1
|
Sasaki K, Yamamoto K, Narahara M, Takabe Y, Chae S, Panomsuwan G, Ishizaki T. Solution-Plasma Synthesis and Characterization of Transition Metals and N-Containing Carbon-Carbon Nanotube Composites. MATERIALS (BASEL, SWITZERLAND) 2024; 17:320. [PMID: 38255488 PMCID: PMC10817228 DOI: 10.3390/ma17020320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 12/27/2023] [Accepted: 01/05/2024] [Indexed: 01/24/2024]
Abstract
Lithium-air batteries (LABs) have a theoretically high energy density. However, LABs have some issues, such as low energy efficiency, short life cycle, and high overpotential in charge-discharge cycles. To solve these issues electrocatalytic materials were developed for oxygen reduction reaction (ORR) and oxygen evolution reaction (OER), which significantly affect battery performance. In this study, we aimed to synthesize electrocatalytic N-doped carbon-based composite materials with solution plasma (SP) using Co or Ni as electrodes from organic solvents containing cup-stacked carbon nanotubes (CSCNTs), iron (II) phthalocyanine (FePc), and N-nethyl-2-pyrrolidinone (NMP). The synthesized N-doped carbon-based composite materials were characterized by transmission electron microscopy (TEM), X-ray diffraction (XRD), Raman spectroscopy, and X-ray photoelectron spectroscopy (XPS). TEM observation and XPS measurements revealed that the synthesized carbon materials contained elemental N, Fe, and electrode-derived Co or Ni, leading to the successful synthesis of N-doped carbon-based composite materials. The electrocatalytic activity for ORR of the synthesized carbon-based composite materials was also evaluated using electrochemical measurements. The electrochemical measurements demonstrated that the electrocatalytic performance for ORR of N-doped carbon-based composite material including Fe and Co showed superiority to that of N-doped carbon-based composite material including Fe and Ni. The difference in the electrocatalytic performance for ORR is discussed regarding the difference in the specific surface area and the presence ratio of chemical bonding species.
Collapse
Affiliation(s)
- Kodai Sasaki
- Materials Science and Engineering, Graduate School of Engineering and Science, Shibaura Institute of Technology, 3-7-5 Toyosu, Koto-ku, Tokyo 135-8548, Japan; (K.S.); (K.Y.); (M.N.); (Y.T.)
| | - Kaiki Yamamoto
- Materials Science and Engineering, Graduate School of Engineering and Science, Shibaura Institute of Technology, 3-7-5 Toyosu, Koto-ku, Tokyo 135-8548, Japan; (K.S.); (K.Y.); (M.N.); (Y.T.)
| | - Masaki Narahara
- Materials Science and Engineering, Graduate School of Engineering and Science, Shibaura Institute of Technology, 3-7-5 Toyosu, Koto-ku, Tokyo 135-8548, Japan; (K.S.); (K.Y.); (M.N.); (Y.T.)
| | - Yushi Takabe
- Materials Science and Engineering, Graduate School of Engineering and Science, Shibaura Institute of Technology, 3-7-5 Toyosu, Koto-ku, Tokyo 135-8548, Japan; (K.S.); (K.Y.); (M.N.); (Y.T.)
| | - Sangwoo Chae
- SIT Research Laboratories, Shibaura Institute of Technology, 3-7-5 Toyosu, Koto-ku, Tokyo 135-8548, Japan;
| | - Gasidit Panomsuwan
- Department of Materials Engineering, Faculty of Engineering, Kasetsart University, Bangkok 10900, Thailand;
| | - Takahiro Ishizaki
- Department of Materials Science and Engineering, College of Engineering, Shibaura Institute of Technology, 3-7-5 Toyosu, Koto-ku, Tokyo 135-8548, Japan
| |
Collapse
|
2
|
Plasma-Engineered cobalt nanoparticle encapsulated N-doped graphene nanoplatelets as High-performance Oxygen Reduction Reaction Electrocatalysts for Aluminum–air batteries. Catal Today 2023. [DOI: 10.1016/j.cattod.2023.02.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/12/2023]
|
3
|
Qin L, Lee S, Ha J, Li OL. Selective production of value-added chemicals from cellulosic biomass waste via plasma-synthesized catalysts. Catal Today 2023. [DOI: 10.1016/j.cattod.2023.02.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2023]
|
4
|
Romero Valenzuela AE, Chokradjaroen C, Choeichom P, Wang X, Kim K, Saito N. Carbon Fibers Prepared via Solution Plasma-Generated Seeds. MATERIALS (BASEL, SWITZERLAND) 2023; 16:906. [PMID: 36769911 PMCID: PMC9918063 DOI: 10.3390/ma16030906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 01/09/2023] [Accepted: 01/16/2023] [Indexed: 06/18/2023]
Abstract
Carbon fibers are materials with potential applications for CO2 capture due to their porous structure and high surface areas. Nevertheless, controlling their porosity at a microscale remains challenging. The solution plasma (SP) process provides a fast synthesis route for carbon materials when organic precursors are used. During the discharge and formation of carbon materials in solution, a soot product-denominated solution plasma-generated seeds (SPGS) is simultaneously produced at room temperature and atmospheric pressure. Here, we propose a preparation method for carbon fibers with different and distinctive morphologies. The control over the morphology is also demonstrated by the use of different formulations.
