1
|
Factors associated with persistent postsurgical pain after total knee or hip joint replacement: a systematic review and meta-analysis. Pain Rep 2023; 8:e1052. [PMID: 36699992 PMCID: PMC9833456 DOI: 10.1097/pr9.0000000000001052] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 09/08/2022] [Accepted: 09/14/2022] [Indexed: 01/27/2023] Open
Abstract
Studies have identified demographic, clinical, psychosocial, and perioperative variables associated with persistent pain after a variety of surgeries. This study aimed to perform a systematic review and meta-analysis of factors associated with persistent pain after total knee replacement (TKR) and total hip replacement (THR) surgeries. To meet the inclusion criteria, studies were required to assess variables before or at the time of surgery, include a persistent postsurgical pain (PPSP) outcome measure at least 2 months after a TKR or THR surgery, and include a statistical analysis of the effect of the risk factor(s) on the outcome measure. Outcomes from studies implementing univariate and multivariable statistical models were analyzed separately. Where possible, data from univariate analyses on the same factors were combined in a meta-analysis. Eighty-one studies involving 171,354 patients were included in the review. Because of the heterogeneity of assessment methods, only 44% of the studies allowed meaningful meta-analysis. In meta-analyses, state anxiety (but not trait anxiety) scores and higher depression scores on the Beck Depression Inventory were associated with an increased risk of PPSP after TKR. In the qualitative summary of multivariable analyses, higher preoperative pain scores were associated with PPSP after TKR or THR. This review systematically assessed factors associated with an increased risk of PPSP after TKR and THR and highlights current knowledge gaps that can be addressed by future research.
Collapse
|
2
|
Zou R, Li L, Zhang L, Huang G, Liang Z, Xiao L, Zhang Z. Combining Regional and Connectivity Metrics of Functional Magnetic Resonance Imaging and Diffusion Tensor Imaging for Individualized Prediction of Pain Sensitivity. Front Mol Neurosci 2022; 15:844146. [PMID: 35370547 PMCID: PMC8965585 DOI: 10.3389/fnmol.2022.844146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Accepted: 02/22/2022] [Indexed: 11/21/2022] Open
Abstract
Characterization and prediction of individual difference of pain sensitivity are of great importance in clinical practice. MRI techniques, such as functional magnetic resonance imaging (fMRI) and diffusion tensor imaging (DTI), have been popularly used to predict an individual's pain sensitivity, but existing studies are limited by using one single imaging modality (fMRI or DTI) and/or using one type of metrics (regional or connectivity features). As a result, pain-relevant information in MRI has not been fully revealed and the associations among different imaging modalities and different features have not been fully explored for elucidating pain sensitivity. In this study, we investigated the predictive capability of multi-features (regional and connectivity metrics) of multimodal MRI (fMRI and DTI) in the prediction of pain sensitivity using data from 210 healthy subjects. We found that fusing fMRI-DTI and regional-connectivity features are capable of more accurately predicting an individual's pain sensitivity than only using one type of feature or using one imaging modality. These results revealed rich information regarding individual pain sensitivity from the brain's both structural and functional perspectives as well as from both regional and connectivity metrics. Hence, this study provided a more comprehensive characterization of the neural correlates of individual pain sensitivity, which holds a great potential for clinical pain management.
Collapse
Affiliation(s)
- Rushi Zou
- School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen, China
- Guangdong Provincial Key Laboratory of Biomedical Measurements and Ultrasound Imaging, Shenzhen University, Shenzhen, China
- Marshall Laboratory of Biomedical Engineering, Shenzhen, China
| | - Linling Li
- School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen, China
- Guangdong Provincial Key Laboratory of Biomedical Measurements and Ultrasound Imaging, Shenzhen University, Shenzhen, China
- Marshall Laboratory of Biomedical Engineering, Shenzhen, China
| | - Li Zhang
- School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen, China
- Guangdong Provincial Key Laboratory of Biomedical Measurements and Ultrasound Imaging, Shenzhen University, Shenzhen, China
- Marshall Laboratory of Biomedical Engineering, Shenzhen, China
| | - Gan Huang
- School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen, China
- Guangdong Provincial Key Laboratory of Biomedical Measurements and Ultrasound Imaging, Shenzhen University, Shenzhen, China
- Marshall Laboratory of Biomedical Engineering, Shenzhen, China
| | - Zhen Liang
- School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen, China
- Guangdong Provincial Key Laboratory of Biomedical Measurements and Ultrasound Imaging, Shenzhen University, Shenzhen, China
- Marshall Laboratory of Biomedical Engineering, Shenzhen, China
| | - Lizu Xiao
- Department of Pain Medicine and Shenzhen Municipal Key Laboratory for Pain Medicine, The Affiliated Shenzhen Sixth Hospital of Guangdong Medical University, Shenzhen, China
| | - Zhiguo Zhang
- School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen, China
- Guangdong Provincial Key Laboratory of Biomedical Measurements and Ultrasound Imaging, Shenzhen University, Shenzhen, China
