annurev-bioeng-020524-121438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/03/2025]
Abstract
With increasing demands for continuous health monitoring remotely, wearable and implantable devices have attracted considerable interest. To fulfill such demands, novel materials and device structures have been investigated, since commercial biomedical devices are not compatible with flexible and conformable form factors needed for soft tissue monitoring and intervention. Among various materials, piezoelectric materials have been widely adopted for multiple applications including sensing, energy harvesting, neurostimulation, drug delivery, and ultrasound imaging owing to their unique electromechanical conversion properties. In this review, we provide a comprehensive overview of piezoelectric-based wearable and implantable biomedical devices. We first provide the basic principles of piezoelectric devices and device design strategies for wearable and implantable form factors. Then, we discuss various state-of-the-art applications of wearable and implantable piezoelectric devices and their design strategies. Finally, we demonstrate several challenges and outlooks for designing piezoelectric-based conformable biomedical devices.
Collapse
Affiliation(s)
- Jin-Hoon Kim
- Media Lab, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA;
| | - Hyeokjun Yoon
- Media Lab, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA;
| | - Shrihari Viswanath
- Media Lab, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA;
| | - Canan Dagdeviren
- Media Lab, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA;
| |
Collapse
|
2
|
Zhou X, Wang Z, Xiong T, He B, Wang Z, Zhang H, Hu D, Liu Y, Yang C, Li Q, Chen M, Zhang Q, Wei L. Fiber Crossbars: An Emerging Architecture of Smart Electronic Textiles. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2300576. [PMID: 37042804 DOI: 10.1002/adma.202300576] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 03/18/2023] [Indexed: 06/19/2023]
Abstract
Smart wearables have a significant impact on people's daily lives, enabling personalized motion monitoring, realizing the Internet of Things, and even reshaping the next generation of telemedicine systems. Fiber crossbars (FCs), constructed by crossing two fibers, have become an emerging architecture among the accessible structures of state-of-the-art smart electronic textiles. The mechanical, chemical, and electrical interactions between crossing fibers result in extensive functionalities, leading to the significant development of innovative electronic textiles employing FCs as their basic units. This review provides a timely and comprehensive overview of the structure designs, material selections, and assembly techniques of FC-based devices. The recent advances in FC-based devices are summarized, including multipurpose sensing, multiple-mode computing, high-resolution display, high-efficient power supply, and large-scale textile systems. Finally, current challenges, potential solutions, and future perspectives for FC-based systems are discussed for their further development in scale-up production and commercial applications.
Collapse
Affiliation(s)
- Xuhui Zhou
- School of Electrical and Electronic Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
| | - Zhe Wang
- School of Electrical and Electronic Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
| | - Ting Xiong
- School of Electrical and Electronic Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
| | - Bing He
- School of Electrical and Electronic Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
| | - Zhixun Wang
- School of Electrical and Electronic Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
| | - Haozhe Zhang
- School of Electrical and Electronic Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
| | - Dongmei Hu
- Key Laboratory of Multifunctional Nanomaterials and Smart Systems, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, 215123, P. R. China
| | - Yanting Liu
- School of Electrical and Electronic Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
| | - Chunlei Yang
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, P. R. China
| | - Qingwen Li
- Key Laboratory of Multifunctional Nanomaterials and Smart Systems, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, 215123, P. R. China
| | - Ming Chen
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, P. R. China
| | - Qichong Zhang
- Key Laboratory of Multifunctional Nanomaterials and Smart Systems, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, 215123, P. R. China
| | - Lei Wei
- School of Electrical and Electronic Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
- The Institute for Digital Molecular Analytics and Science (IDMxS), Nanyang Technological University, 59 Nanyang Drive, Singapore, 636921, Singapore
| |
Collapse
|
3
|
Okhay O, Tkach A. Current Achievements in Flexible Piezoelectric Nanogenerators Based on Barium Titanate. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:988. [PMID: 36985882 PMCID: PMC10053931 DOI: 10.3390/nano13060988] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 02/28/2023] [Accepted: 03/07/2023] [Indexed: 06/18/2023]
Abstract
Harvesting ambient mechanical energy at the nanometric scale holds great promise for powering small electronics and achieving self-powered electronic devices. The current review is focused on kinetic energy harvesters, particularly on flexible piezoelectric nanogenerators (p-NGs) based on barium titanate (BaTiO3) nanomaterials. p-NGs based on nanotubes, nanowires, nanofibres, nanoplatelets, nanocubes or nanoparticles of BaTiO3 fabricated in vertical or lateral orientation, as well as mixed composite structures, are overviewed here. The achievable power output level is shown to depend on the fabrication method, processing parameters and potential application conditions. Therefore, the most widely studied aspects, such as influence of geometry/orientation, BaTiO3 content, poling process and other factors in the output performance of p-NGs, are discussed. The current standing of BaTiO3-based p-NGs as possible candidates for various applications is summarized, and the issues that need to be addressed for realization of practical piezoelectric energy harvesting devices are discussed.
