1
|
He Y, Shen M, Wang X, Yin A, Liu B, Zhu J, Zhang Z. Suppression of Interferon Response and Antiviral Strategies of Bunyaviruses. Trop Med Infect Dis 2024; 9:205. [PMID: 39330894 PMCID: PMC11435552 DOI: 10.3390/tropicalmed9090205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 08/28/2024] [Accepted: 09/05/2024] [Indexed: 09/28/2024] Open
Abstract
The order Bunyavirales belongs to the class of Ellioviricetes and is classified into fourteen families. Some species of the order Bunyavirales pose potential threats to human health. The continuously increasing research reveals that various viruses within this order achieve immune evasion in the host through suppressing interferon (IFN) response. As the types and nodes of the interferon response pathway are continually updated or enriched, the IFN suppression mechanisms and target points of different virus species within this order are also constantly enriched and exhibit variations. For instance, Puumala virus (PUUV) and Tula virus (TULV) can inhibit IFN response through their functional NSs inhibiting downstream factor IRF3 activity. Nevertheless, the IFN suppression mechanisms of Dabie bandavirus (DBV) and Guertu virus (GTV) are mostly mediated by viral inclusion bodies (IBs) or filamentous structures (FSs). Currently, there are no effective drugs against several viruses belonging to this order that pose significant threats to society and human health. While the discovery, development, and application of antiviral drugs constitute a lengthy process, our focus on key targets in the IFN response suppression process of the virus leads to potential antiviral strategies, which provide references for both basic research and practical applications.
Collapse
Affiliation(s)
- Yingying He
- Institute of Clinical Virology, Department of Infectious Diseases, The Second Affiliated Hospital of Anhui Medical University, Hefei 230601, China; (Y.H.); (M.S.); (X.W.); (A.Y.); (B.L.)
- Department of Clinical Medicine, Anhui Medical University, Hefei 230032, China
| | - Min Shen
- Institute of Clinical Virology, Department of Infectious Diseases, The Second Affiliated Hospital of Anhui Medical University, Hefei 230601, China; (Y.H.); (M.S.); (X.W.); (A.Y.); (B.L.)
- Department of Clinical Medicine, Anhui Medical University, Hefei 230032, China
| | - Xiaohe Wang
- Institute of Clinical Virology, Department of Infectious Diseases, The Second Affiliated Hospital of Anhui Medical University, Hefei 230601, China; (Y.H.); (M.S.); (X.W.); (A.Y.); (B.L.)
- Department of Clinical Medicine, Anhui Medical University, Hefei 230032, China
| | - Anqi Yin
- Institute of Clinical Virology, Department of Infectious Diseases, The Second Affiliated Hospital of Anhui Medical University, Hefei 230601, China; (Y.H.); (M.S.); (X.W.); (A.Y.); (B.L.)
- Department of Clinical Medicine, Anhui Medical University, Hefei 230032, China
| | - Bingyan Liu
- Institute of Clinical Virology, Department of Infectious Diseases, The Second Affiliated Hospital of Anhui Medical University, Hefei 230601, China; (Y.H.); (M.S.); (X.W.); (A.Y.); (B.L.)
| | - Jie Zhu
- Institute of Clinical Virology, Department of Infectious Diseases, The Second Affiliated Hospital of Anhui Medical University, Hefei 230601, China; (Y.H.); (M.S.); (X.W.); (A.Y.); (B.L.)
| | - Zhenhua Zhang
- Institute of Clinical Virology, Department of Infectious Diseases, The Second Affiliated Hospital of Anhui Medical University, Hefei 230601, China; (Y.H.); (M.S.); (X.W.); (A.Y.); (B.L.)
