1
|
Chen X, Shi X, Guo J, Lin K, Luo M, Dong Z. Artificial Induction of Meiotic Gynogenesis in Koi Carp Using Blunt Snout Bream Sperm and Identification of Gynogenetic Offspring. Animals (Basel) 2025; 15:1411. [PMID: 40427287 DOI: 10.3390/ani15101411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2025] [Revised: 05/10/2025] [Accepted: 05/12/2025] [Indexed: 05/29/2025] Open
Abstract
Artificial gynogenesis is an effective means of producing pure lines and is widely used for genetic analysis of fish and for sex control. In this study, inactivated sperm from heterogenous blunt snout bream (Megalobrama amblycephala, MA) were used to activate Kohaku koi (Cyprinus carpio var. koi, CK) and produce high-quality female offspring. To determine whether the offspring were gynogenetic fish, the karyotype and DNA content of the CK, MA and the induced offspring (IO) were first compared and it was found that the IO were diploid with 100 chromosomes and their karyotype was 22m + 34sm + 22st + 22t. The DNA content of the IO was not significantly different from that of the CK. Subsequently, the amplified band profiles of CK, MA and IO were analyzed with species-specific microsatellite markers. The results showed that there were no amplified MA microsatellite bands in IO. The size of the amplified bands and the sequence of the 5S rDNA in CK, MA and IO were also analyzed. It was found that the amplified 5S rDNA gene fragments in IO contained two fragments that were both the same size as those of CK and matched more than 90% with those of CK. Finally, the sex of IO was verified using gonadal tissue sections. The result showed that IO was not an all-female population; males were also present (36.7%). In summary, a series of validation methods confirmed that the induced offspring were gynogenetic fish, which is the basis for the subsequent genetic improvement of pure lines of high-quality koi.
Collapse
Affiliation(s)
- Xiaoyu Chen
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi 214081, China
| | - Xiulan Shi
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi 214081, China
| | - Jun Guo
- Jiangsu Qihong Ecological Agriculture Development Co., Ltd., Suzhou 215416, China
| | - Kai Lin
- Jiangsu Qihong Ecological Agriculture Development Co., Ltd., Suzhou 215416, China
| | - Mingkun Luo
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Freshwater Fisheries Research Center of Chinese Academy of Fishery Sciences, Ministry of Agriculture and Rural Affairs, Wuxi 214081, China
| | - Zaijie Dong
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi 214081, China
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Freshwater Fisheries Research Center of Chinese Academy of Fishery Sciences, Ministry of Agriculture and Rural Affairs, Wuxi 214081, China
| |
Collapse
|
2
|
Policarpo M, Salzburger W, Maumus F, Gilbert C. Multiple Horizontal Transfers of Immune Genes Between Distantly Related Teleost Fishes. Mol Biol Evol 2025; 42:msaf107. [PMID: 40378191 DOI: 10.1093/molbev/msaf107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2024] [Revised: 04/29/2025] [Accepted: 05/02/2025] [Indexed: 05/18/2025] Open
Abstract
Horizontal gene transfer (HGT) is less frequent in eukaryotes than in prokaryotes, yet can have strong functional implications and was proposed as a causal factor for major adaptations in several eukaryotic lineages. Most cases of eukaryote HGT reported to date are inter-domain transfers, and few studies have investigated eukaryote-to-eukaryote HGTs. Here, we performed a large-scale survey of HGT among 242 species of ray-finned fishes. We found multiple lines of evidence supporting 19 teleost-to-teleost HGT events that involve 17 different genes in 11 teleost fish orders. The genes involved in these transfers show lower synonymous divergence than expected under vertical transmission, their phylogeny is inconsistent with that of teleost fishes, and they occur at non-syntenic positions in donor and recipient lineages. The distribution of HGT events in the teleost tree is heterogenous, with 8 of the 19 transfers occurring between the same two orders (Osmeriformes and Clupeiformes). Though we favor a scenario involving multiple HGT events, future work should evaluate whether hybridization between species belonging to different teleost orders may generate HGT-like patterns. Besides the previously reported transfer of an antifreeze protein, most transferred genes play roles in immunity or are pore-forming proteins, suggesting that such genes may be more likely than others to confer a strong selective advantage to the recipient species. Overall, our work shows that teleost-to-teleost HGT has occurred on multiple occasions, and it will be worth further quantifying these transfers and evaluating their impact on teleost evolution as more genomes are sequenced.
Collapse
Affiliation(s)
- Maxime Policarpo
- Zoological Institute, Department of Environmental Sciences, University of Basel, Basel, Switzerland
| | - Walter Salzburger
- Zoological Institute, Department of Environmental Sciences, University of Basel, Basel, Switzerland
| | - Florian Maumus
- URGI, INRAE, Université Paris-Saclay, Versailles 78026, France
| | - Clément Gilbert
- Université Paris-Saclay, CNRS, IRD, UMR Évolution, Génomes, Comportement et Écologie, Gif-sur-Yvette 91198, France
| |
Collapse
|
3
|
Gong D, Tao M, Xu L, Hu F, Wei Z, Wang S, Wang Y, Liu Q, Wu C, Luo K, Tang C, Zhou R, Zhang C, Wang Y, Liu S. An improved hybrid bream derived from a hybrid lineage of Megalobrama amblycephala (♀)×Culter alburnus (♂). SCIENCE CHINA. LIFE SCIENCES 2022; 65:1213-1221. [PMID: 34757543 DOI: 10.1007/s11427-021-2005-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Accepted: 08/19/2021] [Indexed: 06/13/2023]
Abstract
Distant hybridization is an important technique in fish genetic breeding. In this study, based on the establishment of an allodiploid fish lineage (BT, 2n=48, F1-F6) derived from distant hybridization between female Megalobrama amblycephala (BSB, 2n=48) and male Culter alburnus (TC, 2n=48), and the backcross progeny (BTB, 2n=48) derived by backcrossing female F1 of BT to male BSB, an improved hybrid bream (BTBB, 2n=48) was obtained by backcrossing BTB (♀) to BSB (♂). Moreover, the morphological and genetic characteristics of BTBB individuals were investigated; BTBB was similar to BSB in appearance but had a higher body height than BSB. The study results regarding chromosome numbers and DNA content indicated that BTBB is a diploid hybrid fish. The 5S rDNA and Hox gene of BTBB were inherited from the original parents. Gonadal development in BTBB was normal. On the other hand, BTBB had a faster growth rate, higher muscle protein level, and lower muscle carbohydrate level than BSB. Hence, bisexual fertile BTBB is promoted and can be applied as a high-quality fish, and it can also be used as a new fish germplasm resource to develop high-quality fish further. Thus, this study is of great significance for fish genetic breeding.
