1
|
Armas JA, Ford MJ, Foster KP, Hall T, Loeb CK, Schmidt S, Williams SF, Baron KL, Pérez Pérez LX, Xie F, Bryson TM, Lenhardt JM. Electrostatic Dissipation in 3D-Printable Silicone. ACS APPLIED MATERIALS & INTERFACES 2024. [PMID: 39226372 DOI: 10.1021/acsami.4c09455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/05/2024]
Abstract
In this report, we describe the incorporation of single-walled carbon nanotubes (CNTs) into 3D printable siloxane elastomers for electrostatic dissipation. The composite was characterized, focusing on how rheological and mechanical properties of the siloxane are affected at various CNT loading levels. Electrical properties were also characterized to develop materials with effective electrostatic dissipation. We demonstrate that low loadings (<1 wt %) of CNTs can be sufficiently dispersed into silicone resins that can be 3D printed, and the resulting material shows a significant improvement in electrostatic dissipation through the reduction in electrical resistivity with minimal effect on its mechanical properties.
Collapse
Affiliation(s)
- Jeremy A Armas
- Lawrence Livermore National Laboratory, California, Livermore 94550, United States
| | - Michael J Ford
- Lawrence Livermore National Laboratory, California, Livermore 94550, United States
| | - Kenton P Foster
- Lawrence Livermore National Laboratory, California, Livermore 94550, United States
| | - Terence Hall
- Lawrence Livermore National Laboratory, California, Livermore 94550, United States
| | - Colin K Loeb
- Lawrence Livermore National Laboratory, California, Livermore 94550, United States
| | - Spencer Schmidt
- Lawrence Livermore National Laboratory, California, Livermore 94550, United States
| | - Stanley F Williams
- Lawrence Livermore National Laboratory, California, Livermore 94550, United States
| | - Kathlyn L Baron
- Lawrence Livermore National Laboratory, California, Livermore 94550, United States
| | - Lemuel X Pérez Pérez
- Lawrence Livermore National Laboratory, California, Livermore 94550, United States
| | - Fangyou Xie
- Lawrence Livermore National Laboratory, California, Livermore 94550, United States
| | - Taylor M Bryson
- Lawrence Livermore National Laboratory, California, Livermore 94550, United States
| | - Jeremy M Lenhardt
- Lawrence Livermore National Laboratory, California, Livermore 94550, United States
| |
Collapse
|
2
|
Jiang Y, Ng ELL, Han DX, Yan Y, Chan SY, Wang J, Chan BQY. Self-Healing Polymeric Materials and Composites for Additive Manufacturing. Polymers (Basel) 2023; 15:4206. [PMID: 37959886 PMCID: PMC10649664 DOI: 10.3390/polym15214206] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 10/17/2023] [Accepted: 10/23/2023] [Indexed: 11/15/2023] Open
Abstract
Self-healing polymers have received widespread attention due to their ability to repair damage autonomously and increase material stability, reliability, and economy. However, the processability of self-healing materials has yet to be studied, limiting the application of rich self-healing mechanisms. Additive manufacturing effectively improves the shortcomings of conventional processing while increasing production speed, accuracy, and complexity, offering great promise for self-healing polymer applications. This article summarizes the current self-healing mechanisms of self-healing polymers and their corresponding additive manufacturing methods, and provides an outlook on future developments in the field.