| |
Collapse
|
2
|
Tolstova T, Dotsenko E, Kozhin P, Novikova S, Zgoda V, Rusanov A, Luzgina N. The effect of TLR3 priming conditions on MSC immunosuppressive properties. Stem Cell Res Ther 2023; 14:344. [PMID: 38031182 PMCID: PMC10687850 DOI: 10.1186/s13287-023-03579-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Accepted: 11/21/2023] [Indexed: 12/01/2023] Open
Abstract
BACKGROUND Mesenchymal stromal cells (MSCs) have regenerative and immunomodulatory properties, making them suitable for cell therapy. Toll-like receptors (TLRs) in MSCs respond to viral load by secreting immunosuppressive or proinflammatory molecules. The expression of anti-inflammatory molecules in MSCs can be altered by the concentration and duration of exposure to the TLR3 ligand polyinosinic-polycytidylic acid (poly(I:C)). This study aimed to optimize the preconditioning of MSCs with poly(I:C) to increase immunosuppressive effects and to identify MSCs with activated TLR3 (prMSCs). METHODS Flow cytometry and histochemical staining were used to analyze MSCs for immunophenotype and differentiation potential. MSCs were exposed to poly(I:C) at 1 and 10 μg/mL for 1, 3, and 24 h, followed by determination of the expression of IDO1, WARS1, PD-L1, TSG-6, and PTGES2 and PGE2 secretion. MSCs and prMSCs were cocultured with intact (J-) and activated (J+) Jurkat T cells. The proportion of proliferating and apoptotic J+ and J- cells, IL-10 secretion, and IL-2 production after cocultivation with MSCs and prMSCs were measured. Liquid chromatography-mass spectrometry and bioinformatics analysis identified proteins linked to TLR3 activation in MSCs. RESULTS Poly(I:C) at 10 μg/mL during a 3-h incubation caused the highest expression of immunosuppression markers in MSCs. Activation of prMSCs caused a 18% decrease in proliferation and a one-third increase in apoptotic J+ cells compared to intact MSCs. Cocultures of prMSCs and Jurkat cells had increased IL-10 and decreased IL-2 in the conditioned medium. A proteomic study of MSCs and prMSCs identified 53 proteins with altered expression. Filtering the dataset with Gene Ontology and Reactome Pathway revealed that poly(I:C)-induced proteins activate the antiviral response. Protein‒protein interactions by String in prMSCs revealed that the antiviral response and IFN I signaling circuits were more active than in native MSCs. prMSCs expressed more cell adhesion proteins (ICAM-I and Galectin-3), PARP14, PSMB8, USP18, and GBP4, which may explain their anti-inflammatory effects on Jurkat cells. CONCLUSIONS TLR3 activation in MSCs is dependent on exposure time and poly(I:C) concentration. The maximum expression of immunosuppressive molecules was observed with 10 µg/mL poly(I:C) for 3-h preconditioning. This priming protocol for MSCs enhances the immunosuppressive effects of prMSCs on T cells.
Collapse
Affiliation(s)
- Tatiana Tolstova
- Institute of Biomedical Chemistry, Pogodinskaya, Moscow, Russia, 119121
| | | | - Peter Kozhin
- Institute of Biomedical Chemistry, Pogodinskaya, Moscow, Russia, 119121
| | - Svetlana Novikova
- Institute of Biomedical Chemistry, Pogodinskaya, Moscow, Russia, 119121
| | - Victor Zgoda
- Institute of Biomedical Chemistry, Pogodinskaya, Moscow, Russia, 119121
| | - Alexander Rusanov
- Institute of Biomedical Chemistry, Pogodinskaya, Moscow, Russia, 119121.
| | - Nataliya Luzgina
- Institute of Biomedical Chemistry, Pogodinskaya, Moscow, Russia, 119121
| |
Collapse
|
3
|
Zhang Q, Lei X, Wang F, He X, Liu L, Hou Y, Liu Y, Jin F, Chen C, Li B. ERK1-mediated immunomodulation of mesenchymal stem cells ameliorates inflammatory disorders. iScience 2023; 26:107868. [PMID: 37790278 PMCID: PMC10543658 DOI: 10.1016/j.isci.2023.107868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 08/03/2023] [Accepted: 09/06/2023] [Indexed: 10/05/2023] Open
Abstract
Immune system disorders, especially T cell disorders, are important therapeutic targets of mesenchymal stem cells (MSCs) in many autoimmune diseases (ADs). Although extracellular regulated protein kinases (ERKs) play a role in MSC therapy by promoting T cell apoptosis, the mechanism remains unclear. Our findings indicate that ERK1-/- bone marrow MSCs (BMMSCs), but not ERK2-/- BMMSCs, failed to promote T cell apoptosis due to incapacity to activate the ETS2/AURKA/NF-κB/Fas/MCP-1 cascade. Moreover, ERK1-/- BMMSCs were unable to upregulate regulatory T cells and suppress T helper 17 cells. Licochalcone A (LA), which promotes ERK pathway activation, enhanced the therapeutic efficacy of MSC therapy in ulcerative colitis and collagen-induced arthritis mice. Our findings suggest that ERK1, but not ERK2, plays a crucial role in regulating T cells in MSCs. LA-treated MSCs provide a strategy to improve the efficacy of MSC-based treatments for ADs.
