1
|
Shen C, Yang S, Wu N, Jian W, Du T, Chu H, Du W. Overexpression of MD1 ameliorates pathological myocardial remodeling in diabetic cardiomyopathy by TLR4/STAT3 signaling pathway. Mol Cell Endocrinol 2024; 592:112315. [PMID: 38878954 DOI: 10.1016/j.mce.2024.112315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 06/11/2024] [Accepted: 06/12/2024] [Indexed: 06/21/2024]
Abstract
Diabetic cardiomyopathy (DCM) is characterized by oxidative damage and inflammatory responses. Myeloid differentiation protein 1 (MD1) exhibits antioxidant and anti-inflammatory properties. However, the specific role of MD1 in DCM has yet to be elucidated. This study aims to investigate the role of MD1 in DCM and to elucidate the underlying mechanisms. We utilized a gain-of-function approach to explore the involvement of MD1 in DCM. Diabetes was induced in MD1-transgenic (MD1-TG) mice and their wild-type (WT) counterparts via streptozotocin (STZ) injection. Additionally, a diabetes cell model was established using H9c2 cells exposed to high glucose levels. We conducted comprehensive evaluations, including pathological analyses, echocardiography, electrocardiography, and molecular assessments, to elucidate the underlying mechanisms of MD1 in DCM. Notably, MD1 expression was reduced in the hearts of STZ-induced diabetic mice. Overexpression of MD1 significantly improved cardiac function and markedly inhibited ventricular pathological hypertrophy and fibrosis in these mice. Furthermore, MD1 overexpression resulted in a substantial decrease in myocardial reactive oxygen species (ROS) accumulation, mitigating myocardial oxidative stress and reducing the levels of inflammation-related markers such as IL-1β, IL-6, and TNF-α. Mechanistically, MD1 overexpression inhibited the activation of the TLR4/STAT3 signaling pathway, as demonstrated in both in vivo and in vitro experiments. The overexpression of MD1 significantly impeded pathological cardiac remodeling and improved cardiac function in STZ-induced diabetic mice. This effect was primarily attributed to a reduction in ROS accumulation and mitigation of myocardial oxidative stress and inflammation, facilitated by the inhibition of the TLR4/STAT3 signaling pathway.
Collapse
Affiliation(s)
- Caijie Shen
- Department of Cardiology, The First Affiliated Hospital of Ningbo University, Ningbo, China
| | - Shuwen Yang
- Department of Cardiology, The First Affiliated Hospital of Ningbo University, Ningbo, China; Health Science Center, Ningbo University, Ningbo, China
| | - Nan Wu
- Department of Cardiology, The First Affiliated Hospital of Ningbo University, Ningbo, China
| | - Wang Jian
- Department of Cardiology, The First Affiliated Hospital of Ningbo University, Ningbo, China
| | - Tingsha Du
- Health Science Center, Ningbo University, Ningbo, China
| | - Huimin Chu
- Department of Cardiology, The First Affiliated Hospital of Ningbo University, Ningbo, China.
| | - Weiping Du
- Department of Cardiology, The First Affiliated Hospital of Ningbo University, Ningbo, China.