- Marshall Laboratory of Biomedical Engineering, Shenzhen, China
- Peng Cheng Laboratory, Shenzhen, China
| |
Collapse
|
3
|
Yang YC, Zeng K, Wang W, Gong ZG, Chen YL, Cheng JM, Zhang M, Huang YW, Men XB, Wang JW, Zhan S, Tan WL. The Changes of Brain Function After Spinal Manipulation Therapy in Patients with Chronic Low Back Pain: A Rest BOLD fMRI Study. Neuropsychiatr Dis Treat 2022; 18:187-199. [PMID: 35153482 PMCID: PMC8828077 DOI: 10.2147/ndt.s339762] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Accepted: 01/22/2022] [Indexed: 12/16/2022] Open
Abstract
OBJECTIVE To investigate the changes of regional homogeneity (Reho) values before and after spinal manipulative therapy (SMT) in patients with chronic low back pain (CLBP) through rest blood-oxygen-level-dependent functional magnetic resonance imaging (BOLD fMRI). METHODS Patients with CLBP (Group 1, n = 20) and healthy control subjects (Group 2, n = 20) were recruited. The fMRI was performed three times in Group 1 before SMT (time point 1, TP1), after the first SMT (time point 2, TP2), after the sixth SMT (time point 3, TP3), and for one time in Group 2, which received no intervention. The clinical scales were finished in Group 1 every time before fMRI was performed. The Reho values were compared among Group 1 at different time points, and between Group 1 and Group 2. The correlation between Reho values with the statistical differences and the clinical scale scores were calculated. RESULTS The bilateral precuneus and right mid-frontal gyrus in Group 1 had different Reho values compared with Group 2 at TP1. The Reho values were increased in the left precuneus and decreased in the left superior frontal gyrus in Group 1 at TP2 compared with TP1. The Reho values were increased in the left postcentral gyrus and decreased in the left posterior cingulate cortex and the superior frontal gyrus in Group 1 at TP3 compared with TP1. The ReHo values of the left precuneus in Group 1 at TP1 were negatively correlated with the pain degree at TP1 and TP2 (r = -0.549, -0.453; p = 0.012, 0.045). The Reho values of the middle temporal gyrus in Group 1 at TP3 were negatively correlated with the changes of clinical scale scores between TP3 and TP1 (r = 0.454, 0.559; p = 0.044, 0.01). CONCLUSION Patients with CLBP showed abnormal brain function activity, which was altered after SMT. The Reho values of the left precuneus could predict the immediate analgesic effect of SMT.
Collapse
Affiliation(s)
- Yu-Chan Yang
- Department of Radiology, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, People's Republic of China
| | - Ke Zeng
- Department of Massage, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, People's Republic of China
| | - Wei Wang
- Department of Massage, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, People's Republic of China
| | - Zhi-Gang Gong
- Department of Radiology, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, People's Republic of China
| | - Yi-Lei Chen
- Department of Radiology, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, People's Republic of China
| | - Jian-Ming Cheng
- Department of Radiology, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, People's Republic of China
| | - Min Zhang
- Department of Radiology, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, People's Republic of China
| | - Yan-Wen Huang
- Department of Radiology, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, People's Republic of China
| | - Xin-Bo Men
- Department of Massage, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, People's Republic of China
| | - Jian-Wei Wang
- Department of Massage, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, People's Republic of China
| | - Songhua Zhan
- Department of Radiology, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, People's Republic of China
| | - Wen-Li Tan
- Department of Radiology, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, People's Republic of China
| |
Collapse
|
4
|
Yoshino A, Otsuru N, Okada G, Tanaka K, Yokoyama S, Okamoto Y, Yamawaki S. Brain changes associated with impaired attention function in chronic pain. Brain Cogn 2021; 154:105806. [PMID: 34656037 DOI: 10.1016/j.bandc.2021.105806] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2021] [Revised: 07/16/2021] [Accepted: 09/26/2021] [Indexed: 12/21/2022]
Abstract
Attention function is thought to be important in chronic pain, with the pathology of chronic pain closely associated with cognitive-emotional components. However, there have been few neuroimaging studies of the relationship between attention function and chronic pain. We used the method of functional connectivity analysis for resting-state fMRI (rs-fMRI) data and the Attention Network Test-Revision (ANT-R) to clarify the attention-related pathology of chronic pain. We performed rs-fMRI and ANT-R on a group of 26 chronic pain (somatoform pain disorder) patients and 28 age-matched healthy controls. A significant group difference in validity effects, a component of ANT-R, emerged (F1,46 = 5.91, p = 0.019), and the chronic pain group exhibited slower reaction times. Decreased brain connectivity of the left insula and left frontal regions was confirmed in chronic pain patients (pFWE < 0.05), and connectivity was negatively correlated with validity effects (r = -0.29, permutation test p = 0.033). Further, decreased functional connectivity strength of the right insula and left temporal gyrus in the chronic pain group were confirmed (pFWE < 0.05). We conclude that poor control of attention function results from deficits of functional connectivity in the left insula and left frontal regions in chronic pain.