Collapse
Affiliation(s)
- Qing Zhang
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration & National Clinical Research Center for Oral Diseases & Shaanxi International Joint Research Center for Oral Diseases, Center for Tissue Engineering, School of Stomatology, the Fourth Military Medical University, Xi’an, Shaanxi 710032, China
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi’an Jiaotong University, Xi’an, Shaanxi 710004, China
- Shannxi Clinical Research Center for Oral Diseases & Department of Orthodontics, School of Stomatology, the Fourth Military Medical University, Xi’an, Shaanxi 710032, China
| | - Xiao Lei
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration & National Clinical Research Center for Oral Diseases & Shaanxi International Joint Research Center for Oral Diseases, Center for Tissue Engineering, School of Stomatology, the Fourth Military Medical University, Xi’an, Shaanxi 710032, China
- Shannxi Clinical Research Center for Oral Diseases & Department of Orthodontics, School of Stomatology, the Fourth Military Medical University, Xi’an, Shaanxi 710032, China
| | - Fang Wang
- Department of Blood Purification, General Hospital of Central Theater Command of PLA, 68 Huangpu Road, Wuhan, Hubei 430010, China
| | - Xiaoning He
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration & National Clinical Research Center for Oral Diseases & Shaanxi International Joint Research Center for Oral Diseases, Center for Tissue Engineering, School of Stomatology, the Fourth Military Medical University, Xi’an, Shaanxi 710032, China
| | - Lu Liu
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration & National Clinical Research Center for Oral Diseases & Shaanxi International Joint Research Center for Oral Diseases, Center for Tissue Engineering, School of Stomatology, the Fourth Military Medical University, Xi’an, Shaanxi 710032, China
- Shannxi Clinical Research Center for Oral Diseases & Department of Orthodontics, School of Stomatology, the Fourth Military Medical University, Xi’an, Shaanxi 710032, China
| | - Yuxia Hou
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi’an Jiaotong University, Xi’an, Shaanxi 710004, China
| | - Yuan Liu
- The Affiliated Northwest Women’s and Children’s Hospital of Xi’an Jiaotong University Health Science Center, Xi’an, Shaanxi 710061, China
| | - Fang Jin
- Shannxi Clinical Research Center for Oral Diseases & Department of Orthodontics, School of Stomatology, the Fourth Military Medical University, Xi’an, Shaanxi 710032, China
| | - Chider Chen
- Department of Oral and Maxillofacial Surgery and Pharmacology, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Bei Li
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration & National Clinical Research Center for Oral Diseases & Shaanxi International Joint Research Center for Oral Diseases, Center for Tissue Engineering, School of Stomatology, the Fourth Military Medical University, Xi’an, Shaanxi 710032, China
| |
Collapse
|
4
|
Lin JY, Huang HI. Respiratory viruses induce the expression of type I and III IFNs in MSCs through RLR/IRF3 signaling pathways. Microbes Infect 2023; 25:105171. [PMID: 37321390 DOI: 10.1016/j.micinf.2023.105171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 06/08/2023] [Accepted: 06/08/2023] [Indexed: 06/17/2023]
Abstract
Mesenchymal stem cells (MSCs) comprise a primitive cell population and reside in various tissues and organs. These cells exhibit immunomodulatory activity and are effective in treating respiratory viral infections. The activation of type I and III interferons, which protect cells against viral infections, can be induced after pattern recognition receptors (PRRs) recognize viral nucleic acid species. Although certain viruses can upregulate IFN-β expression in MSCs, the underlying mechanisms and responsiveness to different IFNs are unclear. We found that foreskin-derived fibroblast-like stromal cells (FDSCs), a kind of functional MSC, were permissive to IAV PR8, HCoV-229E, and EV-D68. Infection by IAV PR8 and HCoV-229E increased the expression of IFN-β and IFN-λ species in FDSCs in an IRF-3-dependent manner. RIG-I was critical for detecting IAV PR8 in FDSCs, and IAV PR8 infection induced a significant increase in the expression of interferon signaling genes (ISGs). Interestingly, only IFN-β, but not IFN-λ species, could induce the expression of ISGs, a finding supported by our observation that only IFN-β induced STAT1 and STAT2 phosphorylation in FDSCs. We also proved that treatment with IFN-β suppressed the propagation of IAV PR8 and promoted the survival of virus-infected FDSCs. Respiratory viruses could infect FDSCs and induce the expression of IFN-β and IFN-λ1, but only IFN-β could protect FDSCs against viral infection.
