1
|
Lapadula WJ, Cañadas MG, Ayub MJ. Characterization of Ribosome inactivating protein genes and their transcripts in Trialeurodes vaporariorum. Gene 2025; 948:149356. [PMID: 40010677 DOI: 10.1016/j.gene.2025.149356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2024] [Revised: 01/10/2025] [Accepted: 02/22/2025] [Indexed: 02/28/2025]
Abstract
Ribosome-inactivating proteins (RIPs) are rRNA N-glycosylases (EC 3.2.2.22) that depurinate an adenine residue from the conserved alpha-sarcin/ricin loop in rRNA, blocking protein synthesis. In previous research, we demonstrated that whiteflies from the Aleyrodidae family (e.g., Bemisia tabaci), mosquitoes from the Culicinae subfamily (e.g., Aedes aegypti), and flies of Sciaroidea superfamily (e.g., Contarinia nasturtii) acquired these genes via three independent horizontal gene transfer events. The temporal expression profiles analyzed in mosquitoes and flies are consistent with the expected for immune effector molecules of insects. Notably, in A. aegypti, we found that these genes contribute to immunity. In whiteflies, codon analysis suggests that RIP genes have evolved under the influence of natural selection. Public transcriptomic experiments have shown that these genes are expressed in the adult stage of B. tabaci. Despite computational findings supporting RIP genes functionality in whiteflies, no experimental studies have been conducted. Furthermore, there is currently no publicly available RNA-seq data evaluating gene expression throughout ontogeny in the Aleyrodidae family. In this work, we experimentally demonstrated the presence of these foreign genes in the genome of Trialeurodes vaporariorum. We quantified their expression across the life cycle stages of this species and analyzed their untranslated regions. The results obtained contribute to a deeper understanding of the biological roles that these ribotoxin encoding genes may play in whiteflies and other insects.
Collapse
Affiliation(s)
- Walter J Lapadula
- Instituto Multidisciplinario de Investigaciones Biológicas de San Luis, IMIBIO-SL-CONICET and Facultad de Química, Bioquímica y Farmacia, Universidad Nacional de San Luis, Ejercito de Los Andes, 950, D5700HHW San Luis, Argentina.
| | - María Guadalupe Cañadas
- Instituto Multidisciplinario de Investigaciones Biológicas de San Luis, IMIBIO-SL-CONICET and Facultad de Química, Bioquímica y Farmacia, Universidad Nacional de San Luis, Ejercito de Los Andes, 950, D5700HHW San Luis, Argentina
| | - Maximiliano Juri Ayub
- Instituto Multidisciplinario de Investigaciones Biológicas de San Luis, IMIBIO-SL-CONICET and Facultad de Química, Bioquímica y Farmacia, Universidad Nacional de San Luis, Ejercito de Los Andes, 950, D5700HHW San Luis, Argentina
| |
Collapse
|
2
|
Bhardwaj P, Raigond B, Raigond P, Verma A, Verma G, Kochhar T, Patroti P, Das IK, Satyavathi CT. Antiviral activity of ribosome inactivating proteins for management of plant viral infection. Virology 2025; 603:110403. [PMID: 39894605 DOI: 10.1016/j.virol.2025.110403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Revised: 12/28/2024] [Accepted: 01/08/2025] [Indexed: 02/04/2025]
Abstract
In nature, plants exhibit various defense mechanisms to protect themselves from viral infection. Reported to harbor virus-inhibiting compounds like Ribosome inactivating proteins (RIPs). It's a matter of how we explore, identify, and utilize RIPs in managing a given stress. RIPs have been found to contain antiviral, anticancer, and neurotoxic effects and are used in various biomedical and agricultural fields. The expression of RIPs could be enhanced in plants to improve their defense against biotic and abiotic stresses. Identification of new RIPs and genetic sequencing led to the development of new phylogenetic theories. Studies on the interaction between RIPs and cells have increased the knowledge regarding the handling of exogenous proteins by cells. The review provides a brief historical preview, classification, mode of action, and broader applications with a special focus on managing plant viral diseases and concerns to mankind.
