1
|
Rao MCS, Rahul VD, Uppar P, Madhuri ML, Tripathy B, Vyas RDV, Swami DV, Raju SS. Enhancing the Phytoremediation of Heavy Metals by Plant Growth Promoting Rhizobacteria (PGPR) Consortium: A Narrative Review. J Basic Microbiol 2025; 65:e2400529. [PMID: 39462911 DOI: 10.1002/jobm.202400529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 09/05/2024] [Accepted: 10/02/2024] [Indexed: 10/29/2024]
Abstract
Heavy metal pollution has become a significant concern as the world continues to industrialize, urbanize, and modernize. Heavy metal pollutants impede the growth and metabolism of plants. The bioaccumulation of heavy metals in plants may create chlorophyll antagonism, oxidative stress, underdeveloped plant growth, and reduced photosynthetic system. Finding practical solutions to protect the environment and plants from the toxic effects of heavy metals is essential for long-term sustainable development. The direct use of suitable living plants for eliminating and degrading metal pollutants from ecosystems is known as phytoremediation. Phytoremediation is a novel and promising way to remove toxic heavy metals. Plant growth-promoting rhizobacteria (PGPR) can colonize plant roots and help promote their growth. Numerous variables, such as plant biomass yield, resistance to metal toxicity, and heavy metal solubility in the soil, affect the rate of phytoremediation. Phytoremediation using the PGPR consortium can speed up the process and increase the rate of heavy metal detoxification. The PGPR consortium has significantly increased the biological accumulation of various nutrients and heavy metals. This review sheds light on the mechanisms that allow plants to uptake and sequester toxic heavy metals to improve soil detoxification. The present review aids the understanding of eco-physiological mechanisms that drive plant-microbe interactions in the heavy metal-stressed environment.
Collapse
Affiliation(s)
- Merugu Chandra Surya Rao
- Department of Agricultural and Horticultural Sciences, Vignan's Foundation for Science, Technology and Research (Deemed to be University), Vadlamudi, Guntur, Andhra Pradesh, India
| | - Vadlamudi Dinesh Rahul
- Department of Agricultural and Horticultural Sciences, Vignan's Foundation for Science, Technology and Research (Deemed to be University), Vadlamudi, Guntur, Andhra Pradesh, India
| | - Pandu Uppar
- Department of Agricultural and Horticultural Sciences, Vignan's Foundation for Science, Technology and Research (Deemed to be University), Vadlamudi, Guntur, Andhra Pradesh, India
| | - Marpu Lakshmi Madhuri
- Department of Horticulture, NS College of Horticultural Sciences, Markapur, Ongole, India
| | - Barsha Tripathy
- Department of Vegetable Science, Institute of Agricultural Sciences, Siksha 'O' Anusandhan University, Bhubaneswar, Odisha, India
| | - Ryali Devi Veda Vyas
- Department of Soil Science and Agricultural Chemistry, College of Agriculture-Dharwad, University of Agricultural Sciences, Dharwad, Karnataka, India
| | - Dokka Venkata Swami
- Department of Horticulture, Dr. Y.S.R Horticultural University, Tadepalligudem, West Godavari, Andhra Pradesh, India
| | - Sirivuru Srinivasa Raju
- Department of Horticulture, Acharya N.G. Ranga Agricultural University, Lam, Guntur, Andhar Pradesh, India
| |
Collapse
|
2
|
Kohda YHT, Miyauchi K, Rahman F, Naruse H, Mito M, Kitajima N, Chien MF, Endo G, Inoue C. Effects of temperature on plant growth and arsenic removal efficiency of Pteris vittata in purifying arsenic-contaminated water in winter: A two-year year-round field study. CHEMOSPHERE 2024; 362:142902. [PMID: 39029706 DOI: 10.1016/j.chemosphere.2024.142902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 07/12/2024] [Accepted: 07/17/2024] [Indexed: 07/21/2024]
Abstract
Phytoremediation is a cost-effective and eco-friendly alternative method for arsenic (As) contaminated water treatment. This study conducted a two-year year-round field study (cycle1 and cycle2) in a temperate area (Sendai, Japan) using small As-hyperaccumulator Pteris vittata seedlings to reduce pre-cultivation time and associated costs. The number of seedlings was changed from 256 in the cycle1 period to 165 in the cycle2 period to evaluate the As removal efficiency of P. vittata for As-contaminated water in field conditions with different plant densities. Before the winter season, with continuously increasing fronds, rhizomes, and roots growth, this reduction did not affect the plant's As removal efficiency for As-contaminated water to decrease the As concentration from 30 μg/L to the environmental quality standard for As in water, set at 10 μg/L in Japan. During the winter season, we found that cold weather caused P. vittata to wither and release the accumulated As into water without a greenhouse (cycle1). In the meantime, the bioaccumulation factor (BAF) and the translocation factor (TF) values for fronds of P. vittata decreased (BAF for fronds: from 66,089 to 8,460; TF for fronds: from 13.4 to 3.4). On the other hand, with greenhouse protection (cycle2), P. vittata did not severely wither and kept accumulating As. Moreover, BAF and TF values for fronds of P. vittata increased (BAF for fronds: from 24,372 to 36,740; TF for fronds: from 5.2 to 17.2). Maintaining the air temperature inside the greenhouse, particularly around the rhizomes, above 0 °C may be the reason why P. vittata remained alive and functional during the cold winter. These results indicate that a single-layer polyethylene greenhouse was sufficient for the tropical-subtropical As-hyperaccumulator fern P. vittata to survive the cold winter and snow in the temperate area, enabling year-round phytoremediation treatment of As-contaminated water in the open field.