Collapse
Affiliation(s)
- Jhao-Yin Lin
- Department of Medical Biotechnology and Laboratory Science, College of Medicine, Chang Gung University, Kwei-Shan, Tao-Yuan, Taiwan; Research Center for Emerging Viral Infections, College of Medicine, Chang Gung University, Kwei-Shan, Tao-Yuan, Taiwan
| | - Hsing-I Huang
- Department of Medical Biotechnology and Laboratory Science, College of Medicine, Chang Gung University, Kwei-Shan, Tao-Yuan, Taiwan; Research Center for Emerging Viral Infections, College of Medicine, Chang Gung University, Kwei-Shan, Tao-Yuan, Taiwan; Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Kwei-Shan, Tao-Yuan, Taiwan; Department of Pediatrics, Chang Gung Memorial Hospital, Linkou, Taiwan.
| |
Collapse
|
5
|
Muzsai S, Maryanovsky OM, Ander R, Koncz G, Mázló A, Bácsi A, Tóth M. Cell-Free Supernatant Derived from a Lactobacillus casei BL23 Culture Modifies the Antiviral and Immunomodulatory Capacity of Mesenchymal Stromal Cells. Biomedicines 2023; 11:1521. [PMID: 37371616 DOI: 10.3390/biomedicines11061521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 05/18/2023] [Accepted: 05/22/2023] [Indexed: 06/29/2023] Open
Abstract
Immune responses are highly complex and intricately regulated processes involving immune and non-immune cells in close direct and indirect contact with each other. These cells are highly sensitive to environmental signals, including factors derived from microbiota. Here, we demonstrate that the human microbiota member Lactobacillus casei (L. casei)-derived cell-free supernatant (CFS) enhances the sensitivity of mesenchymal-stromal-cell-like (MSCI) cells to viral stimuli and induces the development of dendritic cells (DCs) with anti-inflammatory and antiviral properties via pretreated MSCl cells. Our results showed that the production of INFβ and CXCL10 by MSCl cells upon viral stimulation was dependent on the presence of L. casei-derived extracellular vesicles in CFS during pretreatment. Moreover, L. casei CFS and/or poly (I:C)-conditioned MSCI cells altered the differentiation process of freshly isolated monocytes, as well as the developing DCs' phenotype and functional activities, such as cytokine and chemokine secretion. Taken together, L. casei CFS contains factors which contribute to the pronounced antiviral response of MSCI cells, avoiding the development of inflammation via the induction of differentiation of anti-inflammatory DCs that retain their antiviral properties.
Collapse
Affiliation(s)
- Szabolcs Muzsai
- Department of Immunology, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary
- Gyula Petrányi Doctoral School of Clinical Immunology and Allergology, University of Debrecen, 4032 Debrecen, Hungary
| | - Ore-Matan Maryanovsky
- Department of Immunology, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary
| | - Roland Ander
- Department of Immunology, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary
| | - Gábor Koncz
- Department of Immunology, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary
| | - Anett Mázló
- Department of Immunology, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary
| | - Attila Bácsi
- Department of Immunology, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary
- ELKH-DE Allergology Research Group, 4032 Debrecen, Hungary
| | - Márta Tóth
- Department of Immunology, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary
- Doctoral School of Molecular Cell and Immune Biology, University of Debrecen, 4032 Debrecen, Hungary
| |
Collapse
|
6
|
Howe CL, Johnson RK, Overlee BL, Sagen JA, Mehta N, Farias‐Moeller R. Drug-resistant seizures associated with hyperinflammatory monocytes in FIRES. Ann Clin Transl Neurol 2023; 10:719-731. [PMID: 36924141 PMCID: PMC10187718 DOI: 10.1002/acn3.51755] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 02/16/2023] [Accepted: 02/23/2023] [Indexed: 03/18/2023] Open
Abstract