| |
Collapse
|
2
|
Pan Y, Xiao Z, Yang H, Kong B, Meng H, Shuai W, Huang H. USP38 exacerbates pressure overload-induced left ventricular electrical remodeling. Mol Med 2024; 30:97. [PMID: 38937697 PMCID: PMC11210128 DOI: 10.1186/s10020-024-00846-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Accepted: 05/26/2024] [Indexed: 06/29/2024] Open
Abstract
BACKGROUND Ubiquitin-specific protease 38 (USP38), belonging to the USP family, is recognized for its role in controlling protein degradation and diverse biological processes. Ventricular arrhythmias (VAs) following heart failure (HF) are closely linked to ventricular electrical remodeling, yet the specific mechanisms underlying VAs in HF remain inadequately explored. In this study, we examined the impact of USP38 on VAs in pressure overload-induced HF. METHODS Cardiac-specific USP38 knockout mice, cardiac-specific USP38 transgenic mice and their matched control littermates developed HF induced by aortic banding (AB) surgery. After subjecting the mice to AB surgery for a duration of four weeks, comprehensive investigations were conducted, including pathological analysis and electrophysiological assessments, along with molecular analyses. RESULTS We observed increased USP38 expression in the left ventricle of mice with HF. Electrocardiogram showed that the USP38 knockout shortened the QRS interval and QTc, while USP38 overexpression prolonged these parameters. USP38 knockout decreased the susceptibility of VAs by shortening action potential duration (APD) and prolonging effective refractory period (ERP). In addition, USP38 knockout increased ion channel and Cx43 expression in ventricle. On the contrary, the increased susceptibility of VAs and the decreased expression of ventricular ion channels and Cx43 were observed with USP38 overexpression. In both in vivo and in vitro experiments, USP38 knockout inhibited TBK1/AKT/CAMKII signaling, whereas USP38 overexpression activated this pathway. CONCLUSION Our data indicates that USP38 increases susceptibility to VAs after HF through TBK1/AKT/CAMKII signaling pathway, Consequently, USP38 may emerge as a promising therapeutic target for managing VAs following HF.
Collapse
Affiliation(s)
- Yucheng Pan
- Department of Cardiology, Renmin Hospital of Wuhan University, 238 Jiefang Road, Wuhan, 430060, Hubei, China
- Hubei Key Laboratory of Cardiology, Wuhan, China
- Cardiovascular Research Institute of Wuhan University, Wuhan, China
| | - Zheng Xiao
- Department of Cardiology, Renmin Hospital of Wuhan University, 238 Jiefang Road, Wuhan, 430060, Hubei, China
- Hubei Key Laboratory of Cardiology, Wuhan, China
- Cardiovascular Research Institute of Wuhan University, Wuhan, China
| | - Hongjie Yang
- Department of Cardiology, Renmin Hospital of Wuhan University, 238 Jiefang Road, Wuhan, 430060, Hubei, China
- Hubei Key Laboratory of Cardiology, Wuhan, China
- Cardiovascular Research Institute of Wuhan University, Wuhan, China
| | - Bin Kong
- Department of Cardiology, Renmin Hospital of Wuhan University, 238 Jiefang Road, Wuhan, 430060, Hubei, China
- Hubei Key Laboratory of Cardiology, Wuhan, China
- Cardiovascular Research Institute of Wuhan University, Wuhan, China
| | - Hong Meng
- Department of Cardiology, Renmin Hospital of Wuhan University, 238 Jiefang Road, Wuhan, 430060, Hubei, China
- Hubei Key Laboratory of Cardiology, Wuhan, China
- Cardiovascular Research Institute of Wuhan University, Wuhan, China
| | - Wei Shuai
- Department of Cardiology, Renmin Hospital of Wuhan University, 238 Jiefang Road, Wuhan, 430060, Hubei, China.
- Hubei Key Laboratory of Cardiology, Wuhan, China.
- Cardiovascular Research Institute of Wuhan University, Wuhan, China.
| | - He Huang
- Department of Cardiology, Renmin Hospital of Wuhan University, 238 Jiefang Road, Wuhan, 430060, Hubei, China.
- Hubei Key Laboratory of Cardiology, Wuhan, China.
- Cardiovascular Research Institute of Wuhan University, Wuhan, China.
| |
Collapse
|
3
|
Jiang G, Li J, Niu S, Dong R, Chen Y, Bi W. LY86 facilitates ox-LDL-induced lipid accumulation in macrophages by upregulating SREBP2/HMGCR expression. BMC Cardiovasc Disord 2024; 24:289. [PMID: 38822281 PMCID: PMC11140969 DOI: 10.1186/s12872-024-03957-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Accepted: 05/23/2024] [Indexed: 06/02/2024] Open
Abstract
LY86, also known as MD1, has been implicated in various pathophysiological processes including inflammation, obesity, insulin resistance, and immunoregulation. However, the role of LY86 in cholesterol metabolism remains incompletely understood. Several studies have reported significant up-regulation of LY86 mRNA in atherosclerosis; nevertheless, the regulatory mechanism by which LY86 is involved in this disease remains unclear. In this study, we aimed to investigate whether LY86 affects ox-LDL-induced lipid accumulation in macrophages. Firstly, we confirmed that LY86 is indeed involved in the process of atherosclerosis and found high expression levels of LY86 in human atherosclerotic plaque tissue. Furthermore, our findings suggest that LY86 may mediate intracellular lipid accumulation induced by ox-LDL through the SREBP2/HMGCR pathway. This mechanism could be associated with increased cholesterol synthesis resulting from enhanced endoplasmic reticulum stress response.