Collapse
Affiliation(s)
- Atsuo Yoshino
- Department of Psychiatry and Neurosciences, Division of Frontier Graduate School of Biomedical Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima 734-8551, Japan.
| | - Naofumi Otsuru
- Department of Physical Therapy, Niigata University of Health and Welfare, 1398 Shimamichou, Kita-ku, Niigata 950-3198, Japan
| | - Go Okada
- Department of Psychiatry and Neurosciences, Division of Frontier Graduate School of Biomedical Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima 734-8551, Japan
| | - Keisuke Tanaka
- Division of Clinical Psychology, Health and Special Support, Joetsu University of Education, 1, Yamaashiki-cho, Jyouetsu, Nigata 943-8521, Japan
| | - Satoshi Yokoyama
- Department of Psychiatry and Neurosciences, Division of Frontier Graduate School of Biomedical Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima 734-8551, Japan
| | - Yasumasa Okamoto
- Department of Psychiatry and Neurosciences, Division of Frontier Graduate School of Biomedical Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima 734-8551, Japan
| | - Shigeto Yamawaki
- International Affectome Laboratory Center, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima 734-8551, Japan
| |
Collapse
|
5
|
Attal N, Poindessous-Jazat F, De Chauvigny E, Quesada C, Mhalla A, Ayache SS, Fermanian C, Nizard J, Peyron R, Lefaucheur JP, Bouhassira D. Repetitive transcranial magnetic stimulation for neuropathic pain: a randomized multicentre sham-controlled trial. Brain 2021; 144:3328-3339. [PMID: 34196698 DOI: 10.1093/brain/awab208] [Citation(s) in RCA: 93] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Revised: 05/05/2021] [Accepted: 05/11/2021] [Indexed: 11/12/2022] Open
Abstract
Repetitive transcranial magnetic stimulation (rTMS) has been proposed to treat neuropathic pain but the quality of evidence remains low. We aimed to assess the efficacy and safety of neuronavigated rTMS to the motor cortex (M1) or dorsolateral prefrontal cortex (DLPFC) in neuropathic pain over 25 weeks. We did a randomised double-blind, placebo-controlled trial at four outpatient clinics in France. Patients aged 18-75 years with peripheral neuropathic pain were randomly assigned in a 1:1 ratio to M1 or DLPFC-rTMS and re-randomised in a 2:1 ratio to active or sham rTMS (10 Hz, 3000 pulses/session, 15 sessions over 22 weeks). Patients and investigators were blind to treatment allocation. The primary endpoint was the comparison between active M1-rTMS, active DLPCF-rTMS and sham-rTMS for the change over the course of 25 weeks (group by time interaction) in average pain intensity (from 0 no pain to 10 maximal pain) on the Brief Pain Inventory (BPI), using a mixed model repeated measures analysis in patients who received at least one rTMS session (modified ITT population). Secondary outcomes included other measures of pain intensity and relief, sensory and affective dimensions of pain, quality of pain, self reported pain intensity and fatigue (patients diary), patient and clinician global impression of change (PGIC, CGIC), quality of life, sleep, mood and catastrophizing. This study is registered with ClinicalTrials.gov NCT02010281. A total of 152 patients were randomised and 149 received treatment (49 for M1; 52 for DLPFC; 48 for sham). M1-rTMS reduced pain intensity versus sham-rTMS (estimate for group x session interaction: -0.048 ± 0.02; 95% CI: -0.09 to -0.01; p = 0.01). DLPFC-rTMS was not better than sham (estimate: -0.003 ± 0.01; 95% CI:-0.04 to 0.03, p = 0.9). M1-rRMS, but not DLPFC-rTMS, was also superior to sham-rTMS on pain relief, sensory dimenson of pain, self reported pain intensity and fatigue, PGIC and CGIC. There were no effect on quality of pain, mood, sleep and quality of life as all groups improved similarly over time. Headache was the most common side effect and occurred in 17 (34.7%), 23 (44.2%) and 13 (27.1%) patients from M1, DLPFC and sham groups respectively (p = 0.2). Our results support the clinical relevance of M1-rTMS, but not of DLPFC-rTMS, for peripheral neuropathic pain with an excellent safety profile.