OBJECTIVE Therapeutic strategies for patients with febrile infection-related epilepsy syndrome (FIRES) are limited, ad hoc, and frequently ineffective. Based on evidence that inflammation drives pathogenesis in FIRES, we used ex vivo stimulation of peripheral blood mononuclear cells (PBMCs) to characterize the monocytic response profile before and after therapy in a child successfully treated with dexamethasone delivered intrathecally six times between hospital Day 23 and 40 at 0.25 mg/kg/dose. METHODS PBMCs were isolated from serial blood draws acquired during refractory status epilepticus (RSE) and following resolution associated with intrathecal dexamethasone therapy in a previously healthy 9-year-old male that presented with seizures following Streptococcal pharyngitis. Cells were stimulated with bacterial or viral ligands and cytokine release was measured and compared to responses in age-matched healthy control PBMCs. Levels of inflammatory factors in the blood and CSF were also measured and compared to pediatric healthy control ranges. RESULTS During RSE, serum levels of IL6, CXCL8, HMGB1, S100A8/A9, and CRP were significantly elevated. IL6 was elevated in CSF. Ex vivo stimulation of PBMCs collected during RSE revealed hyperinflammatory release of IL6 and CXCL8 in response to bacterial stimulation. Following intrathecal dexamethasone, RSE resolved, inflammatory levels normalized in serum and CSF, and the PBMC hyperinflammatory response renormalized. SIGNIFICANCE FIRES may be associated with a hyperinflammatory monocytic response to normally banal bacterial pathogens. This hyperinflammatory response may induce a profound neutrophil burden and the consequent release of factors that further exacerbate inflammation and drive neuroinflammation. Intrathecal dexamethasone may resolve RSE by resetting this inflammatory feedback loop.
Collapse
Affiliation(s)
- Charles L. Howe
- Translational Neuroimmunology LabMayo ClinicRochesterMinnesotaUSA
- Department of NeurologyMayo ClinicRochesterMinnesotaUSA
- Center for MS and Autoimmune NeurologyMayo ClinicRochesterMinnesotaUSA
- Division of Experimental NeurologyMayo ClinicRochesterMinnesotaUSA
| | - Renee K. Johnson
- Translational Neuroimmunology LabMayo ClinicRochesterMinnesotaUSA
| | | | - Jessica A. Sagen
- Translational Neuroimmunology LabMayo ClinicRochesterMinnesotaUSA
- Center for MS and Autoimmune NeurologyMayo ClinicRochesterMinnesotaUSA
| | - Niyati Mehta
- Department of NeurologyMedical College of WisconsinMilwaukeeWisconsinUSA
- Division of Child NeurologyMedical College of WisconsinMilwaukeeWisconsinUSA
| | - Raquel Farias‐Moeller
- Department of NeurologyMedical College of WisconsinMilwaukeeWisconsinUSA
- Division of Child NeurologyMedical College of WisconsinMilwaukeeWisconsinUSA
| |
Collapse
|
7
|
Lebeau G, Ah-Pine F, Daniel M, Bedoui Y, Vagner D, Frumence E, Gasque P. Perivascular Mesenchymal Stem/Stromal Cells, an Immune Privileged Niche for Viruses? Int J Mol Sci 2022; 23:ijms23148038. [PMID: 35887383 PMCID: PMC9317325 DOI: 10.3390/ijms23148038] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 07/16/2022] [Accepted: 07/20/2022] [Indexed: 11/16/2022] Open
Abstract
Mesenchymal stem cells (MSCs) play a critical role in response to stress such as infection. They initiate the removal of cell debris, exert major immunoregulatory activities, control pathogens, and lead to a remodeling/scarring phase. Thus, host-derived ‘danger’ factors released from damaged/infected cells (called alarmins, e.g., HMGB1, ATP, DNA) as well as pathogen-associated molecular patterns (LPS, single strand RNA) can activate MSCs located in the parenchyma and around vessels to upregulate the expression of growth factors and chemoattractant molecules that influence immune cell recruitment and stem cell mobilization. MSC, in an ultimate contribution to tissue repair, may also directly trans- or de-differentiate into specific cellular phenotypes such as osteoblasts, chondrocytes, lipofibroblasts, myofibroblasts, Schwann cells, and they may somehow recapitulate their neural crest embryonic origin. Failure to terminate such repair processes induces pathological scarring, termed fibrosis, or vascular calcification. Interestingly, many viruses and particularly those associated to chronic infection and inflammation may hijack and polarize MSC’s immune regulatory activities. Several reports argue that MSC may constitute immune privileged sanctuaries for viruses and contributing to long-lasting effects posing infectious challenges, such as viruses rebounding in immunocompromised patients or following regenerative medicine therapies using MSC. We will herein review the capacity of several viruses not only to infect but also to polarize directly or indirectly the functions of MSC (immunoregulation, differentiation potential, and tissue repair) in clinical settings.