Collapse
Affiliation(s)
- Olena Okhay
- TEMA-Centre for Mechanical Technology and Automation, Department of Mechanical Engineering, University of Aveiro, 3810-193 Aveiro, Portugal
- LASI-Intelligent Systems Associate Laboratory, 4800-058 Guimaraes, Portugal
| | - Alexander Tkach
- CICECO-Aveiro Institute of Materials, Department of Materials and Ceramic Engineering, University of Aveiro, 3810-193 Aveiro, Portugal
| |
Collapse
|
4
|
Luo Y, Zhao L, Luo G, Li M, Han X, Xia Y, Li Z, Lin Q, Yang P, Dai L, Niu G, Wang X, Wang J, Lu D, Jiang Z. All electrospun fabrics based piezoelectric tactile sensor. NANOTECHNOLOGY 2022; 33:415502. [PMID: 35793643 DOI: 10.1088/1361-6528/ac7ed5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Accepted: 07/05/2022] [Indexed: 06/15/2023]
Abstract
Tactile sensors have been widely used in the areas of health monitoring and intelligent human-machine interface. Flexible tactile sensors based on nanofiber mats made by electrospinning can meet the requirements of comfortability and breathability for wearing the body very well. Here, we developed a flexible and self-powered tactile sensor that was sandwich assembled by electrospun organic electrodes and a piezoelectric layer. The metal-free organic electrodes of thermal plastic polyurethane (PU) nanofibers decorated with multi-walled carbon nanotubes were fabricated by electrospinning followed by ultrasonication treatment. The electrospun polyvinylidene fluoride-trifluoroethylene (PVDF-TrFE) mat was utilized as the piezoelectric layer, and it was found that the piezoelectric performance of PVDF-TrFE nanofiber mat added with barium titanate (BaTiO3) nanoparticles was enhanced about 187% than that of the pure PVDF-TrFE nanofiber mat. For practical application, the as-prepared piezoelectric tactile sensor exhibited an approximative linear relationship between the external force and the electrical output. Then the array of fabricated sensors was attached to the fingertips of a glove to grab a cup of water for tactile sensing, and the mass of water can be directly estimated according to the outputs of the sensor array. Attributed to the integrated merits of good flexibility, enhanced piezoelectric performance, light weight, and efficient gas permeability, the developed tactile sensor could be widely used as wearable devices for robot execution end or prosthesis for tactile feedback.