Collapse
Affiliation(s)
- Pooja Bhardwaj
- ICAR-Central Potato Research Institute, Shimla, 171001, Himachal Pradesh, India
| | - Baswaraj Raigond
- ICAR-Central Potato Research Institute, Shimla, 171001, Himachal Pradesh, India; Centre for Rabi Sorghum, ICAR-Indian Institute of Millets Research, Regional Station, Solapur, 413006, Maharashtra, India.
| | - Pinky Raigond
- ICAR-Central Potato Research Institute, Shimla, 171001, Himachal Pradesh, India; ICAR-National Research Centre on Pomegranate, Solapur, 413255, Maharashtra, India
| | - Ambika Verma
- ICAR-Central Potato Research Institute, Shimla, 171001, Himachal Pradesh, India
| | - Gaurav Verma
- ICAR-Vivekananda Parvatiya Krishi Anusandhan Sansthan, Almora, 263601, Uttarakhand, India
| | - Tarvinder Kochhar
- ICAR-Central Potato Research Institute, Shimla, 171001, Himachal Pradesh, India
| | - Parashuram Patroti
- Centre for Rabi Sorghum, ICAR-Indian Institute of Millets Research, Regional Station, Solapur, 413006, Maharashtra, India
| | - I K Das
- ICAR- ICAR-Indian Institute of Millets Research, Hyderabad, 500030, Telangana, India
| | - C Tara Satyavathi
- ICAR- ICAR-Indian Institute of Millets Research, Hyderabad, 500030, Telangana, India
| |
Collapse
|
3
|
Liu M, Zhou S, Cao Y, Yang K, Xiao Y, Wang W. Characterization of MAP c21873-1 as a new counter-selectable marker for unmarked genetic modification of Pichia pastoris. Microb Cell Fact 2024; 23:224. [PMID: 39118053 PMCID: PMC11312372 DOI: 10.1186/s12934-024-02496-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Accepted: 07/30/2024] [Indexed: 08/10/2024] Open
Abstract
BACKGROUND Selection markers are useful in genetic modification of yeast Pichia pastoris. However, the leakage of the promoter caused undesired expression of selection markers especially those toxic proteins like MazF, halting the cell growth and hampering the genetic manipulation in procaryotic system. In this study, a new counter-selectable marker-based strategy has been established for seamless modification with high efficiency and low toxicity. RESULTS At first, the leaky expression of the enhanced green fluorescent protein (EGFP) as a reporter gene under the control of six inducible promoters of P. pastoris was investigated in two hosts Escherichia coli and P. pastoris, respectively. The results demonstrated that the DAS1 and FDH1 promoters (PDAS1 and PFDH1) had the highest leakage expression activities in procaryotes and eukaryotes, and the DAS2 promoter (PDAS2) was inducible with medium strength but low leakage expression activity, all of which were selected for further investigation. Next, Mirabilis antiviral proteins (MAPs) c21873-1, c21873-1T (truncated form of c21873-1) and c23467 were mined as the new counter-selectable markers, and hygromycin B (Hyg B) resistance gene was used as the positive-selectable marker, respectively. Then, modular plasmids with MAP-target gene-Hyg B cassettes were constructed and used to transform into P. pastoris cells after linearization, and the target genes were integrated into its genome at the BmT1 locus through single-crossover homologous recombination (HR). After counter-selection induced by methanol medium, the markers c21873-1 and c21873-1T were recycled efficiently. But c23467 failed to be recycled due to its toxic effect on the P. pastoris cells. At last, the counter-selectable marker c21873-1 under the tightly regulated PDAS2 enabled the encoding genes of reporter EGFP and tested proteins to be integrated into the target locus and expressed successfully. CONCLUSIONS We have developed MAP c21873-1 as a novel counter-selectable marker which could perform efficient gene knock-in by site-directed HR. Upon counter-selection, the marker could be recycled for repeated use, and no undesirable sequences were introduced except for the target gene. This unmarked genetic modification strategy may be extended to other genetic modification including but not limited to gene knock-out and site-directed mutagenesis in future.
Collapse
Affiliation(s)
- Minzhi Liu
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, China
- Key Laboratory of Biosynthesis of Natural Products of National Health Commission of the Peoples Republic of China, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, China
| | - Sihan Zhou
- Key Laboratory of Biosynthesis of Natural Products of National Health Commission of the Peoples Republic of China, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, China
| | - Yunsong Cao
- Key Laboratory of Biosynthesis of Natural Products of National Health Commission of the Peoples Republic of China, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, China
| | - Keqin Yang
- Key Laboratory of Biosynthesis of Natural Products of National Health Commission of the Peoples Republic of China, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, China
| | - Yao Xiao
- Key Laboratory of Biosynthesis of Natural Products of National Health Commission of the Peoples Republic of China, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, China
| | - Wei Wang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, China.
