1
|
Huo J, Gou X, Zhang J, Zhu J, Chen F. A Review of Droplet/Bubble Transportation on Bionic Superwetting Surface. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025:e2412363. [PMID: 40159829 DOI: 10.1002/smll.202412363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2024] [Revised: 02/02/2025] [Indexed: 04/02/2025]
Abstract
The controllable droplets/bubble transportation has a wide range of applications in the fields of biomedical, chemistry, energy, and material applications, and has aroused great attention for its significant scientific and technology importance. The main challenges derived from the liquid/solid or gas/solid contact strength and actuating energy input. Artificial superwetting surfaces inspired by nature creatures have triggered technology revolution in many fields relevant to droplet operation, and the applied actuating force improve the controllability to preferential direction. In this review, we highlights recent advancements in droplets/bubble transportation on the superwetting surfaces driven by passive or active stimulation methods inspired by bionic function interfaces. The three main superwetting surfaces including superhydrophobic surface, slippery liquid-infused porous surface, hybrid surface, various stimuli methods including gravity/buoyance, chemical/morphology gradient, heat, magnetism, electricity, light, adhesion force, and prosperous applications including micro-reaction, biochemical analysis, fog collection/antifog, energy transfer, bubble/liquid micro-robot, self-cleaning, light/circle switch have been systematically summarized. Finally, the challenges and future perspectives of research innovations and practical applications are discussed.
Collapse
Affiliation(s)
- Jinglan Huo
- School of Optoelectronic Engineering, Xidian University, Xi'an, 710071, P. R. China
| | - Xiaodan Gou
- State Key Laboratory for Manufacturing System Engineering and Key Laboratory of Photonics Technology for Information of Shaanxi Province, School of Electronics & Information Engineering, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
| | - Jialiang Zhang
- State Key Laboratory for Manufacturing System Engineering and Key Laboratory of Photonics Technology for Information of Shaanxi Province, School of Electronics & Information Engineering, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
| | - Jiangfeng Zhu
- School of Optoelectronic Engineering, Xidian University, Xi'an, 710071, P. R. China
| | - Feng Chen
- State Key Laboratory for Manufacturing System Engineering and Key Laboratory of Photonics Technology for Information of Shaanxi Province, School of Electronics & Information Engineering, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
| |
Collapse
|
2
|
Zhang M, Tu C, Guo L, Hou L, Li Y, Du P, Chen J, Lin J, Bao F. Spontaneous Cargo Transport via Sliding Bubbles on a Superhydrophobic Wire. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2025; 41:1175-1181. [PMID: 39722445 DOI: 10.1021/acs.langmuir.4c04539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2024]
Abstract
The transportation and carrying behavior of underwater bubbles have been widely used for an underwater microactuator, cargo displacement assembly, and drug delivery. This study explores a method for underwater cargo transportation using sliding bubbles as a vehicle with directionally guided superhydrophobic wires. By exploitation of the adhesion between superhydrophobic surfaces and bubble interfaces, a bubble is able to transport a superhydrophobic O-ring along a superhydrophobic wire, effectively delivering the O-ring to the water surface. The capability of the bubble-driven O-ring to rise along superhydrophobic wires was systematically evaluated and analyzed, focusing on the two configurations formed by the bubbles and O-rings. Additionally, we identified the conditions necessary for the successful rising of bubbles and O-rings of varying sizes as well as their trajectories and rising velocities. Through an analysis of the relationship between the Ohnesorge number and Reynolds number, the kinetic characteristics of the bubble-carrying O-ring are elucidated. Furthermore, the applications of bubble transportation in cyclic actuation and underwater data collection are substantiated. This strategy offers a highly reliable method for underwater information transmission and patrol as well as potential applications in bubble transportation.
Collapse
Affiliation(s)
- Mingyang Zhang
- Zhejiang Provincial Key Laboratory of Flow Measurement Technology, China Jiliang University, Hangzhou 310018, China
| | - Chengxu Tu
- Zhejiang Provincial Key Laboratory of Flow Measurement Technology, China Jiliang University, Hangzhou 310018, China
| | - Luyao Guo
- Zhejiang Provincial Key Laboratory of Flow Measurement Technology, China Jiliang University, Hangzhou 310018, China
| | - Likai Hou
- Zhejiang Provincial Key Laboratory of Flow Measurement Technology, China Jiliang University, Hangzhou 310018, China
| | - Yichen Li
- Zhejiang Provincial Key Laboratory of Flow Measurement Technology, China Jiliang University, Hangzhou 310018, China
| | - Pengfei Du
- Zhejiang Provincial Key Laboratory of Flow Measurement Technology, China Jiliang University, Hangzhou 310018, China
| | - Ji Chen
- Zhejiang Provincial Key Laboratory of Flow Measurement Technology, China Jiliang University, Hangzhou 310018, China
| | - Jianzhong Lin
- Department of Engineering Mechanics, Zhejiang University, Hangzhou 310027, China
| | - Fubing Bao
- Zhejiang Provincial Key Laboratory of Flow Measurement Technology, China Jiliang University, Hangzhou 310018, China
| |
Collapse
|
3
|
Rivas DP, Sokolich M, Das S. Individual closed-loop control of micromotors by selective light actuation. SOFT MATTER 2024; 20:9523-9527. [PMID: 39552497 PMCID: PMC11571050 DOI: 10.1039/d4sm00810c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Accepted: 11/04/2024] [Indexed: 11/19/2024]
Abstract
Control of individual micromotors within a group would allow for improved efficiency, greater ability to accomplish complex tasks, higher throughput, and increased adaptability. However, independent control of micromotors remains a significant challenge. Typical actuation techniques, such as chemical and magnetic, are uniform over the workspace and therefore cannot control one micromotor independently of the others. To address this challenge, we demonstrate a novel control method of applying a localized region of UV light that activates a single light-responsive TiO2 micromotor at a time. To achieve this, a digital micromirror device (DMD) was employed which is capable of highly precise localized illumination. To demonstrate this precise user-defined control, patterns of micromotors were created via selective actuation and magnetic steering. In addition, a closed-loop system was also developed which automates the guidance of individual micromotors to specified locations, illustrating the potential for more efficient and precise control of the micromotors.