Collapse
Affiliation(s)
- Yunyun Luo
- State Key Laboratory for Manufacturing Systems Engineering, International Joint Laboratory for Micro/Nano Manufacturing and Measurement Technologies, Overseas Expertise Introduction Center for Micro/Nano Manufacturing and Nano Measurement Technologies Discipline innovation, Xi'an Jiaotong University (Yantai) Research Institute for Intelligent Sensing Technology and System, Xi'an Jiaotong University, Xi'an 710049, People's Republic of China
- School of Mechanical Engineering, Xi'an Jiaotong University, Xi'an 710049, People's Republic of China
| | - Libo Zhao
- State Key Laboratory for Manufacturing Systems Engineering, International Joint Laboratory for Micro/Nano Manufacturing and Measurement Technologies, Overseas Expertise Introduction Center for Micro/Nano Manufacturing and Nano Measurement Technologies Discipline innovation, Xi'an Jiaotong University (Yantai) Research Institute for Intelligent Sensing Technology and System, Xi'an Jiaotong University, Xi'an 710049, People's Republic of China
- School of Mechanical Engineering, Xi'an Jiaotong University, Xi'an 710049, People's Republic of China
| | - Guoxi Luo
- State Key Laboratory for Manufacturing Systems Engineering, International Joint Laboratory for Micro/Nano Manufacturing and Measurement Technologies, Overseas Expertise Introduction Center for Micro/Nano Manufacturing and Nano Measurement Technologies Discipline innovation, Xi'an Jiaotong University (Yantai) Research Institute for Intelligent Sensing Technology and System, Xi'an Jiaotong University, Xi'an 710049, People's Republic of China
- School of Mechanical Engineering, Xi'an Jiaotong University, Xi'an 710049, People's Republic of China
| | - Min Li
- State Key Laboratory for Manufacturing Systems Engineering, International Joint Laboratory for Micro/Nano Manufacturing and Measurement Technologies, Overseas Expertise Introduction Center for Micro/Nano Manufacturing and Nano Measurement Technologies Discipline innovation, Xi'an Jiaotong University (Yantai) Research Institute for Intelligent Sensing Technology and System, Xi'an Jiaotong University, Xi'an 710049, People's Republic of China
- School of Mechanical Engineering, Xi'an Jiaotong University, Xi'an 710049, People's Republic of China
| | - Xiangguang Han
- State Key Laboratory for Manufacturing Systems Engineering, International Joint Laboratory for Micro/Nano Manufacturing and Measurement Technologies, Overseas Expertise Introduction Center for Micro/Nano Manufacturing and Nano Measurement Technologies Discipline innovation, Xi'an Jiaotong University (Yantai) Research Institute for Intelligent Sensing Technology and System, Xi'an Jiaotong University, Xi'an 710049, People's Republic of China
- School of Mechanical Engineering, Xi'an Jiaotong University, Xi'an 710049, People's Republic of China
| | - Yong Xia
- State Key Laboratory for Manufacturing Systems Engineering, International Joint Laboratory for Micro/Nano Manufacturing and Measurement Technologies, Overseas Expertise Introduction Center for Micro/Nano Manufacturing and Nano Measurement Technologies Discipline innovation, Xi'an Jiaotong University (Yantai) Research Institute for Intelligent Sensing Technology and System, Xi'an Jiaotong University, Xi'an 710049, People's Republic of China
- School of Mechanical Engineering, Xi'an Jiaotong University, Xi'an 710049, People's Republic of China
| | - Ziping Li
- State Key Laboratory for Manufacturing Systems Engineering, International Joint Laboratory for Micro/Nano Manufacturing and Measurement Technologies, Overseas Expertise Introduction Center for Micro/Nano Manufacturing and Nano Measurement Technologies Discipline innovation, Xi'an Jiaotong University (Yantai) Research Institute for Intelligent Sensing Technology and System, Xi'an Jiaotong University, Xi'an 710049, People's Republic of China
- School of Mechanical Engineering, Xi'an Jiaotong University, Xi'an 710049, People's Republic of China
| | - Qijing Lin
- State Key Laboratory for Manufacturing Systems Engineering, International Joint Laboratory for Micro/Nano Manufacturing and Measurement Technologies, Overseas Expertise Introduction Center for Micro/Nano Manufacturing and Nano Measurement Technologies Discipline innovation, Xi'an Jiaotong University (Yantai) Research Institute for Intelligent Sensing Technology and System, Xi'an Jiaotong University, Xi'an 710049, People's Republic of China
- School of Mechanical Engineering, Xi'an Jiaotong University, Xi'an 710049, People's Republic of China