Collapse
Affiliation(s)
- Nadine Attal
- INSERM U 987, CETD, Hôpital Ambroise Paré, APHP, 92100 Boulogne-Billancourt, France.,UVSQ, Paris Saclay University, 78000 Versailles, France
| | | | - Edwige De Chauvigny
- Pain, Palliative and Supportive Care Department, UIC22 and EA3826, University Hospital Nantes, 44000 Nantes, France
| | - Charles Quesada
- INSERM U1028 & CETD, CHU Bellevue, 42100 Saint Etienne, France
| | - Alaa Mhalla
- Clinical Neurophysiology Unit, Hôpital Henri Mondor, APHP, 94000 Creteil, France
| | - Samar S Ayache
- Clinical Neurophysiology Unit, Hôpital Henri Mondor, APHP, 94000 Creteil, France.,EA 4391, Paris Est Creteil University, 94000 Creteil, France
| | | | - Julien Nizard
- Pain, Palliative and Supportive Care Department, UIC22 and EA3826, University Hospital Nantes, 44000 Nantes, France
| | - Roland Peyron
- INSERM U1028 & CETD, CHU Bellevue, 42100 Saint Etienne, France
| | - Jean-Pascal Lefaucheur
- Clinical Neurophysiology Unit, Hôpital Henri Mondor, APHP, 94000 Creteil, France.,EA 4391, Paris Est Creteil University, 94000 Creteil, France
| | - Didier Bouhassira
- INSERM U 987, CETD, Hôpital Ambroise Paré, APHP, 92100 Boulogne-Billancourt, France.,UVSQ, Paris Saclay University, 78000 Versailles, France
| |
Collapse
|
6
|
Chu MK, Kim BS, Chung PW, Kim BK, Lee MJ, Park JW, Ahn JY, Bae DW, Song TJ, Sohn JH, Oh K, Kim D, Kim JM, Kim SK, Choi YJ, Chung JM, Moon HS, Chung CS, Park KY, Cho SJ. Clinical features of cluster headache without cranial autonomic symptoms: results from a prospective multicentre study. Sci Rep 2021; 11:6916. [PMID: 33767287 PMCID: PMC7994319 DOI: 10.1038/s41598-021-86408-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2020] [Accepted: 03/15/2021] [Indexed: 11/11/2022] Open
Abstract
Although cranial autonomic symptoms (CAS) are typical in cluster headache (CH), some individuals with CH show no CAS during their headache attacks. Probable cluster headache (PCH) is a subtype of CH that fulfils all but one criterion of CH. This study aimed to investigate the frequency and clinical features of CH and PCH without CAS in comparison to those with CAS. We analysed data from the Korea Cluster Headache Registry, a prospective multicentre registry involving data from 16 hospitals. Of the 216 participants with CH and 26 with PCH, 19 (8.8%) and 7 (26.9%), respectively, did not have CAS. Participants with CH without CAS exhibited less severe anxiety (General Anxiety Disorder-7 score, median [interquartile range], 2.0 [1.0–6.0] vs 8.0 [3.0–12.0], p = 0.001) and depression (Patient Health Questionnaire-9 score, 3.0 [1.0–7.0] vs 7.0 [3.0–11.0], p = 0.042) than those with CAS. Among participants with PCH, headache intensity was less severe in participants without CAS than in those with CAS (numeric rating scale, 8.0 [7.0–8.0] vs 9.5 [8.0–10.0], p = 0.015). In conclusion, a significant proportion of participants with CH and PCH did not have CAS. Some clinical features of CH and PCH differed based on the presence of CAS.