Collapse
Affiliation(s)
- Yi Huang-Takeshi Kohda
- Graduate School of Environmental Studies, Tohoku University, Sendai, Japan; Research Institute for Engineering and Technology, Tohoku Gakuin University, Sendai, Japan.
| | - Keisuke Miyauchi
- Research Institute for Engineering and Technology, Tohoku Gakuin University, Sendai, Japan; Department of Civil and Environmental Engineering, Faculty of Engineering, Tohoku Gakuin University, Sendai, Japan
| | - Farzana Rahman
- Department of Nutrition and Food Engineering, Daffodil International University, Birulia, Savar, Dhaka, Bangladesh
| | - Haruki Naruse
- Global Environment Business Division, OYO Corporation, Sapporo, Japan
| | - Mitsuaki Mito
- Aoba Ward Construction Department, Transportation Bureau City of Sendai, Sendai, Japan
| | | | - Mei-Fang Chien
- Graduate School of Environmental Studies, Tohoku University, Sendai, Japan
| | - Ginro Endo
- Research Institute for Engineering and Technology, Tohoku Gakuin University, Sendai, Japan
| | - Chihiro Inoue
- Graduate School of Environmental Studies, Tohoku University, Sendai, Japan.
| |
Collapse
|
3
|
Peng YJ, Hu CY, Li W, Dai ZH, Liu CJ, Ma LQ. Arsenic induced plant growth by increasing its nutrient uptake in As-hyperaccumulator Pteris vittata: Comparison of arsenate and arsenite. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 322:121168. [PMID: 36740166 DOI: 10.1016/j.envpol.2023.121168] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 01/04/2023] [Accepted: 01/28/2023] [Indexed: 06/18/2023]
Abstract
Arsenic-hyperaccumulator Pteris vittata is efficient in taking up arsenate (AsV) and arsenite (AsIII), however, their impacts on P. vittata growth and nutrient uptake remain unclear. The uptake of AsV and AsIII, their influences on nutrient uptake and plant biomass, and As speciation were investigated in P. vittata after exposing to 5 or 50 μM AsV or AsIII for 12 d under hydroponics. The results show that AsV uptake in P. vittata was 1.2 times more efficient than AsIII, corresponding to 1.7-2.1 fold greater biomass than the control at 50 μM As. While AsV was dominant in the roots at ∼60%, AsIII was more dominant in the fronds at ∼70% in all treatments. Macronutrients P, K, Ca, and S were increased by 118-185% at 50 μM As, with greater uptake of micronutrients Fe, Mn, Cu, and Zn at 5 μM As. Further, positive correlations between P. vittata biomass and its As contents (r = 0.97), and P. vittata biomass and its S, Mg, P, or Ca contents (r = 0.70-0.98) were observed. Our results suggest that its increased nutrient uptake probably enhanced P. vittata growth under As exposure.
Collapse
Affiliation(s)
- You-Jing Peng
- Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, and Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Zhejiang University, Hangzhou, 310058, China
| | - Chun-Yan Hu
- Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, and Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Zhejiang University, Hangzhou, 310058, China
| | - Wei Li
- Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, and Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Zhejiang University, Hangzhou, 310058, China
| | - Zhi-Hua Dai
- School of Ecology and Environment, Anhui Normal University, Wuhu, Anhui, 241000, China
| | - Chen-Jing Liu
- Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, and Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Zhejiang University, Hangzhou, 310058, China
| | - Lena Q Ma
- Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, and Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Zhejiang University, Hangzhou, 310058, China.
| |
Collapse
|
4
|
Hu Y, Li J, Li R, Niu Y, Cao M, Luo J. Influence of magnetized water irrigation on characteristics of antioxidant enzyme, ferritin, and Cd excretion in Festuca arundinacea during phytoextraction. JOURNAL OF HAZARDOUS MATERIALS 2022; 438:129527. [PMID: 35816798 DOI: 10.1016/j.jhazmat.2022.129527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 06/29/2022] [Accepted: 07/01/2022] [Indexed: 06/15/2023]
Abstract
The magnetic field can alter the hydrogen-bond structure and polarity characteristics of water; therefore, we hypothesize that magnetized water can affect plant physiological functions, including metal detoxification and excretion. In this study, the amount of Cd excreted on the leaves of Festuca arundinacea was estimated using magnetized water and normal water irrigation patterns. Irrigation with magnetized water improved the shoot dry weight and Cd content in F. arundinacea by 13.6% and 52.8%, respectively, compared to the control. Magnetized water irrigation also increased antioxidant enzyme activities in plant leaves, thereby alleviating the oxidative damage. The concentration of ferritin was 0.91 folds higher than that of the control, increasing the Fe sequestration and detoxification capacity of F. arundinacea. The amount of Cd excreted was significantly higher under magnetized water irrigation, thereby increasing the annual Cd removal by 109.7% from soil by leaf washing compared with that of the control. In contrast, F. arundinacea irrigated with magnetized water excreted 38.1% less Fe owing to the increase in ferritin levels, compared with that of the control. This study suggests a novel pathway of Cd phytoremediation by rinsing excreted Cd from the leaf surface without harvesting and replanting F. arundinacea.