| | - Ping Yang
- State Key Laboratory for Manufacturing Systems Engineering, International Joint Laboratory for Micro/Nano Manufacturing and Measurement Technologies, Overseas Expertise Introduction Center for Micro/Nano Manufacturing and Nano Measurement Technologies Discipline innovation, Xi'an Jiaotong University (Yantai) Research Institute for Intelligent Sensing Technology and System, Xi'an Jiaotong University, Xi'an 710049, People's Republic of China
- School of Mechanical Engineering, Xi'an Jiaotong University, Xi'an 710049, People's Republic of China
| | - Liyan Dai
- School of Electronic Science and Engineering, Xi'an Jiaotong University, Xi'an, 710049, People's Republic of China
| | - Gang Niu
- School of Electronic Science and Engineering, Xi'an Jiaotong University, Xi'an, 710049, People's Republic of China
| | - Xiaozhang Wang
- State Key Laboratory for Manufacturing Systems Engineering, International Joint Laboratory for Micro/Nano Manufacturing and Measurement Technologies, Overseas Expertise Introduction Center for Micro/Nano Manufacturing and Nano Measurement Technologies Discipline innovation, Xi'an Jiaotong University (Yantai) Research Institute for Intelligent Sensing Technology and System, Xi'an Jiaotong University, Xi'an 710049, People's Republic of China
- School of Mechanical Engineering, Xi'an Jiaotong University, Xi'an 710049, People's Republic of China
| | - Jiuhong Wang
- State Key Laboratory for Manufacturing Systems Engineering, International Joint Laboratory for Micro/Nano Manufacturing and Measurement Technologies, Overseas Expertise Introduction Center for Micro/Nano Manufacturing and Nano Measurement Technologies Discipline innovation, Xi'an Jiaotong University (Yantai) Research Institute for Intelligent Sensing Technology and System, Xi'an Jiaotong University, Xi'an 710049, People's Republic of China
- School of Mechanical Engineering, Xi'an Jiaotong University, Xi'an 710049, People's Republic of China
| | - Dejiang Lu
- State Key Laboratory for Manufacturing Systems Engineering, International Joint Laboratory for Micro/Nano Manufacturing and Measurement Technologies, Overseas Expertise Introduction Center for Micro/Nano Manufacturing and Nano Measurement Technologies Discipline innovation, Xi'an Jiaotong University (Yantai) Research Institute for Intelligent Sensing Technology and System, Xi'an Jiaotong University, Xi'an 710049, People's Republic of China
- School of Mechanical Engineering, Xi'an Jiaotong University, Xi'an 710049, People's Republic of China
| | - Zhuangde Jiang
- State Key Laboratory for Manufacturing Systems Engineering, International Joint Laboratory for Micro/Nano Manufacturing and Measurement Technologies, Overseas Expertise Introduction Center for Micro/Nano Manufacturing and Nano Measurement Technologies Discipline innovation, Xi'an Jiaotong University (Yantai) Research Institute for Intelligent Sensing Technology and System, Xi'an Jiaotong University, Xi'an 710049, People's Republic of China
- School of Mechanical Engineering, Xi'an Jiaotong University, Xi'an 710049, People's Republic of China
| |
Collapse
|
5
|
Fabrication of piezoelectric poly(L-lactic acid)/BaTiO 3 fibre by the melt-spinning process. Sci Rep 2020; 10:16339. [PMID: 33004904 PMCID: PMC7529786 DOI: 10.1038/s41598-020-73261-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Accepted: 09/11/2020] [Indexed: 11/12/2022] Open
Abstract
Poly(l-lactic acid) (PLLA) based piezoelectric polymers are gradually becoming the substitute for the conventional piezoelectric ceramic and polymeric materials due to their low cost and biodegradable, non-toxic, piezoelectric and non-pyroelectric nature. To improve the piezoelectric properties of melt-spun poly(l-lactic acid) (PLLA)/BaTiO3, we optimized the post-processing conditions to increase the proportion of the β crystalline phase. The α → β phase transition behaviour was determined by two-dimensional wide-angle x-ray diffraction and differential scanning calorimetry. The piezoelectric properties of PLLA/BaTiO3 fibres were characterised in their yarn and textile form through a tapping method. From these results, we confirmed that the crystalline phase transition of PLLA/BaTiO3 fibres was significantly enhanced under the optimised post-processing conditions at a draw ratio of 3 and temperature of 120 °C during the melt-spinning process. The results indicated that PLLA/BaTiO3 fibres could be a one of the material for organic-based piezoelectric sensors for application in textile-based wearable piezoelectric devices.