Collapse
Affiliation(s)
- Yixue Jiang
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis #08-03, Singapore 138634, Singapore
- Department of Materials Science and Engineering, College of Design and Engineering, National University of Singapore, 9 Engineering Drive 1, Singapore 117575, Singapore
| | - Evelyn Ling Ling Ng
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis #08-03, Singapore 138634, Singapore
| | - Danielle Xinyun Han
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis #08-03, Singapore 138634, Singapore
| | - Yinjia Yan
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis #08-03, Singapore 138634, Singapore
- Frontiers Science Center for Flexible Electronics (FSCFE), Xi’an Institute of Flexible Electronics (IFE), Xi’an Institute of Biomedical Materials and Engineering (IBME), and Ningbo Institute, Northwestern Polytechnical University, 127 West Youyi Road, Xi’an 710072, China
| | - Siew Yin Chan
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis #08-03, Singapore 138634, Singapore
| | - John Wang
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis #08-03, Singapore 138634, Singapore
- Department of Materials Science and Engineering, College of Design and Engineering, National University of Singapore, 9 Engineering Drive 1, Singapore 117575, Singapore
| | - Benjamin Qi Yu Chan
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis #08-03, Singapore 138634, Singapore
| |
Collapse
|
3
|
Hevilla V, Sonseca Á, Echeverría C, Muñoz-Bonilla A, Fernández-García M. Photocured Poly(Mannitol Sebacate) with Functional Methacrylic Monomer: Analysis of Physical, Chemical, and Biological Properties. Polymers (Basel) 2023; 15:polym15061561. [PMID: 36987340 PMCID: PMC10054831 DOI: 10.3390/polym15061561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 03/15/2023] [Accepted: 03/18/2023] [Indexed: 03/30/2023] Open
Abstract
In this work, we described the formation of polymeric networks with potential antimicrobial character based on an acrylate oligomer, poly(mannitol sebacate) (PMS), and an enzymatically synthesized methacrylic monomer with thiazole groups (MTA). Networks with different content of MTA were prepared, and further physico-chemically characterized by microhardness, water contact angle measurements, and differential scanning calorimetry. Monomer incorporation into the networks and subsequent quaternization to provide thiazolium moieties affected the mechanical behavior and the surface wettability of the networks. Moreover, the introduction of permanent cationic charges in the network surface could give antimicrobial activity to them. Therefore, the antibacterial behavior and the hemotoxicity were analyzed against Gram-positive and Gram-negative bacteria and red blood cells, respectively.
Collapse
Affiliation(s)
- Víctor Hevilla
- Instituto de Ciencia y Tecnología de Polímeros (ICTP-CSIC), C/Juan de la Cierva, 3, 28006 Madrid, Spain
- Interdisciplinary Platform for "Sustainable Plastics towards a Circular Economy" (SUSPLAST-CSIC), 28006 Madrid, Spain
| | - Águeda Sonseca
- Instituto de Tecnología de Materiales, Universitat Politècnica de València, Camino de Vera, s/n, 46022 Valencia, Spain
| | - Coro Echeverría
- Instituto de Ciencia y Tecnología de Polímeros (ICTP-CSIC), C/Juan de la Cierva, 3, 28006 Madrid, Spain
- Interdisciplinary Platform for "Sustainable Plastics towards a Circular Economy" (SUSPLAST-CSIC), 28006 Madrid, Spain
| | - Alexandra Muñoz-Bonilla
- Instituto de Ciencia y Tecnología de Polímeros (ICTP-CSIC), C/Juan de la Cierva, 3, 28006 Madrid, Spain
- Interdisciplinary Platform for "Sustainable Plastics towards a Circular Economy" (SUSPLAST-CSIC), 28006 Madrid, Spain
| | - Marta Fernández-García
- Instituto de Ciencia y Tecnología de Polímeros (ICTP-CSIC), C/Juan de la Cierva, 3, 28006 Madrid, Spain
- Interdisciplinary Platform for "Sustainable Plastics towards a Circular Economy" (SUSPLAST-CSIC), 28006 Madrid, Spain
| |
Collapse
|
4
|
Zhang C, Liao E, Li C, Zhang Y, Chen Y, Lu A, Liu Y, Geng C. 3D Printed Silicones with Shape Morphing and Low-Temperature Ultraelasticity. ACS APPLIED MATERIALS & INTERFACES 2023; 15:4549-4558. [PMID: 36642888 DOI: 10.1021/acsami.2c20392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
3D printed silicones have demonstrated great potential in diverse areas by combining the advantageous physiochemical properties of silicones with the unparalleled design freedom of additive manufacturing. However, their low-temperature performance, which is of particular importance for polar and space applications, has not been addressed. Herein, a 3D printed silicone foam with unprecedented low-temperature elasticity is presented, which is featured with extraordinary fatigue resistance, excellent shape recovery, and energy-absorbing capability down to a low temperature of -60 °C after extreme compression (an intensive load of over 66000 times its own weight). The foam is achieved by direct writing of a phenyl silicone-based pseudoplastic ink embedded with sodium chloride as sacrificial template. During the water immersion process to create pores in the printed filaments, a unique osmotic pressure-driven shape morphing strategy is also reported, which offers an attractive alternative to traditional 4D printed hydrogels in virtue of the favorable mechanical robustness of the silicone material. The underlying mechanisms for shape morphing and low-temperature elasticity are discussed in detail.