Collapse
Affiliation(s)
- Andres Eduardo Romero Valenzuela
- Department of Chemical Systems Engineering, Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603, Japan
| | - Chayanaphat Chokradjaroen
- Department of Chemical Systems Engineering, Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603, Japan
- Department of International Collaborative Program in Sustainable Materials and Technology for Industries between Nagoya University and Chulalongkorn University, Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603, Japan
| | - Pongpol Choeichom
- Department of Chemical Systems Engineering, Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603, Japan
| | - Xiaoyang Wang
- Department of Chemical Systems Engineering, Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603, Japan
| | - Kyusung Kim
- Department of Chemical Systems Engineering, Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603, Japan
| | - Nagahiro Saito
- Department of Chemical Systems Engineering, Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603, Japan
- Japan Science and Technology Agency (JST), Strategic International Collaborative Research Program (SICORP), Furo-cho, Chikusa-ku, Nagoya 464-8603, Japan
- Japan Science and Technology Agency (JST), Open Innovation Platform with Enterprises, Research Institute and Academia (OPERA), Furo-cho, Chikusa-ku, Nagoya 464-8603, Japan
- Conjoint Research Laboratory in Nagoya University, Shinshu University, Furo-cho, Chikusa-ku, Nagoya 464-8603, Japan
| |
Collapse
|
5
|
Jang HJ, Jung EY, Parsons T, Tae HS, Park CS. A Review of Plasma Synthesis Methods for Polymer Films and Nanoparticles under Atmospheric Pressure Conditions. Polymers (Basel) 2021; 13:polym13142267. [PMID: 34301024 PMCID: PMC8309454 DOI: 10.3390/polym13142267] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 07/02/2021] [Accepted: 07/06/2021] [Indexed: 02/06/2023] Open
Abstract
In this paper, we present an overview of recent approaches in the gas/aerosol-through-plasma (GATP) and liquid plasma methods for synthesizing polymer films and nanoparticles (NPs) using an atmospheric-pressure plasma (APP) technique. We hope to aid students and researchers starting out in the polymerization field by compiling the most commonly utilized simple plasma synthesis methods, so that they can readily select a method that best suits their needs. Although APP methods are widely employed for polymer synthesis, and there are many related papers for specific applications, reviews that provide comprehensive coverage of the variations of APP methods for polymer synthesis are rarely reported. We introduce and compile over 50 recent papers on various APP polymerization methods that allow us to discuss the existing challenges and future direction of GATP and solution plasma methods under ambient air conditions for large-area and mass nanoparticle production.
Collapse
Affiliation(s)
- Hyo Jun Jang
- School of Electronic and Electrical Engineering, College of IT Engineering, Kyungpook National University, Daegu 41566, Korea; (H.J.J.); (E.Y.J.)
| | - Eun Young Jung
- School of Electronic and Electrical Engineering, College of IT Engineering, Kyungpook National University, Daegu 41566, Korea; (H.J.J.); (E.Y.J.)
| | - Travis Parsons
- GBS (Global Business Services) IT, The Procter & Gamble Company, Cincinnati, OH 45202, USA;
| | - Heung-Sik Tae
- School of Electronic and Electrical Engineering, College of IT Engineering, Kyungpook National University, Daegu 41566, Korea; (H.J.J.); (E.Y.J.)
