1
|
Zheng M, Wen H, Meng Z, Guo W, Wang K, Yu M, Li K, Zhang Y, Liu K, Cai L, Zhu B, Sheng W. Biological evaluation of a new highly sensitive and selective fluorescent probe for hypochlorous acid and its imaging application in cell and zebrafish. Bioorg Chem 2025; 158:108358. [PMID: 40073596 DOI: 10.1016/j.bioorg.2025.108358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2025] [Revised: 03/01/2025] [Accepted: 03/06/2025] [Indexed: 03/14/2025]
Abstract
Hypochlorous acid is one of the most widely distributed reactive oxygen species in vivo. It is usually used as a signal molecule to participate in various life activities such as immunity and metabolism, and plays a notable role in maintaining homeostasis. When hypochlorous acid level is abnormal in the body, it will lead to a variety of diseases, such as Parkinson's disease, Alzheimer's disease, atherosclerosis and cancer. Therefore, it is necessary to develop a bio-friendly fluorescent probe with fast sensitivity and specific accuracy. In this study, the innovative probe PRS owns good optical properties, sensitivity and selectivity, and the response mechanism that the generation of new bond enhanced the fluorescence intensity is studied. Biocompatibility of probe is systematically and innovatively evaluated by using cells and zebrafish models. Note that the biocompatibility valuation of probe results from cytotoxicity test, zebrafish behavioral test, hepatotoxicity test, cardiotoxicity test, nephrotoxicity test, blood vessel toxicity test, immunotoxicity test and neurotoxicity test, and experimental indicators like swimming duration, swimming distance, swimming speed, pericardial rub, fractional shortening, stroke volume, heart rate, SV-BA, shortening rate of the ventricular short axis, liver area, liver fluorescence intensity, total length of intersegmental vessels, number of vessels, and average vessel length show that the probe has good biocompatibility. Moreover, the detection performance of the probe shows that the probe can target hypochlorous acid in cell and zebrafish models. The probe is proved to be much essential for the monitoring of hypochlorous acid in vivo. Therefore, it has been proven that the meaningful detection of probe PRS for HOCl is promising in the living organism. Moreover, our innovative biocompatibility testing can be used to evaluate the biosafety of fluorescent probe as well.
Collapse
Affiliation(s)
- Min Zheng
- Biology Institute, Bioengineering Department, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250103, China
| | - Huayan Wen
- Biology Institute, Bioengineering Department, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250103, China
| | - Zhengxiang Meng
- Biology Institute, Bioengineering Department, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250103, China
| | - Wenli Guo
- Biology Institute, Bioengineering Department, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250103, China
| | - Kun Wang
- School of Water Conservancy and Environment, University of Jinan, Jinan 250022, China
| | - Miaohui Yu
- Biology Institute, Bioengineering Department, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250103, China
| | - Ke Li
- Biology Institute, Bioengineering Department, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250103, China
| | - Yun Zhang
- Biology Institute, Bioengineering Department, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250103, China
| | - Kechun Liu
- Biology Institute, Bioengineering Department, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250103, China
| | - Lei Cai
- Biology Institute, Bioengineering Department, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250103, China
| | - Baocun Zhu
- School of Water Conservancy and Environment, University of Jinan, Jinan 250022, China
| | - Wenlong Sheng
- Biology Institute, Bioengineering Department, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250103, China.
| |
Collapse
|
2
|
Chen AQ, Xue M, Qiu CZ, Zhang HY, Zhou R, Zhang L, Yin ZJ, Ren DL. Circadian clock1a coordinates neutrophil recruitment via nfe212a/duox-reactive oxygen species pathway in zebrafish. Cell Rep 2023; 42:113179. [PMID: 37756160 DOI: 10.1016/j.celrep.2023.113179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 07/26/2023] [Accepted: 09/12/2023] [Indexed: 09/29/2023] Open
Abstract
Neutrophil recruitment to inflammatory sites appears to be an evolutionarily conserved strategy to fight against exogenous insults. However, the rhythmic characteristics and underlying mechanisms of neutrophil migration on a 24-h timescale are largely unknown. Using the advantage of in vivo imaging of zebrafish, this study explored how the circadian gene clock1a dynamically regulates the rhythmic recruitment of neutrophils to inflammatory challenges. We generated a clock1a mutant and found that neutrophil migration is significantly increased in caudal fin injury and lipopolysaccharide (LPS) injection. Transcriptome sequencing, chromatin immunoprecipitation (ChIP), and dual-luciferase reporting experiments suggest that the clock1a gene regulates neutrophil migration by coordinating the rhythmic expression of nfe212a and duox genes to control the reactive oxygen species (ROS) level. This study ultimately provides a visual model to expand the understanding of the rhythmic mechanisms of neutrophil recruitment on a circadian timescale in a diurnal organism from the perspective of ROS.