Collapse
Affiliation(s)
- Grégorie Lebeau
- Unité de Recherche en Pharmaco-Immunologie (UR-EPI), Université et CHU de La Réunion, 97400 Saint-Denis, France; (G.L.); (F.A.-P.); (M.D.); (Y.B.); (E.F.)
- Laboratoire d’Immunologie Clinique et Expérimentale de la ZOI (LICE-OI), Pôle de Biologie, CHU de La Réunion, 97400 Saint-Denis, France
| | - Franck Ah-Pine
- Unité de Recherche en Pharmaco-Immunologie (UR-EPI), Université et CHU de La Réunion, 97400 Saint-Denis, France; (G.L.); (F.A.-P.); (M.D.); (Y.B.); (E.F.)
- Service Anatomo-Pathologie, CHU de la Réunion, 97400 Saint-Denis, France
| | - Matthieu Daniel
- Unité de Recherche en Pharmaco-Immunologie (UR-EPI), Université et CHU de La Réunion, 97400 Saint-Denis, France; (G.L.); (F.A.-P.); (M.D.); (Y.B.); (E.F.)
- Laboratoire d’Immunologie Clinique et Expérimentale de la ZOI (LICE-OI), Pôle de Biologie, CHU de La Réunion, 97400 Saint-Denis, France
| | - Yosra Bedoui
- Unité de Recherche en Pharmaco-Immunologie (UR-EPI), Université et CHU de La Réunion, 97400 Saint-Denis, France; (G.L.); (F.A.-P.); (M.D.); (Y.B.); (E.F.)
- Laboratoire d’Immunologie Clinique et Expérimentale de la ZOI (LICE-OI), Pôle de Biologie, CHU de La Réunion, 97400 Saint-Denis, France
| | - Damien Vagner
- Service de Médecine Interne, CHU de la Réunion, 97400 Saint-Denis, France;
| | - Etienne Frumence
- Unité de Recherche en Pharmaco-Immunologie (UR-EPI), Université et CHU de La Réunion, 97400 Saint-Denis, France; (G.L.); (F.A.-P.); (M.D.); (Y.B.); (E.F.)
- Laboratoire d’Immunologie Clinique et Expérimentale de la ZOI (LICE-OI), Pôle de Biologie, CHU de La Réunion, 97400 Saint-Denis, France
| | - Philippe Gasque
- Unité de Recherche en Pharmaco-Immunologie (UR-EPI), Université et CHU de La Réunion, 97400 Saint-Denis, France; (G.L.); (F.A.-P.); (M.D.); (Y.B.); (E.F.)
- Laboratoire d’Immunologie Clinique et Expérimentale de la ZOI (LICE-OI), Pôle de Biologie, CHU de La Réunion, 97400 Saint-Denis, France
- Correspondence:
| |
Collapse
|
8
|
Investigating the effects of IDO1, PTGS2, and TGF-β1 overexpression on immunomodulatory properties of hTERT-MSCs and their extracellular vesicles. Sci Rep 2021; 11:7825. [PMID: 33837229 PMCID: PMC8035148 DOI: 10.1038/s41598-021-87153-7] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Accepted: 03/25/2021] [Indexed: 02/07/2023] Open
Abstract
The therapeutic potential of mesenchymal stem cells (MSCs) is out of the question. Yet, recent drawbacks have resulted in a strategic shift towards the application of MSC-derived cell-free products such as extracellular vesicles (EVs). Recent reports revealed that functional properties of MSCs, including EV secretion patterns, correlate with microenvironmental cues. These findings highlight the urgent need for defining the optimal circumstances for EV preparation. Considering the limitations of primary cells, we employed immortalized cells as an alternative source to prepare therapeutically sufficient EV numbers. Herein, the effects of different conditional environments are explored on human TERT-immortalized MSCs (hTERT-MSCs). The latter were transduced to overexpress IDO1, PTGS2, and TGF-β1 transgenes either alone or in combination, and their immunomodulatory properties were analyzed thereafter. Likewise, EVs derived from these various MSCs were extensively characterized. hTERT-MSCs-IDO1 exerted superior inhibitory effects on lymphocytes, significantly more than hTERT-MSCs-IFN-γ. As such, IDO1 overexpression promoted the immunomodulatory properties of such enriched EVs. Considering the limitations of cell therapy like tumor formation and possible immune responses in the host, the results presented herein might be considered as a feasible model for the induction of immunomodulation in off-the-shelf and cell-free therapeutics, especially for autoimmune diseases.