- School of Electronics Engineering, College of IT Engineering, Kyungpook National University, Daegu 41566, Korea
- Correspondence: (H.-S.T.); (C.-S.P.)
| | - Choon-Sang Park
- Department of Electronics and Computer Engineering, College of Engineering, Kansas State University, Manhattan, KS 66506, USA
- Correspondence: (H.-S.T.); (C.-S.P.)
| |
Collapse
|
6
|
Simultaneous synthesis of graphite-like and amorphous carbon materials via solution plasma and their evaluation as additive materials for cathode in Li-O 2 battery. Sci Rep 2021; 11:6261. [PMID: 33737609 PMCID: PMC7973806 DOI: 10.1038/s41598-021-85392-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Accepted: 03/01/2021] [Indexed: 11/21/2022] Open
Abstract
Cathode materials are essential for enhancing electrocatalytic activity in energy-conversion devices. Carbon is one of the most suitable cathodic materials for Li–O2 batteries owing to its chemical and thermal stability. Carbon materials synthesized from tributyl borate (TBB) using a nonthermal solution plasma method were characterized using x‐ray diffraction, Raman, field emission scanning electron microscopy (FE-SEM), transmission electron microscopy, and x-ray photoelectron spectroscopy and were evaluated as additive materials for cathodes in a Li–O2 battery. Two separate carbon materials were formed at the same time, a carbon dispersed in solution and a carbon precipitate at the bottom of the reactor, which had amorphous and graphite-like structures, respectively. The amorphous carbon contained boron and tungsten carbide, and the graphite-like carbon had more defects and electronic conductivity. The crystallinity and density of defects in the graphite-like carbon could be tuned by changing the SP operating frequency. The Li–O2 battery with the amorphous carbon containing boron and tungsten carbide was found to have a high capacity, while the one with the graphite-like carbon showed an affinity for the formation of Li2O2, which is the desired discharge product, and exhibited high cycling performance.
Collapse
|
7
|
Hybrid Molybdenum Carbide/Heteroatom-Doped Carbon Electrocatalyst for Advanced Oxygen Evolution Reaction in Hydrogen Production. Catalysts 2020. [DOI: 10.3390/catal10111290] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Hydrogen energy is one of the key technologies that can help to prevent global warming. A water electrolysis process can be used to produce hydrogen, in which hydrogen is produced at one electrode of the electrochemical cell, and oxygen is produced at the other electrode. On the other hand, the oxygen evolution reaction (OER) requires multiple reaction steps and precious-metal-based catalysts (e.g., Ru/C, Ir/C, RuO2, and IrO2) as electrocatalysts to improve the reaction rate. Their high cost and limited supply, however, limit their applications to the mass production of hydrogen. In this study, boron, nitrogen-doped carbon incorporated with molybdenum carbide (MoC-BN/C) was synthesized to replace the precious-metal-based catalysts in the OER. B, N-doped carbon with nanosized molybdenum nanoparticles was fabricated by plasma engineering. The synthesized catalysts were heat-treated at 600, 700, and 800 °C in nitrogen for one hour to enhance the conductivity. The best MoC-BN/C electrocatalysts (heated at 800 °C) exhibited superior OER catalytic activity: 1.498 V (vs. RHE) and 1.550 V at a current density of 10 and 100 mA/cm2, respectively. The hybrid electrocatalysts even outperformed the noble electrocatalyst (5 wt.% Ru/C) with higher stability. Therefore, the hybrid electrocatalyst can replace expensive precious-metal-based catalysts for the upcoming hydrogen economy.
Collapse
|
8
|
Shin JG, Shin BJ, Jung EY, Park CS, Kim JY, Tae HS. Effects of a Dielectric Barrier Discharge (DBD) on Characteristics of Polyaniline Nanoparticles Synthesized by a Solution Plasma Process with an Ar Gas Bubble Channel. Polymers (Basel) 2020; 12:polym12091939. [PMID: 32867312 PMCID: PMC7564976 DOI: 10.3390/polym12091939] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Revised: 08/22/2020] [Accepted: 08/24/2020] [Indexed: 11/16/2022] Open
Abstract
The quality of polyaniline nanoparticles (PANI NPs) synthesized in plasma polymerization depends on the discharge characteristics of a solution plasma process (SPP). In this paper, the low temperature dielectric barrier discharge (DBD) is introduced to minimize the destruction of aniline molecules induced by the direct current (DC) spark discharge. By adopting the new electrode structure coupled with a gas channel, a low temperature DBD is successfully implemented in a SPP, for the first time, thus inducing an effective interaction between the Ar plasma and aniline monomer. We examine the effects of a low temperature DBD on characteristics of polyaniline nanoparticles synthesized by a SPP with an Ar gas bubble channel. As a result, both carbonization of aniline monomer and erosion of the electrode are significantly reduced, which is confirmed by analyses of the synthesized PANI NPs.