Collapse
Affiliation(s)
- David P Rivas
- Department of Mechanical Engineering, 130 Academy Street, Newark, DE, USA.
| | - Max Sokolich
- Department of Mechanical Engineering, 130 Academy Street, Newark, DE, USA.
| | - Sambeeta Das
- Department of Mechanical Engineering, 130 Academy Street, Newark, DE, USA.
| |
Collapse
|
4
|
Polev K, Paneru G, Visyn V, Cybulski O, Lach S, Kolygina DV, Edel E, Grzybowski BA. Light-Driven, Dynamic Assembly of Micron-To-Centimeter Parts, Micromachines and Microbot Swarms. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2402263. [PMID: 38924658 PMCID: PMC11348064 DOI: 10.1002/advs.202402263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2024] [Revised: 03/27/2024] [Indexed: 06/28/2024]
Abstract
This work describes light-driven assembly of dynamic formations and functional particle swarms controlled by appropriately programmed light patterns. The system capitalizes on the use of a fluidic bed whose low thermal conductivity assures that light-generated heat remains "localized" and sets strong convective flows in the immediate vicinity of the particles being irradiated. In this way, even low-power laser light or light from a desktop slide projector can be used to organize dynamic formations of objects spanning four orders of magnitude in size (from microns to centimeters) and over nine orders of magnitude in terms of mass. These dynamic assemblies include open-lattice structures with individual particles performing intricate translational and/or rotational motions, density-gradient particle arrays, nested architectures of mechanical components (e.g., planetary gears), or swarms of light-actuated microbots controlling assembly of other objects.
Collapse
Affiliation(s)
- Konstantin Polev
- Center for Algorithmic and Robotized Synthesis (CARS)Korea's Institute for Basic Science (IBS)Ulsan44919South Korea
- Department of Biomedical EngineeringUlsan National Institute of Science and Technology (UNIST)Ulsan44919South Korea
| | - Govind Paneru
- Center for Algorithmic and Robotized Synthesis (CARS)Korea's Institute for Basic Science (IBS)Ulsan44919South Korea
- Department of PhysicsUlsan National Institute of Science and Technology (UNIST)Ulsan44919South Korea
| | - Valentin Visyn
- Center for Algorithmic and Robotized Synthesis (CARS)Korea's Institute for Basic Science (IBS)Ulsan44919South Korea
| | - Olgierd Cybulski
- Center for Algorithmic and Robotized Synthesis (CARS)Korea's Institute for Basic Science (IBS)Ulsan44919South Korea
| | - Slawomir Lach
- Center for Algorithmic and Robotized Synthesis (CARS)Korea's Institute for Basic Science (IBS)Ulsan44919South Korea
| | - Diana V. Kolygina
- Center for Algorithmic and Robotized Synthesis (CARS)Korea's Institute for Basic Science (IBS)Ulsan44919South Korea
- Department of Biomedical EngineeringUlsan National Institute of Science and Technology (UNIST)Ulsan44919South Korea
| | - Evelyn Edel
- Center for Algorithmic and Robotized Synthesis (CARS)Korea's Institute for Basic Science (IBS)Ulsan44919South Korea
| | - Bartosz A. Grzybowski
- Center for Algorithmic and Robotized Synthesis (CARS)Korea's Institute for Basic Science (IBS)Ulsan44919South Korea
- Department of ChemistryUlsan National Institute of Science and Technology (UNIST)Ulsan44919South Korea
| |
Collapse
|
5
|
Zhou Y, Cheng W, Dai L, Guo S, Wu J, Wang X, Wu A, Liu L, Jiao N. Novel Operation Mechanism and Multifunctional Applications of Bubble Microrobots. Adv Healthc Mater 2024; 13:e2303767. [PMID: 38230855 DOI: 10.1002/adhm.202303767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Indexed: 01/18/2024]
Abstract
Microrobots have emerged as powerful tools for manipulating particles, cells, and assembling biological tissue structures at the microscale. However, achieving precise and flexible operation of arbitrary-shaped microstructures in 3D space remains a challenge. In this study, three novel operation methods based on bubble microrobots are proposed to enable delicate and multifunctional manipulation of various microstructures. These methods include 3D turnover, fixed-point rotation, and 3D ejection. By harnessing the combined principles of the effect of the heat flow field and surface tension of an optothermally generated bubble, the bubble microrobot can perform tasks such as flipping an SIA humanoid structure, rotating a bird-like structure, and launching a hollow rocket-like structure. The proposed multi-mode operation of bubble microrobots enables diverse attitude adjustments of microstructures with different sizes and shapes in both 2D and 3D spaces. As a demonstration, a biological microenvironment of brain glioblastoma is constructed by the bubble microrobot. The simplicity, versatility, and flexibility of this proposed method hold great promise for applications in micromanipulation, assembly, and tissue engineering.
Collapse
Affiliation(s)
- Yuting Zhou
- State Key Laboratory of Robotics, Shenyang Institute of Automation, Chinese Academy of Sciences, Shenyang, 110016, China
- Institutes for Robotics and Intelligent Manufacturing, Chinese Academy of Sciences, Shenyang, 110016, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Wen Cheng
- Shengjing Hospital of China Medical University, Shenyang, 110022, China
| | - Liguo Dai
- Henan Provincial Key Laboratory of Intelligent Manufacturing of Mechanical Equipment, Zhengzhou University of Light Industry, Zhengzhou, 450002, China
| | - Songyi Guo
- Shengjing Hospital of China Medical University, Shenyang, 110022, China
| | - Junfeng Wu
- State Key Laboratory of Robotics, Shenyang Institute of Automation, Chinese Academy of Sciences, Shenyang, 110016, China
- Institutes for Robotics and Intelligent Manufacturing, Chinese Academy of Sciences, Shenyang, 110016, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xiaodong Wang
- State Key Laboratory of Robotics, Shenyang Institute of Automation, Chinese Academy of Sciences, Shenyang, 110016, China
- Institutes for Robotics and Intelligent Manufacturing, Chinese Academy of Sciences, Shenyang, 110016, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Anhua Wu
- Shengjing Hospital of China Medical University, Shenyang, 110022, China
| | - Lianqing Liu
- State Key Laboratory of Robotics, Shenyang Institute of Automation, Chinese Academy of Sciences, Shenyang, 110016, China
- Institutes for Robotics and Intelligent Manufacturing, Chinese Academy of Sciences, Shenyang, 110016, China
| | - Niandong Jiao
- State Key Laboratory of Robotics, Shenyang Institute of Automation, Chinese Academy of Sciences, Shenyang, 110016, China
- Institutes for Robotics and Intelligent Manufacturing, Chinese Academy of Sciences, Shenyang, 110016, China
| |
Collapse
|
6
|
Meng C, Lu F, Zhang NQ, Zhou J, Yu P, Zhong MC. Optothermal Microparticle Oscillator Induced by Marangoni and Thermal Convection. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:7463-7470. [PMID: 38551336 DOI: 10.1021/acs.langmuir.3c03936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/10/2024]
Abstract
The light-fueled microparticle oscillator, exemplifying sustained driving in a static light source, potentially holds applications in fundamental physics, cellular manipulation, fluid dynamics, and various other soft-matter systems. The challenges of photodamage due to laser focusing on particles and the control of the oscillation direction have always been two major issues for microparticle oscillators. Here, we present an optical-thermal method for achieving a 3D microparticle oscillator with a fixed direction by employing laser heating of the gold film surface. First, the microparticle oscillation without direction limitation is studied. The photothermal conversion originates from the laser heating of a gold film. The oscillation mechanism is the coordination of the forces exerted on the particles, including the thermal convective force, thermophoresis force, and gravity. Subsequently, the additional Marangoni convection force, generated by the temperature gradient on the surface of a microbubble, is utilized to control the oscillation direction of the microparticle. Finally, a dual-channel oscillation mode is achieved by utilizing two microbubbles. During the oscillation process, the microparticle is influenced by flow field forces and temperature gradient force, completely avoiding optical damage to the oscillating microparticle.