Collapse
Affiliation(s)
- Yuwei Hu
- College of Resources and Environment, Yangtze University, Wuhan, China
| | - Jinrui Li
- College of Resources and Environment, Yangtze University, Wuhan, China
| | - Ruyi Li
- College of Resources and Environment, Yangtze University, Wuhan, China
| | - Yao Niu
- College of Resources and Environment, Yangtze University, Wuhan, China
| | - Min Cao
- University of Leicester, University Road, Leicester LE1 7RH, United Kingdom
| | - Jie Luo
- College of Resources and Environment, Yangtze University, Wuhan, China.
| |
Collapse
|
5
|
Xu M, Lin Y, da Silva EB, Cui Q, Gao P, Wu J, Ma LQ. Effects of copper and arsenic on their uptake and distribution in As-hyperaccumulator Pteris vittata. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 300:118982. [PMID: 35150802 DOI: 10.1016/j.envpol.2022.118982] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Revised: 02/05/2022] [Accepted: 02/08/2022] [Indexed: 06/14/2023]
Abstract
Arsenic (As) and copper (Cu) are common co-contaminates in soils. However, their interactive effects on their accumulation and distribution in As-hyperaccumulator Pteris vittata are poorly understood. A hydroponic experiment was conducted with As being 0, 5, or 50 μM and Cu being 0.32, 3.2, or 32 μM to evaluate their phytotoxicity, accumulation, and distribution in P. vittata. In addition, As and Cu uptake kinetics were examined using the Michaelis-Menten kinetics model. Total As and Cu concentrations in P. vittata were up to 487 and 1355 mg kg-1. About 39-81% of the As was in the fronds compared to 0.6-18% for Cu. At 50 μM As, increasing Cu concentration from 0.32 to 32 μM increased root As while decreasing frond As concentrations, with the translocation factor (ratio of As in fronds to roots) being reduced from 4.0 to 0.31. In contrast, As did not affect Cu accumulation in P. vittata. Michaelis constant Km value for As was higher than that of Cu (6.49-24.9 vs. 0.43-3.36), consistent with higher Cu uptake than As. Besides, Cu reduced root K but increased P levels in the roots, whereas As increased the K and P concentrations in the fronds. Our results suggest that P. vittata accumulated more Cu than As in the roots, contributing to its low As translocation. As such, high levels of Cu are likely to reduce As uptake by P. vittata during phytoremediation of As-contaminated sites.
Collapse
Affiliation(s)
- Min Xu
- College of Environmental Science, Sichuan Agricultural University, Chengdu, 611130, China; Soil and Water Sciences Department, University of Florida, Gainesville, FL, 32611, USA.
| | - Yang Lin
- Soil and Water Sciences Department, University of Florida, Gainesville, FL, 32611, USA.
| | | | - Qinghong Cui
- College of Future Technology, Peking University, Beijing, 100871, China.
| | - Peng Gao
- Department of Genetics, Stanford University School of Medicine, Stanford, 94304, USA.
| | - Jun Wu
- College of Environmental Science, Sichuan Agricultural University, Chengdu, 611130, China.
| | - Lena Q Ma
- Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, China.
| |
Collapse
|
6
|
Effects of Pyrolysis Temperature and Chemical Modification on the Adsorption of Cd and As(V) by Biochar Derived from Pteris vittata. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph19095226. [PMID: 35564620 PMCID: PMC9104657 DOI: 10.3390/ijerph19095226] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 04/22/2022] [Accepted: 04/23/2022] [Indexed: 11/16/2022]
Abstract
Phytoremediation can be applied successfully to solve the serious worldwide issue of arsenic (As) and cadmium (Cd) pollution. However, the treatment of biomass containing toxic elements after remediation is a challenge. In this study, we investigated the effective use of biomass resources by converting the As hyperaccumulator P. vittata into biochar to adsorb toxic elements. Plant biomass containing As was calcined at 600, 800, and 1200 °C, and its surface structure and adsorption performances for As(V) and Cd were evaluated. Pyrolysis at 1200 °C increased the specific surface area of the biochar, but it did not significantly affect its adsorption capacity for toxic elements. The calcined biochar had very high adsorption capacities of 90% and 95% for As(V) and Cd, respectively, adsorbing 6000 mmol/g-biochar for As(V) and 4000 mmol/g-biochar for Cd. The As(V) adsorption rate was improved by FeCl3 treatment. However, the adsorption capacity for Cd was not significantly affected by the NaOH treatment. In conclusion, it was found that after phytoremediation using P. vittata biomass, it can be effectively used as an environmental purification material by conversion to biochar. Furthermore, chemical modification with FeCl3 improves the biochar’s adsorption performance.
Collapse
|
7
|
Wanitsawatwichai K, Sampanpanish P. The combination of phytoremediation and electrokinetics remediation technology on arsenic contaminated remediation in tailing storage facilities from gold mine. Heliyon 2021; 7:e07736. [PMID: 34430733 PMCID: PMC8365378 DOI: 10.1016/j.heliyon.2021.e07736] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 07/26/2021] [Accepted: 08/04/2021] [Indexed: 11/18/2022] Open
Abstract
This research aims to study the effects of combining Mott dwarf Napier grass cultivation and electrokinetic (EK) treatment on arsenic (As) mobility and remediation of As-contaminated mine tailings. Experimental groups were treated with 0, 1, 2, and 4 V/cm for 15 days–120 days. Groups treated with 1 and 2 V/cm electromagnetic field had better As remediation efficiency than the control group with no electromagnetic field treatment. However, electromagnetic field treatment at 4 V/cm inhibited plant growth and had an effect on As uptake in the form of solution at a low level. Plants in experimental group treated with 1 V/cm electromagnetic field for 90 days had significantly high As accumulation (7.69 ± 0.16 mg/kg) in their roots. Their relative growth rate was close to that of the control group with the highest biomass (15.09 ± 0.65 g) recorded on day 120. Mobility and accumulation of As and other elements in the plants were investigated using micro-X-ray fluorescence technique (Beamline BL6b). It was found that very low As concentrations could not be detected although energy emitted from its innermost electron shell (K alpha (Kα1&2) and K beta (Kβ1)) were equal to 10.54 and 11.72 keV. In general, As accumulation in plants occurs primarily in the roots and stems, with greater accumulation around the cortex, epidermis, and xylem. This is similar to the patterns of iron and phosphate accumulation, which occurs through phosphate transporters. In addition, high aluminum mobility and accumulation were found in the stems and leaves of Mott dwarf Napier grass. However, As accumulation in the roots of Mott dwarf Napier grass was higher than in the stem and leaves. Plants treated with 1 V/cm electromagnetic field for 120 days had the highest arsenic accumulation. Treatment with 4 V/cm electromagnetic field can inhibit plant growth. Napier grass accumulated more arsenic in its roots than in its stems and leaves. Treatment with 1 V/cm electromagnetic field stimulated toxin uptake by plants.