Collapse
Affiliation(s)
- An-Qi Chen
- College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, China
| | - Min Xue
- School of Life Science, Anhui Medical University, Hefei 230032, China
| | - Cheng-Zeng Qiu
- College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, China
| | - Hao-Yi Zhang
- College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, China
| | - Ren Zhou
- College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, China
| | - Ling Zhang
- College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, China
| | - Zong-Jun Yin
- College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, China.
| | - Da-Long Ren
- College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, China.
| |
Collapse
|
3
|
Immunity, Infection, and the Zebrafish Clock. Infect Immun 2022; 90:e0058821. [PMID: 35972269 PMCID: PMC9476956 DOI: 10.1128/iai.00588-21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Circadian clocks are universally used to coordinate biological processes with the Earth's 24-h solar day and are critical for the health and environmental success of an organism. Circadian rhythms in eukaryotes are driven by a cell-intrinsic transcription-translation feedback loop that controls daily oscillations in gene expression which regulate diverse physiological functions. Substantial evidence now exists demonstrating that immune activation and inflammatory responses during infection are under circadian control, however, the cellular mechanisms responsible for this are not well understood. The zebrafish (Danio rerio) is a powerful model organism to study vertebrate circadian biology and immune function. Zebrafish contain homologs of mammalian circadian clock genes which, to our current knowledge, function similarly to impart timekeeping ability. Consistent with studies in mammalian models, several studies in fish have now demonstrated a bidirectional relationship between the circadian clock and inflammation: the circadian clock regulates immune activity, and inflammation can alter circadian rhythms. This review summarizes our current understanding of the molecular mechanisms of the zebrafish clock and the bi-directional relationship between the circadian clock and inflammation in fish.
Collapse
|
4
|
Takeuchi T, Hata T, Miyanishi H, Yuasa T, Setoguchi S, Takeda A, Morimoto N, Hikima JI, Sakai M, Kono T. Diel rhythm of the inflammatory cytokine il1b in the Japanese medaka (Oryzias latipes) regulated by core components of the circadian clock. FISH & SHELLFISH IMMUNOLOGY 2022; 127:238-246. [PMID: 35724845 DOI: 10.1016/j.fsi.2022.06.020] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 06/12/2022] [Accepted: 06/14/2022] [Indexed: 06/15/2023]
Abstract
In recent years, studies on circadian control in immunity have been actively conducted in mammals, but little is known about circadian rhythms in the field of fish immunology. In this study, we aimed to analyse the regulation of the diel oscillation of inflammatory cytokine interleukin-1β (il1b) gene expression by core components of the circadian clock in Japanese medaka (Oryzias latipes). The expression of il1b and clock genes (bmal1 and clock1) in medaka acclimated to a 12:12 light (L): dark (D) cycle showed diel rhythm. Additionally, higher expression of il1b was detected in medaka embryo cells (OLHdrR-e3) overexpressing bmal1 and clock1. A significant decrease in il1b expression was observed in OLHdrR-e3 cells after bmal1 knockdown using morpholino oligos. These changes may be mediated by transcriptional regulation via clock proteins, which target the E-box sequence in the cis-element of il1b as identified using luciferase reporter assays. Moreover, LPS stimulation and pathogenic bacterial infection at different zeitgeber time (ZT) under LD12:12 conditions affected the degree of il1b expression, which showed high and low responsiveness to both immuno-stimulations at ZT2 and ZT14, respectively. These results suggested that fish IL-1β exhibited diel oscillation regulated by clock proteins, and its responsiveness to immune-stimulation depends on the time of day.