Collapse
Affiliation(s)
- Min Kyung Chu
- Department of Neurology, Severance Hospital, College of Medicine, Yonsei University, Seoul, Korea
| | - Byung-Su Kim
- Department of Neurology, Bundang Jesaeng General Hospital, Daejin Medical Center, Seongnam, Korea
| | - Pil-Wook Chung
- Department of Neurology, Kangbuk Samsung Hospital, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Byung-Kun Kim
- Department of Neurology, Eulji Hospital, Eulji University, Seoul, Korea
| | - Mi Ji Lee
- Department of Neurology, Neuroscience Center, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Jeong Wook Park
- Department of Neurology, Uijeongbu St. Mary's Hospital, The Catholic University of Korea College of Medicine, Uijeongbu, Korea
| | - Jin-Young Ahn
- Department of Neurology, Seoul, Medical Center, Seoul, Korea
| | - Dae Woong Bae
- Department of Neurology, St. Vincent's Hospital, College of Medicine, The Catholic University of Korea, Suwon, Korea
| | - Tae-Jin Song
- Department of Neurology, College of Medicine, Ewha Womans University Seoul Hospital, Seoul, Korea
| | - Jong-Hee Sohn
- Department of Neurology, Chuncheon Sacred Heart Hospital, Hallym University College of Medicine, Chuncheon, Korea
| | - Kyungmi Oh
- Department of Neurology, Korea University College of Medicine, Seoul, Korea
| | - Daeyoung Kim
- Department of Neurology, Chungnam National University College of Medicine, Daejeon, Korea
| | - Jae-Moon Kim
- Department of Neurology, Chungnam National University College of Medicine, Daejeon, Korea
| | - Soo-Kyoung Kim
- Department of Neurology, Gyeongsang National University College of Medicine, Jinju, Korea
| | | | - Jae Myun Chung
- Department of Neurology, Inje University College of Medicine, Seoul, Korea
| | - Heui-Soo Moon
- Department of Neurology, Kangbuk Samsung Hospital, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Chin-Sang Chung
- Department of Neurology, Neuroscience Center, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Kwang-Yeol Park
- Department of Neurology, Chung-Ang University Hospital, Seoul, Korea
| | - Soo-Jin Cho
- Department of Neurology, Dongtan Sacred Heart Hospital, Hallym University College of Medicine, Keun Jae Bong-gil 7, Hwaseong, 18450, Gyeonggi-do, Korea.
| |
Collapse
|
7
|
Setoyama D, Yoshino A, Takamura M, Okada G, Iwata M, Tsunetomi K, Ohgidani M, Kuwano N, Yoshimoto J, Okamoto Y, Yamawaki S, Kanba S, Kang D, Kato TA. Personality classification enhances blood metabolome analysis and biotyping for major depressive disorders: two-species investigation. J Affect Disord 2021; 279:20-30. [PMID: 33038697 DOI: 10.1016/j.jad.2020.09.118] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Revised: 08/11/2020] [Accepted: 09/27/2020] [Indexed: 12/27/2022]
Abstract
BACKGROUND The relationship between depression and personality has long been suggested, however, biomarker investigations for depression have mostly overlooked this connection. METHODS We collected personality traits from 100 drug-free patients with major depressive disorders (MDD) and 100 healthy controls based on the Five-Factor Model (FFM) such as Neuroticism (N) and Extraversion (E), and also obtained 63 plasma metabolites profiles by LCMS-based metabolome analysis. RESULTS Partitional clustering analysis using the NEO-FFI data classified all subjects into three major clusters. Eighty-six subjects belonging to Cluster 1 (C1: less personality-biased group) constituted half of MDD patients and half of healthy controls. C2 constituted 50 subjects mainly MDD patients (N high + E low), and C3 constituted 64 subjects mainly healthy subjects (N low + E high). Using metabolome information, the machine learning model was optimized to discriminate MDD patients from healthy controls among all subjects and C1, respectively. The performance of the model for all subjects was moderate (AUC = 0. 715), while the performance was extremely improved when limited to C1 (AUC = 0. 907). Tryptophan-pathway plasma metabolites including tryptophan, serotonin and kynurenine were significantly lower in MDD patients especially among C1. We also validated metabolomic findings using a social-defeat mice model of stress-induced depression. LIMITATIONS A case-control study design and sample size is not large. CONCLUSIONS Our results suggest that personality classification enhances blood biomarker analysis for MDD patients and further translational investigations should be conducted to clarify the biological relationship between personality traits, stress and depression.