Collapse
Affiliation(s)
- Kitsadee Wanitsawatwichai
- Interdisciplinary Program in Environmental Science, Graduate School, Chulalongkorn University, 254 Phayathai Road, Pathumwan, Bangkok 10330, Thailand
| | - Pantawat Sampanpanish
- Environmental Research Institute, Chulalongkorn University, 254 Phayathai Road, Pathumwan, Bangkok 10330, Thailand
| |
Collapse
|
8
|
New evidence of arsenic translocation and accumulation in Pteris vittata from real-time imaging using positron-emitting 74As tracer. Sci Rep 2021; 11:12149. [PMID: 34234174 PMCID: PMC8263723 DOI: 10.1038/s41598-021-91374-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Accepted: 05/21/2021] [Indexed: 11/09/2022] Open
Abstract
Pteris vittata is an arsenic (As) hyperaccumulator plant that accumulates a large amount of As into fronds and rhizomes (around 16,000 mg/kg in both after 16 weeks hydroponic cultivation with 30 mg/L arsenate). However, the sequence of long-distance transport of As in this hyperaccumulator plant is unclear. In this study, we used a positron-emitting tracer imaging system (PETIS) for the first time to obtain noninvasive serial images of As behavior in living plants with positron-emitting 74As-labeled tracer. We found that As kept accumulating in rhizomes as in fronds of P. vittata, whereas As was retained in roots of a non-accumulator plant Arabidopsis thaliana. Autoradiograph results of As distribution in P. vittata showed that with low As exposure, As was predominantly accumulated in young fronds and the midrib and rachis of mature fronds. Under high As exposure, As accumulation shifted from young fronds to mature fronds, especially in the margin of pinna, which resulted in necrotic symptoms, turning the marginal color to gray and then brown. Our results indicated that the function of rhizomes in P. vittata was As accumulation and the regulation of As translocation to the mature fronds to protect the young fronds under high As exposure.
Collapse
|
9
|
Wagner S, Hoefer C, Puschenreiter M, Wenzel WW, Oburger E, Hann S, Robinson B, Kretzschmar R, Santner J. Arsenic redox transformations and cycling in the rhizosphere of Pteris vittata and Pteris quadriaurita. ENVIRONMENTAL AND EXPERIMENTAL BOTANY 2020; 177:104122. [PMID: 34103771 PMCID: PMC7610922 DOI: 10.1016/j.envexpbot.2020.104122] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
Pteris vittata (PV) and Pteris quadriaurita (PQ) are reported to hyperaccumulate arsenic (As) when grown in Asrich soil. Yet, little is known about the impact of their unique As accumulation mechanisms on As transformations and cycling at the soil-root interface. Using a combined approach of two-dimensional (2D), sub-mm scale solute imaging of arsenite (AsIII), arsenate (AsV), phosphorus (P), manganese (Mn), iron (Fe) and oxygen (O2), we found localized patterns of AsIII/AsV redox transformations in the PV rhizosphere (AsIII/AsV ratio of 0.57) compared to bulk soil (AsIII/AsV ratio of ≤0.04). Our data indicate that the high As root uptake, translocation and accumulation from the As-rich experimental soil (2080 mg kg-1) to PV fronds (6986 mg kg-1) induced As detoxification via AsV reduction and AsIII root efflux, leading to AsIII accumulation and re-oxidation to AsV in the rhizosphere porewater. This As cycling mechanism is linked to the reduction of O2 and MnIII/IV (oxyhydr)oxides resulting in decreased O2 levels and increased Mn solubilization along roots. Compared to PV, we found 4-fold lower As translocation to PQ fronds (1611 mg kg-1), 2-fold lower AsV depletion in the PQ rhizosphere, and no AsIII efflux from PQ roots, suggesting that PQ efficiently controls As uptake to avoid toxic As levels in roots. Analysis of root exudates obtained from soil-grown PV showed that As acquisition by PV roots was not associated with phytic acid release. Our study demonstrates that two closely-related As-accumulating ferns have distinct mechanisms for As uptake modulating As cycling in As-rich environments.