Collapse
Affiliation(s)
- Chenyang Zhang
- Institute of Chemical Materials, China Academy of Engineering Physics (CAEP), Mianyang 621900, China
| | - Enze Liao
- Institute of Chemical Materials, China Academy of Engineering Physics (CAEP), Mianyang 621900, China
| | - Changlin Li
- Institute of Chemical Materials, China Academy of Engineering Physics (CAEP), Mianyang 621900, China
| | - Yaling Zhang
- Institute of Chemical Materials, China Academy of Engineering Physics (CAEP), Mianyang 621900, China
| | | | - Ai Lu
- Institute of Chemical Materials, China Academy of Engineering Physics (CAEP), Mianyang 621900, China
| | | | - Chengzhen Geng
- Institute of Chemical Materials, China Academy of Engineering Physics (CAEP), Mianyang 621900, China
| |
Collapse
|
5
|
Saadi MASR, Maguire A, Pottackal NT, Thakur MSH, Ikram MM, Hart AJ, Ajayan PM, Rahman MM. Direct Ink Writing: A 3D Printing Technology for Diverse Materials. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2108855. [PMID: 35246886 DOI: 10.1002/adma.202108855] [Citation(s) in RCA: 226] [Impact Index Per Article: 75.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Revised: 02/23/2022] [Indexed: 06/14/2023]
Abstract
Additive manufacturing (AM) has gained significant attention due to its ability to drive technological development as a sustainable, flexible, and customizable manufacturing scheme. Among the various AM techniques, direct ink writing (DIW) has emerged as the most versatile 3D printing technique for the broadest range of materials. DIW allows printing of practically any material, as long as the precursor ink can be engineered to demonstrate appropriate rheological behavior. This technique acts as a unique pathway to introduce design freedom, multifunctionality, and stability simultaneously into its printed structures. Here, a comprehensive review of DIW of complex 3D structures from various materials, including polymers, ceramics, glass, cement, graphene, metals, and their combinations through multimaterial printing is presented. The review begins with an overview of the fundamentals of ink rheology, followed by an in-depth discussion of the various methods to tailor the ink for DIW of different classes of materials. Then, the diverse applications of DIW ranging from electronics to food to biomedical industries are discussed. Finally, the current challenges and limitations of this technique are highlighted, followed by its prospects as a guideline toward possible futuristic innovations.
Collapse
Affiliation(s)
- M A S R Saadi
- Department of Materials Science and NanoEngineering, Rice University, Houston, TX, 77005, USA
| | - Alianna Maguire
- Department of Materials Science and NanoEngineering, Rice University, Houston, TX, 77005, USA
| | - Neethu T Pottackal
- Department of Materials Science and NanoEngineering, Rice University, Houston, TX, 77005, USA
| | | | - Maruf Md Ikram
- Department of Mechanical Engineering, Bangladesh University of Engineering and Technology, Dhaka, 1000, Bangladesh
| | - A John Hart
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Pulickel M Ajayan
- Department of Materials Science and NanoEngineering, Rice University, Houston, TX, 77005, USA
| | - Muhammad M Rahman
- Department of Materials Science and NanoEngineering, Rice University, Houston, TX, 77005, USA
| |
Collapse
|
6
|
Xu K, Li D, Shang E, Liu Y. A Heating-Assisted Direct Ink Writing Method for Preparation of PDMS Cellular Structure with High Manufacturing Fidelity. Polymers (Basel) 2022; 14:polym14071323. [PMID: 35406197 PMCID: PMC9002618 DOI: 10.3390/polym14071323] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 03/17/2022] [Accepted: 03/21/2022] [Indexed: 01/27/2023] Open
Abstract
In response to the fact that most of the current research on silicone 3D printing suffers from structure collapse and dimensional mismatch, this paper proposes a heating-assisted direct writing printing method for commercial silicone rubber materials for preparing silicone foam with enhanced fidelity. In the experimental processes, the effects of substrate temperature, printing pressure, and printing speed on the filament width were investigated using a controlled variable method. The results showed the following: (1) the diameter of silicone rubber filaments was positively correlated with the printing pressure and substrate temperature, but negatively correlated with the printing speed; (2) the filament collapse of the large filament spaced foams was significantly improved by the addition of the thermal field, which, in turn, improved the mechanical properties and manufacturing stability of the silicon foams. The heating-assisted direct writing process in this paper can facilitate the development of the field of microelectronics and the direct printing of biomaterials.