Collapse
Affiliation(s)
- Daiki Setoyama
- Department of Clinical Chemistry and Laboratory Medicine, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi Higashi-Ku, Fukuoka 812-8582, Japan
| | - Atsuo Yoshino
- Department of Psychiatry and Neurosciences, Hiroshima University, 1-2-3 Kasumi, Minami-Ku, Hiroshima 734-8553, Japan
| | - Masahiro Takamura
- Department of Psychiatry and Neurosciences, Hiroshima University, 1-2-3 Kasumi, Minami-Ku, Hiroshima 734-8553, Japan
| | - Go Okada
- Department of Psychiatry and Neurosciences, Hiroshima University, 1-2-3 Kasumi, Minami-Ku, Hiroshima 734-8553, Japan
| | - Masaaki Iwata
- Department of Neuropsychiatry, Faculty of Medicine, Tottori University, 86 Nishi-Cho, Yonago 683-8503, Japan
| | - Kyohei Tsunetomi
- Department of Neuropsychiatry, Faculty of Medicine, Tottori University, 86 Nishi-Cho, Yonago 683-8503, Japan
| | - Masahiro Ohgidani
- Department of Neuropsychiatry, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi Higashi-Ku, Fukuoka 812-8582, Japan
| | - Nobuki Kuwano
- Department of Neuropsychiatry, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi Higashi-Ku, Fukuoka 812-8582, Japan
| | - Junichiro Yoshimoto
- Division of Information Science, Graduate School of Science and Technology, Nara Institute of Science and Technology, 8916-5 Takayama, Ikoma, Nara 630-0192, Japan
| | - Yasumasa Okamoto
- Department of Psychiatry and Neurosciences, Hiroshima University, 1-2-3 Kasumi, Minami-Ku, Hiroshima 734-8553, Japan
| | - Shigeto Yamawaki
- Department of Psychiatry and Neurosciences, Hiroshima University, 1-2-3 Kasumi, Minami-Ku, Hiroshima 734-8553, Japan
| | - Shigenobu Kanba
- Department of Neuropsychiatry, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi Higashi-Ku, Fukuoka 812-8582, Japan
| | - Dongchon Kang
- Department of Clinical Chemistry and Laboratory Medicine, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi Higashi-Ku, Fukuoka 812-8582, Japan
| | - Takahiro A Kato
- Department of Neuropsychiatry, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi Higashi-Ku, Fukuoka 812-8582, Japan.
| |
Collapse
|
8
|
Tan W, Wang W, Yang Y, Chen Y, Kang Y, Huang Y, Gong Z, Zhan S, Ke Z, Wang J, Yuan W, Huang W, Zee C, Chen Z, Chen BT. Spinal Manipulative Therapy Alters Brain Activity in Patients With Chronic Low Back Pain: A Longitudinal Brain fMRI Study. Front Integr Neurosci 2020; 14:534595. [PMID: 33328915 PMCID: PMC7710896 DOI: 10.3389/fnint.2020.534595] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Accepted: 10/26/2020] [Indexed: 12/17/2022] Open
Abstract
Background: Spinal manipulative therapy (SMT) helps to reduce chronic low back pain (cLBP). However, the underlying mechanism of pain relief and the neurological response to SMT remains unclear. We utilized brain functional magnetic resonance imaging (fMRI) upon the application of a real-time spot pressure mechanical stimulus to assess the effects of SMT on patients with cLBP. Methods: Patients with cLBP (Group 1, n = 14) and age-matched healthy controls without cLBP (Group 2, n = 20) were prospectively enrolled. Brain fMRI was performed for Group 1 at three time points: before SMT (TP1), after the first SMT session (TP2), and after the sixth SMT session (TP3). The healthy controls (Group 2) did not receive SMT and underwent only one fMRI scan. During fMRI scanning, a real-time spot pressure mechanical stimulus was applied to the low back area of all participants. Participants in Group 1 completed clinical questionnaires assessing pain and quality of life using a visual analog scale (VAS) and the Chinese Short Form Oswestry Disability Index (C-SFODI), respectively. Results: Before SMT (TP1), there were no significant differences in brain activity between Group 1 and Group 2. After the first SMT session (TP2), Group 1 showed significantly greater brain activity in the right parahippocampal gyrus, right dorsolateral prefrontal cortex, and left precuneus compared to Group 2 (P < 0.05). After the sixth SMT session (TP3), Group 1 showed significantly greater brain activity in the posterior cingulate gyrus and right inferior frontal gyrus compared to Group 2 (P < 0.05). After both the first and sixth SMT sessions (TP2 and TP3), Group 1 had significantly lower VAS pain scores and C-SFODI scores than at TP1 (P < 0.001). Conclusion: We observed alterations in brain activity in regions of the default mode network in patients with cLBP after SMT. These findings suggest the potential utility of the default mode network as a neuroimaging biomarker for pain management in patients with cLBP. Clinical Trial Registration:Chinese Clinical Trial Registry, identifier ChiCTR1800015620.