Collapse
Affiliation(s)
- Dingbin Gong
- State Key Laboratory of Developmental Biology of Freshwater Fish, Hunan Normal University, Changsha, 410081, China
- College of Life Sciences, Hunan Normal University, Changsha, 410081, China
| | - Min Tao
- State Key Laboratory of Developmental Biology of Freshwater Fish, Hunan Normal University, Changsha, 410081, China
- College of Life Sciences, Hunan Normal University, Changsha, 410081, China
| | - Lihui Xu
- State Key Laboratory of Developmental Biology of Freshwater Fish, Hunan Normal University, Changsha, 410081, China
- College of Life Sciences, Hunan Normal University, Changsha, 410081, China
| | - Fangzhou Hu
- State Key Laboratory of Developmental Biology of Freshwater Fish, Hunan Normal University, Changsha, 410081, China
- College of Life Sciences, Hunan Normal University, Changsha, 410081, China
| | - Zehong Wei
- State Key Laboratory of Developmental Biology of Freshwater Fish, Hunan Normal University, Changsha, 410081, China
- College of Life Sciences, Hunan Normal University, Changsha, 410081, China
| | - Shi Wang
- State Key Laboratory of Developmental Biology of Freshwater Fish, Hunan Normal University, Changsha, 410081, China
- College of Life Sciences, Hunan Normal University, Changsha, 410081, China
| | - Yude Wang
- State Key Laboratory of Developmental Biology of Freshwater Fish, Hunan Normal University, Changsha, 410081, China
- College of Life Sciences, Hunan Normal University, Changsha, 410081, China
| | - Qingfeng Liu
- State Key Laboratory of Developmental Biology of Freshwater Fish, Hunan Normal University, Changsha, 410081, China
- College of Life Sciences, Hunan Normal University, Changsha, 410081, China
| | - Chang Wu
- State Key Laboratory of Developmental Biology of Freshwater Fish, Hunan Normal University, Changsha, 410081, China
- College of Life Sciences, Hunan Normal University, Changsha, 410081, China
| | - Kaikun Luo
- State Key Laboratory of Developmental Biology of Freshwater Fish, Hunan Normal University, Changsha, 410081, China
- College of Life Sciences, Hunan Normal University, Changsha, 410081, China
| | - Chenchen Tang
- State Key Laboratory of Developmental Biology of Freshwater Fish, Hunan Normal University, Changsha, 410081, China
- College of Life Sciences, Hunan Normal University, Changsha, 410081, China
| | - Rong Zhou
- State Key Laboratory of Developmental Biology of Freshwater Fish, Hunan Normal University, Changsha, 410081, China
- College of Life Sciences, Hunan Normal University, Changsha, 410081, China
| | - Chun Zhang
- State Key Laboratory of Developmental Biology of Freshwater Fish, Hunan Normal University, Changsha, 410081, China
- College of Life Sciences, Hunan Normal University, Changsha, 410081, China
| | - Yuequn Wang
- State Key Laboratory of Developmental Biology of Freshwater Fish, Hunan Normal University, Changsha, 410081, China.
- College of Life Sciences, Hunan Normal University, Changsha, 410081, China.
| | - Shaojun Liu
- State Key Laboratory of Developmental Biology of Freshwater Fish, Hunan Normal University, Changsha, 410081, China.
- College of Life Sciences, Hunan Normal University, Changsha, 410081, China.
| |
Collapse
|
4
|
Freitas S, Westram AM, Schwander T, Arakelyan M, Ilgaz Ç, Kumlutas Y, Harris DJ, Carretero MA, Butlin RK. Parthenogenesis in Darevskia lizards: A rare outcome of common hybridization, not a common outcome of rare hybridization. Evolution 2022; 76:899-914. [PMID: 35323995 PMCID: PMC9324800 DOI: 10.1111/evo.14462] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Hybridization is a common evolutionary process with multiple possible outcomes. In vertebrates, interspecific hybridization has repeatedly generated parthenogenetic hybrid species. However, it is unknown whether the generation of parthenogenetic hybrids is a rare outcome of frequent hybridization between sexual species within a genus or the typical outcome of rare hybridization events. Darevskia is a genus of rock lizards with both hybrid parthenogenetic and sexual species. Using capture sequencing, we estimate phylogenetic relationships and gene flow among the sexual species, to determine how introgressive hybridization relates to the origins of parthenogenetic hybrids. We find evidence for widespread hybridization with gene flow, both between recently diverged species and deep branches. Surprisingly, we find no signal of gene flow between parental species of the parthenogenetic hybrids, suggesting that the parental pairs were either reproductively or geographically isolated early in their divergence. The generation of parthenogenetic hybrids in Darevskia is, then, a rare outcome of the total occurrence of hybridization within the genus, but the typical outcome when specific species pairs hybridize. Our results question the conventional view that parthenogenetic lineages are generated by hybridization in a window of divergence. Instead, they suggest that some lineages possess specific properties that underpin successful parthenogenetic reproduction.