Collapse
Affiliation(s)
- Kang Xu
- School of Mechanical Engineering, Jiangnan University, Wuxi 214122, China; (K.X.); (D.L.); (E.S.)
- Jiangsu Key Lab of Advanced Food Manufacturing Equipment and Technology, Jiangnan University, Wuxi 214122, China
| | - Dongya Li
- School of Mechanical Engineering, Jiangnan University, Wuxi 214122, China; (K.X.); (D.L.); (E.S.)
- Jiangsu Key Lab of Advanced Food Manufacturing Equipment and Technology, Jiangnan University, Wuxi 214122, China
| | - Erwei Shang
- School of Mechanical Engineering, Jiangnan University, Wuxi 214122, China; (K.X.); (D.L.); (E.S.)
- Jiangsu Key Lab of Advanced Food Manufacturing Equipment and Technology, Jiangnan University, Wuxi 214122, China
| | - Yu Liu
- School of Mechanical Engineering, Jiangnan University, Wuxi 214122, China; (K.X.); (D.L.); (E.S.)
- Jiangsu Key Lab of Advanced Food Manufacturing Equipment and Technology, Jiangnan University, Wuxi 214122, China
- Correspondence:
| |
Collapse
|
7
|
Suriboot J, Marmo AC, Ngo BKD, Nigam A, Ortiz-Acosta D, Tai BL, Grunlan MA. Amphiphilic, thixotropic additives for extrusion-based 3D printing of silica-reinforced silicone. SOFT MATTER 2021; 17:4133-4142. [PMID: 33735370 DOI: 10.1039/d1sm00288k] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
The ability to utilize extrusion-based, direct ink write (DIW) 3D printing to create silica-reinforced silicones with complex structures could expand their utility in industrial and biomedical applications. Sylgard 184, a common Pt-cure silicone, lacks the thixotropic behavior necessary for effective printing and its hydrophobicity renders cured structures susceptible to biofouling. Herein, we evaluated the efficacy of various PEO-silane amphiphiles (PEO-SAs) as thixotropic and surface modifying additives in Sylgard 184. Eight amphiphilic PEO-SAs of varying architecture (e.g. linear, star, and graft), crosslinkability, and PEO content were evaluated. Modified formulations were also prepared with additional amounts of silica filler, both hexamethyldisilazane (HMDS)-treated and dimethyldichlorosilane (DiMeDi)-treated types. Numerous PEO-SA modified silicone formulations demonstrated effective water-driven surface hydrophilicity that was generally diminished with the addition of HMDS-treated silica filler. While increased yield stress was observed for PEO-SA modified silicones with added HMDS-treated filler, none achieved the initial target for 3D printing (>1000 Pa). Only the formulations containing the DiMeDi-treated filler (17.3 wt%) were able to surpass this value. These formulations were then tested for their thixotropic properties and all surpassed the targets for recovered storage modulus (G') (>1000 Pa) and loss factor (<0.8). In particular, the triblock linear PEO-SA produced exceptionally high recovered G', low loss factor, and substantial water-driven restructuring to form a hydrophilic surface. Combined, these results demonstrate the potential of silicones modified with PEO-SA surface-modifying additives (SMAs) for extrusion-based, DIW 3D printing applications.
Collapse
Affiliation(s)
- Jakkrit Suriboot
- Department of Biomedical Engineering, Texas A&M University, College Station, TX 77843, USA.
| | - Alec C Marmo
- Department of Materials Science and Engineering, Texas A&M University, College Station, TX 77843, USA
| | - Bryan Khai D Ngo
- Department of Biomedical Engineering, Texas A&M University, College Station, TX 77843, USA.