Collapse
Affiliation(s)
- Stefan Wagner
- Department of Forest and Soil Sciences, Institute of Soil Research, Rhizosphere Ecology & Biogeochemistry Group, University of Natural Resources and Life Sciences, Vienna, Konrad-Lorenz-Strasse 24, 3430, Tulln, Austria
- Department General, Analytical and Physical Chemistry, Chair of General and Analytical Chemistry, Montanuniversität Leoben, Franz-Josef-Strasse 18, 8700, Leoben, Austria
- Department of Chemistry, Institute of Analytical Chemistry, University of Natural Resources and Life Sciences, Vienna, Muthgasse 18, 1190, Vienna, Austria
| | - Christoph Hoefer
- Department of Forest and Soil Sciences, Institute of Soil Research, Rhizosphere Ecology & Biogeochemistry Group, University of Natural Resources and Life Sciences, Vienna, Konrad-Lorenz-Strasse 24, 3430, Tulln, Austria
- Department of Environmental Systems Science, Institute of Biogeochemistry and Pollutant Dynamics, Soil Chemistry Group, ETH Zürich, Universitätstrasse 16, CHN, 8092, Zürich, Switzerland
| | - Markus Puschenreiter
- Department of Forest and Soil Sciences, Institute of Soil Research, Rhizosphere Ecology & Biogeochemistry Group, University of Natural Resources and Life Sciences, Vienna, Konrad-Lorenz-Strasse 24, 3430, Tulln, Austria
| | - Walter W. Wenzel
- Department of Forest and Soil Sciences, Institute of Soil Research, Rhizosphere Ecology & Biogeochemistry Group, University of Natural Resources and Life Sciences, Vienna, Konrad-Lorenz-Strasse 24, 3430, Tulln, Austria
| | - Eva Oburger
- Department of Forest and Soil Sciences, Institute of Soil Research, Rhizosphere Ecology & Biogeochemistry Group, University of Natural Resources and Life Sciences, Vienna, Konrad-Lorenz-Strasse 24, 3430, Tulln, Austria
| | - Stephan Hann
- Department of Chemistry, Institute of Analytical Chemistry, University of Natural Resources and Life Sciences, Vienna, Muthgasse 18, 1190, Vienna, Austria
| | - Brett Robinson
- School of Physical and Chemical Sciences, University of Canterbury, 20 Kirkwood Ave, Ilam, Christchurch, 8041, New Zealand
| | - Ruben Kretzschmar
- Department of Environmental Systems Science, Institute of Biogeochemistry and Pollutant Dynamics, Soil Chemistry Group, ETH Zürich, Universitätstrasse 16, CHN, 8092, Zürich, Switzerland
| | - Jakob Santner
- Department General, Analytical and Physical Chemistry, Chair of General and Analytical Chemistry, Montanuniversität Leoben, Franz-Josef-Strasse 18, 8700, Leoben, Austria
- Department of Crop Sciences, Institute of Agronomy, University of Natural Resources and Life Sciences, Vienna, Konrad-Lorenz-Strasse 24, 3430, Tulln, Austria
- Corresponding author. (J. Santner)
| |
Collapse
|
10
|
Zhang Y, Li C, Ji X, Yun C, Wang M, Luo X. The knowledge domain and emerging trends in phytoremediation: a scientometric analysis with CiteSpace. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:15515-15536. [PMID: 32078132 DOI: 10.1007/s11356-020-07646-2] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Accepted: 01/07/2020] [Indexed: 05/24/2023]
Abstract
As a cost-effective, environmentally friendly remediation technology, phytoremediation is defined as the use of green plants to remove pollutants from the environment or render them harmless and has been applied to a variety of contaminated sites throughout the world. There is a prominent phenomenon in which publications about phytoremediation increase each year and involve an increasing number of subject categories. This paper adopts the scientometric analysis method to assess the current state and explore the trends of phytoremediation research based on the bibliographic records retrieved from the Web of Science Core Collection (WoSCC). The results of this paper clearly answer the following questions. (1) What are the publishing characteristics of research on the topic of phytoremediation? What are the characteristics of academic collaboration in phytoremediation research? (2) What are the characteristics and development trends of phytoremediation research? (3) What are the hotspots and frontiers of phytoremediation research? Overall, the research method provides a new approach for the assessment of the performance of phytoremediation research. These results may help new researchers quickly integrate into the field of phytoremediation, as they can easily grasp the frontiers of phytoremediation research and obtain more valuable scientific information. This study also provides references for the follow-up research of relevant researchers.
Collapse
Affiliation(s)
- Yu Zhang
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, 621010, Sichuan, People's Republic of China
| | - Chen Li
- School of Chemistry and Environmental Science, Shaanxi University of Technology, Hanzhong, 723001, Shaanxi, People's Republic of China.
- School of Environment and Resource, Southwest University of Science and Technology, Mianyang, 621010, Sichuan, People's Republic of China.
- Engineering Research Center of Biomass Materials, Ministry of Education, Mianyang, 621010, Sichuan, People's Republic of China.
- Shaanxi Key Laboratory of Catalysis, Hanzhong, 723001, Shaanxi, People's Republic of China.