Collapse
Affiliation(s)
- Guangwei Jiang
- Department of Vascular Surgery, The Second Hospital of Hebei Medical University, Shijiazhuang, 050000, China
- Department of Vascular Surgery, Hebei General Hospital, Shijiazhuang, 050000, China
| | - Jikuan Li
- Department of Vascular Surgery, Hebei General Hospital, Shijiazhuang, 050000, China
| | - Shuai Niu
- Department of Vascular Surgery, Hebei General Hospital, Shijiazhuang, 050000, China
| | - Ruoyu Dong
- Department of Vascular Surgery, Hebei General Hospital, Shijiazhuang, 050000, China
| | - Yuyan Chen
- The Second Department of rehabilitation Medicine, The Second Hospital of Hebei Medical University, Shijiazhuang, 050000, China
| | - Wei Bi
- Department of Vascular Surgery, The Second Hospital of Hebei Medical University, Shijiazhuang, 050000, China.
| |
Collapse
|
4
|
Fu H, Li D, Shuai W, Kong B, Wang X, Tang Y, Huang H, Huang C. Effects of Phenylacetylglutamine on the Susceptibility of Atrial Fibrillation in Overpressure-Induced HF Mice. Mol Cell Biol 2024; 44:149-163. [PMID: 38725392 PMCID: PMC11110696 DOI: 10.1080/10985549.2024.2345363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Accepted: 04/16/2024] [Indexed: 05/18/2024] Open
Abstract
Phenylacetylglutamine (PAGln), a gut metabolite is substantially elevated in heart failure (HF). The increase of PAGln in plasma is associated with atrial fibrillation (AF), and contributes to AF pathogenesis. However, the role of PAGln in AF with HF remains uncertain. Therefore, this study aimed to determine the effect of PAGln on AF after HF. Thoracic aortic coarctation (TAC) created overpressure-induced HF mice for 4 weeks. Histopathology, biochemical, echocardiographic for assessment of cardiac function, and electrophysiological examination of several electrophysiological indexes (ERP, SNRT, and the occurrence rate of AF) were performed at the end of the HF mice model. We found that plasma PAGln levels were significantly elevated in PAGln-treated HF mice and that PAGln aggravated maladaptive structural remodeling and electrical remodeling, which aggravated the vulnerability of AF, shortened the ERP duration, prolonged the SNRT, increased the occurrence rate of AF in HF mice. Mechanistically, PAGln exacerbated ROS accumulation and increased the levels of phosphorylated PLB and CAMK II. Overall, PAGln played a vital role in promoting the occurrence of AF in HF mice by activating the CAMK II signaling pathway.