Collapse
Affiliation(s)
- Chun Meng
- Anhui Province Key Laboratory of Measuring Theory and Precision Instrument, School of Instrument Scienceand Optoelectronics Engineering, Hefei University of Technology, Hefei, Anhui 230009, China
| | - Fengya Lu
- School of Biomedical Engineering, Anhui Medical University, Hefei 230032, China
| | - Nan-Qing Zhang
- Anhui Province Key Laboratory of Measuring Theory and Precision Instrument, School of Instrument Scienceand Optoelectronics Engineering, Hefei University of Technology, Hefei, Anhui 230009, China
| | - Jinhua Zhou
- School of Biomedical Engineering, Anhui Medical University, Hefei 230032, China
| | - Panpan Yu
- Anhui Province Key Laboratory of Measuring Theory and Precision Instrument, School of Instrument Scienceand Optoelectronics Engineering, Hefei University of Technology, Hefei, Anhui 230009, China
| | - Min-Cheng Zhong
- Anhui Province Key Laboratory of Measuring Theory and Precision Instrument, School of Instrument Scienceand Optoelectronics Engineering, Hefei University of Technology, Hefei, Anhui 230009, China
| |
Collapse
|
7
|
Tanjeem N, Kreienbrink KM, Hayward RC. Modulating photothermocapillary interactions for logic operations at the air-water interface. SOFT MATTER 2024; 20:1689-1693. [PMID: 38323528 DOI: 10.1039/d3sm01487h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2024]
Abstract
We demonstrate a system for performing logical operations (OR, AND, and NOT gates) at the air-water interface based on Marangoni optical trapping and repulsion between photothermal particles. We identify a critical separation distance at which the trapped particle assemblies become unstable, providing insight into the potential for scaling to larger arrays of logic elements.
Collapse
Affiliation(s)
- Nabila Tanjeem
- Department of Chemical and Biological Engineering, University of Colorado, Boulder, Colorado 80303, USA.
- Department of Physics, California State University, Fullerton, California 92831, USA
| | - Kendra M Kreienbrink
- Materials Science and Engineering Program, University of Colorado, Boulder, Colorado 80303, USA
| | - Ryan C Hayward
- Department of Chemical and Biological Engineering, University of Colorado, Boulder, Colorado 80303, USA.
| |
Collapse
|
8
|
Dai L, Liu L, Zhou Y, Yan A, Zhao M, Jin S, Ye G, Wang C. Three-Dimensional Manipulation of Micromodules Using Twin Optothermally Actuated Bubble Robots. MICROMACHINES 2024; 15:230. [PMID: 38398959 PMCID: PMC10892707 DOI: 10.3390/mi15020230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Revised: 12/24/2023] [Accepted: 12/28/2023] [Indexed: 02/25/2024]
Abstract
A 3D manipulation technique based on two optothermally generated and actuated surface-bubble robots is proposed. A single laser beam can be divided into two parallel beams and used for the generation and motion control of twin bubbles. The movement and spacing control of the lasers and bubbles can be varied directly and rapidly. Both 2D and 3D operations of micromodules were carried out successfully using twin bubble robots. The cooperative manipulation of twin bubble robots is superior to that of a single robot in terms of stability, speed, and efficiency. The operational technique proposed in this study is expected to play an important role in tissue engineering, drug screening, and other fields.
Collapse
Affiliation(s)
- Liguo Dai
- Henan Provincial Key Laboratory of Intelligent Manufacturing of Mechanical Equipment, Zhengzhou University of Light Industry, Zhengzhou 450002, China; (L.D.); (L.L.); (A.Y.); (M.Z.); (S.J.)
| | - Lichao Liu
- Henan Provincial Key Laboratory of Intelligent Manufacturing of Mechanical Equipment, Zhengzhou University of Light Industry, Zhengzhou 450002, China; (L.D.); (L.L.); (A.Y.); (M.Z.); (S.J.)
| | - Yuting Zhou
- State Key Laboratory of Robotics, Shenyang Institute of Automation, Chinese Academy of Sciences, Shenyang 110016, China;
- Institutes for Robotics and Intelligent Manufacturing, Chinese Academy of Sciences, Shenyang 110016, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Aofei Yan
- Henan Provincial Key Laboratory of Intelligent Manufacturing of Mechanical Equipment, Zhengzhou University of Light Industry, Zhengzhou 450002, China; (L.D.); (L.L.); (A.Y.); (M.Z.); (S.J.)
| | - Mengran Zhao
- Henan Provincial Key Laboratory of Intelligent Manufacturing of Mechanical Equipment, Zhengzhou University of Light Industry, Zhengzhou 450002, China; (L.D.); (L.L.); (A.Y.); (M.Z.); (S.J.)
| | - Shaobo Jin
- Henan Provincial Key Laboratory of Intelligent Manufacturing of Mechanical Equipment, Zhengzhou University of Light Industry, Zhengzhou 450002, China; (L.D.); (L.L.); (A.Y.); (M.Z.); (S.J.)
| | - Guoyong Ye
- Henan Provincial Key Laboratory of Intelligent Manufacturing of Mechanical Equipment, Zhengzhou University of Light Industry, Zhengzhou 450002, China; (L.D.); (L.L.); (A.Y.); (M.Z.); (S.J.)
| | - Caidong Wang
- Henan Provincial Key Laboratory of Intelligent Manufacturing of Mechanical Equipment, Zhengzhou University of Light Industry, Zhengzhou 450002, China; (L.D.); (L.L.); (A.Y.); (M.Z.); (S.J.)