Collapse
Affiliation(s)
- Jun-Goo Shin
- School of Electronics Engineering, College of IT Engineering, Kyungpook National University, Daegu 41566, Korea; (J.-G.S.); (E.Y.J.)
| | - Bhum Jae Shin
- Department of Electronics Engineering, Sejong University, Seoul 05006, Korea;
| | - Eun Young Jung
- School of Electronics Engineering, College of IT Engineering, Kyungpook National University, Daegu 41566, Korea; (J.-G.S.); (E.Y.J.)
| | - Choon-Sang Park
- Department of Electronics and Computer Engineering, College of Engineering, Kansas State University, Manhattan, NY 66506, USA;
| | - Jae Young Kim
- Department of New Biology, Daegu Gyeongbuk Institute of Science & Technology, Daegu 42988, Korea;
| | - Heung-Sik Tae
- School of Electronics Engineering, College of IT Engineering, Kyungpook National University, Daegu 41566, Korea; (J.-G.S.); (E.Y.J.)
- Correspondence: ; Tel.: +82-53-950-6563
| |
Collapse
|
9
|
Li OL, Shi Z, Lee H, Ishizaki T. Enhanced Electrocatalytic Stability of Platinum Nanoparticles Supported on Sulfur-Doped Carbon using in-situ Solution Plasma. Sci Rep 2019; 9:12704. [PMID: 31481710 PMCID: PMC6722099 DOI: 10.1038/s41598-019-49194-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2019] [Accepted: 08/20/2019] [Indexed: 11/09/2022] Open
Abstract
The metal-air battery is a form of renewable energy generation technology that produces energy electrochemically and can address energy concerns in the near future. However, state-of-the-art Pt electrocatalysts often suffer from agglomeration or detachment from carbon supports under prolonged operation, eventually limiting the long-term utilization of metal-air batteries. In this work, Pt nanoparticles were deposited on sulfur-doped nanocarbon to increase its stability. We first synthesized sulfur-doped (S-doped) and pristine carbon as support materials via a plasma process, and thereafter loaded platinum (Pt) nanoparticles onto the S-doped and pristine carbon matrix. From a sintering test at 600 °C, the Pt nanoparticles supported on pristine carbon increased from 2.4 to 5.2 nm; meanwhile, the average size of Pt NPs supported on S-doped carbon only increased from 2.2 to 2.51 nm. From the electrochemical analyses, the mass activity of Pt on pristine and S-doped carbon supports decreased by 25% and 10%, respectively, after 1500 cycles. The results proposed that the sulfide C-S-C bond provided a strong platinum-S-doped carbon support interaction between the support materials and the loaded Pt nanoparticles. Thus, S-doped carbon supports can serve as a stabilizer of Pt nanoparticles to enhance their durability in the application of metal-air batteries and other electrochemical devices.
Collapse
Affiliation(s)
- Oi Lun Li
- School of Materials Science and Engineering, Pusan National University, Busan, 46241, Korea
| | - Zhicong Shi
- School of Materials and Energy, Guangdong University of Technology, Guangzhou, 510006, China
| | - Hoonseung Lee
- Energy Environment Center Fusion Energy Team, Korea Marine Equipment Research Institute, Busan, 49111, Korea
| | - Takahiro Ishizaki
- Department of Materials Science and Engineering, College of Engineering, Shibaura Institute of Technology, Tokyo, 135-8548, Japan.
| |
Collapse
|
10
|
Kim DK, Bong S, Jin X, Seong KD, Hwang M, Kim ND, You NH, Piao Y. Facile in Situ Synthesis of Multiple-Heteroatom-Doped Carbons Derived from Polyimide Precursors for Flexible All-Solid-State Supercapacitors. ACS APPLIED MATERIALS & INTERFACES 2019; 11:1996-2005. [PMID: 30543277 DOI: 10.1021/acsami.8b15162] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
Efficient strategies to prepare carbon materials with improved electrochemical performance for supercapacitors have been in great demand. Herein, we develop multiple-heteroatom-doped carbons (from single- to triple-doped) by pyrolysis of polyimide precursors using a facile in situ approach. This approach can be used to tune heteroatom compositions by controlling the desired polyimide monomer functional groups as well as introducing external doping sources into the polyimide precursor solutions. Various types of multiple-heteroatom-doped carbons such as N; N,S-; N,F-; N,S,B-; and N,F,B-doped carbons are synthesized. Among these synthesized multiple-heteroatom-doped carbons, the specific capacitance of N,F,B triple-doped carbon exhibits 350.3 F g-1 at 1 A g-1 in a three-electrode system. Furthermore, a flexible all-solid-state supercapacitor device using the N,F,B-doped carbon with poly(vinyl alcohol)-1 M H2SO4 gel electrolyte demonstrates a volumetric energy density of 0.58 mW h cm-3. It is expected that this synthesis strategy for multiple-heteroatom-doped carbons can be used for practical supercapacitor applications.