| | - Xiaohui Ji
- School of Chemistry and Environmental Science, Shaanxi University of Technology, Hanzhong, 723001, Shaanxi, People's Republic of China
- School of Environment and Resource, Southwest University of Science and Technology, Mianyang, 621010, Sichuan, People's Republic of China
- Engineering Research Center of Biomass Materials, Ministry of Education, Mianyang, 621010, Sichuan, People's Republic of China
- Shaanxi Key Laboratory of Catalysis, Hanzhong, 723001, Shaanxi, People's Republic of China
| | - Chaole Yun
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, 621010, Sichuan, People's Republic of China
| | - Maolin Wang
- School of Environment and Resource, Southwest University of Science and Technology, Mianyang, 621010, Sichuan, People's Republic of China
- Engineering Research Center of Biomass Materials, Ministry of Education, Mianyang, 621010, Sichuan, People's Republic of China
| | - Xuegang Luo
- Engineering Research Center of Biomass Materials, Ministry of Education, Mianyang, 621010, Sichuan, People's Republic of China
| |
Collapse
|
11
|
van der Ent A, de Jonge MD, Spiers KM, Brueckner D, Montargès-Pelletier E, Echevarria G, Wan XM, Lei M, Mak R, Lovett JH, Harris HH. Confocal Volumetric μXRF and Fluorescence Computed μ-Tomography Reveals Arsenic Three-Dimensional Distribution within Intact Pteris vittata Fronds. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2020; 54:745-757. [PMID: 31891245 DOI: 10.1021/acs.est.9b03878] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
The fern Pteris vittata has been the subject of numerous studies because of its extreme arsenic hyperaccumulation characteristics. However, information on the arsenic chemical speciation and distribution across cell types within intact frozen-hydrated Pteris vittata fronds is necessary to better understand the arsenic biotransformation pathways in this unusual fern. While 2D X-ray absorption spectroscopy imaging studies show that different chemical forms of arsenic, As(III) and As(V), occur across the plant organs, depth-resolved information on arsenic distribution and chemical speciation in different cell types within tissues of Pteris vittata have not been reported. By using a combination of planar and confocal μ-X-ray fluorescence imaging and fluorescence computed μ-tomography, we reveal, in this study, the localization of arsenic in the endodermis and pericycle surrounding the vascular bundles in the rachis and the pinnules of the fern. Arsenic is also accumulated in the vascular bundles connecting into each sporangium, and in some mature sori. The use of 2D X-ray absorption near edge structure imaging allows for deciphering arsenic speciation across the tissues, revealing arsenate in the vascular bundles and arsenite in the endodermis and pericycle. This study demonstrates how different advanced synchrotron X-ray microscopy techniques can be complementary in revealing, at tissue and cellular levels, elemental distribution and chemical speciation in hyperaccumulator plants.
Collapse
Affiliation(s)
- Antony van der Ent
- Centre for Mined Land Rehabilitation, Sustainable Minerals Institute , The University of Queensland , St. Lucia , QLD 4072 , Australia
- Laboratoire Sols et Environnement, UMR 1120 , Université de Lorraine , Nancy 54000 , France
| | - Martin D de Jonge
- Australian Synchrotron , ANSTO , 800 Blackburn Road , Clayton , Victoria 3168 , Australia
| | - Kathryn M Spiers
- Photon Science , Deutsches Elektronen-Synchrotron DESY , Hamburg , 22607 , Germany
| | - Dennis Brueckner
- Photon Science , Deutsches Elektronen-Synchrotron DESY , Hamburg , 22607 , Germany
- Department of Physics , University of Hamburg , Hamburg , 20146 , Germany
- Faculty of Chemistry and Biochemistry , Ruhr-University Bochum , Bochum , 44801 , Germany
| | | | - Guillaume Echevarria
- Laboratoire Sols et Environnement, UMR 1120 , Université de Lorraine , Nancy 54000 , France
| | - Xiao-Ming Wan
- Institute of Geographic Sciences and Natural Resources , Research, Chinese Academy of Sciences , Beijing 100101 , China
- College of Resources and Environment , University of Chinese Academy of Sciences , Bejing 100049 , P. R. China
| | - Mei Lei
- Institute of Geographic Sciences and Natural Resources , Research, Chinese Academy of Sciences , Beijing 100101 , China
- College of Resources and Environment , University of Chinese Academy of Sciences , Bejing 100049 , P. R. China
| | - Rachel Mak
- School of Chemistry , University of Sydney , Sydney , NSW 2006 , Australia
| | - James H Lovett
- Department of Chemistry , The University of Adelaide , Adelaide , SA 5005 , Australia
| | - Hugh H Harris
- Department of Chemistry , The University of Adelaide , Adelaide , SA 5005 , Australia
| |
Collapse
|
12
|
Dong Q, Fei L, Wang C, Hu S, Wang Z. Cadmium excretion via leaf hydathodes in tall fescue and its phytoremediation potential. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2019; 252:1406-1411. [PMID: 31260940 DOI: 10.1016/j.envpol.2019.06.079] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2019] [Revised: 06/16/2019] [Accepted: 06/20/2019] [Indexed: 06/09/2023]
Abstract
Cadmium (Cd) contamination of the soil is one of the most serious environmental problems of agricultural production. Phytoremediation has attracted increasing attention because it can safely remove the soil contaminates via plant uptake, accumulations and plant harvesting. However, the high Cd toxicity to plant tissues and treatment of the large amount of hazardous plant residues from phytoremediation have limited its commercial implementation. Here we show that the leaves of the tall fescue (Festuca arundinacea) can excrete Cd out to avoid Cd toxicity in plant tissues. Cd specific fluorescence spectroscopy with laser confocal scanning microscope, screening electron microscope with energy dispersive spectroscopy and guttation fluids analysis confirmed that leaf hydathodes were the pathway of Cd excretion in tall fescue. Element analysis showed that Cd was preferentially excreted out when compared to the ion nutrients. The amount of leaf Cd excretion was linearly increased in response to the Cd stress period. The phytoremediation efficiency was evaluated to remove 14.4% of soil Cd annually by the leaf Cd excretion in our experimental system. These findings indicate that a novel strategy of Cd phytoexcretion based on washing-off and collection of leaf surface Cd is feasible to avoid Cd toxic in plant tissues and the high treatment cost of hazardous plant residues.