| |
Collapse
|
9
|
Gupta K, Moon HR, Chen Z, Han B, Green NG, Wereley ST. Optically induced electrothermal microfluidic tweezers in bio-relevant media. Sci Rep 2023; 13:9819. [PMID: 37330519 PMCID: PMC10276874 DOI: 10.1038/s41598-023-35722-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Accepted: 05/23/2023] [Indexed: 06/19/2023] Open
Abstract
Non-contact micro-manipulation tools have enabled invasion-free studies of fragile synthetic particles and biological cells. Rapid electrokinetic patterning (REP) traps target particles/cells, suspended in an electrolyte, on an electrode surface. This entrapment is electrokinetic in nature and thus depends strongly on the suspension medium's properties. REP has been well characterized for manipulating synthetic particles suspended in low concentration salt solutions (~ 2 mS/m). However, it is not studied as extensively for manipulating biological cells, which introduces an additional level of complexity due to their limited viability in hypotonic media. In this work, we discuss challenges posed by isotonic electrolytes and suggest solutions to enable REP manipulation in bio-relevant media. Various formulations of isotonic media (salt and sugar-based) are tested for their compatibility with REP. REP manipulation is observed in low concentration salt-based media such as 0.1× phosphate buffered saline (PBS) when the device electrodes are passivated with a dielectric layer. We also show manipulation of murine pancreatic cancer cells suspended in a sugar-based (8.5% w/v sucrose and 0.3% w/v dextrose) isotonic medium. The ability to trap mammalian cells and deposit them in custom patterns enables high-impact applications such as determining their biomechanical properties and 3D bioprinting for tissue scaffolding.
Collapse
Affiliation(s)
- Kshitiz Gupta
- School of Mechanical Engineering, Purdue University, West Lafayette, IN, USA
| | - Hye-Ran Moon
- School of Mechanical Engineering, Purdue University, West Lafayette, IN, USA
| | - Zhengwei Chen
- School of Mechanical Engineering, Purdue University, West Lafayette, IN, USA
| | - Bumsoo Han
- School of Mechanical Engineering, Purdue University, West Lafayette, IN, USA
| | - Nicolas G Green
- School of Electronics and Computer Science, University of Southampton, Southampton, UK
| | - Steven T Wereley
- School of Mechanical Engineering, Purdue University, West Lafayette, IN, USA.
| |
Collapse
|
10
|
Experimental investigation of rotating nodal line of MEMS-based nonlinear multi-mode resonators. Sci Rep 2022; 12:21339. [PMID: 36494500 PMCID: PMC9734146 DOI: 10.1038/s41598-022-26014-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Accepted: 12/08/2022] [Indexed: 12/13/2022] Open
Abstract
Nonlinear phenomenon is presently attracting considerable attention in the field of microelectromechanical systems (MEMS). By adjusting a controllable tuning voltage, the nonlinearity of microdevices, especially on microactuators, can be precisely manipulated. To trap and separate small particles, generating a large and stable rotation force is critical in micromanipulations. Here, we report a simple and potential angular momentum cell comprising a piezoelectric MEMS-based nonlinear multi-mode resonator with integrated electrodes. A nonlinear rotating nodal line has been observed in specific frequency bands by applying a controllable low voltage of sub 5 V on a 4-port resonator made of lead zirconate titanate (PZT) thin films. The magnitude of the actuated voltage is Complementary-Metal-Oxide-Semiconductor (CMOS)-compatible and easy to integrate with the circuit. Furthermore, the real-time rotation motion of the MEMS-based nonlinear multi-mode resonator is also verified by a laser doppler vibrometer (LDV) at both chirp and single input frequencies, respectively. Therefore, this angular momentum cell shows great potential in the application of micromanipulation.
Collapse
|
11
|
Zhou Y, Dai L, Jiao N. Review of Bubble Applications in Microrobotics: Propulsion, Manipulation, and Assembly. MICROMACHINES 2022; 13:1068. [PMID: 35888885 PMCID: PMC9324494 DOI: 10.3390/mi13071068] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 06/30/2022] [Accepted: 07/01/2022] [Indexed: 02/01/2023]
Abstract
In recent years, microbubbles have been widely used in the field of microrobots due to their unique properties. Microbubbles can be easily produced and used as power sources or tools of microrobots, and the bubbles can even serve as microrobots themselves. As a power source, bubbles can propel microrobots to swim in liquid under low-Reynolds-number conditions. As a manipulation tool, microbubbles can act as the micromanipulators of microrobots, allowing them to operate upon particles, cells, and organisms. As a microrobot, microbubbles can operate and assemble complex microparts in two- or three-dimensional spaces. This review provides a comprehensive overview of bubble applications in microrobotics including propulsion, micromanipulation, and microassembly. First, we introduce the diverse bubble generation and control methods. Then, we review and discuss how bubbles can play a role in microrobotics via three functions: propulsion, manipulation, and assembly. Finally, by highlighting the advantages and current challenges of this progress, we discuss the prospects of microbubbles in microrobotics.
Collapse
Affiliation(s)
- Yuting Zhou
- State Key Laboratory of Robotics, Shenyang Institute of Automation, Chinese Academy of Sciences, Shenyang 110016, China;
- Institutes for Robotics and Intelligent Manufacturing, Chinese Academy of Sciences, Shenyang 110016, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Liguo Dai
- College of Mechanical and Electrical Engineering, Zhengzhou University of Light Industry, Zhengzhou 450002, China;
| | - Niandong Jiao
- State Key Laboratory of Robotics, Shenyang Institute of Automation, Chinese Academy of Sciences, Shenyang 110016, China;
- Institutes for Robotics and Intelligent Manufacturing, Chinese Academy of Sciences, Shenyang 110016, China
| |
Collapse
|
12
|
Basualdo FNP, Gardi G, Wang W, Demir SO, Bolopion A, Gauthier M, Lambert P, Sitti M. Control and Transport of Passive Particles Using Self-Organized Spinning Micro-Disks. IEEE Robot Autom Lett 2022. [DOI: 10.1109/lra.2022.3143306] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
13
|
Ge Z, Dai L, Zhao J, Yu H, Yang W, Liao X, Tan W, Jiao N, Wang Z, Liu L. Bubble-based microrobots enable digital assembly of heterogeneous microtissue modules. Biofabrication 2022; 14. [PMID: 35263719 DOI: 10.1088/1758-5090/ac5be1] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2021] [Accepted: 03/09/2022] [Indexed: 11/12/2022]
Abstract
The specific spatial distribution of tissue generates a heterogeneous micromechanical environment that provides ideal conditions for diverse functions such as regeneration and angiogenesis. However, to manufacture microscale multicellular heterogeneous tissue modules in vitro and then assemble them into specific functional units is still a challenging task. In this study, a novel method for the digital assembly of heterogeneous microtissue modules is proposed. This technique utilizes the flexibility of digital micromirror device-based optical projection lithography and the manipulability of bubble-based microrobots in a liquid environment. The results indicate that multicellular microstructures can be fabricated by increasing the inlets of the microfluidic chip. Upon altering the exposure time, the Young's modulus of the entire module and different regions of each module can be fine-tuned to mimic normal tissue. The surface morphology, mechanical properties, and internal structure of the constructed bionic peritoneum were similar to those of the real peritoneum. Overall, this work demonstrates the potential of this system to produce and control the posture of modules and simulate peritoneal metastasis using reconfigurable manipulation.