| | - Aman Nigam
- Department of Mechanical Engineering, Texas A&M University, College Station, TX 77843, USA
| | | | - Bruce L Tai
- Department of Mechanical Engineering, Texas A&M University, College Station, TX 77843, USA
| | - Melissa A Grunlan
- Department of Biomedical Engineering, Texas A&M University, College Station, TX 77843, USA. and Department of Materials Science and Engineering, Texas A&M University, College Station, TX 77843, USA and Department of Chemistry, Texas A&M University, College Station, TX 77843, USA
| |
Collapse
|
8
|
Wan X, Luo L, Liu Y, Leng J. Direct Ink Writing Based 4D Printing of Materials and Their Applications. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2020; 7:2001000. [PMID: 32832355 PMCID: PMC7435246 DOI: 10.1002/advs.202001000] [Citation(s) in RCA: 67] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Revised: 05/30/2020] [Indexed: 05/19/2023]
Abstract
4D printing has attracted academic interest in the recent years because it endows static printed structures with dynamic properties with the change of time. The shapes, functionalities, or properties of the 4D printed objects could alter under various stimuli such as heat, light, electric, and magnetic field. Briefly, 4D printing is the development of 3D printing with the fourth dimension of time. Among the fabrication techniques that have been employed for 4D printing, the direct ink writing technique shows superiority due to its open source for various types of materials. Herein, the state-of-the-art achievements about the topic of 4D printing through direct ink writing are summarized. The types of materials, printing strategies, actuated methods, and their potential applications are discussed in detail. To date, most efforts have been devoted to shape-shifting materials, including shape memory polymers, hydrogels, and liquid crystal elastomers, showing great prospects in areas ranging from the biomedical field to robotics. Finally, the current challenges and outlook toward 4D printing based on direct ink writing are also pointed out to leave open a significant space for future innovation.
Collapse
Affiliation(s)
- Xue Wan
- Center for Composite Materials and StructuresHarbin Institute of TechnologyHarbin150080P. R. China
| | - Lan Luo
- Center for Composite Materials and StructuresHarbin Institute of TechnologyHarbin150080P. R. China
| | - Yanju Liu
- Department of Astronautical Science and MechanicsHarbin Institute of TechnologyHarbin150001P. R. China
| | - Jinsong Leng
- Center for Composite Materials and StructuresHarbin Institute of TechnologyHarbin150080P. R. China
| |
Collapse
|
9
|
Zhang F, Xia Y, Liu Y, Leng J. Nano/microstructures of shape memory polymers: from materials to applications. NANOSCALE HORIZONS 2020; 5:1155-1173. [PMID: 32567643 DOI: 10.1039/d0nh00246a] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Shape memory polymers (SMPs) are macromolecules in which linear chains and crosslinking points play a key role in providing a shape memory effect. As smart polymers, SMPs have the ability to change shape, stiffness, size, and structure when exposed to external stimuli, leading to potential uses for SMPs throughout our daily lives in a diverse range of areas including the aerospace and automotive industries, robotics, biomedical engineering, smart textiles, and tactile devices. SMPs can be fabricated in many forms and sizes from the nanoscale to the macroscale, including nanofibers, nanoparticles, thin films, microfoams, and bulk devices. The introduction of nanostructure into SMPs can result in enhanced mechanical properties, unique structural color, specific surface area, and multiple functions. It is necessary to enhance the current understanding of the various nano/microstructures of SMPs and their fabrication, and to find suitable approaches for constructing SMP-based nano/microstructures for different applications. In this review, we summarize the current state of different SMP nano/microstructures, fabrication techniques, and applications, and give suggestions for their future development.
Collapse
Affiliation(s)
- Fenghua Zhang
- National Key Laboratory of Science and Technology on Advanced Composites in Special Enviroments, Harbin Institute of Technology (HIT), Harbin 150080, P. R. China.
| | | | | | | |
Collapse
|
10
|
Narupai B, Nelson A. 100th Anniversary of Macromolecular Science Viewpoint: Macromolecular Materials for Additive Manufacturing. ACS Macro Lett 2020; 9:627-638. [PMID: 35648567 DOI: 10.1021/acsmacrolett.0c00200] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Additive manufacturing (AM) has drawn tremendous attention as a versatile platform for the on-demand fabrication of objects with excellent spatial control of chemical compositions and complex architectures. The development of materials that are specifically designed for AM is highly desirable for a variety of applications ranging from personal healthcare, tissue engineering, biomedical devices, self-folding origami structures, and soft robotics. Polymeric macromolecules have received increasing attention due to a wide variety of materials, the versatility for novel chemistries, and the ability to tune chemical composition and architecture. This Viewpoint highlights the development of polymeric materials for direct-ink writing and vat photopolymerization for 3D printing applications. Recent chemical innovations and polymer architectures are overviewed, which also includes recent developments in responsive and adaptive objects from AM. Polymers for biological interface and sustainability in AM are also discussed.