- Key Laboratory of Biosynthesis of Natural Products of National Health Commission of the Peoples Republic of China, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, China.
| |
Collapse
|
4
|
Islam T, Azad RB, Kasfy SH, Rahman AA, Khan TZ. Horizontal gene transfer from plant to whitefly. Trends Biotechnol 2023; 41:853-856. [PMID: 36739179 DOI: 10.1016/j.tibtech.2023.01.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 01/03/2023] [Accepted: 01/11/2023] [Indexed: 02/05/2023]
Abstract
The recent discovery of the horizontal transfer of a toxin-neutralizing gene from plant to whitefly (Bemisia tabaci), a polyphagous insect, sparked a new area of study. In this forum, we discuss some potential biotechnological applications of this newly discovered knowledge in the coevolutionary arms race between plants and whitefly.
Collapse
Affiliation(s)
- Tofazzal Islam
- Institute of Biotechnology and Genetic Engineering, Bangabandhu Sheikh Mujibur Rahman Agricultural University, Gazipur 1706, Bangladesh.
| | - Rojana B Azad
- Institute of Biotechnology and Genetic Engineering, Bangabandhu Sheikh Mujibur Rahman Agricultural University, Gazipur 1706, Bangladesh
| | - Shamfin H Kasfy
- Institute of Biotechnology and Genetic Engineering, Bangabandhu Sheikh Mujibur Rahman Agricultural University, Gazipur 1706, Bangladesh
| | - Arin A Rahman
- Institute of Biotechnology and Genetic Engineering, Bangabandhu Sheikh Mujibur Rahman Agricultural University, Gazipur 1706, Bangladesh
| | - Tasnim Z Khan
- Institute of Biotechnology and Genetic Engineering, Bangabandhu Sheikh Mujibur Rahman Agricultural University, Gazipur 1706, Bangladesh
| |
Collapse
|
5
|
Lapadula WJ, Juri Ayub M. Ribosome Inactivating Proteins in Insects: HGT, gene expression, and functional implications. Gene 2023:147547. [PMID: 37286020 DOI: 10.1016/j.gene.2023.147547] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 05/30/2023] [Accepted: 06/02/2023] [Indexed: 06/09/2023]
Abstract
Ribosome-inactivating proteins (RIPs) are RNA N-glycosidases that depurinate an adenine residue in the conserved alpha-sarcin/ricin loop (SRL) of rRNA, inhibiting protein synthesis. Previously, we reported the existence of these toxins in insects, whose presence is restricted to mosquitoes from the Culicinae subfamily (e.g., Aedes aegypti) and whiteflies from the Aleyrodidae family (e.g., Bemisia tabaci). Both groups of genes are derived from two independent horizontal gene transfer (HGT) events and are evolved under purifying selection. Here, we report and characterize the occurrence of a third HGT event in the Sciaroidea superfamily, which supports the recurrent acquisition of RIP genes by insects. Transcriptomic experiments, available in databases, allowed us to describe the temporal and spatial expression profiles for these foreign genes in these organisms. Furthermore, we found that RIP expression is induced after infection with pathogens and provided, for the first time, transcriptomic evidence of parasite SRL depurination. This evidence suggests a possible role of these foreign genes as immune effectors in insects.
Collapse
Affiliation(s)
- Walter J Lapadula
- Instituto Multidisciplinario de Investigaciones Biológicas de San Luis, IMIBIO-SL-CONICET and Facultad de Química, Bioquímica y Farmacia, Universidad Nacional de San Luis, Ejército de Los Andes, 950, D5700HHW San Luis, Argentina.