Collapse
Affiliation(s)
- Zhixing Ge
- Shenyang Institute of Automation Chinese Academy of Sciences, Shenyang Institute of Automation, No. 114, Nanta Street, Shenhe District, Shenyang City, Liaoning Province, shenyang, Nunavut, 111749, CANADA
| | - Liguo Dai
- a. State Key Laboratory of Robotics, Shenyang Institute of Automation, Chinese Academy of Sciences, Shenyang Institute of Automation, No. 114, Nanta Street, Shenhe District, Shenyang City, Liaoning Province, shenyang, 111749, CHINA
| | - Junhua Zhao
- The First Hospital of China Medical University, No.155, Nanjing Street, Heping District, Shenyang, Shenyang, Liaoning, 110001, CHINA
| | - Haibo Yu
- Shenyang Institute of Automation Chinese Academy of Sciences, Shenyang Institute of Automation, No. 114, Nanta Street, Shenhe District, Shenyang City, Liaoning Province, shenyang, Liaoning, 111749, CHINA
| | - Wenguang Yang
- Yantai University, No.30, Qingquan Road, Laishan District, Yantai City, Shandong Province, Yantai, Shandong, 264005, CHINA
| | - Xin Liao
- Shenyang Institute of Automation Chinese Academy of Sciences, Shenyang Institute of Automation, No. 114, Nanta Street, Shenhe District, Shenyang City, Liaoning Province, shenyang, Liaoning, 111749, CHINA
| | - Wenjun Tan
- Shenyang Institute of Automation Chinese Academy of Sciences, Shenyang Institute of Automation, No. 114, Nanta Street, Shenhe District, Shenyang City, Liaoning Province, shenyang, Liaoning, 111749, CHINA
| | - Niandong Jiao
- a. State Key Laboratory of Robotics, Shenyang Institute of Automation, Chinese Academy of Sciences, Shenyang Institute of Automation, No. 114, Nanta Street, Shenhe District, Shenyang City, Liaoning Province, shenyang, 111749, CHINA
| | - Zhenning Wang
- The First Hospital of China Medical University, No.155, Nanjing Street, Heping District, Shenyang, Shenyang, Liaoning, 110001, CHINA
| | - Lianqing Liu
- State Key Laboratory of Robotics, Chinese Academy of Sciences - Shenyang Institute of Automation, Shenyang Institute of Automation, No. 114, Nanta Street, Shenhe District, Shenyang City, Liaoning Province, 110016, shenyang, 111749, CHINA
| |
Collapse
|
14
|
Abstract
Progress in optical manipulation has stimulated remarkable advances in a wide range of fields, including materials science, robotics, medical engineering, and nanotechnology. This Review focuses on an emerging class of optical manipulation techniques, termed heat-mediated optical manipulation. In comparison to conventional optical tweezers that rely on a tightly focused laser beam to trap objects, heat-mediated optical manipulation techniques exploit tailorable optothermo-matter interactions and rich mass transport dynamics to enable versatile control of matter of various compositions, shapes, and sizes. In addition to conventional tweezing, more distinct manipulation modes, including optothermal pulling, nudging, rotating, swimming, oscillating, and walking, have been demonstrated to enhance the functionalities using simple and low-power optics. We start with an introduction to basic physics involved in heat-mediated optical manipulation, highlighting major working mechanisms underpinning a variety of manipulation techniques. Next, we categorize the heat-mediated optical manipulation techniques based on different working mechanisms and discuss working modes, capabilities, and applications for each technique. We conclude this Review with our outlook on current challenges and future opportunities in this rapidly evolving field of heat-mediated optical manipulation.
Collapse
Affiliation(s)
- Zhihan Chen
- Materials Science & Engineering Program, Texas Materials Institute, and Walker Department of Mechanical Engineering, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Jingang Li
- Materials Science & Engineering Program, Texas Materials Institute, and Walker Department of Mechanical Engineering, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Yuebing Zheng
- Materials Science & Engineering Program, Texas Materials Institute, and Walker Department of Mechanical Engineering, The University of Texas at Austin, Austin, Texas 78712, United States
| |
Collapse
|
15
|
Ahmad B, Gauthier M, Laurent GJ, Bolopion A. Mobile Microrobots for In Vitro Biomedical Applications: A Survey. IEEE T ROBOT 2022. [DOI: 10.1109/tro.2021.3085245] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
16
|
Dynamic tracking of a magnetic micro-roller using ultrasound phase analysis. Sci Rep 2021; 11:23239. [PMID: 34853369 PMCID: PMC8636564 DOI: 10.1038/s41598-021-02553-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Accepted: 11/18/2021] [Indexed: 12/30/2022] Open
Abstract
Microrobots (MRs) have attracted significant interest for their potentialities in diagnosis and non-invasive intervention in hard-to-reach body areas. Fine control of biomedical MRs requires real-time feedback on their position and configuration. Ultrasound (US) imaging stands as a mature and advantageous technology for MRs tracking, but it suffers from disturbances due to low contrast resolution. To overcome these limitations and make US imaging suitable for monitoring and tracking MRs, we propose a US contrast enhancement mechanism for MR visualization in echogenic backgrounds (e.g., tissue). Our technique exploits the specific acoustic phase modulation produced by the MR characteristic motions. By applying this principle, we performed real-time visualization and position tracking of a magnetic MR rolling on a lumen boundary, both in static flow and opposing flow conditions, with an average error of 0.25 body-lengths. Overall, the reported results unveil countless possibilities to exploit the proposed approach as a robust feedback strategy for monitoring and tracking biomedical MRs in-vivo.
Collapse
|
17
|
Guo Y, Zhang J, Hu W, Khan MTA, Sitti M. Shape-programmable liquid crystal elastomer structures with arbitrary three-dimensional director fields and geometries. Nat Commun 2021; 12:5936. [PMID: 34642352 PMCID: PMC8511085 DOI: 10.1038/s41467-021-26136-8] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Accepted: 09/08/2021] [Indexed: 11/09/2022] Open
Abstract
Liquid crystal elastomers exhibit large reversible strain and programmable shape transformations, enabling various applications in soft robotics, dynamic optics, and programmable origami and kirigami. The morphing modes of these materials depend on both their geometries and director fields. In two dimensions, a pixel-by-pixel design has been accomplished to attain more flexibility over the spatial resolution of the liquid crystal response. Here we generalize this idea in two steps. First, we create independent, cubic light-responsive voxels, each with a predefined director field orientation. Second, these voxels are in turn assembled to form lines, grids, or skeletal structures that would be rather difficult to obtain from an initially connected material sample. In this way, the orientation of the director fields can be made to vary at voxel resolution to allow for programmable optically- or thermally-triggered anisotropic or heterogeneous material responses and morphology changes in three dimensions that would be impossible or hard to implement otherwise.