Collapse
Affiliation(s)
- Tomoya Takeuchi
- Department of Biochemistry and Applied Biosciences, Faculty of Agriculture, University of Miyazaki, 1-1 Gakuen Kibanadai-nishi, Miyazaki, 889-2192, Japan
| | - Takahiko Hata
- Department of Biochemistry and Applied Biosciences, Faculty of Agriculture, University of Miyazaki, 1-1 Gakuen Kibanadai-nishi, Miyazaki, 889-2192, Japan
| | - Hiroshi Miyanishi
- Department of Marine Biology and Environmental Science, Faculty of Agriculture, University of Miyazaki, Miyazaki, Japan
| | - Takumi Yuasa
- Department of Biochemistry and Applied Biosciences, Faculty of Agriculture, University of Miyazaki, 1-1 Gakuen Kibanadai-nishi, Miyazaki, 889-2192, Japan
| | - Suzuka Setoguchi
- Department of Biochemistry and Applied Biosciences, Faculty of Agriculture, University of Miyazaki, 1-1 Gakuen Kibanadai-nishi, Miyazaki, 889-2192, Japan
| | - Ayaka Takeda
- Department of Biochemistry and Applied Biosciences, Faculty of Agriculture, University of Miyazaki, 1-1 Gakuen Kibanadai-nishi, Miyazaki, 889-2192, Japan
| | - Natsuki Morimoto
- Department of Biochemistry and Applied Biosciences, Faculty of Agriculture, University of Miyazaki, 1-1 Gakuen Kibanadai-nishi, Miyazaki, 889-2192, Japan
| | - Jun-Ichi Hikima
- Department of Biochemistry and Applied Biosciences, Faculty of Agriculture, University of Miyazaki, 1-1 Gakuen Kibanadai-nishi, Miyazaki, 889-2192, Japan
| | - Masahiro Sakai
- Department of Biochemistry and Applied Biosciences, Faculty of Agriculture, University of Miyazaki, 1-1 Gakuen Kibanadai-nishi, Miyazaki, 889-2192, Japan
| | - Tomoya Kono
- Department of Biochemistry and Applied Biosciences, Faculty of Agriculture, University of Miyazaki, 1-1 Gakuen Kibanadai-nishi, Miyazaki, 889-2192, Japan.
| |
Collapse
|
5
|
Wei ML, He SM, Chen AQ, Fan ZX, Liu W, Zhang L, Lv SJ, Qiu CZ, Liu HR, Hao MX, Yin ZJ, Ren DL. Fluoxetine modifies circadian rhythm by reducing melatonin content in zebrafish. Biomed Pharmacother 2022; 153:113268. [PMID: 35777221 DOI: 10.1016/j.biopha.2022.113268] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2022] [Revised: 05/22/2022] [Accepted: 06/06/2022] [Indexed: 12/13/2022] Open
Abstract
Fluoxetine (FLX), a selective serotonin reuptake inhibitor (SSRI), increases the serotonin levels in the brain to treat depression. Antidepressants have been demonstrated to modulate circadian rhythm, but the underlying mechanisms by which antidepressants regulate circadian rhythm require more research. This study aimed to investigate the role of FLX on circadian rhythm by analyzing the movement behavior and internal circadian oscillations in zebrafish. The results showed that the expression of clock genes clock1a and bmal1b was significantly down-regulated, and the amplitude reduction and phase shift were observed after FLX treatment. Furthermore, FLX exposure inhibited the expression of aanat2, which led to a decrease in nocturnal melatonin secretion. aanat2-/- larvae showed disrupted circadian rhythm. These findings may help reveal the effect of FLX exposure on the circadian rhythm and locomotor activity. It may provide theoretical data for the clinical application of FLX.