Collapse
Affiliation(s)
- Wenli Tan
- Department of Radiology, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Wei Wang
- Department of Tuina, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yuchan Yang
- Department of Radiology, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yilei Chen
- Department of Radiology, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yingjie Kang
- Department of Radiology, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yanwen Huang
- Department of Radiology, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Zhigang Gong
- Department of Radiology, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Songhua Zhan
- Department of Radiology, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Zeng Ke
- Department of Tuina, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Jianwei Wang
- Department of Tuina, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Weian Yuan
- Institute of Traumatology and Orthopedics, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Weiyuan Huang
- Department of Radiology, Hainan General Hospital, Haikou, China
| | - Chishing Zee
- Department of Radiology, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
| | - Zikuan Chen
- Department of Diagnostic Radiology, City of Hope National Medical Center, Duarte, CA, United States
| | - Bihong T Chen
- Department of Diagnostic Radiology, City of Hope National Medical Center, Duarte, CA, United States
| |
Collapse
|
9
|
Zheng P, Mei J, Leng J, Jia S, Gu Z, Chen S, Zhang W, Cheng A, Guo D, Lang J. Evaluation of the brain functional activities in rats various location-endometriosis pain model. ANNALS OF TRANSLATIONAL MEDICINE 2019; 7:767. [PMID: 32042783 DOI: 10.21037/atm.2019.11.73] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Background Endometriosis (EM) is a common gynecological disease in women of reproductive age. These patients in approximately 80% suffer the various degree pain. This study will investigate synergistically the mechanism of the higher-position central sensitization and offer a pre-clinical experiment evidence for treatment of various location-EM patients with pain. Methods Twenty Sprague-Dawley rats were induced three types EM including abdominal EM (n=5), gastrocnemius EM (n=5) and ovary EM group (n=5) and one sham control group (n=5). All groups were measured the pain sensitization by hotplate test, then scanned by the functional magnetic resonance imaging (fMRI). The resting-state fMRI (rs-fMRI) date was analyzed using regional homogeneity (ReHo) approach to find out the abnormal functional activity brain regions. Nissl staining method observed the state of neurons in aberrant ReHo signal brain regions. Results Rats with EM pain sensitization were increased in abdominal EM and gastrocnemius EM than ovary EM group and sham control. The ReHo value is decreased in gastrocnemius EM in right thalamus and left olfactory tubercle compared with other three groups. The number of neurons was decreased; cavitation around nucleus, and pyknotic homogenous nuclei. Nissl bodies were stained deeply, and the shape was irregular in gastrocnemius EM by Nissl staining in right thalamus. In left olfactory tubercle, there was no significant difference in 4 groups. Conclusions The thalamus may be the potential key brain region for the central sensitization mechanism of various location-EM pain. The oxidative activation may be weakened in thalamus in gastrocnemius EM group with more severe pain. This finding could lend support for future research on the imageology and pathology of various location-EM pain.
Collapse
Affiliation(s)
- Ping Zheng
- Department of Obstetrics and Gynecology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing 100730, China
| | - Jian Mei
- Physical Education College, Soochow University, Suzhou 215000, China
| | - Jinhua Leng
- Department of Obstetrics and Gynecology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing 100730, China
| | - Shuangzheng Jia
- Department of Obstetrics and Gynecology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing 100730, China
| | - Zhiyue Gu
- Department of Obstetrics and Gynecology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing 100730, China
| | - Sikai Chen
- Department of Obstetrics and Gynecology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing 100730, China
| | - Wen Zhang
- Department of Obstetrics and Gynecology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing 100730, China
| | - Aoshuang Cheng
- Department of Obstetrics and Gynecology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing 100730, China
| | - Dalong Guo
- Air Force Characteristic Medical Center, PLA Air Force Medical University, Beijing 100142, China
| | - Jinghe Lang
- Department of Obstetrics and Gynecology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing 100730, China
| |
Collapse
|
10
|
Morioka N, Nakamura Y, Zhang FF, Hisaoka-Nakashima K, Nakata Y. Role of Connexins in Chronic Pain and Their Potential as Therapeutic Targets for Next-Generation Analgesics. Biol Pharm Bull 2019; 42:857-866. [PMID: 31155584 DOI: 10.1248/bpb.b19-00195] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Chronic pain, including inflammatory, neuropathic pain, is a serious clinical issue. There are increasing numbers of patients with chronic pain due to the growing number of elderly and it is estimated that about 25% of the global population will develop chronic pain. Chronic pain patients are refractory to medications used to treat acute pain such as opioids and non-steroidal anti-inflammatory drugs. Furthermore, the complexity and diversity of chronic pain mechanisms hinder the development of new analgesics. Thus, a better understanding of the mechanism of chronic pain is needed, which would facilitate the development of novel analgesics based on novel mechanisms. With this goal, connexins (Cxs) could be targeted for the development of new analgesics. Connexins are proteins with 20 subtypes, and function as channels, gap junctions between cells, and hemichannels that sample the extracellular space and release molecules such as neurotransmitters. Furthermore, Cxs could have functions independent of channel activity. Recent studies have shown that Cxs could be crucial in the induction and maintenance of chronic pain, and modulation of the activity or the expression of Cxs ameliorates nociceptive hypersensitivity in multiple chronic pain models. This review will cite novel findings on the role of of Cxs in the nociceptive transduction pathway under the chronic pain state and antinociceptive effects of various molecules modulating activity or expression of Cxs. Also, the potential of Cx modulation as a therapeutic strategy for intractable chronic pain will be discussed.