| | - Maximiliano Juri Ayub
- Instituto Multidisciplinario de Investigaciones Biológicas de San Luis, IMIBIO-SL-CONICET and Facultad de Química, Bioquímica y Farmacia, Universidad Nacional de San Luis, Ejército de Los Andes, 950, D5700HHW San Luis, Argentina
| |
Collapse
|
6
|
Oliver KM. Flies co-opt bacterial toxins for use in defense against parasitoids. Proc Natl Acad Sci U S A 2023; 120:e2304493120. [PMID: 37126694 PMCID: PMC10175828 DOI: 10.1073/pnas.2304493120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/03/2023] Open
Affiliation(s)
- Kerry M. Oliver
- Department of Entomology, University of Georgia, Athens, GA30602
| |
Collapse
|
7
|
Dougherty K, Hudak KA. Phylogeny and domain architecture of plant ribosome inactivating proteins. PHYTOCHEMISTRY 2022; 202:113337. [PMID: 35934106 DOI: 10.1016/j.phytochem.2022.113337] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 07/01/2022] [Accepted: 07/20/2022] [Indexed: 06/15/2023]
Abstract
Ribosome inactivating proteins (RIPs) are rRNA N-glycosylases (EC 3.2.2.22) best known for hydrolyzing an adenine base from the conserved sarcin/ricin loop of ribosomal RNA. Protein translation is inhibited by ribosome depurination; therefore, RIPs are generally considered toxic to cells. The expression of some RIPs is upregulated by biotic and abiotic stress, though the connection between RNA depurination and defense response is not well understood. Despite their prevalence in approximately one-third of flowering plant orders, our knowledge of RIPs stems primarily from biochemical analyses of individuals or genomics-scale analyses of small datasets from a limited number of species. Here, we performed an unbiased search for proteins with RIP domains and identified several-fold more RIPs than previously known - more than 800 from 120 species, many with novel associated domains and physicochemical characteristics. Based on protein domain configuration, we established 15 distinct groups, suggesting diverse functionality. Surprisingly, most of these RIPs lacked a signal peptide, indicating they may be localized to the nucleocytoplasm of cells, raising questions regarding their toxicity against conspecific ribosomes. Our phylogenetic analysis significantly extends previous models for RIP evolution in plants, predicting an original single-domain RIP that later evolved to acquire a signal peptide and different protein domains. We show that RIPs are distributed throughout 21 plant orders with many species maintaining genes for more than one RIP group. Our analyses provide the foundation for further characterization of these new RIP types, to understand how these enzymes function in plants.
Collapse
Affiliation(s)
- Kyra Dougherty
- Department of Biology, York University, Toronto, Canada.
| | | |
Collapse
|
8
|
Cong D, Li Y, Ludford PT, Tor Y. Isomorphic Fluorescent Nucleosides Facilitate Real-Time Monitoring of RNA Depurination by Ribosome Inactivating Proteins. Chemistry 2022; 28:e202200994. [PMID: 35390188 PMCID: PMC9233005 DOI: 10.1002/chem.202200994] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Indexed: 09/07/2024]
Abstract
Ribosome-inactivating proteins, a family of highly cytotoxic proteins, interfere with protein synthesis by depurinating a specific adenosine residue within the conserved α-sarcin/ricin loop of eukaryotic ribosomal RNA. Besides being biological warfare agents, certain RIPs have been promoted as potential therapeutic tools. Monitoring their deglycosylation activity and their inhibition in real time have remained, however, elusive. Herein, we describe the enzymatic preparation and utility of consensus RIP hairpin substrates in which specific G residues, next to the depurination site, are surgically replaced with tz G and th G, fluorescent G analogs. By strategically modifying key positions with responsive fluorescent surrogate nucleotides, RIP-mediated depurination can be monitored in real time by steady-state fluorescence spectroscopy. Subtle differences observed in preferential depurination sites provide insight into the RNA folding as well as RIPs' substrate recognition features.