Collapse
Affiliation(s)
- Benjaporn Narupai
- The Department of Chemistry, University of Washington, Seattle, Washington 98195, United States
| | - Alshakim Nelson
- The Department of Chemistry, University of Washington, Seattle, Washington 98195, United States
| |
Collapse
|
11
|
Weems AC, Pérez-Madrigal MM, Arno MC, Dove AP. 3D Printing for the Clinic: Examining Contemporary Polymeric Biomaterials and Their Clinical Utility. Biomacromolecules 2020; 21:1037-1059. [PMID: 32058702 DOI: 10.1021/acs.biomac.9b01539] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The advent of additive manufacturing offered the potential to revolutionize clinical medicine, particularly with patient-specific implants across a range of tissue types. However, to date, there are very few examples of polymers being used for additive processes in clinical settings. The state of the art with regards to 3D printable polymeric materials being exploited to produce novel clinically relevant implants is discussed here. We focus on the recent advances in the development of implantable, polymeric medical devices and tissue scaffolds without diverging extensively into bioprinting. By introducing the major 3D printing techniques along with current advancements in biomaterials, we hope to provide insight into how these fields may continue to advance while simultaneously reviewing the ongoing work in the field.
Collapse
Affiliation(s)
- Andrew C Weems
- School of Chemistry, University of Birmingham, Birmingham B15 2TT, U.K
| | | | - Maria C Arno
- School of Chemistry, University of Birmingham, Birmingham B15 2TT, U.K
| | - Andrew P Dove
- School of Chemistry, University of Birmingham, Birmingham B15 2TT, U.K
| |
Collapse
|
12
|
Ring-opening polymerization of octamethylcyclotetrasiloxane using 3d metal trifluoroacetate complexes. MENDELEEV COMMUNICATIONS 2020. [DOI: 10.1016/j.mencom.2020.01.014] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
13
|
Zhou LY, Gao Q, Fu JZ, Chen QY, Zhu JP, Sun Y, He Y. Multimaterial 3D Printing of Highly Stretchable Silicone Elastomers. ACS APPLIED MATERIALS & INTERFACES 2019; 11:23573-23583. [PMID: 31184459 DOI: 10.1021/acsami.9b04873] [Citation(s) in RCA: 72] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
3D printing of silicone elastomers with the direct ink writing (DIW) process has demonstrated great potential in areas as diverse as flexible electronics, medical devices, and soft robotics. However, most of current silicones are not printable because of their low viscosity and long curing time. The lack of systematic research on materials, devices, and processes during printing makes it a huge challenge to apply the DIW process more deeply and widely. In this report, aiming at the dilemmas in materials, devices, and processes, we proposed a comprehensive guide for printing highly stretchable silicone. Specifically, to improve the printability of silicone elastomers, nanosilica was added as a rheology modifier without sacrificing any stretching ability. To effectively control print speed and accuracy, a theoretical model was built and verified. With this strategy, silicone elastomers with different mechanical properties can all be printed and can realize infinite time and high speed printing (>25 mm/s) while maintaining accuracy. Here, super-stretchable silicone that can be stretched to 2000% was printed for the first time, and complex structures can be printed with high quality. For further demonstration, prosthetic nose, data glove capable of detecting fingers' movement, and artificial muscle that can lift objects were printed directly. We believe that this work could provide a guide for further work using the DIW process to print soft matters in a wide range of application scenarios.