Collapse
Affiliation(s)
- Yubing Guo
- Physical Intelligence Department, Max Planck Institute for Intelligent Systems, 70569, Stuttgart, Germany
- Institute of Engineering Medicine, Beijing Institute of Technology, 100081, Beijing, China
| | - Jiachen Zhang
- Physical Intelligence Department, Max Planck Institute for Intelligent Systems, 70569, Stuttgart, Germany
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong SAR, China
| | - Wenqi Hu
- Physical Intelligence Department, Max Planck Institute for Intelligent Systems, 70569, Stuttgart, Germany
| | - Muhammad Turab Ali Khan
- Physical Intelligence Department, Max Planck Institute for Intelligent Systems, 70569, Stuttgart, Germany
| | - Metin Sitti
- Physical Intelligence Department, Max Planck Institute for Intelligent Systems, 70569, Stuttgart, Germany.
- Institute for Biomedical Engineering, ETH Zurich, 8092, Zurich, Switzerland.
- School of Medicine and College of Engineering, Koç University, 34450, Istanbul, Turkey.
| |
Collapse
|
18
|
Ceylan H, Dogan NO, Yasa IC, Musaoglu MN, Kulali ZU, Sitti M. 3D printed personalized magnetic micromachines from patient blood-derived biomaterials. SCIENCE ADVANCES 2021; 7:eabh0273. [PMID: 34516907 PMCID: PMC8442928 DOI: 10.1126/sciadv.abh0273] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
While recent wireless micromachines have shown increasing potential for medical use, their potential safety risks concerning biocompatibility need to be mitigated. They are typically constructed from materials that are not intrinsically compatible with physiological environments. Here, we propose a personalized approach by using patient blood–derivable biomaterials as the main construction fabric of wireless medical micromachines to alleviate safety risks from biocompatibility. We demonstrate 3D printed multiresponsive microswimmers and microrollers made from magnetic nanocomposites of blood plasma, serum albumin protein, and platelet lysate. These micromachines respond to time-variant magnetic fields for torque-driven steerable motion and exhibit multiple cycles of pH-responsive two-way shape memory behavior for controlled cargo delivery and release applications. Their proteinaceous fabrics enable enzymatic degradability with proteinases, thereby lowering risks of long-term toxicity. The personalized micromachine fabrication strategy we conceptualize here can affect various future medical robots and devices made of autologous biomaterials to improve biocompatibility and smart functionality.
Collapse
Affiliation(s)
- Hakan Ceylan
- Physical Intelligence Department, Max Planck Institute for Intelligent Systems, 70569 Stuttgart, Germany
| | - Nihal Olcay Dogan
- Physical Intelligence Department, Max Planck Institute for Intelligent Systems, 70569 Stuttgart, Germany
- Institute for Biomedical Engineering, ETH Zürich, 8092 Zürich, Switzerland
| | - Immihan Ceren Yasa
- Physical Intelligence Department, Max Planck Institute for Intelligent Systems, 70569 Stuttgart, Germany
| | - Mirac Nur Musaoglu
- Physical Intelligence Department, Max Planck Institute for Intelligent Systems, 70569 Stuttgart, Germany
- School of Medicine and College of Engineering, Koç University, 34450 Istanbul, Turkey
| | - Zeynep Umut Kulali
- Physical Intelligence Department, Max Planck Institute for Intelligent Systems, 70569 Stuttgart, Germany
- School of Medicine and College of Engineering, Koç University, 34450 Istanbul, Turkey
| | - Metin Sitti
- Physical Intelligence Department, Max Planck Institute for Intelligent Systems, 70569 Stuttgart, Germany
- Institute for Biomedical Engineering, ETH Zürich, 8092 Zürich, Switzerland
- School of Medicine and College of Engineering, Koç University, 34450 Istanbul, Turkey
- Corresponding author.
| |
Collapse
|
19
|
Huang K, Ajamieh IA, Cui Z, Lai J, Mills JK, Chu HK. Automated Embryo Manipulation and Rotation via Robotic nDEP-Tweezers. IEEE Trans Biomed Eng 2021; 68:2152-2163. [PMID: 33052848 DOI: 10.1109/tbme.2020.3031043] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Embryo manipulation is a fundamental task in assisted reproductive technology (ART). Nevertheless, conventional pick-place techniques often require proper alignment to avoid causing damage to the embryo and further, the tools have limited capability to orient the embryo being handled. OBJECTIVE This paper presents a novel and non-invasive technique that can easily manipulate mouse embryos on a polyvinyl chloride (PVC) Petri dish. METHODS An inverted microchip with quadrupole electrodes was attached to a micromanipulator to become a robotic dielectrophoresis (DEP) tweezers, and a motorized platform provided additional mobility to the embryos lying on a Petri dish. Vision-based algorithms were developed to evaluate relevant information of the embryos from the image, and to provide feedback signals for precise position and orientation control of the embryo. RESULTS A series of experiments was conducted to examine the system performance, and the embryo can be successfully manipulated to a specified location with the desired orientation for subsequent processing. CONCLUSION This system offers a non-contact, low cost, and flexible method for rapid cell handling. SIGNIFICANCE As the DEP tweezers can grasp the embryo without the need for precise alignment, the overall time required to process a large number of embryos can be shortened.
Collapse
|
20
|
Piñan Basualdo FN, Bolopion A, Gauthier M, Lambert P. A microrobotic platform actuated by thermocapillary flows for manipulation at the air-water interface. Sci Robot 2021; 6:6/52/eabd3557. [PMID: 34043549 DOI: 10.1126/scirobotics.abd3557] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Accepted: 03/03/2021] [Indexed: 01/25/2023]
Abstract
Future developments in micromanufacturing will require advances in micromanipulation tools. Several robotic micromanipulation methods have been developed to position micro-objects mostly in air and in liquids. The air-water interface is a third medium where objects can be manipulated, offering a good compromise between the two previously mentioned ones. Objects at the interface are not subjected to stick-slip due to dry friction in air and profit from a reduced drag compared with those in water. Here, we present the ThermoBot, a microrobotic platform dedicated to the manipulation of objects placed at the air-water interface. For actuation, ThermoBot uses a laser-induced thermocapillary flow, which arises from the surface stress caused by the temperature gradient at the fluid interface. The actuated objects can reach velocities up to 10 times their body length per second without any on-board actuator. Moreover, the localized nature of the thermocapillary flow enables the simultaneous and independent control of multiple objects, thus paving the way for microassembly operations at the air-water interface. We demonstrate that our setup can be used to direct capillary-based self-assemblies at this interface. We illustrate the ThermoBot's capabilities through three examples: simultaneous control of up to four spheres, control of complex objects in both position and orientation, and directed self-assembly of multiple pieces.