Collapse
Affiliation(s)
- Deyuan Cong
- Department of Chemistry and Biochemistry, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA, 92093-0358, USA
| | - Yao Li
- Department of Chemistry and Biochemistry, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA, 92093-0358, USA
| | - Paul T Ludford
- Department of Chemistry and Biochemistry, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA, 92093-0358, USA
| | - Yitzhak Tor
- Department of Chemistry and Biochemistry, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA, 92093-0358, USA
| |
Collapse
|
9
|
Whitefly genomes contain ribotoxin coding genes acquired from plants. Sci Rep 2020; 10:15503. [PMID: 32968092 PMCID: PMC7511414 DOI: 10.1038/s41598-020-72267-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Accepted: 08/28/2020] [Indexed: 11/21/2022] Open
Abstract
Ribosome inactivating proteins (RIPs) are RNA N-glycosidases that depurinate a specific adenine residue in the conserved sarcin/ricin loop of 28S rRNA. These enzymes are widely distributed among plants and bacteria. Previously, we have described for the first time RIP genes in mosquitoes belonging to the Culicidae family. We showed that these genes are derived from a single event of horizontal gene transfer (HGT) from a prokaryotic donor. Mosquito RIP genes are evolving under purifying selection, strongly suggesting that these toxins have acquired a functional role. In this work, we show the existence of two RIP encoding genes in the genome of the whitefly Bemisia tabaci, a hemiptera species belonging to the Aleyrodidae family distantly related to mosquitoes. Contamination artifacts were ruled out analyzing three independent B. tabaci genome databases. In contrast to mosquito RIPs, whitefly genes harbor introns and according to transcriptomic evidence are transcribed and spliced. Phylogeny and the taxonomic distribution strongly support that whitefly RIP genes are derived from an independent HGT event from a plant source. These results, along with our previous description of RIPs in Diptera, suggest that the acquired genes are functional in these insects and confer some fitness advantage.
Collapse
|
10
|
Lapadula WJ, Marcet PL, Taracena ML, Lenhart A, Juri Ayub M. Characterization of horizontally acquired ribotoxin encoding genes and their transcripts in Aedes aegypti. Gene 2020; 754:144857. [PMID: 32512159 DOI: 10.1016/j.gene.2020.144857] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Revised: 06/01/2020] [Accepted: 06/04/2020] [Indexed: 10/24/2022]
Abstract
Ribosome Inactivating Proteins (RIPs) are RNA N-glycosidases that depurinate a specific adenine residue in the conserved sarcin/ricin loop of the 28S rRNA. The occurrence of RIP genes has been described in a wide range of plant taxa, as well as in several species of bacteria and fungi. A remarkable case is the presence of these genes in metazoans belonging to the Culicinae subfamily. We reported that these genes are derived from a single horizontal gene transfer event, most likely from a bacterial donor species. Moreover, we have shown evidence that mosquito RIP genes are evolving under purifying selection, suggesting that these toxins have acquired a functional role in these organisms. In the present work, we characterized the intra-specific sequence variability of Aedes aegypti RIP genes (RIPAe1, RIPAe2, and RIPAe3) and tested their expression at the mRNA level. Our results show that RIPAe2 and RIPAe3 are transcribed and polyadenylated, and their expression levels are modulated across the developmental stages. Varibility among genes was observed, including the existence of null alleles for RIPAe1 and RIPAe2, with variants showing partial deletions. These results further support the existence of a physiological function for these foreign genes in mosquitoes. The possible nature of this functionality is discussed.
Collapse
Affiliation(s)
- Walter J Lapadula
- Instituto Multidisciplinario de Investigaciones Biológicas de San Luis, IMIBIO-SL-CONICET and Facultad de Química, Bioquímica y Farmacia, Universidad Nacional de San Luis, Ejercito de Los Andes, 950, D5700HHW San Luis, Argentina
| | - Paula L Marcet
- Centers for Disease Control and Prevention, Division of Parasitic Diseases and Malaria, Entomology Branch. 1600 Clifton Road, Atlanta, GA 30333, USA.
| | - Mabel L Taracena
- Centers for Disease Control and Prevention, Division of Parasitic Diseases and Malaria, Entomology Branch. 1600 Clifton Road, Atlanta, GA 30333, USA
| | - Audrey Lenhart
- Centers for Disease Control and Prevention, Division of Parasitic Diseases and Malaria, Entomology Branch. 1600 Clifton Road, Atlanta, GA 30333, USA
| | - Maximiliano Juri Ayub
- Instituto Multidisciplinario de Investigaciones Biológicas de San Luis, IMIBIO-SL-CONICET and Facultad de Química, Bioquímica y Farmacia, Universidad Nacional de San Luis, Ejercito de Los Andes, 950, D5700HHW San Luis, Argentina.