Collapse
Affiliation(s)
| | | | | | | | - Jia-Pei Zhu
- State Key Laboratory of Advanced Design and Manufacturing for Vehicle Body , Changsha 410082 , China
| | | | - Yong He
- Key Laboratory of Materials Processing and Mold, Ministry of Education , Zhengzhou University , Zhengzhou 450002 , China
| |
Collapse
|
14
|
Okoshi M. Fabrication of Superhydrophobic Silicone Rubber with Periodic Micro/Nano-Suction Cup Structure by ArF Excimer Laser-Induced Photodissociation. NANOMATERIALS (BASEL, SWITZERLAND) 2019; 9:E870. [PMID: 31181677 PMCID: PMC6630368 DOI: 10.3390/nano9060870] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Revised: 05/29/2019] [Accepted: 05/31/2019] [Indexed: 11/16/2022]
Abstract
A 193-nm ArF excimer laser was used to induce the photodissociation of Si-O bonds of silicone rubber in order to fabricate a periodic micro/nano-suction cup silicone structure, approximately 1 μm in diameter and 2 μm in height at regular intervals of 2.5 μm. The laser was focused on Al-coated silicone rubber by each silica glass microsphere 2.5 μm in diameter, which covered the entire surface of the silicone rubber. The silicone rubber underneath each microsphere photochemically swelled after laser-ablating the coated Al to limit the diameter of the swelling. Simultaneously, the coated Al was able to adjust the focal point to the surface of the silicone rubber to form a hole approximately 500 nm in diameter, centered at the swollen silicone. The dependences of the thickness of the coated-Al and the laser pulse number are discussed, based on the observations of a scanning electron microscope (SEM) and an atomic force microscope (AFM). The superhydrophobic property of the fabricated micro/nano-suction cup structure was successfully found.
Collapse
Affiliation(s)
- Masayuki Okoshi
- Department of Electrical and Electronic Engineering, National Defense Academy, Yokosuka, Kanagawa 239-8686, Japan.
| |
Collapse
|
15
|
Kelly BE, Bhattacharya I, Heidari H, Shusteff M, Spadaccini CM, Taylor HK. Volumetric additive manufacturing via tomographic reconstruction. Science 2019; 363:1075-1079. [DOI: 10.1126/science.aau7114] [Citation(s) in RCA: 351] [Impact Index Per Article: 58.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2018] [Revised: 12/05/2018] [Accepted: 01/18/2019] [Indexed: 12/26/2022]
Abstract
Additive manufacturing promises enormous geometrical freedom and the potential to combine materials for complex functions. The speed, geometry, and surface quality limitations of additive processes are linked to their reliance on material layering. We demonstrated concurrent printing of all points within a three-dimensional object by illuminating a rotating volume of photosensitive material with a dynamically evolving light pattern. We printed features as small as 0.3 millimeters in engineering acrylate polymers and printed soft structures with exceptionally smooth surfaces into a gelatin methacrylate hydrogel. Our process enables us to construct components that encase other preexisting solid objects, allowing for multimaterial fabrication. We developed models to describe speed and spatial resolution capabilities and demonstrated printing times of 30 to 120 seconds for diverse centimeter-scale objects.
Collapse
|
16
|
Shiblee MNI, Ahmed K, Khosla A, Kawakami M, Furukawa H. 3D printing of shape memory hydrogels with tunable mechanical properties. SOFT MATTER 2018; 14:7809-7817. [PMID: 30074040 DOI: 10.1039/c8sm01156g] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Utilization of soft material like hydrogels for task-specific applications such as in soft robotics requires freedom in the manufacturing process and designability. Here, we have developed highly robust thermoresponsive poly(dimethyl acrylamide-co-stearyl acrylate and/or lauryl acrylate) (PDMAAm-co-SA and/or LA)-based shape memory gels (SMGs) using a customized optical 3D gel printer. This process enabled rapid and moldless fabrication of SMGs with a variety of shapes and sizes. By varying the compositions of the constituent monomers, a wide variety of SMGs with tunable mechanical, thermal, optical and swelling properties have been obtained. Printed SMGs with excellent fixity and recovery ratios have exhibited a wide range of values of Young's modulus (0.04-17.35 MPa) and strain (612-2363%) at room temperature when the acrylate co-monomer (SA and LA) content was varied and the value of strain has been found to be enhanced at elevated temperatures. Thermogravimetric analysis (TGA) of the SMGs shows one step peak degradation (407-417 °C) regardless of composition after an initial mass loss due to water evaporation. Dynamic mechanical analysis (DMA) and differential scanning calorimetry (DSC) revealed variable transition temperatures (29-49.5 °C) depending on the SA and LA content. SMGs with all of the composition ratios possess high transparency with variable swelling degrees in water and different organic solvents and exhibit refractive index values in the range of intraocular lenses, making them suitable for applications in the optical field. These unique properties of 3D printed SMGs with free formability and tunable properties are expected to generate rapid demand in a variety of sectors in biomedicine, robotics and sensing applications.