Collapse
Affiliation(s)
- Hui Fu
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
- Cardiovascular Research Institute of Wuhan University, Wuhan, Hubei, China
- Hubei Key Laboratory of Cardiology, Wuhan, Hubei, China
| | - Dengke Li
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
- Cardiovascular Research Institute of Wuhan University, Wuhan, Hubei, China
- Hubei Key Laboratory of Cardiology, Wuhan, Hubei, China
| | - Wei Shuai
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
- Cardiovascular Research Institute of Wuhan University, Wuhan, Hubei, China
- Hubei Key Laboratory of Cardiology, Wuhan, Hubei, China
| | - Bin Kong
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
- Cardiovascular Research Institute of Wuhan University, Wuhan, Hubei, China
- Hubei Key Laboratory of Cardiology, Wuhan, Hubei, China
| | - Xi Wang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
- Cardiovascular Research Institute of Wuhan University, Wuhan, Hubei, China
- Hubei Key Laboratory of Cardiology, Wuhan, Hubei, China
| | - Yanhong Tang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
- Cardiovascular Research Institute of Wuhan University, Wuhan, Hubei, China
- Hubei Key Laboratory of Cardiology, Wuhan, Hubei, China
| | - He Huang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
- Cardiovascular Research Institute of Wuhan University, Wuhan, Hubei, China
- Hubei Key Laboratory of Cardiology, Wuhan, Hubei, China
| | - Congxin Huang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
- Cardiovascular Research Institute of Wuhan University, Wuhan, Hubei, China
- Hubei Key Laboratory of Cardiology, Wuhan, Hubei, China
| |
Collapse
|
5
|
Xiao Z, Pan Y, Kong B, Meng H, Shuai W, Huang H. Ubiquitin-specific protease 38 promotes inflammatory atrial fibrillation induced by pressure overload. Europace 2023; 26:euad366. [PMID: 38288617 PMCID: PMC10823351 DOI: 10.1093/europace/euad366] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Accepted: 12/05/2023] [Indexed: 02/01/2024] Open
Abstract
AIMS Atrial structural and electrical remodelling is a major reason for the initiation and perpetuation of atrial fibrillation (AF). Ubiquitin-specific protease 38 (USP38) is a deubiquitinating enzyme, but its function in the heart remains unknown. The aim of this study was to investigate the effect of USP38 in pressure overload-induced AF. METHODS AND RESULTS Cardiac-specific knockout USP38 and cardiac-specific transgenic USP38 mice and their corresponding control mice were used in this study. After 4 weeks with or without aortic banding (AB) surgery, atrial echocardiography, atrial histology, electrophysiological study, and molecular analysis were assessed. Ubiquitin-specific protease 38 knockout mice showed a remarkable improvement in vulnerability to AF, atrial weight and diameter, atrial fibrosis, and calcium-handling protein expression after AB surgery. Conversely, USP38 overexpression further increased susceptibility to AF by exacerbating atrial structural and electrical remodelling. Mechanistically, USP38 interacted with and deubiquitinated nuclear factor-kappa B (NF-κB), and USP38 overexpression increased the level of p-NF-κB in vivo and in vitro, accompanied by the upregulation of NOD-like receptor protein 3 (NLRP3) and inflammatory cytokines, suggesting that USP38 contributes to adverse effects by driving NF-κB/NLRP3-mediated inflammatory responses. CONCLUSION Overall, our study indicates that USP38 promotes pressure overload-induced AF through targeting NF-κB/NLRP3-mediated inflammatory responses.
Collapse
Affiliation(s)
- Zheng Xiao
- Department of Cardiology, Renmin Hospital of Wuhan University, 238 Jiefang Road, Wuhan 430060, Hubei, China
- Cardiovascular Research Institute of Wuhan University, Wuhan 430060, Hubei, China
- Hubei Key Laboratory of Cardiology, Wuhan 430060, Hubei, China
| | - Yucheng Pan
- Department of Cardiology, Renmin Hospital of Wuhan University, 238 Jiefang Road, Wuhan 430060, Hubei, China
- Cardiovascular Research Institute of Wuhan University, Wuhan 430060, Hubei, China
- Hubei Key Laboratory of Cardiology, Wuhan 430060, Hubei, China
| | - Bin Kong