Collapse
Affiliation(s)
- Franco N Piñan Basualdo
- Transfers Interfaces and Processes (TIPs), Ecole Polytechnique de Bruxelles (CP 165/67), Université Libre de Bruxelles, 1050 Brussels, Belgium. .,FEMTO-ST Institute, CNRS, Univ. Bourgogne Franche-Comté, 24 rue Savary, F-25000 Besançon, France
| | - A Bolopion
- FEMTO-ST Institute, CNRS, Univ. Bourgogne Franche-Comté, 24 rue Savary, F-25000 Besançon, France
| | - M Gauthier
- FEMTO-ST Institute, CNRS, Univ. Bourgogne Franche-Comté, 24 rue Savary, F-25000 Besançon, France
| | - P Lambert
- Transfers Interfaces and Processes (TIPs), Ecole Polytechnique de Bruxelles (CP 165/67), Université Libre de Bruxelles, 1050 Brussels, Belgium
| |
Collapse
|
21
|
Dai L, Lin D, Wang X, Jiao N, Liu L. Integrated Assembly and Flexible Movement of Microparts Using Multifunctional Bubble Microrobots. ACS APPLIED MATERIALS & INTERFACES 2020; 12:57587-57597. [PMID: 33301292 DOI: 10.1021/acsami.0c17518] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Industrial robots have been widely used for manufacturing and assembly in factories. However, at the microscale, most assembly technologies can only pattern the micromodules together loosely and can hardly combine the micromodules to directly form an entity that cannot be easily dispersed. In this study, surface bubbles are made to function as microrobots on a chip. These microrobots can move, fix, lift, and drop microparts and integratively assemble them into a tightly connected entity. As an example, the assembly of a pair of microparts with dovetails is considered. A jacklike bubble robot is used to lift and drop a micropart with a tail, whereas a mobile microrobot is used to push the other micropart with the corresponding socket to the proper position so that the tail can be inserted into the socket. The assembled microparts with the tail-socket joint can move as an entity without separation. Similarly, different types of parts are integratively assembled to form various structures such as gears, snake-shaped chains, and vehicles, which are then driven by bubble microrobots to perform different forms of movement. This assembly technology is simple and efficient and is expected to play an important role in micro-operation, modular assembly, and tissue engineering.
Collapse
Affiliation(s)
- Liguo Dai
- State Key Laboratory of Robotics, Shenyang Institute of Automation, Chinese Academy of Sciences, Shenyang 110016, China
- Institutes for Robotics and Intelligent Manufacturing, Chinese Academy of Sciences, Shenyang 110016, China
- University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Daojing Lin
- State Key Laboratory of Robotics, Shenyang Institute of Automation, Chinese Academy of Sciences, Shenyang 110016, China
- Institutes for Robotics and Intelligent Manufacturing, Chinese Academy of Sciences, Shenyang 110016, China
- University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Xiaodong Wang
- State Key Laboratory of Robotics, Shenyang Institute of Automation, Chinese Academy of Sciences, Shenyang 110016, China
- Institutes for Robotics and Intelligent Manufacturing, Chinese Academy of Sciences, Shenyang 110016, China
- University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Niandong Jiao
- State Key Laboratory of Robotics, Shenyang Institute of Automation, Chinese Academy of Sciences, Shenyang 110016, China
- Institutes for Robotics and Intelligent Manufacturing, Chinese Academy of Sciences, Shenyang 110016, China
| | - Lianqing Liu
- State Key Laboratory of Robotics, Shenyang Institute of Automation, Chinese Academy of Sciences, Shenyang 110016, China
- Institutes for Robotics and Intelligent Manufacturing, Chinese Academy of Sciences, Shenyang 110016, China
| |
Collapse
|
22
|
Hsu A, Zhao H, Gaudreault M, Foy AW, Pelrine R. Magnetic Milli-Robot Swarm Platform: A Safety Barrier Certificate Enabled, Low-Cost Test Bed. IEEE Robot Autom Lett 2020. [DOI: 10.1109/lra.2020.2974713] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
23
|
Advances in Micromanipulation Actuated by Vibration-Induced Acoustic Waves and Streaming Flow. APPLIED SCIENCES-BASEL 2020. [DOI: 10.3390/app10041260] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
The use of vibration and acoustic characteristics for micromanipulation has been prevalent in recent years. Due to high biocompatibility, non-contact operation, and relatively low cost, the micromanipulation actuated by the vibration-induced acoustic wave and streaming flow has been widely applied in the sorting, translating, rotating, and trapping of targets at the submicron and micron scales, especially particles and single cells. In this review, to facilitate subsequent research, we summarize the fundamental theories of manipulation driven by vibration-induced acoustic waves and streaming flow. These methods are divided into two types: actuated by the acoustic wave, and actuated by the steaming flow induced by vibrating geometric structures. Recently proposed representative vibroacoustic-driven micromanipulation methods are introduced and compared, and their advantages and disadvantages are summarized. Finally, prospects are presented based on our review of the recent advances and developing trends.
Collapse
|
24
|
Dai L, Ge Z, Jiao N, Liu L. 2D to 3D Manipulation and Assembly of Microstructures Using Optothermally Generated Surface Bubble Microrobots. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2019; 15:e1902815. [PMID: 31539203 DOI: 10.1002/smll.201902815] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Revised: 08/15/2019] [Indexed: 06/10/2023]
Abstract
Hydrogel microstructures that encapsulate cells can be assembled into tissues and have broad applications in biology and medicine. However, 3D posture control for a single arbitrary microstructure remains a challenge. A novel 3D manipulation and assembly technique based on optothermally generated bubble robots is proposed. The generation, rate of growth, and motion of a microbubble robot can be controlled by modulating the power of a laser focused on the interface between the substrate and a fluid. In addition to 2D operations, bubble robots are able to perform 3D manipulations. The 3D properties of hydrogel microstructures are adjusted arbitrarily, and convex and concave structures with different heights are designed. Furthermore, annular micromodules are assembled into 3D constructs, including tubular and concentric constructs. A variety of hydrogel microstructures of different sizes and shapes are operated and assembled in both 2D and 3D conformations by bubble robots. The manipulation and assembly methods are simple, rapid, versatile, and can be used for fabricating tissue constructs.