Collapse
Affiliation(s)
- Norimitsu Morioka
- Department of Pharmacology, Hiroshima University Graduate School of Biomedical & Health Sciences
| | - Yoki Nakamura
- Department of Pharmacology, Hiroshima University Graduate School of Biomedical & Health Sciences
| | - Fang Fang Zhang
- Department of Pharmacology, Hiroshima University Graduate School of Biomedical & Health Sciences.,Institute of Pharmacology, Taishan Medical University
| | - Kazue Hisaoka-Nakashima
- Department of Pharmacology, Hiroshima University Graduate School of Biomedical & Health Sciences
| | - Yoshihiro Nakata
- Department of Pharmacology, Hiroshima University Graduate School of Biomedical & Health Sciences
| |
Collapse
|
11
|
Abstract
Changes in brain function in chronic pain have been studied using paradigms that deliver acute pain-eliciting stimuli or assess the brain at rest. Although motor disability accompanies many chronic pain conditions, few studies have directly assessed brain activity during motor function in individuals with chronic pain. Using chronic jaw pain as a model, we assessed brain activity during a precisely controlled grip force task and during a precisely controlled pain-eliciting stimulus on the forearm. We used multivariate analyses to identify regions across the brain whose activity together best separated the groups. We report 2 novel findings. First, although the parameters of grip force production were similar between the groups, the functional activity in regions including the prefrontal cortex, insula, and thalamus best separated the groups. Second, although stimulus intensity and pain perception were similar between the groups, functional activity in brain regions including the dorsal lateral prefrontal cortex, rostral ventral premotor cortex, and inferior parietal lobule best separated the groups. Our observations suggest that chronic jaw pain is associated with changes in how the brain processes motor and pain-related information even when the effector producing the force or experiencing the pain-eliciting stimulus is distant from the jaw. We also demonstrate that motor tasks and multivariate analyses offer alternative approaches for studying brain function in chronic jaw pain.
Collapse
|
12
|
Tang LY, Li HJ, Huang X, Bao J, Sethi Z, Ye L, Yuan Q, Zhu PW, Jiang N, Gao GP, Shao Y. Assessment of synchronous neural activities revealed by regional homogeneity in individuals with acute eye pain: a resting-state functional magnetic resonance imaging study. J Pain Res 2018; 11:843-850. [PMID: 29719418 PMCID: PMC5916265 DOI: 10.2147/jpr.s156634] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Objective Previous neuroimaging studies have demonstrated that pain-related diseases are associated with brain function and anatomical abnormalities, whereas altered synchronous neural activity in acute eye pain (EP) patients has not been investigated. The purpose of this study was to explore whether or not synchronous neural activity changes were measured with the regional homogeneity (ReHo) method in acute EP patients. Methods A total of 20 patients (15 males and 5 females) with EP and 20 healthy controls (HCs) consisting of 15 and 5 age-, sex-, and education-matched males and females, respectively, underwent resting-state functional magnetic resonance imaging. The ReHo method was applied to assess synchronous neural activity changes. Results Compared with HCs, acute EP patients had significantly lower ReHo values in the left precentral/postcentral gyrus (Brodmann area [BA]3/4), right precentral/postcentral gyrus (BA3/4), and left middle frontal gyrus (BA6). In contrast, higher ReHo values in acute EP patients were observed in the left superior frontal gyrus (BA11), right inferior parietal lobule (BA39/40), and left precuneus (BA7). However, no relationship was found between the mean ReHo signal values of the different areas and clinical manifestations, which included both the duration and degree of pain in EP patients. Conclusion Our study highlighted that acute EP patients showed altered synchronous neural activities in many brain regions, including somatosensory regions. These findings might provide useful information for exploration of the neural mechanisms underlying acute EP.
Collapse
Affiliation(s)
- Li-Yuan Tang
- Department of Ophthalmology, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Hai-Jun Li
- Department of Radiology, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Xin Huang
- Department of Ophthalmology, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Jing Bao
- Department of Ophthalmology, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Zubin Sethi
- The Department of Medicine, University of Miami, Coral Gables, FL, USA
| | - Lei Ye
- Department of Ophthalmology, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Qing Yuan
- Department of Ophthalmology, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Pei-Wen Zhu
- Department of Ophthalmology, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Nan Jiang
- Department of Ophthalmology, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Gui-Ping Gao
- Department of Ophthalmology, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Yi Shao
- Department of Ophthalmology, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| |
Collapse
|