Collapse
Affiliation(s)
- Mei-Li Wei
- Anhui Province Key Laboratory of Local Livestock and Poultry Genetic Resource Conservation and Bio-breeding, College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, China; School of Life Science, Anhui Province Key Laboratory of Translational Cancer Research, Anhui Province Key Laboratory of Immunology in Chronic Diseases, Anhui Key Laboratory of Infection and Immunity, Bengbu Medical College, Bengbu, Anhui Province 233030, China
| | - Shi-Min He
- Anhui Province Key Laboratory of Local Livestock and Poultry Genetic Resource Conservation and Bio-breeding, College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, China
| | - An-Qi Chen
- Anhui Province Key Laboratory of Local Livestock and Poultry Genetic Resource Conservation and Bio-breeding, College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, China
| | - Zi-Xuan Fan
- Anhui Province Key Laboratory of Local Livestock and Poultry Genetic Resource Conservation and Bio-breeding, College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, China
| | - Wei Liu
- Anhui Province Key Laboratory of Local Livestock and Poultry Genetic Resource Conservation and Bio-breeding, College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, China
| | - Ling Zhang
- Anhui Province Key Laboratory of Local Livestock and Poultry Genetic Resource Conservation and Bio-breeding, College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, China
| | - Shi-Jie Lv
- Anhui Province Key Laboratory of Local Livestock and Poultry Genetic Resource Conservation and Bio-breeding, College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, China
| | - Cheng-Zeng Qiu
- Anhui Province Key Laboratory of Local Livestock and Poultry Genetic Resource Conservation and Bio-breeding, College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, China
| | - Hui-Ru Liu
- Anhui Province Key Laboratory of Local Livestock and Poultry Genetic Resource Conservation and Bio-breeding, College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, China
| | - Mu-Xian Hao
- Anhui Province Key Laboratory of Local Livestock and Poultry Genetic Resource Conservation and Bio-breeding, College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, China
| | - Zong-Jun Yin
- Anhui Province Key Laboratory of Local Livestock and Poultry Genetic Resource Conservation and Bio-breeding, College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, China.
| | - Da-Long Ren
- Anhui Province Key Laboratory of Local Livestock and Poultry Genetic Resource Conservation and Bio-breeding, College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, China.
| |
Collapse
|
6
|
Poole J, Kitchen GB. Circadian regulation of innate immunity in animals and humans and implications for human disease. Semin Immunopathol 2022; 44:183-192. [PMID: 35169890 PMCID: PMC8853148 DOI: 10.1007/s00281-022-00921-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Accepted: 02/03/2022] [Indexed: 01/19/2023]
Abstract
Circadian rhythms are 24-h oscillating variations in physiology generated by the core circadian clock. There is now a wide body of evidence showing circadian regulation of the immune system. Innate immune cells contain the molecular circadian clock which drives rhythmic responses, from the magnitude of the inflammatory response to the numbers of circulating immune cells varying throughout the day. This leads to rhythmic presentation of disease clinically, for example the classic presentation of nocturnal asthma or the sudden development of pulmonary oedema from acute myocardial infarction first thing in the morning.
Collapse
Affiliation(s)
- Joanna Poole
- Southmead Hospital, North Bristol Trust, Southmead Rd, Bristol, BS10 5NB, UK
| | - Gareth B Kitchen
- Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Sciences Centre, Manchester, M13 9PT, UK.
- Manchester University NHS Foundation Trust, Manchester Academic Health Science Centre, Manchester, M13 9WL, UK.
| |
Collapse
|
7
|
Pham L, Baiocchi L, Kennedy L, Sato K, Meadows V, Meng F, Huang CK, Kundu D, Zhou T, Chen L, Alpini G, Francis H. The interplay between mast cells, pineal gland, and circadian rhythm: Links between histamine, melatonin, and inflammatory mediators. J Pineal Res 2021; 70:e12699. [PMID: 33020940 PMCID: PMC9275476 DOI: 10.1111/jpi.12699] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Revised: 09/18/2020] [Accepted: 09/26/2020] [Indexed: 12/14/2022]
Abstract
Our daily rhythmicity is controlled by a circadian clock with a specific set of genes located in the suprachiasmatic nucleus in the hypothalamus. Mast cells (MCs) are major effector cells that play a protective role against pathogens and inflammation. MC distribution and activation are associated with the circadian rhythm via two major pathways, IgE/FcεRI- and IL-33/ST2-mediated signaling. Furthermore, there is a robust oscillation between clock genes and MC-specific genes. Melatonin is a hormone derived from the amino acid tryptophan and is produced primarily in the pineal gland near the center of the brain, and histamine is a biologically active amine synthesized from the decarboxylation of the amino acid histidine by the L-histidine decarboxylase enzyme. Melatonin and histamine are previously reported to modulate circadian rhythms by pathways incorporating various modulators in which the nuclear factor-binding near the κ light-chain gene in B cells, NF-κB, is the common key factor. NF-κB interacts with the core clock genes and disrupts the production of pro-inflammatory cytokine mediators such as IL-6, IL-13, and TNF-α. Currently, there has been no study evaluating the interdependence between melatonin and histamine with respect to circadian oscillations in MCs. Accumulating evidence suggests that restoring circadian rhythms in MCs by targeting melatonin and histamine via NF-κB may be promising therapeutic strategy for MC-mediated inflammatory diseases. This review summarizes recent findings for circadian-mediated MC functional roles and activation paradigms, as well as the therapeutic potentials of targeting circadian-mediated melatonin and histamine signaling in MC-dependent inflammatory diseases.