Collapse
Affiliation(s)
- Dae Kyom Kim
- Program in Nano Science and Technology, Graduate School of Convergence Science and Technology , Seoul National University , 145 Gwanggyo-ro , Yeongtong-gu, Suwon-si , Gyeonggi-do 16229 , Republic of Korea
| | - Sehwa Bong
- Carbon Composite Materials Research Center, Institute of Advanced Composites Materials , Korea Institute of Science and Technology , Chudong-ro 92 , Bondong-eup, Wanju-gun , Jeollabuk-do 565-905 , Republic of Korea
| | - Xuanzhen Jin
- Program in Nano Science and Technology, Graduate School of Convergence Science and Technology , Seoul National University , 145 Gwanggyo-ro , Yeongtong-gu, Suwon-si , Gyeonggi-do 16229 , Republic of Korea
| | - Kwang-Dong Seong
- Program in Nano Science and Technology, Graduate School of Convergence Science and Technology , Seoul National University , 145 Gwanggyo-ro , Yeongtong-gu, Suwon-si , Gyeonggi-do 16229 , Republic of Korea
| | - Minsik Hwang
- Program in Nano Science and Technology, Graduate School of Convergence Science and Technology , Seoul National University , 145 Gwanggyo-ro , Yeongtong-gu, Suwon-si , Gyeonggi-do 16229 , Republic of Korea
| | - Nam Dong Kim
- Carbon Composite Materials Research Center, Institute of Advanced Composites Materials , Korea Institute of Science and Technology , Chudong-ro 92 , Bondong-eup, Wanju-gun , Jeollabuk-do 565-905 , Republic of Korea
| | - Nam-Ho You
- Carbon Composite Materials Research Center, Institute of Advanced Composites Materials , Korea Institute of Science and Technology , Chudong-ro 92 , Bondong-eup, Wanju-gun , Jeollabuk-do 565-905 , Republic of Korea
| | - Yuanzhe Piao
- Program in Nano Science and Technology, Graduate School of Convergence Science and Technology , Seoul National University , 145 Gwanggyo-ro , Yeongtong-gu, Suwon-si , Gyeonggi-do 16229 , Republic of Korea
- Advanced Institutes of Convergence Technology , 145 Gwanggyo-ro , Yeongtong-gu, Suwon-si , Gyeonggi-do 16229 , Republic of Korea
| |
Collapse
|
11
|
Wang Z, Zhang Y, Neyts EC, Cao X, Zhang X, Jang BWL, Liu CJ. Catalyst Preparation with Plasmas: How Does It Work? ACS Catal 2018. [DOI: 10.1021/acscatal.7b03723] [Citation(s) in RCA: 237] [Impact Index Per Article: 33.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Zhao Wang
- Tianjin Co-Innovation Center of Chemical Science & Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, People’s Republic of China
| | - Yao Zhang
- Tianjin Co-Innovation Center of Chemical Science & Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, People’s Republic of China
| | - Erik C. Neyts
- Department
of Chemistry, Research Group PLASMANT, University of Antwerp, Universiteitsplein
1, 2610 Antwerp, Belgium
| | - Xinxiang Cao
- Tianjin Co-Innovation Center of Chemical Science & Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, People’s Republic of China
| | - Xiaoshan Zhang
- Tianjin Co-Innovation Center of Chemical Science & Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, People’s Republic of China
| | - Ben W.-L. Jang
- Department of Chemistry, Texas A&M University-Commerce, 2600 South Neal Street, Commerce, Texas 75429-3011, United States
| | - Chang-jun Liu
- Tianjin Co-Innovation Center of Chemical Science & Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, People’s Republic of China
| |
Collapse
|