Collapse
|
6
|
Piezoelectric Sensor with a Helical Structure on the Thread Core. APPLIED SCIENCES-BASEL 2020. [DOI: 10.3390/app10155073] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
In this paper, we introduce a piezoelectric sensor curled on a thread core in a helical structure. In particular, a polyvinylidene fluoride film was curled and fixed on a thread core. A series of experiments were designed to deliver flexural loading to the piezoelectric sensor, to study its sensing characteristics. The experimental results show that the sensing output of the sensor is in phase with the applied flexural loading. In addition, the output voltage of the textile-based piezoelectric sensor was measured according to various flexural loadings. The flexural bending angle applied to the piezoelectric sensor is expected to be a power function of the voltage output. In addition, we demonstrate a smart textile by weaving the piezoelectric sensor.
Collapse
|
7
|
Toroń B, Szperlich P, Kozioł M. SbSI Composites Based on Epoxy Resin and Cellulose for Energy Harvesting and Sensors-The Influence of SBSI Nanowires Conglomeration on Piezoelectric Properties. MATERIALS 2020; 13:ma13040902. [PMID: 32085456 PMCID: PMC7079649 DOI: 10.3390/ma13040902] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Revised: 02/11/2020] [Accepted: 02/14/2020] [Indexed: 11/22/2022]
Abstract
In this paper, ferroelectric antimony sulfoiodide (SbSI) nanowires have been used to produce composites for device fabrication, which can be used for energy harvesting and sensors. SbSI is a very useful material for nanogenerators and nanosensors in which the high values of the piezoelectric coefficient (d33 = 650 pC/N) and the electromechanical coefficient (k33 = 0.9) are essential. Alternatively, cellulose and epoxy resin were matrix materials in these composites, whereas SbSI nanowires fill the matrix. Piezoelectric response induced by vibrations has been presented. Then, a composite with an epoxy resin has been used as an element to construct a fiber-reinforced polymer piezoelectric sensor. For the first time, comparison of piezoelectric properties of cellulose/SbSI and epoxy resin/SbSI nanocomposite has been presented. The influence of concentration of SbSI nanowires for properties of epoxy resin/SbSI nanocomposite and in a fiber-reinforced polymer based on them has also been shown. Results of aligning the SbSI nanowires in the epoxy matrix during a curing process have been presented as well.
Collapse
Affiliation(s)
- Bartłomiej Toroń
- Institute of Physics–Center for Science and Education, Silesian University of Technology, ul. Krasińskiego 8, 40-019 Katowice, Poland; (B.T.); (P.S.)
| | - Piotr Szperlich
- Institute of Physics–Center for Science and Education, Silesian University of Technology, ul. Krasińskiego 8, 40-019 Katowice, Poland; (B.T.); (P.S.)
| | - Mateusz Kozioł
- Faculty of Materials Engineering, Silesian University of Technology, ul. Krasińskiego 8, 40-019 Katowice, Poland
- Correspondence:
| |
Collapse
|
8
|
Shi J, Liu S, Zhang L, Yang B, Shu L, Yang Y, Ren M, Wang Y, Chen J, Chen W, Chai Y, Tao X. Smart Textile-Integrated Microelectronic Systems for Wearable Applications. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2020; 32:e1901958. [PMID: 31273850 DOI: 10.1002/adma.201901958] [Citation(s) in RCA: 210] [Impact Index Per Article: 42.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Revised: 05/02/2019] [Indexed: 05/21/2023]
Abstract
The programmable nature of smart textiles makes them an indispensable part of an emerging new technology field. Smart textile-integrated microelectronic systems (STIMES), which combine microelectronics and technology such as artificial intelligence and augmented or virtual reality, have been intensively explored. A vast range of research activities have been reported. Many promising applications in healthcare, the internet of things (IoT), smart city management, robotics, etc., have been demonstrated around the world. A timely overview and comprehensive review of progress of this field in the last five years are provided. Several main aspects are covered: functional materials, major fabrication processes of smart textile components, functional devices, system architectures and heterogeneous integration, wearable applications in human and nonhuman-related areas, and the safety and security of STIMES. The major types of textile-integrated nonconventional functional devices are discussed in detail: sensors, actuators, displays, antennas, energy harvesters and their hybrids, batteries and supercapacitors, circuit boards, and memory devices.