Collapse
Affiliation(s)
- Qin Dong
- School of Agriculture & Biology, Shanghai Jiaotong University, Shanghai, 200240, China
| | - Ling Fei
- School of Agriculture & Biology, Shanghai Jiaotong University, Shanghai, 200240, China
| | - Cheng Wang
- School of Agriculture & Biology, Shanghai Jiaotong University, Shanghai, 200240, China; Department of Chemical & Biomolecular Engineering, Clarkson University, Potsdam, NY, 13676, USA
| | - Shuai Hu
- School of Agriculture & Biology, Shanghai Jiaotong University, Shanghai, 200240, China
| | - Zhaolong Wang
- School of Agriculture & Biology, Shanghai Jiaotong University, Shanghai, 200240, China.
| |
Collapse
|
13
|
Budzyńska S, Mleczek P, Szostek M, Goliński P, Niedzielski P, Kaniuczak J, Rissmann I, Rymaniak E, Mleczek M. Phytoextraction of arsenic forms in selected tree species growing in As-polluted mining sludge. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART A, TOXIC/HAZARDOUS SUBSTANCES & ENVIRONMENTAL ENGINEERING 2019; 54:933-942. [PMID: 31084458 DOI: 10.1080/10934529.2019.1609322] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Accepted: 04/12/2019] [Indexed: 06/09/2023]
Abstract
The aim of this study was to determine the phytoextraction of inorganic (As(III), As(V)) and organic arsenic (Asorg) forms in six tree species: Acer platanoides, Acer pseudoplatanus, Betula pendula, Quercus robur, Tilia cordata and Ulmus laevis. Plants were grown in a pot experiment using As-polluted mining sludge for 90 days. Arsenic (Astotal) was accumulated mainly in the roots of all six tree species, which were generally thinner, shorter and/or black after the experiment. The highest concentration of As(III) and As(V) was determined in the roots of A. pseudoplatanus and A. platanoides (174 and 420 mg kg-1, respectively). High concentrations of As(III) were also recorded in the shoots of B. pendula (11.9 mg kg-1) and As(V) in the aerial parts of U. laevis and A. pseudoplatanus (77.4 and 70.1 mg kg-1). With some exceptions, the dominant form in the tree organs was Asorg, present in mining sludge in low concentration. This form has a decisive influence on As phytoextraction by young tree seedlings even though its BCF value was the only one lower than 1. The obtained results highlight the important role of speciation studies in assessing the response of plants growing in heavily polluted mining sludge.
Collapse
Affiliation(s)
- Sylwia Budzyńska
- a Department of Chemistry , Poznań University of Life Sciences , Poznań , Poland
| | - Patrycja Mleczek
- b Department of Ecology and Environmental Protection , Poznan University of Life Sciences , Poznań , Poland
| | - Małgorzata Szostek
- c Department of Soil Science, Environmental Chemistry and Hydrology , University of Rzeszów , Rzeszów , Poland
| | - Piotr Goliński
- a Department of Chemistry , Poznań University of Life Sciences , Poznań , Poland
| | | | - Janina Kaniuczak
- c Department of Soil Science, Environmental Chemistry and Hydrology , University of Rzeszów , Rzeszów , Poland
| | - Iwona Rissmann
- a Department of Chemistry , Poznań University of Life Sciences , Poznań , Poland
| | - Ewa Rymaniak
- a Department of Chemistry , Poznań University of Life Sciences , Poznań , Poland
| | - Mirosław Mleczek
- a Department of Chemistry , Poznań University of Life Sciences , Poznań , Poland
| |
Collapse
|
14
|
Kopittke PM, Punshon T, Paterson DJ, Tappero RV, Wang P, Blamey FPC, van der Ent A, Lombi E. Synchrotron-Based X-Ray Fluorescence Microscopy as a Technique for Imaging of Elements in Plants. PLANT PHYSIOLOGY 2018; 178:507-523. [PMID: 30108140 PMCID: PMC6181034 DOI: 10.1104/pp.18.00759] [Citation(s) in RCA: 88] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2018] [Accepted: 08/07/2018] [Indexed: 05/06/2023]
Abstract
Understanding the distribution of elements within plant tissues is important across a range of fields in plant science. In this review, we examine synchrotron-based x-ray fluorescence microscopy (XFM) as an elemental imaging technique in plant sciences, considering both its historical and current uses as well as discussing emerging approaches. XFM offers several unique capabilities of interest to plant scientists, including in vivo analyses at room temperature and pressure, good detection limits (approximately 1-100 mg kg-1), and excellent resolution (down to 50 nm). This has permitted its use in a range of studies, including for functional characterization in molecular biology, examining the distribution of nutrients in food products, understanding the movement of foliar fertilizers, investigating the behavior of engineered nanoparticles, elucidating the toxic effects of metal(loid)s in agronomic plant species, and studying the unique properties of hyperaccumulating plants. We anticipate that continuing technological advances at XFM beamlines also will provide new opportunities moving into the future, such as for high-throughput screening in molecular biology, the use of exotic metal tags for protein localization, and enabling time-resolved, in vivo analyses of living plants. By examining current and potential future applications, we hope to encourage further XFM studies in plant sciences by highlighting the versatility of this approach.