Collapse
Affiliation(s)
- Linh Pham
- Division of Gastroenterology and Hepatology, Department of Medicine, Indiana University School of Medicine, Indianapolis, IN, USA
- Department of Science and Mathematics, Texas A&M University – Central Texas, Killeen, TX, USA
| | | | - Lindsey Kennedy
- Division of Gastroenterology and Hepatology, Department of Medicine, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Keisaku Sato
- Division of Gastroenterology and Hepatology, Department of Medicine, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Vik Meadows
- Division of Gastroenterology and Hepatology, Department of Medicine, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Fanyin Meng
- Division of Gastroenterology and Hepatology, Department of Medicine, Indiana University School of Medicine, Indianapolis, IN, USA
- Department of Medicine, Richard L. Roudebush VA Medical Center, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Chiung-Kuei Huang
- Division of Gastroenterology and Hepatology, Department of Medicine, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Debjyoti Kundu
- Division of Gastroenterology and Hepatology, Department of Medicine, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Tianhao Zhou
- Division of Gastroenterology and Hepatology, Department of Medicine, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Lixian Chen
- Division of Gastroenterology and Hepatology, Department of Medicine, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Gianfranco Alpini
- Division of Gastroenterology and Hepatology, Department of Medicine, Indiana University School of Medicine, Indianapolis, IN, USA
- Department of Medicine, Richard L. Roudebush VA Medical Center, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Heather Francis
- Division of Gastroenterology and Hepatology, Department of Medicine, Indiana University School of Medicine, Indianapolis, IN, USA
- Department of Medicine, Richard L. Roudebush VA Medical Center, Indiana University School of Medicine, Indianapolis, IN, USA
| |
Collapse
|
8
|
Baekelandt S, Milla S, Cornet V, Flamion E, Ledoré Y, Redivo B, Antipine S, Mandiki SNM, Houndji A, El Kertaoui N, Kestemont P. Seasonal simulated photoperiods influence melatonin release and immune markers of pike perch Sander lucioperca. Sci Rep 2020; 10:2650. [PMID: 32060347 PMCID: PMC7021833 DOI: 10.1038/s41598-020-59568-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Accepted: 01/31/2020] [Indexed: 02/07/2023] Open
Abstract
Melatonin is considered as the time-keeping hormone acting on important physiological functions of teleosts. While the influence of melatonin on reproduction and development is well described, its potential role on immune functions has little been considered. In order to better define an immune modulation by the melatonin hormone, we hypothesized that natural variations of photoperiod and subsequent changes in melatonin release profile may act on immune status of pikeperch. Therefore, we investigated during 70 days the effects of two photoperiod regimes simulating the fall and spring in western Europe, on pikeperch physiological and immune responses. Samples were collected at 04:00 and 15:00 at days 1, 37 and 70. Growth, plasma melatonin levels, innate immune markers and expression of immune-relevant genes in head kidney tissue were assessed. While growth and stress level were not affected by the seasonal simulated photoperiods, nocturnal levels of plasma melatonin were photoperiod-dependent. Innate immune markers, including lysozyme, complement, peroxidase and phagocytic activities, were stimulated by the fall-simulated photoperiod and a significant correlation was made with plasma melatonin. In addition to bring the first evidence of changes in fish immunocompetence related to photoperiod, our results provide an additional indication supporting the immunomodulatory action of melatonin in teleosts.
Collapse
Affiliation(s)
- Sébastien Baekelandt
- Research Unit in Environmental and Evolutionary Biology (URBE), Institute of Life, Earth & Environment, University of Namur, Rue de Bruxelles 61, Namur, B-5000, Belgium.