Collapse
Affiliation(s)
- Jidong Shi
- Research Centre for Smart Wearable Technology, Institute of Textiles and Clothing, Hong Kong Polytechnic University, Hong Kong, 999077, China
| | - Su Liu
- Research Centre for Smart Wearable Technology, Institute of Textiles and Clothing, Hong Kong Polytechnic University, Hong Kong, 999077, China
| | - Lisha Zhang
- Research Centre for Smart Wearable Technology, Institute of Textiles and Clothing, Hong Kong Polytechnic University, Hong Kong, 999077, China
| | - Bao Yang
- Research Centre for Smart Wearable Technology, Institute of Textiles and Clothing, Hong Kong Polytechnic University, Hong Kong, 999077, China
| | - Lin Shu
- School of Electronic and Information Engineering, Southern China University of Technology, Guangzhou, 510640, Guangdong, China
| | - Ying Yang
- i-Lab, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, 215123, China
| | - Ming Ren
- i-Lab, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, 215123, China
| | - Yang Wang
- Department of Applied Physics, Hong Kong Polytechnic University, Hong Kong, 999077, China
| | - Jiewei Chen
- Department of Applied Physics, Hong Kong Polytechnic University, Hong Kong, 999077, China
| | - Wei Chen
- Research Centre for Smart Wearable Technology, Institute of Textiles and Clothing, Hong Kong Polytechnic University, Hong Kong, 999077, China
| | - Yang Chai
- Research Centre for Smart Wearable Technology, Institute of Textiles and Clothing, Hong Kong Polytechnic University, Hong Kong, 999077, China
- Department of Applied Physics, Hong Kong Polytechnic University, Hong Kong, 999077, China
| | - Xiaoming Tao
- Research Centre for Smart Wearable Technology, Institute of Textiles and Clothing, Hong Kong Polytechnic University, Hong Kong, 999077, China
| |
Collapse
|
9
|
Suspended-Core Microstructured Polymer Optical Fibers and Potential Applications in Sensing. SENSORS 2019; 19:s19163449. [PMID: 31394753 PMCID: PMC6719154 DOI: 10.3390/s19163449] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Revised: 07/25/2019] [Accepted: 08/03/2019] [Indexed: 02/06/2023]
Abstract
The study of the fabrication, material selection, and properties of microstructured polymer optical fibers (MPOFs) has long attracted great interest. This ever-increasing interest is due to their wide range of applications, mainly in sensing, including temperature, pressure, chemical, and biological species. This manuscript reviews the manufacturing of MPOFs, including the most recent single-step process involving extrusion from a modified 3D printer. MPOFs sensing applications are then discussed, with a stress on the benefit of using polymers.
Collapse
|
10
|
Jiang L, Yang Y, Chen R, Lu G, Li R, Li D, Humayun MS, Shung KK, Zhu J, Chen Y, Zhou Q. Flexible piezoelectric ultrasonic energy harvester array for bio-implantable wireless generator. NANO ENERGY 2019; 56:216-224. [PMID: 31475091 PMCID: PMC6717511 DOI: 10.1016/j.nanoen.2018.11.052] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Ultrasonic driven wireless charging technology has recently attracted much attention in the next generation bio-implantable systems; however, most developed ultrasonic energy harvesters are bulky and rigid and cannot be applied to general complex surfaces. Here, a flexible piezoelectric ultrasonic energy harvester (PUEH) array was designed and fabricated by integrating a large number of piezoelectric active elements with multilayered flexible electrodes in an elastomer membrane. The developed flexible PUEH device can be driven by the ultrasonic wave to produce continuous voltage and current outputs on both planar and curved surfaces, reaching output signals of more than 2 Vpp and 4 μA, respectively. Potential applications of using the flexible PUEH to charge energy-storage devices and power commercial electronics were demonstrated. Its low attenuation performance was also evaluated using the in vitro test of transmitting power through pork tissue, demonstrating its potential use in the next generation of wirelessly powered bio-implantable micro-devices.