Collapse
Affiliation(s)
- Susana Freitas
- Department of Ecology and EvolutionUniversity of LausanneLausanneCH‐1015Switzerland
| | - Anja Marie Westram
- IST AustriaKlosterneuburg3400Austria,Faculty of Biosciences and AquacultureNord UniversityBodøN‐8049Norway
| | - Tanja Schwander
- Department of Ecology and EvolutionUniversity of LausanneLausanneCH‐1015Switzerland
| | | | - Çetin Ilgaz
- Department of Biology, Faculty of ScienceDokuz Eylül Universityİzmir35400Turkey,Fauna and Flora Research CentreDokuz Eylül Universityİzmir35610Turkey
| | - Yusuf Kumlutas
- Department of Biology, Faculty of ScienceDokuz Eylül Universityİzmir35400Turkey,Fauna and Flora Research CentreDokuz Eylül Universityİzmir35610Turkey
| | - David James Harris
- CIBIO Research Centre in Biodiversity and Genetic Resources, InBIOUniversidade do PortoCampus de VairãoVairão4485–661Portugal
| | - Miguel A. Carretero
- CIBIO Research Centre in Biodiversity and Genetic Resources, InBIOUniversidade do PortoCampus de VairãoVairão4485–661Portugal,Departamento de Biologia, Faculdade de CiênciasUniversidade do PortoPorto4169‐007Portugal
| | - Roger K. Butlin
- Department of Animal and Plant SciencesThe University of SheffieldSheffieldS10 2TNUnited Kingdom,Department of Marine SciencesUniversity of GothenburgGothenburgSE‐40530Sweden
| |
Collapse
|
5
|
Gu Q, Wang S, Zhong H, Yuan H, Yang J, Yang C, Huang X, Xu X, Wang Y, Wei Z, Wang J, Liu S. Phylogeographic relationships and the evolutionary history of the Carassius auratus complex with a newly born homodiploid raw fish (2nNCRC). BMC Genomics 2022; 23:242. [PMID: 35350975 PMCID: PMC8962218 DOI: 10.1186/s12864-022-08468-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Accepted: 03/14/2022] [Indexed: 11/10/2022] Open
Abstract
Abstract
Background
An important aspect of studying evolution is to understand how new species are formed and their uniqueness is maintained. Hybridization can lead to the formation of new species through reorganization of the adaptive system and significant changes in phenotype. Interestingly, eight stable strains of 2nNCRC derived from interspecies hybridization have been established in our laboratory. To examine the phylogeographical pattern of the widely distributed genus Carassius across Eurasia and investigate the possible homoploid hybrid origin of the Carassius auratus complex lineage in light of past climatic events, the mitochondrial genome (mtDNA) and one nuclear DNA were used to reconstruct the phylogenetic relationship between the C. auratus complex and 2nNCRC and to assess how demographic history, dispersal and barriers to gene flow have led to the current distribution of the C. auratus complex.
Results
As expected, 2nNCRC had a very close relationship with the C. auratus complex and similar morphological characteristics to those of the C. auratus complex, which is genetically distinct from the other three species of Carassius. The estimation of divergence time and ancestral state demonstrated that the C. auratus complex possibly originated from the Yangtze River basin in China. There were seven sublineages of the C. auratus complex across Eurasia and at least four mtDNA lineages endemic to particular geographical regions in China. The primary colonization route from China to Mongolia and the Far East (Russia) occurred during the Late Pliocene, and the diversification of other sublineages of the C. auratus complex specifically coincided with the interglacial stage during the Early and Mid-Pleistocene in China.
Conclusion
Our results support the origin of the C. auratus complex in China, and its wide distribution across Eurasia was mainly due to natural Pleistocene dispersal and recent anthropogenic translocation. The sympatric distribution of the ancestral area for both parents of 2nNCRC and the C. auratus complex, as well as the significant changes in the structure of pharyngeal teeth and morphological characteristics between 2nNCRC and its parents, imply that homoploid hybrid speciation (HHS) for C. auratus could likely have occurred in nature. The diversification pattern indicated an independent evolutionary history of the C. auratus complex, which was not separated from the most recent common ancestor of C. carassius or C. cuvieri. Considering that the paleoclimate oscillation and the development of an eastward-flowing drainage system during the Pliocene and Pleistocene in China provided an opportunity for hybridization between divergent lineages, the formation of 2nNCRC in our laboratory could be a good candidate for explaining the HHS of C. auratus in nature.
Collapse
|
6
|
Wang S, Liu Q, Huang X, Yang C, Chen L, Han M, Shu Y, Wang M, Li W, Hu F, Wen M, Luo K, Wang Y, Zhou R, Zhang C, Tao M, Zhao R, Tang C, Liu S. The rapid variation of Hox clusters reveals a clear evolutionary path in a crucian carp-like homodiploid fish lineage. REPRODUCTION AND BREEDING 2021. [DOI: 10.1016/j.repbre.2021.09.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022] Open
|
7
|
Wang Y, Yao J, Luo Y, Tan H, Huang X, Wang S, Qin Q, Zhang C, Tao M, Dabrowski K, Liu S. Two New Types of Homodiploid Fish and Polyploid Hybrids Derived from the Distant Hybridization of Female Koi Carp and Male Bighead Carp. MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2021; 23:628-640. [PMID: 34401979 DOI: 10.1007/s10126-021-10050-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Accepted: 07/12/2021] [Indexed: 06/13/2023]
Abstract
Bighead carps (Hypophthalmichthys nobilis) and silver carps (Hypophthalmichthys molitrix) represent an important component of freshwater ichthiofauna in its native range, though they might become mass propagation in other systems (North America) and the reason of concern for fisheries management. Therefore, understanding their reproductive traits and particularly in the context of hybridization with other cyprinids was of value to explain their rapid propagation as well as potential benefits for aquaculture due to their unique diet, behavior, growth potential, and tolerance to deteriorating environmental conditions in freshwater ecosystems. Distant hybridization is an effective tool to create different ploidy offspring with changed phenotypes and genotypes. In this study, we reported distant hybridization of female koi carp (Cyprinus carpio haematopterus, KOC, 2n = 100) × male bighead carp (Hypophthalmichthys nobilis, BIC, 2n = 48) and the spontaneous occurrence of two new "crucian" carp-like homodiploid fish (2nGCC-L; 2nCCC-L; 2n = 100), a new type of triploid hybrid (3nKB, 3n = 124), and a new type of tetraploid hybrid (4nKB, 4n = 148). The body color of 2nGCC-L and 2nCCC-L were gray and multicolor, respectively. Both phenotypes were similar to the crucian carp (Carassius auratus). The difference was that their heads were rounder than those of the crucian carp and they had higher backs. Compared with the KOC with two pairs of barbels and BIC without barbel, 2nGCC-L, 2nCCC-L, and 4nKB had no barbel, but 3nKB had one pair of barbels. Microsatellite patterns and 5S rDNA sequences confirmed that 2nGCC-L, 2nCCC-L, and 3nKB were of hybrid origin. In regard to feeding, KOC was omnivorous and BIC was a typical filter-feeder. However, the 2nGCC-L, 2nCCC-L, and 3nKB were omnivorous. The formation of four kinds of new offspring is a groundbreaking finding in fish genetic breeding and evolutionary biology.