Collapse
|
9
|
Todd I, Thomas RE, Watt BD, Sutherland L, Afriyie-Asante A, Deb B, Joseph B, Tighe PJ, Lanyon P, Fairclough LC. Multiple pathways of type 1 interferon production in lupus: the case for amlexanox. Rheumatology (Oxford) 2020; 59:3980-3982. [PMID: 32888016 DOI: 10.1093/rheumatology/keaa469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Revised: 06/04/2020] [Accepted: 06/17/2020] [Indexed: 11/13/2022] Open
Affiliation(s)
- Ian Todd
- School of Life Sciences, University of Nottingham, Nottingham, UK.,Nottingham Biomedical Research Centre (Musculoskeletal)
| | - Rhema E Thomas
- School of Life Sciences, University of Nottingham, Nottingham, UK
| | - Baltina D Watt
- School of Life Sciences, University of Nottingham, Nottingham, UK
| | - Lissa Sutherland
- School of Life Sciences, University of Nottingham, Nottingham, UK
| | | | - Bishnu Deb
- School of Life Sciences, University of Nottingham, Nottingham, UK
| | - Blessy Joseph
- School of Life Sciences, University of Nottingham, Nottingham, UK
| | - Patrick J Tighe
- School of Life Sciences, University of Nottingham, Nottingham, UK.,Nottingham Biomedical Research Centre (Musculoskeletal)
| | - Peter Lanyon
- Nottingham Biomedical Research Centre (Musculoskeletal).,Department of Rheumatology, Nottingham University Hospitals NHS Trust, Nottingham, UK
| | - Lucy C Fairclough
- School of Life Sciences, University of Nottingham, Nottingham, UK.,Nottingham Biomedical Research Centre (Musculoskeletal)
| |
Collapse
|
10
|
Preconditioning of Rat Bone Marrow-Derived Mesenchymal Stromal Cells with Toll-Like Receptor Agonists. Stem Cells Int 2019; 2019:7692973. [PMID: 31531025 PMCID: PMC6721436 DOI: 10.1155/2019/7692973] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2019] [Accepted: 07/02/2019] [Indexed: 12/29/2022] Open
Abstract
Bone marrow-derived mesenchymal stromal cells (BM-MSCs) are dynamic cells that can sense the environment, adapting their regulatory functions to different conditions. Accordingly, the therapeutic potential of BM-MSCs can be modulated by preconditioning strategies aimed at modifying their paracrine action. Although rat BM-MSCs (rBM-MSCs) have been widely tested in preclinical research, most preconditioning studies have employed human and mouse BM-MSCs. Herein, we investigated whether rBM-MSCs modify their phenotype and paracrine functions in response to Toll-like receptor (TLR) agonists. The data showed that rBM-MSCs expressed TLR3, TLR4, and MDA5 mRNA and were able to internalize polyinosinic-polycytidylic acid (Poly(I:C)), a TLR3/MDA5 agonist. rBM-MSCs were then stimulated with Poly(I:C) or with lipopolysaccharide (LPS, a TLR4 agonist) for 1 h and were grown under normal culture conditions. LPS or Poly(I:C) stimulation did not affect the viability or the morphology of rBM-MSCs and did not modify the expression pattern of key cell surface markers. Poly(I:C) did not induce statistically significant changes in the release of several inflammatory mediators and VEGF by rBM-MSCs, although it tended to increase IL-6 and MCP-1 secretion, whereas LPS increased the release of IL-6, MCP-1, and VEGF, three factors that were constitutively secreted by unstimulated cells. The neurotrophic activity of the conditioned medium from unstimulated and LPS-preconditioned rBM-MSCs was investigated using dorsal root ganglion explants, showing that soluble factors produced by unstimulated and LPS-preconditioned rBM-MSCs can stimulate neurite outgrowth similarly, in a VEGF-dependent manner. LPS-preconditioned cells, however, were slightly more efficient in increasing the number of regrowing axons in a model of sciatic nerve transection in rats. In conclusion, LPS preconditioning boosted the production of constitutively secreted factors by rBM-MSCs, without changing their mesenchymal identity, an effect that requires further investigation in exploratory preclinical studies.