- Department of Cardiology, Renmin Hospital of Wuhan University, 238 Jiefang Road, Wuhan 430060, Hubei, China
- Cardiovascular Research Institute of Wuhan University, Wuhan 430060, Hubei, China
- Hubei Key Laboratory of Cardiology, Wuhan 430060, Hubei, China
| | - Hong Meng
- Department of Cardiology, Renmin Hospital of Wuhan University, 238 Jiefang Road, Wuhan 430060, Hubei, China
- Cardiovascular Research Institute of Wuhan University, Wuhan 430060, Hubei, China
- Hubei Key Laboratory of Cardiology, Wuhan 430060, Hubei, China
| | - Wei Shuai
- Department of Cardiology, Renmin Hospital of Wuhan University, 238 Jiefang Road, Wuhan 430060, Hubei, China
- Cardiovascular Research Institute of Wuhan University, Wuhan 430060, Hubei, China
- Hubei Key Laboratory of Cardiology, Wuhan 430060, Hubei, China
| | - He Huang
- Department of Cardiology, Renmin Hospital of Wuhan University, 238 Jiefang Road, Wuhan 430060, Hubei, China
- Cardiovascular Research Institute of Wuhan University, Wuhan 430060, Hubei, China
- Hubei Key Laboratory of Cardiology, Wuhan 430060, Hubei, China
| |
Collapse
|
6
|
Gong Y, Kong B, Shuai W, Chen T, Zhang JJ, Huang H. USP38 regulates inflammatory cardiac remodeling after myocardial infarction. Clin Sci (Lond) 2023; 137:1665-1681. [PMID: 37903290 DOI: 10.1042/cs20230728] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 10/25/2023] [Accepted: 10/30/2023] [Indexed: 11/01/2023]
Abstract
BACKGROUND The inflammatory response and subsequent ventricular remodeling are key factors contributing to ventricular arrhythmias (VAs) after myocardial infarction (MI). Ubiquitin-specific protease 38 (USP38) is a member of the USP family, but the impact of USP38 in arrhythmia substrate generation after MI remains unclear. This study aimed to determine the role of USP38 in post-MI VAs and its underlying mechanisms. METHODS AND RESULTS Surgical left descending coronary artery ligation was used to construct MI models. Morphological, biochemical, histological, and electrophysiological studies and molecular analyses were performed after MI on days 3 and 28. We found that the USP38 expression was remarkably increased after MI. Cardiac-conditional USP38 knockout (USP38-CKO) reduces the expression of the inflammatory marker CD68 as well as the inflammatory factors TNF-α and IL-1β after MI, thereby alleviating advanced cardiac fibrosis, electrical remodeling, ion channel remodeling, and susceptibility to VAs. In contrast, cardiac-specific USP38 overexpression (USP38-TG) showed a significant opposite effect, exacerbating the early inflammatory response and cardiac remodeling after MI. Mechanistically, USP38 knockout inhibited activation of the TAK1/NF-κB signaling pathway after MI, whereas USP38 overexpression enhanced activation of the TAK1/NF-κB signaling pathway after MI. CONCLUSIONS Our study confirms that USP38-CKO attenuates the inflammatory response, improves ventricular remodeling after myocardial infarction, and reduces susceptibility to malignant VA by inhibiting the activation of the TAK1/NF-κB pathway, with USP38-TG playing an opposing role. These results suggest that USP38 may be an important target for the treatment of cardiac remodeling and arrhythmias after MI.
Collapse
Affiliation(s)
- Yang Gong
- Department of Cardiology, Renmin Hospital of Wuhan University, 238 Jiefang Road, Wuhan, Hubei 430060, China
- Cardiovascular Research Institute of Wuhan University, Wuhan, China
- Hubei Key Laboratory of Cardiology, Wuhan, China
| | - Bin Kong
- Department of Cardiology, Renmin Hospital of Wuhan University, 238 Jiefang Road, Wuhan, Hubei 430060, China
- Cardiovascular Research Institute of Wuhan University, Wuhan, China
- Hubei Key Laboratory of Cardiology, Wuhan, China
| | - Wei Shuai
- Department of Cardiology, Renmin Hospital of Wuhan University, 238 Jiefang Road, Wuhan, Hubei 430060, China
- Cardiovascular Research Institute of Wuhan University, Wuhan, China
- Hubei Key Laboratory of Cardiology, Wuhan, China
| | - Tao Chen
- Department of Cardiology, Renmin Hospital of Wuhan University, 238 Jiefang Road, Wuhan, Hubei 430060, China
- Cardiovascular Research Institute of Wuhan University, Wuhan, China
- Hubei Key Laboratory of Cardiology, Wuhan, China