| | - Sylvain Milla
- Animal and Functionality of Animal Products Research Unit (URAFPA), University of Lorraine, Boulevard des Aiguillettes, BP 236, 54506, Vandoeuvre-Les-Nancy, France
| | - Valérie Cornet
- Research Unit in Environmental and Evolutionary Biology (URBE), Institute of Life, Earth & Environment, University of Namur, Rue de Bruxelles 61, Namur, B-5000, Belgium
| | - Enora Flamion
- Research Unit in Environmental and Evolutionary Biology (URBE), Institute of Life, Earth & Environment, University of Namur, Rue de Bruxelles 61, Namur, B-5000, Belgium
| | - Yannick Ledoré
- Animal and Functionality of Animal Products Research Unit (URAFPA), University of Lorraine, Boulevard des Aiguillettes, BP 236, 54506, Vandoeuvre-Les-Nancy, France
| | - Baptiste Redivo
- Research Unit in Environmental and Evolutionary Biology (URBE), Institute of Life, Earth & Environment, University of Namur, Rue de Bruxelles 61, Namur, B-5000, Belgium
| | - Sascha Antipine
- Research Unit in Environmental and Evolutionary Biology (URBE), Institute of Life, Earth & Environment, University of Namur, Rue de Bruxelles 61, Namur, B-5000, Belgium
| | - Syaghalirwa N M Mandiki
- Research Unit in Environmental and Evolutionary Biology (URBE), Institute of Life, Earth & Environment, University of Namur, Rue de Bruxelles 61, Namur, B-5000, Belgium
| | - Alexis Houndji
- Research Unit in Environmental and Evolutionary Biology (URBE), Institute of Life, Earth & Environment, University of Namur, Rue de Bruxelles 61, Namur, B-5000, Belgium
| | - Najlae El Kertaoui
- Research Unit in Environmental and Evolutionary Biology (URBE), Institute of Life, Earth & Environment, University of Namur, Rue de Bruxelles 61, Namur, B-5000, Belgium
| | - Patrick Kestemont
- Research Unit in Environmental and Evolutionary Biology (URBE), Institute of Life, Earth & Environment, University of Namur, Rue de Bruxelles 61, Namur, B-5000, Belgium
| |
Collapse
|
9
|
Abstract
Humoral regulation by ligand/receptor interactions is a fundamental feature of vertebrate hematopoiesis. Zebrafish are an established vertebrate animal model of hematopoiesis, sharing with mammals conserved genetic, molecular and cell biological regulatory mechanisms. This comprehensive review considers zebrafish hematopoiesis from the perspective of the hematopoietic growth factors (HGFs), their receptors and their actions. Zebrafish possess multiple HGFs: CSF1 (M-CSF) and CSF3 (G-CSF), kit ligand (KL, SCF), erythropoietin (EPO), thrombopoietin (THPO/TPO), and the interleukins IL6, IL11, and IL34. Some ligands and/or receptor components have been duplicated by various mechanisms including the teleost whole genome duplication, adding complexity to the ligand/receptor interactions possible, but also providing examples of several different outcomes of ligand and receptor subfunctionalization or neofunctionalization. CSF2 (GM-CSF), IL3 and IL5 and their receptors are absent from zebrafish. Overall the humoral regulation of hematopoiesis in zebrafish displays considerable similarity with mammals, which can be applied in biological and disease modelling research.
Collapse
Affiliation(s)
- Vahid Pazhakh
- a Australian Regenerative Medicine Institute, Monash University , Clayton , Australia
| | - Graham J Lieschke
- a Australian Regenerative Medicine Institute, Monash University , Clayton , Australia
| |
Collapse
|
10
|
Gastón MS, Pereyra LC, Vaira M. Artificial light at night and captivity induces differential effects on leukocyte profile, body condition, and erythrocyte size of a diurnal toad. JOURNAL OF EXPERIMENTAL ZOOLOGY PART 2018; 331:93-102. [PMID: 30320969 DOI: 10.1002/jez.2240] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2018] [Revised: 09/11/2018] [Accepted: 09/19/2018] [Indexed: 01/27/2023]
Abstract
Light pollution or artificial lighting at night (ALAN) is an emerging threat to biodiversity that can disrupt physiological processes and behaviors. Because ALAN stressful effects are little studied in diurnal amphibian species, we investigated if chronic ALAN exposure affects the leukocyte profile, body condition, and blood cell sizes of a diurnal toad. We hand-captured male toads of Melanophryniscus rubriventris in Angosto de Jaire (Jujuy, Argentina). We prepared blood smears from three groups of toads: "field" (toads processed in the field immediately after capture), "natural light" (toads kept in the laboratory under captivity with natural photoperiod), and "constant light" (toads kept in the laboratory under captivity with constant photoperiod/ALAN). We significantly observed higher neutrophil proportions and neutrophils to lymphocytes ratio in toads under constant light treatment. In addition, we observed significantly better body condition and higher erythrocyte size in field toads compared with captive toads. In summary, ALAN can trigger a leukocyte response to stress in males of the diurnal toad M. rubriventris. In addition, captivity can affect the body condition and erythrocyte size of these toads.