Collapse
|
11
|
Abstract
Three decades of research in hematopoietic stem cell transplantation and HIV/AIDS fields have shaped a picture of immune restoration disorders. This manuscript overviews the molecular biology of interferon networks, the molecular pathogenesis of immune reconstitution inflammatory syndrome, and post-hematopoietic stem cell transplantation immune restoration disorders (IRD). It also summarizes the effects of thymic involution on T cell diversity, and the results of the assessment of diagnostic biomarkers of IRD, and tested targeted immunomodulatory treatments.
Collapse
Affiliation(s)
- Hesham Mohei
- Department of Medicine, University of Minnesota, Minneapolis, USA
| | - Usha Kellampalli
- Department of Medicine, University of Minnesota, Minneapolis, USA
| | | |
Collapse
|
12
|
Xu SS, Xu LG, Yuan C, Li SN, Chen T, Wang W, Li C, Cao L, Rao H. FKBP8 inhibits virus-induced RLR-VISA signaling. J Med Virol 2019; 91:482-492. [PMID: 30267576 DOI: 10.1002/jmv.25327] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2018] [Accepted: 09/25/2018] [Indexed: 12/19/2022]
Abstract
The mitochondrial antiviral signal protein mitochondrial antiviral signaling protein, also known as virus-induced signaling adaptor (VISA), plays a key role in regulating host innate immune signaling pathways. This study identifies FK506 binding protein 8 (FKBP8) as a candidate interacting protein of VISA through the yeast two-hybrid technique. The interaction of FKBP8 with VISA, retinoic acid inducible protein 1 (RIG-I), and IFN regulatory factor 3 (IRF3) was confirmed during viral infection in mammalian cells by coimmunoprecipitation. Overexpression of FKBP8 using a eukaryotic expression plasmid significantly attenuated Sendai virus-induced activation of the promoter interferons β (IFN-β), and transcription factors nuclear factor κ-light chain enhancer of activated B cells (NF-κB) and IFN-stimulated response element (ISRE). Overexpression of FKBP8 also decreased dimer-IRF3 activity, but enhanced virus replication. Conversely, knockdown of FKBP8 expression by RNA interference showed opposite effects. Further studies indicated that FKBP8 acts as a negative interacting partner to regulate RLR-VISA signaling by acting on VISA and TANK binding kinase 1 (TBK1). Additionally, FKBP8 played a negative role on virus-induced signaling by inhibiting the formation of TBK1-IRF3 and VISA-TRAF3 complexes. Notably, FKBP8 also promoted the degradation of TBK1, RIG-I, and TRAF3 resulting from FKBP8 reinforced Sendai virus-induced endogenous polyubiquitination of RIG-I, TBK1, and TNF receptor-associated factor 3 (TRAF3). Therefore, a novel function of FKBP8 in innate immunity antiviral signaling regulation was revealed in this study.
Collapse
Affiliation(s)
- Shan-Shan Xu
- Key Laboratory of Functional Small Organic Molecules, Ministry of Education and College of Life Science, Jiangxi Normal University, Nanchang, China
| | - Liang-Guo Xu
- Key Laboratory of Functional Small Organic Molecules, Ministry of Education and College of Life Science, Jiangxi Normal University, Nanchang, China
| | - Cailei Yuan
- Jiangxi Key Laboratory of Nanomaterials and Sensors, School of Physics, Communication and Electronics, Jiangxi Normal University, Nanchang, China
| | - Sheng-Na Li
- Key Laboratory of Functional Small Organic Molecules, Ministry of Education and College of Life Science, Jiangxi Normal University, Nanchang, China
| | - Tian Chen
- Key Laboratory of Functional Small Organic Molecules, Ministry of Education and College of Life Science, Jiangxi Normal University, Nanchang, China
| | - Weiying Wang
- Key Laboratory of Functional Small Organic Molecules, Ministry of Education and College of Life Science, Jiangxi Normal University, Nanchang, China
| | - Changsheng Li
- Key Laboratory of Functional Small Organic Molecules, Ministry of Education and College of Life Science, Jiangxi Normal University, Nanchang, China
| | - Lingzhen Cao
- Key Laboratory of Functional Small Organic Molecules, Ministry of Education and College of Life Science, Jiangxi Normal University, Nanchang, China
| | - Hua Rao
- Key Laboratory of Functional Small Organic Molecules, Ministry of Education and College of Life Science, Jiangxi Normal University, Nanchang, China
| |
Collapse
|