Collapse
Affiliation(s)
- Peter M Kopittke
- University of Queensland, School of Agriculture and Food Sciences, St. Lucia, Queensland 4072, Australia
| | - Tracy Punshon
- Dartmouth College, Department of Biological Sciences, Life Science Center, Hanover, New Hampshire 03755
| | | | - Ryan V Tappero
- Brookhaven National Laboratory, Photon Sciences Division, Upton, New York 11973
| | - Peng Wang
- Nanjing Agricultural University, College of Resources and Environmental Sciences, Nanjing 210095, China
- University of Queensland, Centre for Soil and Environmental Research, School of Agriculture and Food Sciences, St. Lucia, Queensland 4072, Australia
| | - F Pax C Blamey
- University of Queensland, School of Agriculture and Food Sciences, St. Lucia, Queensland 4072, Australia
| | - Antony van der Ent
- University of Queensland, Centre for Mined Land Rehabilitation, Sustainable Minerals Institute, St. Lucia, Queensland 4072, Australia
| | - Enzo Lombi
- University of South Australia, Future Industries Institute, Mawson Lakes, South Australia 5095, Australia
| |
Collapse
|
15
|
Sandhi A, Landberg T, Greger M. Phytofiltration of arsenic by aquatic moss (Warnstorfia fluitans). ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2018; 237:1098-1105. [PMID: 29157972 DOI: 10.1016/j.envpol.2017.11.038] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2017] [Revised: 11/05/2017] [Accepted: 11/09/2017] [Indexed: 05/21/2023]
Abstract
This work investigates whether aquatic moss (Warnstorfia fluitans) originating from an arsenic (As)-contaminated wetland close to a mine tailings impoundment may be used for phytofiltration of As. The aim was to elucidate the capacity of W. fluitans to remove As from arsenite and arsenate contaminated water, how nutrients affect the As uptake and the proportion of As adsorption and absorption by the moss plant, which consists of dead and living parts. Arsenic removal from 0, 1, or 10% Hoagland nutrient solution containing 0-100 μM arsenate was followed over 192 h, and the total As in aquatic moss after treatment was analysed. The uptake and speciation of As in moss cultivated in water containing 10 μM arsenate or arsenite were examined as As uptake in living (absorption + adsorption) and dead (adsorption) plant parts. Results indicated that W. fluitans removed up to 82% of As from the water within one hour when 1 μM arsenate was added in the absence of nutrients. The removal time increased with greater nutrient and As concentrations. Up to 100 μM As had no toxic effect on the plant biomass. Both arsenite and arsenate were removed from the solution to similar extents and, independent of the As species added, more arsenate than arsenite was found in the plant. Of the As taken up, over 90% was firmly bound to the tissue, a possible mechanism for resisting high As concentrations. Arsenic was both absorbed and adsorbed by the moss, and twice as much As was found in living parts as in dead moss tissue. This study revealed that W. fluitans has potential to serve as a phytofilter for removing As from As-contaminated water without displaying any toxic effects of the metalloid.
Collapse
Affiliation(s)
- Arifin Sandhi
- Department of Ecology, Environment and Plant Sciences, Stockholm University, Svante Arrhenius väg 20A, SE-106 91 Stockholm, Sweden; Land and Water Resources Engineering Division, Department of Sustainable Development, Environmental Science and Engineering, KTH Royal Institute of Technology, Teknikringen 76, SE-100 44 Stockholm, Sweden.
| | - Tommy Landberg
- Department of Ecology, Environment and Plant Sciences, Stockholm University, Svante Arrhenius väg 20A, SE-106 91 Stockholm, Sweden
| | - Maria Greger
- Department of Ecology, Environment and Plant Sciences, Stockholm University, Svante Arrhenius väg 20A, SE-106 91 Stockholm, Sweden
| |
Collapse
|
16
|
Ojuederie OB, Babalola OO. Microbial and Plant-Assisted Bioremediation of Heavy Metal Polluted Environments: A Review. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2017; 14:ijerph14121504. [PMID: 29207531 PMCID: PMC5750922 DOI: 10.3390/ijerph14121504] [Citation(s) in RCA: 328] [Impact Index Per Article: 41.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/15/2017] [Revised: 11/27/2017] [Accepted: 11/30/2017] [Indexed: 11/26/2022]
Abstract
Environmental pollution from hazardous waste materials, organic pollutants and heavy metals, has adversely affected the natural ecosystem to the detriment of man. These pollutants arise from anthropogenic sources as well as natural disasters such as hurricanes and volcanic eruptions. Toxic metals could accumulate in agricultural soils and get into the food chain, thereby becoming a major threat to food security. Conventional and physical methods are expensive and not effective in areas with low metal toxicity. Bioremediation is therefore an eco-friendly and efficient method of reclaiming environments contaminated with heavy metals by making use of the inherent biological mechanisms of microorganisms and plants to eradicate hazardous contaminants. This review discusses the toxic effects of heavy metal pollution and the mechanisms used by microbes and plants for environmental remediation. It also emphasized the importance of modern biotechnological techniques and approaches in improving the ability of microbial enzymes to effectively degrade heavy metals at a faster rate, highlighting recent advances in microbial bioremediation and phytoremediation for the removal of heavy metals from the environment as well as future prospects and limitations. However, strict adherence to biosafety regulations must be followed in the use of biotechnological methods to ensure safety of the environment.
Collapse
Affiliation(s)
- Omena Bernard Ojuederie
- Food Security and Safety Niche Area, Faculty of Natural and Agricultural Sciences, North-West University, Private Mail Bag X2046, Mmabatho 2735, South Africa.
| | - Olubukola Oluranti Babalola
- Food Security and Safety Niche Area, Faculty of Natural and Agricultural Sciences, North-West University, Private Mail Bag X2046, Mmabatho 2735, South Africa.
| |
Collapse
|