Collapse
Affiliation(s)
- Yude Wang
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Sciences, Hunan Normal University, Changsha, 410081, China
| | - Jiajun Yao
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Sciences, Hunan Normal University, Changsha, 410081, China
| | - Yaxin Luo
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Sciences, Hunan Normal University, Changsha, 410081, China
| | - Huifang Tan
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Sciences, Hunan Normal University, Changsha, 410081, China
| | - Xu Huang
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Sciences, Hunan Normal University, Changsha, 410081, China
| | - Shi Wang
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Sciences, Hunan Normal University, Changsha, 410081, China
| | - Qinbo Qin
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Sciences, Hunan Normal University, Changsha, 410081, China
| | - Chun Zhang
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Sciences, Hunan Normal University, Changsha, 410081, China
| | - Min Tao
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Sciences, Hunan Normal University, Changsha, 410081, China
| | - Konrad Dabrowski
- School of Environment and Natural Resources, the Ohio State University, 2021 Coffey Road, OH, 43210, Columbus, USA.
| | - Shaojun Liu
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Sciences, Hunan Normal University, Changsha, 410081, China.
| |
Collapse
|
8
|
Profile of Dr. Shaojun Liu. SCIENCE CHINA. LIFE SCIENCES 2020; 63:1283-1286. [PMID: 32700189 DOI: 10.1007/s11427-020-1746-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
|
9
|
Wang S, Jiao N, Zhao L, Zhang M, Zhou P, Huang X, Hu F, Yang C, Shu Y, Li W, Zhang C, Tao M, Chen B, Ma M, Liu S. Evidence for the paternal mitochondrial DNA in the crucian carp-like fish lineage with hybrid origin. SCIENCE CHINA. LIFE SCIENCES 2020; 63:102-115. [PMID: 31728830 DOI: 10.1007/s11427-019-9528-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Accepted: 08/11/2019] [Indexed: 01/05/2023]
Abstract
In terms of taxonomic status, common carp (Cyprinus carpio, Cyprininae) and crucian carp (Carassius auratus, Cyprininae) are different species; however, in this study, a newborn homodiploid crucian carp-like fish (2n=100) (2nNCRC) lineage (F1-F3) was established from the interspecific hybridization of female common carp (2n=100)×male blunt snout bream (Megalobrama amblycephala, Cultrinae, 2n=48). The phenotypes and genotypes of 2nNCRC differed from those of its parents but were closely related to those of the existing diploid crucian carp. We further sequenced the whole mitochondrial (mt) genomes of the 2nNCRC lineage from F1 to F3. The paternal mtDNA fragments were stably embedded in the mt-genomes of F1-F3 generations of 2nNCRC to form chimeric DNA fragments. Along with this chimeric process, numerous base sites of F1-F3 generations of 2nNCRC underwent mutations. Most of these mutation sites were consistent with the existing diploid crucian carp. Moreover, the mtDNA organization and nucleotide composition of 2nNCRC were more similar to those of the existing diploid crucian carp than those of the parents. The inheritable chimeric DNA fragments and mutant loci in the mt-genomes of different generations of 2nNCRC provided important evidence of the mtDNA change process in the newborn lineage derived from hybridization of different species. Our findings demonstrated for the first time that the paternal mtDNA were transmitted into the mt-genomes of homodiploid lineage, which provided new insights into the existence of paternal mtDNA in the mtDNA inheritance.