| |
Collapse
|
11
|
Wong JH, Bao H, Ng TB, Chan HHL, Ng CCW, Man GCW, Wang H, Guan S, Zhao S, Fang EF, Rolka K, Liu Q, Li C, Sha O, Xia L. New ribosome-inactivating proteins and other proteins with protein synthesis-inhibiting activities. Appl Microbiol Biotechnol 2020; 104:4211-4226. [PMID: 32193575 DOI: 10.1007/s00253-020-10457-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2019] [Revised: 02/05/2020] [Accepted: 02/10/2020] [Indexed: 12/21/2022]
Abstract
Ribosome-inactivating proteins (RIPs) consist of three varieties. Type 1 RIPs are single-chained and approximately 30-kDa in molecular weight. Type 2 RIPs are double-chained and composed of a type 1 RIP chain and a lectin chain. Type III RIPs, such as maize b-32 barley and JIP60 which are produced as single-domain proenzymes, possess an N-terminal domain corresponding to the A domain of RIPs and fused to a C-terminal domain. In addition to the aforementioned three types of RIPs originating from flowering plants, there are recently discovered proteins and peptides with ribosome-inactivating and protein synthesis inhibitory activities but which are endowed with characteristics such as molecular weights distinctive from those of the regular RIPs. These new/unusual RIPs discussed in the present review encompass metazoan RIPs from Anopheles and Culex mosquitos, antimicrobial peptides derived from RIP of the pokeweed Phytolacca dioica, maize RIP (a type III RIP derived from a precursor form), RIPs from the garden pea and the kelp. In addition, RIPs with a molecular weight smaller than those of regular type 1 RIPs are produced by plants in the Cucurbitaceae family including the bitter gourd, bottle gourd, sponge gourd, ridge gourd, wax gourd, hairy gourd, pumpkin, and Chinese cucumber. A small type II RIP from camphor tree (Cinnamomum camphora) seeds and a snake gourd type II RIP with its catalytic chain cleaved into two have been reported. RIPs produced from mushrooms including the golden needle mushroom, king tuber mushroom, straw mushroom, and puffball mushroom are also discussed in addition to a type II RIP from the mushroom Polyporus umbellatus. Bacterial (Spiroplasma) RIPs associated with the fruitfly, Shiga toxin, and Streptomyces coelicolor RIP are also dealt with. The aforementioned proteins display a diversity of molecular weights, amino acid sequences, and mechanisms of action. Some of them are endowed with exploitable antipathogenic activities.
Collapse
Affiliation(s)
- Jack Ho Wong
- Department of Anatomy, Histology and Embryology, School of Basic Medical Sciences, Shenzhen University, Shenzhen, China.
- State Key Laboratory of Respiratory Disease for Allergy, School of Medicine, Shenzhen University, Shenzhen, Guangdong, China.
| | - Hui Bao
- State Key Laboratory of Respiratory Disease for Allergy, School of Medicine, Shenzhen University, Shenzhen, Guangdong, China
| | - Tzi Bun Ng
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China.
| | | | | | - Gene Chi Wai Man
- Department of Orthopedics and Traumatology, The Chinese University of Hong Kong, Hong Kong, China
| | - Hexiang Wang
- Department of Microbiology, China Agricultural University, Beijing, China
| | - Suzhen Guan
- Department of Social Medicine, College of Public Health, Xinjiang Medical University, Urumqi, China
| | - Shuang Zhao
- Institute of Plant and Environment Protection, Beijing Academy of Agriculture and Forestry Sciences, and Beijing Key Laboratory of Fruits and Vegetable Storage and Processing, Key Laboratory of Vegetable Postharvest Processing, Ministry of Agriculture, Beijing, China
| | - Evandro Fei Fang
- Department of Clinical Molecular Biology, University of Oslo and Akershus University Hospital, Lørenskog, Norway
- The Norwegian Centre on Healthy Ageing (NO-Age), Oslo, Norway
| | - Krzysztof Rolka
- Department of Molecular Biochemistry, Faculty of Chemistry, University of Gdańsk, Wita Stwosza 63, Gdańsk, Poland
| | - Qin Liu
- Institute of Plant Nutrition, Agricultural Resources and Environmental Science, Henan Academy of Agricultural Sciences, Zhengzhou, China
| | - Chunman Li
- Department of Anatomy, Histology and Embryology, School of Basic Medical Sciences, Shenzhen University, Shenzhen, China
| | - Ou Sha
- Department of Anatomy, Histology and Embryology, School of Basic Medical Sciences, Shenzhen University, Shenzhen, China
| | - Lixin Xia
- State Key Laboratory of Respiratory Disease for Allergy, School of Medicine, Shenzhen University, Shenzhen, Guangdong, China.