Collapse
Affiliation(s)
- Laiming Jiang
- Roski Eye Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033 USA
- College of Materials Science and Engineering, Sichuan University, Chengdu 610064, China
| | - Yang Yang
- Epstein Department of Industrial and Systems Engineering, Department of Aerospace and Mechanical Engineering, Viterbi School of Engineering, University of Southern California, Los Angeles, CA 90089 USA
| | - Ruimin Chen
- Department of Biomedical Engineering, Viterbi School of Engineering, University of Southern California, Los Angeles, CA 90089 USA
| | - Gengxi Lu
- Department of Biomedical Engineering, Viterbi School of Engineering, University of Southern California, Los Angeles, CA 90089 USA
| | - Runze Li
- Roski Eye Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033 USA
- Department of Biomedical Engineering, Viterbi School of Engineering, University of Southern California, Los Angeles, CA 90089 USA
| | - Di Li
- School of Microelectronics, Xidian University, Xi’an 710071, China
| | - Mark S. Humayun
- Roski Eye Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033 USA
| | - K. Kirk Shung
- Department of Biomedical Engineering, Viterbi School of Engineering, University of Southern California, Los Angeles, CA 90089 USA
| | - Jianguo Zhu
- College of Materials Science and Engineering, Sichuan University, Chengdu 610064, China
| | - Yong Chen
- Epstein Department of Industrial and Systems Engineering, Department of Aerospace and Mechanical Engineering, Viterbi School of Engineering, University of Southern California, Los Angeles, CA 90089 USA
| | - Qifa Zhou
- Roski Eye Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033 USA
| |
Collapse
|
11
|
Yan W, Page A, Nguyen-Dang T, Qu Y, Sordo F, Wei L, Sorin F. Advanced Multimaterial Electronic and Optoelectronic Fibers and Textiles. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2019; 31:e1802348. [PMID: 30272829 DOI: 10.1002/adma.201802348] [Citation(s) in RCA: 95] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2018] [Revised: 06/09/2018] [Indexed: 06/08/2023]
Abstract
The ability to integrate complex electronic and optoelectronic functionalities within soft and thin fibers is one of today's key advanced manufacturing challenges. Multifunctional and connected fiber devices will be at the heart of the development of smart textiles and wearable devices. These devices also offer novel opportunities for surgical probes and tools, robotics and prostheses, communication systems, and portable energy harvesters. Among the various fiber-processing methods, the preform-to-fiber thermal drawing technique is a very promising process that is used to fabricate multimaterial fibers with complex architectures at micro- and nanoscale feature sizes. Recently, a series of scientific and technological breakthroughs have significantly advanced the field of multimaterial fibers, allowing a wider range of functionalities, better performance, and novel applications. Here, these breakthroughs, in the fundamental understanding of the fluid dynamics, rheology, and tailoring of materials microstructures at play in the thermal drawing process, are presented and critically discussed. The impact of these advances on the research landscape in this field and how they offer significant new opportunities for this rapidly growing scientific and technological platform are also discussed.
Collapse
Affiliation(s)
- Wei Yan
- Laboratory of Photonic Materials and Fibre Devices (FIMAP), Institute of Materials, Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015, Lausanne, Switzerland
| | - Alexis Page
- Laboratory of Photonic Materials and Fibre Devices (FIMAP), Institute of Materials, Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015, Lausanne, Switzerland
| | - Tung Nguyen-Dang
- Laboratory of Photonic Materials and Fibre Devices (FIMAP), Institute of Materials, Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015, Lausanne, Switzerland
| | - Yunpeng Qu
- Laboratory of Photonic Materials and Fibre Devices (FIMAP), Institute of Materials, Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015, Lausanne, Switzerland
| | - Federica Sordo
- Laboratory of Photonic Materials and Fibre Devices (FIMAP), Institute of Materials, Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015, Lausanne, Switzerland
| | - Lei Wei
- School of Electrical and Electronic Engineering, Nanyang Technological University, Singapore, 639798, Singapore
| | - Fabien Sorin
- Laboratory of Photonic Materials and Fibre Devices (FIMAP), Institute of Materials, Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015, Lausanne, Switzerland
| |
Collapse
|