Collapse
Affiliation(s)
- Shi Wang
- State Key Laboratory of Developmental Biology of Freshwater Fish, Hunan Normal University, Changsha, 410081, China.,College of Life Sciences, Hunan Normal University, Changsha, 410081, China.,College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha, 410081, China
| | - Ni Jiao
- State Key Laboratory of Developmental Biology of Freshwater Fish, Hunan Normal University, Changsha, 410081, China.,College of Life Sciences, Hunan Normal University, Changsha, 410081, China
| | - Lu Zhao
- State Key Laboratory of Developmental Biology of Freshwater Fish, Hunan Normal University, Changsha, 410081, China.,College of Life Sciences, Hunan Normal University, Changsha, 410081, China
| | - Meiwen Zhang
- State Key Laboratory of Developmental Biology of Freshwater Fish, Hunan Normal University, Changsha, 410081, China.,College of Life Sciences, Hunan Normal University, Changsha, 410081, China
| | - Pei Zhou
- State Key Laboratory of Developmental Biology of Freshwater Fish, Hunan Normal University, Changsha, 410081, China.,College of Life Sciences, Hunan Normal University, Changsha, 410081, China
| | - Xuexue Huang
- State Key Laboratory of Developmental Biology of Freshwater Fish, Hunan Normal University, Changsha, 410081, China.,College of Life Sciences, Hunan Normal University, Changsha, 410081, China
| | - Fangzhou Hu
- State Key Laboratory of Developmental Biology of Freshwater Fish, Hunan Normal University, Changsha, 410081, China.,College of Life Sciences, Hunan Normal University, Changsha, 410081, China.,College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha, 410081, China
| | - Conghui Yang
- State Key Laboratory of Developmental Biology of Freshwater Fish, Hunan Normal University, Changsha, 410081, China.,College of Life Sciences, Hunan Normal University, Changsha, 410081, China
| | - Yuqin Shu
- State Key Laboratory of Developmental Biology of Freshwater Fish, Hunan Normal University, Changsha, 410081, China.,College of Life Sciences, Hunan Normal University, Changsha, 410081, China
| | - Wuhui Li
- State Key Laboratory of Developmental Biology of Freshwater Fish, Hunan Normal University, Changsha, 410081, China.,College of Life Sciences, Hunan Normal University, Changsha, 410081, China.,Key Laboratory of Tropical and Subtropical Fisheries Resource Application and Cultivation, Ministry of Agriculture, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, 510380, China
| | - Chun Zhang
- State Key Laboratory of Developmental Biology of Freshwater Fish, Hunan Normal University, Changsha, 410081, China.,College of Life Sciences, Hunan Normal University, Changsha, 410081, China
| | - Min Tao
- State Key Laboratory of Developmental Biology of Freshwater Fish, Hunan Normal University, Changsha, 410081, China.,College of Life Sciences, Hunan Normal University, Changsha, 410081, China
| | - Bo Chen
- College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha, 410081, China
| | - Ming Ma
- College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha, 410081, China
| | - Shaojun Liu
- State Key Laboratory of Developmental Biology of Freshwater Fish, Hunan Normal University, Changsha, 410081, China. .,College of Life Sciences, Hunan Normal University, Changsha, 410081, China.
| |
Collapse
|
10
|
Luo K, Wang S, Fu Y, Zhou P, Huang X, Gu Q, Li W, Wang Y, Hu F, Liu S. Rapid genomic DNA variation in newly hybridized carp lineages derived from Cyprinus carpio (♀) × Megalobrama amblycephala (♂). BMC Genet 2019; 20:87. [PMID: 31779581 PMCID: PMC6883602 DOI: 10.1186/s12863-019-0784-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Accepted: 10/14/2019] [Indexed: 11/24/2022] Open
Abstract
Background Distant hybridization can generate changes in phenotypes and genotypes that lead to the formation of new hybrid lineages with genetic variation. In this study, the establishment of two bisexual fertile carp lineages, including the improved diploid common carp (IDC) lineage and the improved diploid scattered mirror carp (IDMC) lineage, from the interspecific hybridization of common carp (Cyprinus carpio, 2n = 100) (♀) × blunt snout bream (Megalobrama amblycephala, 2n = 48) (♂), provided a good platform to investigate the genetic relationship between the parents and their hybrid progenies. Result In this study, we investigated the genetic variation of 12 Hox genes in the two types of improved carp lineages derived from common carp (♀) × blunt snout bream (♂). Hox gene clusters were abundant in the first generation of IDC, but most were not stably inherited in the second generation. In contrast, we did not find obvious mutations in Hox genes in the first generation of IDMC, and almost all the Hox gene clusters were stably inherited from the first generation to the second generation of IDMC. Interestingly, we found obvious recombinant clusters of Hox genes in both improved carp lineages, and partially recombinant clusters of Hox genes were stably inherited from the first generation to the second generation in both types of improved carp lineages. On the other hand, some Hox genes were gradually becoming pseudogenes, and some genes were completely pseudogenised in IDC or IDMC. Conclusions Our results provided important evidence that distant hybridization produces rapid genomic DNA changes that may or may not be stably inherited, providing novel insights into the function of hybridization in the establishment of improved lineages used as new fish resources for aquaculture.
Collapse
Affiliation(s)
- Kaikun Luo
- State Key Laboratory of Developmental Biology of Freshwater Fish, Hunan Normal University, Changsha, 410081, Hunan, People's Republic of China.,College of Life Sciences, Hunan Normal University, Changsha, 410081, Hunan, People's Republic of China
| | - Shi Wang
- State Key Laboratory of Developmental Biology of Freshwater Fish, Hunan Normal University, Changsha, 410081, Hunan, People's Republic of China.,College of Life Sciences, Hunan Normal University, Changsha, 410081, Hunan, People's Republic of China.,College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha, 410081, Hunan, People's Republic of China
| | - Yeqing Fu
- State Key Laboratory of Developmental Biology of Freshwater Fish, Hunan Normal University, Changsha, 410081, Hunan, People's Republic of China.,College of Life Sciences, Hunan Normal University, Changsha, 410081, Hunan, People's Republic of China
| | - Pei Zhou
- State Key Laboratory of Developmental Biology of Freshwater Fish, Hunan Normal University, Changsha, 410081, Hunan, People's Republic of China.,College of Life Sciences, Hunan Normal University, Changsha, 410081, Hunan, People's Republic of China
| | - Xuexue Huang
- State Key Laboratory of Developmental Biology of Freshwater Fish, Hunan Normal University, Changsha, 410081, Hunan, People's Republic of China.,College of Life Sciences, Hunan Normal University, Changsha, 410081, Hunan, People's Republic of China
| | - Qianhong Gu
- State Key Laboratory of Developmental Biology of Freshwater Fish, Hunan Normal University, Changsha, 410081, Hunan, People's Republic of China.,College of Life Sciences, Hunan Normal University, Changsha, 410081, Hunan, People's Republic of China
| | - Wuhui Li
- State Key Laboratory of Developmental Biology of Freshwater Fish, Hunan Normal University, Changsha, 410081, Hunan, People's Republic of China.,College of Life Sciences, Hunan Normal University, Changsha, 410081, Hunan, People's Republic of China.,Key Laboratory of Tropical and Subtropical Fisheries Resource Application and Cultivation, Ministry of Agriculture, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, 510380, Guangdong, People's Republic of China
| | - Yude Wang
- State Key Laboratory of Developmental Biology of Freshwater Fish, Hunan Normal University, Changsha, 410081, Hunan, People's Republic of China.,College of Life Sciences, Hunan Normal University, Changsha, 410081, Hunan, People's Republic of China.,College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha, 410081, Hunan, People's Republic of China
| | - Fangzhou Hu
- State Key Laboratory of Developmental Biology of Freshwater Fish, Hunan Normal University, Changsha, 410081, Hunan, People's Republic of China.,College of Life Sciences, Hunan Normal University, Changsha, 410081, Hunan, People's Republic of China.,College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha, 410081, Hunan, People's Republic of China
| | - Shaojun Liu
- State Key Laboratory of Developmental Biology of Freshwater Fish, Hunan Normal University, Changsha, 410081, Hunan, People's Republic of China. .,College of Life Sciences, Hunan Normal University, Changsha, 410081, Hunan, People's Republic of China.