Collapse
Affiliation(s)
- Md Nahin Islam Shiblee
- Department of Mechanical Systems Engineering, Graduate School of Science and Engineering, Yamagata University, Jonan 4-3-16, Yonezawa, Yamagata 992-8510, Japan.
| | | | | | | | | |
Collapse
|
17
|
Kuang X, Chen K, Dunn CK, Wu J, Li VCF, Qi HJ. 3D Printing of Highly Stretchable, Shape-Memory, and Self-Healing Elastomer toward Novel 4D Printing. ACS APPLIED MATERIALS & INTERFACES 2018; 10:7381-7388. [PMID: 29400445 DOI: 10.1021/acsami.7b18265] [Citation(s) in RCA: 188] [Impact Index Per Article: 26.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
The three-dimensional (3D) printing of flexible and stretchable materials with smart functions such as shape memory (SM) and self-healing (SH) is highly desirable for the development of future 4D printing technology for myriad applications, such as soft actuators, deployable smart medical devices, and flexible electronics. Here, we report a novel ink that can be used for the 3D printing of highly stretchable, SM, and SH elastomer via UV-light-assisted direct-ink-write printing. An ink containing urethane diacrylate and a linear semicrystalline polymer is developed for the 3D printing of a semi-interpenetrating polymer network elastomer that can be stretched by up to 600%. The 3D-printed complex structures show interesting functional properties, such as high strain SM and SM -assisted SH capability. We demonstrate that such a 3D-printed SM elastomer has the potential application for biomedical devices, such as vascular repair devices. This research paves a new way for the further development of novel 4D printing, soft robotics, and biomedical devices.
Collapse
Affiliation(s)
- Xiao Kuang
- The George W. Woodruff School of Mechanical Engineering, Renewable Bioproduct Institute, Georgia Institute of Technology , Atlanta, Georgia 30332, United States
| | - Kaijuan Chen
- The George W. Woodruff School of Mechanical Engineering, Renewable Bioproduct Institute, Georgia Institute of Technology , Atlanta, Georgia 30332, United States
| | - Conner K Dunn
- The George W. Woodruff School of Mechanical Engineering, Renewable Bioproduct Institute, Georgia Institute of Technology , Atlanta, Georgia 30332, United States
| | - Jiangtao Wu
- The George W. Woodruff School of Mechanical Engineering, Renewable Bioproduct Institute, Georgia Institute of Technology , Atlanta, Georgia 30332, United States
| | - Vincent C F Li
- The George W. Woodruff School of Mechanical Engineering, Renewable Bioproduct Institute, Georgia Institute of Technology , Atlanta, Georgia 30332, United States
| | - H Jerry Qi
- The George W. Woodruff School of Mechanical Engineering, Renewable Bioproduct Institute, Georgia Institute of Technology , Atlanta, Georgia 30332, United States
| |
Collapse
|
18
|
Durban MM, Lenhardt JM, Wu AS, Small W, Bryson TM, Perez‐Perez L, Nguyen DT, Gammon S, Smay JE, Duoss EB, Lewicki JP, Wilson TS. Custom 3D Printable Silicones with Tunable Stiffness. Macromol Rapid Commun 2017; 39. [DOI: 10.1002/marc.201700563] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2017] [Revised: 10/04/2017] [Indexed: 11/11/2022]
Affiliation(s)
| | | | - Amanda S. Wu
- Lawrence Livermore National Laboratory Livermore CA 94550 USA
| | - Ward Small
- Lawrence Livermore National Laboratory Livermore CA 94550 USA
| | | | | | - Du T. Nguyen
- Lawrence Livermore National Laboratory Livermore CA 94550 USA
| | - Stuart Gammon
- Lawrence Livermore National Laboratory Livermore CA 94550 USA
| | - James E. Smay
- School of Chemical Engineering Oklahoma State University Stillwater OK 74078 USA
| | - Eric B. Duoss
- Lawrence Livermore National Laboratory Livermore CA 94550 USA
| | | | | |
Collapse
|