Collapse
Affiliation(s)
- Liguo Dai
- State Key Laboratory of Robotics, Shenyang Institute of Automation, Chinese Academy of Sciences, Shenyang, 110016, China
- Institutes for Robotics and Intelligent Manufacturing, Chinese Academy of Sciences, Shenyang, 110016, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Zhixing Ge
- State Key Laboratory of Robotics, Shenyang Institute of Automation, Chinese Academy of Sciences, Shenyang, 110016, China
- Institutes for Robotics and Intelligent Manufacturing, Chinese Academy of Sciences, Shenyang, 110016, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Niandong Jiao
- State Key Laboratory of Robotics, Shenyang Institute of Automation, Chinese Academy of Sciences, Shenyang, 110016, China
- Institutes for Robotics and Intelligent Manufacturing, Chinese Academy of Sciences, Shenyang, 110016, China
| | - Lianqing Liu
- State Key Laboratory of Robotics, Shenyang Institute of Automation, Chinese Academy of Sciences, Shenyang, 110016, China
- Institutes for Robotics and Intelligent Manufacturing, Chinese Academy of Sciences, Shenyang, 110016, China
| |
Collapse
|
25
|
Ceylan H, Yasa IC, Kilic U, Hu W, Sitti M. Translational prospects of untethered medical microrobots. ACTA ACUST UNITED AC 2019. [DOI: 10.1088/2516-1091/ab22d5] [Citation(s) in RCA: 75] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
26
|
Terrazas R, De Maeijer A, Bolopion A, Gauthier M, Kinnaert M, Lambert P. Thermocapillary micromanipulation: force characterization and Cheerios interactions. JOURNAL OF MICRO-BIO ROBOTICS 2019. [DOI: 10.1007/s12213-019-00117-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
27
|
Kantaros Y, Johnson BV, Chowdhury S, Cappelleri DJ, Zavlanos MM. Control of Magnetic Microrobot Teams for Temporal Micromanipulation Tasks. IEEE T ROBOT 2018. [DOI: 10.1109/tro.2018.2861901] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
28
|
Mallea RT, Piron D, Bolopion A, Lambert P, Gauthier M. Thermocapillary Convective Flows Generated by Laser Points or Patterns: Comparison for the Noncontact Micromanipulation of Particles at the Interface. IEEE Robot Autom Lett 2018. [DOI: 10.1109/lra.2018.2851021] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
29
|
Tuci E, Alkilabi MHM, Akanyeti O. Cooperative Object Transport in Multi-Robot Systems: A Review of the State-of-the-Art. Front Robot AI 2018; 5:59. [PMID: 33500940 PMCID: PMC7805628 DOI: 10.3389/frobt.2018.00059] [Citation(s) in RCA: 77] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2018] [Accepted: 04/27/2018] [Indexed: 11/13/2022] Open
Abstract
In recent years, there has been a growing interest in designing multi-robot systems (hereafter MRSs) to provide cost effective, fault-tolerant and reliable solutions to a variety of automated applications. Here, we review recent advancements in MRSs specifically designed for cooperative object transport, which requires the members of MRSs to coordinate their actions to transport objects from a starting position to a final destination. To achieve cooperative object transport, a wide range of transport, coordination and control strategies have been proposed. Our goal is to provide a comprehensive summary for this relatively heterogeneous and fast-growing body of scientific literature. While distilling the information, we purposefully avoid using hierarchical dichotomies, which have been traditionally used in the field of MRSs. Instead, we employ a coarse-grain approach by classifying each study based on the transport strategy used; pushing-only, grasping and caging. We identify key design constraints that may be shared among these studies despite considerable differences in their design methods. In the end, we discuss several open challenges and possible directions for future work to improve the performance of the current MRSs. Overall, we hope to increasethe visibility and accessibility of the excellent studies in the field and provide a framework that helps the reader to navigate through them more effectively.
Collapse
Affiliation(s)
- Elio Tuci
- The Department of Computer Science, Middlesex University, London, United Kingdom
| | | | - Otar Akanyeti
- The Department of Computer Science, Aberystwyth University, Aberystwyth, United Kingdom
| |
Collapse
|
30
|
An Accurate Perception Method for Low Contrast Bright Field Microscopy in Heterogeneous Microenvironments. APPLIED SCIENCES-BASEL 2017. [DOI: 10.3390/app7121327] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
31
|
Rahman MA, Takahashi N, Siliga KF, Ng NK, Wang Z, Ohta AT. Vision-assisted micromanipulation using closed-loop actuation of multiple microrobots. ACTA ACUST UNITED AC 2017; 4:7. [PMID: 29152448 PMCID: PMC5662703 DOI: 10.1186/s40638-017-0064-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2017] [Accepted: 10/21/2017] [Indexed: 02/06/2023]
Abstract
Accurate control and precise positioning of opto-thermocapillary flow-addressed bubble microrobots are necessary for micromanipulation. In addition, micromanipulation using the simultaneous actuation of multiple microrobots requires a robust control system to enable independent motion. This paper demonstrates a hybrid closed-loop vision-assisted control system capable of actuating multiple microrobots simultaneously and positioning them at precise locations relative to micro-objects under manipulation. A vision-assisted grasp-planning application was developed and used to calculate the necessary trajectories of the microrobots to form cages around micro-objects. The location of the microrobots and the micro-objects was detected at the caging locations using a particle-tracking application that used image feedback for precise positioning. The closed-loop image feedback information enabled the position update of the microrobots, allowing them to precisely follow the trajectory and caging locations calculated by the grasp-planning application. Four microrobots were assigned to cage a star-shaped micro-object using the closed-loop control system. Once caged, the micro-object was transported to a location within the workspace and uncaged, demonstrating the micromanipulation task. This microrobotic system is well suited for the micromanipulation of single cells.
Collapse
Affiliation(s)
- M Arifur Rahman
- Department of Electrical Engineering, University of Hawaii at Manoa, 2540 Dole Street, Holmes Hall 483, Honolulu, HI 96822 USA
| | - Noboru Takahashi
- Department of Advanced Robotics, Chiba Institute of Technology, 2-17-1 Tsudanuma, Narashino, Chiba 275-0016 Japan
| | - Kawai F Siliga
- Department of Electrical Engineering, University of Hawaii at Manoa, 2540 Dole Street, Holmes Hall 483, Honolulu, HI 96822 USA
| | - Nigel K Ng
- Department of Electrical Engineering, University of Hawaii at Manoa, 2540 Dole Street, Holmes Hall 483, Honolulu, HI 96822 USA
| | - Zhidong Wang
- Department of Advanced Robotics, Chiba Institute of Technology, 2-17-1 Tsudanuma, Narashino, Chiba 275-0016 Japan
| | - Aaron T Ohta
- Department of Electrical Engineering, University of Hawaii at Manoa, 2540 Dole Street, Holmes Hall 483, Honolulu, HI 96822 USA
| |
Collapse
|