| |
Collapse
|
12
|
Zhu F, Zhou YK, Ji ZL, Chen XR. The Plant Ribosome-Inactivating Proteins Play Important Roles in Defense against Pathogens and Insect Pest Attacks. FRONTIERS IN PLANT SCIENCE 2018; 9:146. [PMID: 29479367 PMCID: PMC5811460 DOI: 10.3389/fpls.2018.00146] [Citation(s) in RCA: 69] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2017] [Accepted: 01/25/2018] [Indexed: 05/20/2023]
Abstract
Ribosome-inactivating proteins (RIPs) are toxic N-glycosidases that depurinate eukaryotic and prokaryotic rRNAs, thereby arresting protein synthesis during translation. RIPs are widely found in various plant species and within different tissues. It is demonstrated in vitro and in transgenic plants that RIPs have been connected to defense by antifungal, antibacterial, antiviral, and insecticidal activities. However, the mechanism of these effects is still not completely clear. There are a number of reviews of RIPs. However, there are no reviews on the biological functions of RIPs in defense against pathogens and insect pests. Therefore, in this report, we focused on the effect of RIPs from plants in defense against pathogens and insect pest attacks. First, we summarize the three different types of RIPs based on their physical properties. RIPs are generally distributed in plants. Then, we discuss the distribution of RIPs that are found in various plant species and in fungi, bacteria, algae, and animals. Various RIPs have shown unique bioactive properties including antibacterial, antifungal, antiviral, and insecticidal activity. Finally, we divided the discussion into the biological roles of RIPs in defense against bacteria, fungi, viruses, and insects. This review is focused on the role of plant RIPs in defense against bacteria, fungi, viruses, and insect attacks. The role of plant RIPs in defense against pathogens and insects is being comprehended currently. Future study utilizing transgenic technology approaches to study the mechanisms of RIPs will undoubtedly generate a better comprehending of the role of plant RIPs in defense against pathogens and insects. Discovering additional crosstalk mechanisms between RIPs and phytohormones or reactive oxygen species (ROS) against pathogen and insect infections will be a significant subject in the field of biotic stress study. These studies are helpful in revealing significance of genetic control that can be beneficial to engineer crops tolerance to biotic stress.
Collapse
|
13
|
Lapadula WJ, Ayub MJ. Ribosome Inactivating Proteins from an evolutionary perspective. Toxicon 2017; 136:6-14. [PMID: 28651991 DOI: 10.1016/j.toxicon.2017.06.012] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2017] [Revised: 06/19/2017] [Accepted: 06/20/2017] [Indexed: 01/13/2023]
Abstract
Ribosome Inactivating Proteins (RIPs) are rRNA N-glycosidases that inhibit protein synthesis through the elimination of a single adenine residue from 28S rRNA. Many of these toxins have been characterized in depth from a biochemical and molecular point of view. In addition, their potential use in medicine as highly selective toxins is being explored. In contrast, the evolutionary history of RIP encoding genes has remained traditionally underexplored. In recent years, accumulation of large genomic data has fueled research on this issue and revealed unexpected information about the origin and evolution of RIP toxins. In this review we summarize the current evidence available on the occurrence of different evolutionary mechanisms (gene duplication and losses, horizontal gene transfer, synthesis de novo and domain combination) involved in the evolution of the RIP gene family. Finally, we propose a revised nomenclature for RIP genes based on their evolutionary history.
Collapse
Affiliation(s)
- Walter Jesús Lapadula
- Instituto Multidisciplinario de Investigaciones Biológicas de San Luis, IMIBIO-SL-CONICET, Facultad de Química, Bioquímica y Farmacia, Universidad Nacional de San Luis, San Luis, Argentina.
| | - Maximiliano Juri Ayub
- Instituto Multidisciplinario de Investigaciones Biológicas de San Luis, IMIBIO-SL-CONICET, Facultad de Química, Bioquímica y Farmacia, Universidad Nacional de San Luis, San Luis, Argentina.
| |
Collapse
|