| |
Collapse
|
11
|
Genetic and morphology analysis among the pentaploid F 1 hybrid fishes ( Schizothorax wangchiachii ♀ × Percocypris pingi ♂) and their parents. Animal 2019; 13:2755-2764. [PMID: 31148539 DOI: 10.1017/s1751731119001289] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Triploid and pentaploid breeding is of great importance in agricultural production, but it is not always easy to obtain double ploidy parents. However, in fishes, chromosome ploidy is diversiform, which may provide natural parental resources for triploid and pentaploid breeding. Both tetraploid and hexaploid exist in Schizothorax fishes, which were thought to belong to different subfamilies with tetraploid Percocypris fishes in morphology, but they are sister genera in molecule. Fortunately, the pentaploid hybrid fishes have been successfully obtained by hybridization of Schizothorax wangchiachii (♀, 2n = 6X = 148) × Percocypris pingi (♂, 2n = 4X = 98). To understand the genetic and morphological difference among the hybrid fishes and their parents, four methods were used in this study: morphology, karyotype, red blood cell (RBC) DNA content determination and inter-simple sequence repeat (ISSR). In morphology, the hybrid fishes were steady, and between their parents with no obvious preference. The chromosome numbers of P. pingi have been reported as 2n = 4X = 98. In this study, the karyotype of S. wangchiachii was 2n = 6X = 148 = 36m + 34sm + 12st + 66t, while that the hybrid fishes was 2n = 5X = 123 = 39m + 28sm + 5st + 51t. Similarly, the RBC DNA content of the hybrid fishes was intermediate among their parents. In ISSR, the within-group genetic diversity of hybrid fishes was higher than that of their parents. Moreover, the genetic distance of hybrid fishes between P. pingi and S.wangchiachii was closely related to that of their parental ploidy, suggesting that parental genetic material stably coexisted in the hybrid fishes. This is the first report to show a stable pentaploid F1 hybrids produced by hybridization of a hexaploid and a tetraploid in aquaculture.
Collapse
|
12
|
Mao Z, Fu Y, Wang Y, Wang S, Zhang M, Gao X, Luo K, Qin Q, Zhang C, Tao M, Yao Z, Liu S. Evidence for paternal DNA transmission to gynogenetic grass carp. BMC Genet 2019; 20:3. [PMID: 30616510 PMCID: PMC6323743 DOI: 10.1186/s12863-018-0712-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2018] [Accepted: 12/26/2018] [Indexed: 12/24/2022] Open
Abstract
Background Grass carp (Ctenopharyngodon idellus, GC), as the highest-output fish in China, is economically important. The production of gynogenetic grass carp (GGC) will provide important germplasm resource for producing improved GC. At present, knowledge regarding the heterologous sperm DNA in gynogenetic offspring is little. Thus, revealing paternal DNA in GGC at the molecular level would be highly significant for fish genetic breeding. Result In this study, ultraviolet-treated sperm of koi carp (Cyprinus carpio haematopterus, KOC, 2n = 100), was used to activate the eggs of GC (2n = 48). Afterwards, cold shock (0–4 °C) was administered for 12 min to double the chromosomes, resulting in GGC. No significant difference (p > 0.05) was found between GGC and GC in appearance, erythrocytes size and chromosome numbers. However, at the molecular level, a specific microsatellite DNA fragment (MFW1-gynogenetic grass carp, MFW1-G) derived from the paternal parent KOC was found to be transmitted into GGC. Conclusions For the first time, this study provided an evidence at the molecular level that the DNA fragment derived from the paternal parent occurred in GGC. This finding is of great significance for fish genetic breeding.