Collapse
Affiliation(s)
- María S Gastón
- Instituto de Ecorregiones Andinas (INECOA), Universidad Nacional de Jujuy, CONICET, San Salvador de Jujuy, Argentina
| | - Laura C Pereyra
- Instituto de Ecorregiones Andinas (INECOA), Universidad Nacional de Jujuy, CONICET, San Salvador de Jujuy, Argentina
| | - Marcos Vaira
- Instituto de Ecorregiones Andinas (INECOA), Universidad Nacional de Jujuy, CONICET, San Salvador de Jujuy, Argentina
| |
Collapse
|
11
|
Ren DL, Zhang JL, Yang LQ, Wang XB, Wang ZY, Huang DF, Tian C, Hu B. Circadian genes period1b and period2 differentially regulate inflammatory responses in zebrafish. FISH & SHELLFISH IMMUNOLOGY 2018; 77:139-146. [PMID: 29605504 DOI: 10.1016/j.fsi.2018.03.048] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2017] [Revised: 03/27/2018] [Accepted: 03/28/2018] [Indexed: 06/08/2023]
Abstract
The circadian clock has been shown to regulate various immune processes in different animals. Our previous report demonstrated that the innate immune responses in zebrafish show significant rhythmicity that could be regulated by melatonin. Here, we used diurnal zebrafish to determine the role of circadian genes in the inflammatory responses. Our results indicate that circadian genes exhibit rhythmic oscillations in zebrafish leukocytes, and mutations of the clock genes period1b (per1b) and period2 (per2) considerably affect these oscillations. Using a wounded zebrafish inflammation model, we found that under constant dark conditions (DD), the expression of pro-inflammatory cytokines is significantly downregulated in per1b gene mutant zebrafish and significantly upregulated in the per2 gene mutant zebrafish. Furthermore, using real-time imaging technology, we found that the per1b gene markedly disturbs the rhythmic recruitment of neutrophils toward the injury, whereas the per2 gene does not show a significant effect. Taken together, our results reveal differential functions of the circadian genes per1b and per2 in the inflammatory responses, serving as evidence that circadian rhythms play a vital role in immune processes.
Collapse
Affiliation(s)
- Da-Long Ren
- Chinese Academy of Sciences Key Laboratory of Brain Function and Disease, School of Life Sciences, University of Science and Technology of China, No.96 Jinzhai Road, Hefei, Anhui Province, 230026, PR China.
| | - Jun-Long Zhang
- Chinese Academy of Sciences Key Laboratory of Brain Function and Disease, School of Life Sciences, University of Science and Technology of China, No.96 Jinzhai Road, Hefei, Anhui Province, 230026, PR China
| | - Lei-Qing Yang
- Chinese Academy of Sciences Key Laboratory of Brain Function and Disease, School of Life Sciences, University of Science and Technology of China, No.96 Jinzhai Road, Hefei, Anhui Province, 230026, PR China
| | - Xiao-Bo Wang
- Chinese Academy of Sciences Key Laboratory of Brain Function and Disease, School of Life Sciences, University of Science and Technology of China, No.96 Jinzhai Road, Hefei, Anhui Province, 230026, PR China
| | - Zong-Yi Wang
- Chinese Academy of Sciences Key Laboratory of Brain Function and Disease, School of Life Sciences, University of Science and Technology of China, No.96 Jinzhai Road, Hefei, Anhui Province, 230026, PR China
| | - Deng-Feng Huang
- Chinese Academy of Sciences Key Laboratory of Brain Function and Disease, School of Life Sciences, University of Science and Technology of China, No.96 Jinzhai Road, Hefei, Anhui Province, 230026, PR China
| | - Chen Tian
- Chinese Academy of Sciences Key Laboratory of Brain Function and Disease, School of Life Sciences, University of Science and Technology of China, No.96 Jinzhai Road, Hefei, Anhui Province, 230026, PR China
| | - Bing Hu
- Chinese Academy of Sciences Key Laboratory of Brain Function and Disease, School of Life Sciences, University of Science and Technology of China, No.96 Jinzhai Road, Hefei, Anhui Province, 230026, PR China.
| |
Collapse
|