Collapse
Affiliation(s)
- Zhuangwen Mao
- State Key Laboratory of Developmental Biology of Freshwater Fish, Hunan Normal University, Changsha, 410081, Hunan, People's Republic of China.,College of Life Sciences, Hunan Normal University, Changsha, 410081, Hunan, People's Republic of China
| | - Yeqing Fu
- State Key Laboratory of Developmental Biology of Freshwater Fish, Hunan Normal University, Changsha, 410081, Hunan, People's Republic of China.,College of Life Sciences, Hunan Normal University, Changsha, 410081, Hunan, People's Republic of China
| | - Yude Wang
- State Key Laboratory of Developmental Biology of Freshwater Fish, Hunan Normal University, Changsha, 410081, Hunan, People's Republic of China.,College of Life Sciences, Hunan Normal University, Changsha, 410081, Hunan, People's Republic of China
| | - Shi Wang
- State Key Laboratory of Developmental Biology of Freshwater Fish, Hunan Normal University, Changsha, 410081, Hunan, People's Republic of China.,College of Life Sciences, Hunan Normal University, Changsha, 410081, Hunan, People's Republic of China
| | - Minghe Zhang
- State Key Laboratory of Developmental Biology of Freshwater Fish, Hunan Normal University, Changsha, 410081, Hunan, People's Republic of China.,College of Life Sciences, Hunan Normal University, Changsha, 410081, Hunan, People's Republic of China
| | - Xin Gao
- State Key Laboratory of Developmental Biology of Freshwater Fish, Hunan Normal University, Changsha, 410081, Hunan, People's Republic of China.,College of Life Sciences, Hunan Normal University, Changsha, 410081, Hunan, People's Republic of China
| | - Kaikun Luo
- State Key Laboratory of Developmental Biology of Freshwater Fish, Hunan Normal University, Changsha, 410081, Hunan, People's Republic of China.,College of Life Sciences, Hunan Normal University, Changsha, 410081, Hunan, People's Republic of China
| | - Qinbo Qin
- State Key Laboratory of Developmental Biology of Freshwater Fish, Hunan Normal University, Changsha, 410081, Hunan, People's Republic of China.,College of Life Sciences, Hunan Normal University, Changsha, 410081, Hunan, People's Republic of China
| | - Chun Zhang
- State Key Laboratory of Developmental Biology of Freshwater Fish, Hunan Normal University, Changsha, 410081, Hunan, People's Republic of China.,College of Life Sciences, Hunan Normal University, Changsha, 410081, Hunan, People's Republic of China
| | - Min Tao
- State Key Laboratory of Developmental Biology of Freshwater Fish, Hunan Normal University, Changsha, 410081, Hunan, People's Republic of China.,College of Life Sciences, Hunan Normal University, Changsha, 410081, Hunan, People's Republic of China
| | - Zhanzhou Yao
- State Key Laboratory of Developmental Biology of Freshwater Fish, Hunan Normal University, Changsha, 410081, Hunan, People's Republic of China.,College of Life Sciences, Hunan Normal University, Changsha, 410081, Hunan, People's Republic of China
| | - Shaojun Liu
- State Key Laboratory of Developmental Biology of Freshwater Fish, Hunan Normal University, Changsha, 410081, Hunan, People's Republic of China. .,College of Life Sciences, Hunan Normal University, Changsha, 410081, Hunan, People's Republic of China.
| |
Collapse
|
13
|
Establishment and application of distant hybridization technology in fish. SCIENCE CHINA-LIFE SCIENCES 2018; 62:22-45. [DOI: 10.1007/s11427-018-9408-x] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Accepted: 09/19/2018] [Indexed: 12/11/2022]
|
14
|
Wang Y, Yang C, Luo K, Zhang M, Qin Q, Huo Y, Song J, Tao M, Zhang C, Liu S. The Formation of the Goldfish-Like Fish Derived From Hybridization of Female Koi Carp × Male Blunt Snout Bream. Front Genet 2018; 9:437. [PMID: 30369942 PMCID: PMC6194320 DOI: 10.3389/fgene.2018.00437] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2018] [Accepted: 09/14/2018] [Indexed: 01/21/2023] Open
Abstract
Goldfish (Carassius auratus var., GF; 2n = 100) is the most popular ornamental fish in the world. It is assumed that GF evolved from red crucian carp (C. auratus red var., RCC; 2n = 100). However, this hypothesis lacks direct evidence. Furthermore, our knowledge of the role of hybridization in the formation of new species is sparse. In this study, goldfish-like fish with twin tails (GF-L; 2n = 100) was produced by self-mating red crucian carp-like fish (RCC-L; 2n = 100) derived from the distant crossing of koi carp (Cyprinus carpio haematopterus, KOC; 2n = 100; ♀) with blunt snout bream (Megalobrama amblycephala, BSB; 2n = 48; ♂). The phenotypes and genotypes of GF-L and RCC-L were very similar to those of GF and RCC, respectively. Microsatellite DNA and 5S rDNA analyses revealed that GF-L and RCC-L were closely related to GF and RCC, respectively. The presence of a twin tail of GF-L was related to a base mutation in chordinA from G in RCC-L to T in GF-L, indicating that the lineage of RCC-L and GF-L can be used to study gene variation and function. The sequences of 5S rDNA in GF-L and RCC-L were mapped to the genomes of CC and BSB, which revealed that the average similarities of both GF-L and RCC-L to CC were obviously higher than those to BSB, supporting that the genomes of both RCC-L and GF-L were mainly inherited from KOC. GF-L and RCC-L were homodiploids that were mainly derived from the genome of KOC with some DNA fragments from BSB. The reproductive traits of GF-L and RCC-L were quite different from those of their parents, but were the same as those of GF and RCC. RCC-L easily diversified into GF-L, suggesting that RCC and GF evolved within the same period in their evolutionary pathway. This study provided direct evidence of the KOC-RCC-GF evolutionary pathway that was triggered by distant hybridization, which had important significance in evolutionary biology and genetic breeding.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Shaojun Liu
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Sciences, Hunan Normal University, Changsha, China
| |
Collapse
|
15
|
Li W, Liu J, Tan H, Luo L, Cui J, Hu J, Wang S, Liu Q, Hu F, Tang C, Ren L, Yang C, Zhao R, Tao M, Zhang C, Qin Q, Liu S. Asymmetric expression patterns reveal a strong maternal effect and dosage compensation in polyploid hybrid fish. BMC Genomics 2018; 19:517. [PMID: 29969984 PMCID: PMC6030793 DOI: 10.1186/s12864-018-4883-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2018] [Accepted: 06/19/2018] [Indexed: 03/05/2023] Open
Abstract
Background Hybridization and polyploidization are regarded as the major driving forces in plant speciation, diversification, and ecological adaptation. Our knowledge regarding the mechanisms of duplicated-gene regulation following genomic merging or doubling is primarily derived from plants and is sparse for vertebrates. Results We successfully obtained an F1 generation (including allodiploid hybrids and triploid hybrids) from female Megalobrama amblycephala Yih (BSB, 2n = 48) × male Xenocypri davidi Bleeker (YB, 2n = 48). The duplicated-gene expression patterns of the two types of hybrids were explored using RNA-Seq data. In total, 5.44 × 108 (69.32 GB) clean reads and 499,631 assembled unigenes were obtained from the testis transcriptomes. The sequence similarity analysis of 4265 orthologs revealed that the merged genomes were dominantly expressed in different ploidy hybrids. The differentially expressed genes in the two types of hybrids were asymmetric compared with those in both parents. Furthermore, the genome-wide expression level dominance (ELD) was biased toward the maternal BSB genome in both the allodiploid and triploid hybrids. In addition, the dosage-compensation mechanisms that reduced the triploid expression levels to the diploid state were determined in the triploid hybrids. Conclusions Our results indicate that divergent genomes undergo strong interactions and domination in allopolyploid offspring. Genomic merger has a greater effect on the gene-expression patterns than genomic doubling. The various expression mechanisms (including maternal effect and dosage compensation) in different ploidy hybrids suggest that the initial genomic merger and doubling play important roles in polyploidy adaptation and evolution. Electronic supplementary material The online version of this article (10.1186/s12864-018-4883-7) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Wuhui Li
- State Key Laboratory of Developmental Biology of Freshwater Fish, Hunan Normal university, Changsha, 410081, Hunan, People's Republic of China.,College of Life Sciences, Hunan Normal University, Changsha, 410081, Hunan, People's Republic of China
| | - Junmei Liu
- State Key Laboratory of Developmental Biology of Freshwater Fish, Hunan Normal university, Changsha, 410081, Hunan, People's Republic of China.,College of Life Sciences, Hunan Normal University, Changsha, 410081, Hunan, People's Republic of China
| | - Hui Tan
- State Key Laboratory of Developmental Biology of Freshwater Fish, Hunan Normal university, Changsha, 410081, Hunan, People's Republic of China.,College of Life Sciences, Hunan Normal University, Changsha, 410081, Hunan, People's Republic of China
| | - Lingling Luo
- State Key Laboratory of Developmental Biology of Freshwater Fish, Hunan Normal university, Changsha, 410081, Hunan, People's Republic of China.,College of Life Sciences, Hunan Normal University, Changsha, 410081, Hunan, People's Republic of China
| | - Jialin Cui
- State Key Laboratory of Developmental Biology of Freshwater Fish, Hunan Normal university, Changsha, 410081, Hunan, People's Republic of China.,College of Life Sciences, Hunan Normal University, Changsha, 410081, Hunan, People's Republic of China
| | - Jie Hu
- State Key Laboratory of Developmental Biology of Freshwater Fish, Hunan Normal university, Changsha, 410081, Hunan, People's Republic of China.,College of Life Sciences, Hunan Normal University, Changsha, 410081, Hunan, People's Republic of China
| | - Shi Wang
- State Key Laboratory of Developmental Biology of Freshwater Fish, Hunan Normal university, Changsha, 410081, Hunan, People's Republic of China.,College of Life Sciences, Hunan Normal University, Changsha, 410081, Hunan, People's Republic of China
| | - Qingfeng Liu
- State Key Laboratory of Developmental Biology of Freshwater Fish, Hunan Normal university, Changsha, 410081, Hunan, People's Republic of China.,College of Life Sciences, Hunan Normal University, Changsha, 410081, Hunan, People's Republic of China
| | - Fangzhou Hu
- State Key Laboratory of Developmental Biology of Freshwater Fish, Hunan Normal university, Changsha, 410081, Hunan, People's Republic of China.,College of Life Sciences, Hunan Normal University, Changsha, 410081, Hunan, People's Republic of China
| | - Chenchen Tang
- State Key Laboratory of Developmental Biology of Freshwater Fish, Hunan Normal university, Changsha, 410081, Hunan, People's Republic of China.,College of Life Sciences, Hunan Normal University, Changsha, 410081, Hunan, People's Republic of China
| | - Li Ren
- State Key Laboratory of Developmental Biology of Freshwater Fish, Hunan Normal university, Changsha, 410081, Hunan, People's Republic of China.,College of Life Sciences, Hunan Normal University, Changsha, 410081, Hunan, People's Republic of China
| | - Conghui Yang
- State Key Laboratory of Developmental Biology of Freshwater Fish, Hunan Normal university, Changsha, 410081, Hunan, People's Republic of China.,College of Life Sciences, Hunan Normal University, Changsha, 410081, Hunan, People's Republic of China
| | - Rurong Zhao
- State Key Laboratory of Developmental Biology of Freshwater Fish, Hunan Normal university, Changsha, 410081, Hunan, People's Republic of China.,College of Life Sciences, Hunan Normal University, Changsha, 410081, Hunan, People's Republic of China
| | - Min Tao
- State Key Laboratory of Developmental Biology of Freshwater Fish, Hunan Normal university, Changsha, 410081, Hunan, People's Republic of China.,College of Life Sciences, Hunan Normal University, Changsha, 410081, Hunan, People's Republic of China
| | - Chun Zhang
- State Key Laboratory of Developmental Biology of Freshwater Fish, Hunan Normal university, Changsha, 410081, Hunan, People's Republic of China.,College of Life Sciences, Hunan Normal University, Changsha, 410081, Hunan, People's Republic of China
| | - Qinbo Qin
- State Key Laboratory of Developmental Biology of Freshwater Fish, Hunan Normal university, Changsha, 410081, Hunan, People's Republic of China.,College of Life Sciences, Hunan Normal University, Changsha, 410081, Hunan, People's Republic of China
| | - Shaojun Liu
- State Key Laboratory of Developmental Biology of Freshwater Fish, Hunan Normal university, Changsha, 410081, Hunan, People's Republic of China. .,College of Life Sciences, Hunan Normal University, Changsha, 410081, Hunan, People's Republic of China.
| |
Collapse
|
16
|
Liu Q, Qi Y, Liang Q, Xu X, Hu F, Wang J, Xiao J, Wang S, Li W, Tao M, Qin Q, Zhao R, Yao Z, Liu S. The chimeric genes in the hybrid lineage of Carassius auratus cuvieri (♀)×Carassius auratus red var. (♂). SCIENCE CHINA-LIFE SCIENCES 2018; 61:1079-1089. [DOI: 10.1007/s11427-017-9306-7] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Accepted: 02/06/2018] [Indexed: 12/30/2022]
|