| | - Jing Jing Zhang
- Department of Cardiology, Renmin Hospital of Wuhan University, 238 Jiefang Road, Wuhan, Hubei 430060, China
- Cardiovascular Research Institute of Wuhan University, Wuhan, China
- Hubei Key Laboratory of Cardiology, Wuhan, China
| | - He Huang
- Department of Cardiology, Renmin Hospital of Wuhan University, 238 Jiefang Road, Wuhan, Hubei 430060, China
- Cardiovascular Research Institute of Wuhan University, Wuhan, China
- Hubei Key Laboratory of Cardiology, Wuhan, China
| |
Collapse
|
7
|
Zhao M, Liu A, Mo L, Wan G, Lu F, Chen L, Fu S, Chen H, Fu T, Deng H. Higher expression of PLEK and LY86 as the potential biomarker of carotid atherosclerosis. Medicine (Baltimore) 2023; 102:e34445. [PMID: 37861500 PMCID: PMC10589592 DOI: 10.1097/md.0000000000034445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Accepted: 06/30/2023] [Indexed: 10/21/2023] Open
Abstract
Carotid atherosclerosis (AS) occurs in atherosclerotic lesions of the carotid artery, which can lead to transient ischemic attack and stroke in severe cases. However, the relationship between pleckstrin (PLEK) and lymphocyte antigen 86 (LY86) and carotid AS remains unclear. The carotid AS datasets GSE43292 and GSE125771 were downloaded from the gene expression omnibus database. Differentially expressed genes (DEGs) were screened and weighted gene co-expression network analysis was performed. Construction and analysis of protein-protein interaction network. Functional enrichment analysis, gene set enrichment analysis and comparative toxicogenomics database analysis were performed. TargetScan screened miRNAs that regulated central DEGs. A total of 305 DEGs were identified. According to gene ontology analysis, they were mainly enriched in immune system processes, extracellular regions and cytokine binding. Kyoto encyclopedia of genes and genomes analysis showed that the target cells were mainly enriched in Rap1 signal pathway, B cell receptor signal pathway and PPAR signal pathway. In the enrichment project of metascape, the reaction to bacteria, cell activation and chemotaxis can be seen in the enrichment project of gene ontology. Total 10 core genes (TYROBP, FCER1G, PLEK, LY86, IL10RA, ITGB2, LCP2, FCGR2B, CD86, CCR1) were obtained by protein-protein interaction network construction and analysis. Core genes (PLEK, LY86, IL10RA, ITGB2, and LCP2) were highly expressed in carotid AS samples and lowly expressed in normal samples. Comparative toxicogenomics database analysis showed that 5 genes were associated with pneumonia, inflammation, necrosis, and drug allergy. PLEK and LY86 genes are highly expressed in carotid AS. The higher the expression of PLEK and LY86, the worse the prognosis is.
Collapse
Affiliation(s)
- Man Zhao
- Neurological Rehabilitation Center, Beijing Rehabilitation Hospital Affiliated to Capital Medical University, Xixiazhuang, Badachu, Shijingshan District, Beijing, China
| | - Aixian Liu
- Neurological Rehabilitation Center, Beijing Rehabilitation Hospital Affiliated to Capital Medical University, Xixiazhuang, Badachu, Shijingshan District, Beijing, China
| | - Linhong Mo
- Neurological Rehabilitation Center, Beijing Rehabilitation Hospital Affiliated to Capital Medical University, Xixiazhuang, Badachu, Shijingshan District, Beijing, China
| | - Guiling Wan
- Neurological Rehabilitation Center, Beijing Rehabilitation Hospital Affiliated to Capital Medical University, Xixiazhuang, Badachu, Shijingshan District, Beijing, China
| | - Fang Lu
- Neurological Rehabilitation Center, Beijing Rehabilitation Hospital Affiliated to Capital Medical University, Xixiazhuang, Badachu, Shijingshan District, Beijing, China
| | - Lei Chen
- Department of Vascular Surgery, Fuxing Hospital Affiliated to Capital Medical University, Xicheng District, Beijing, China
| | - Siwei Fu
- Department of Cardiovascular Medicine, Jilin Provincial People's Hospital, Chaoyang District, Changchun City, Jilin Province, China
| | - Hongrun Chen
- Department of Urology, China Aerospace Science & Industry Corporation 731 Hospital, Feng Tai District, Beijing, China
| | - Taozhu Fu
- Department of Urology, China Aerospace Science & Industry Corporation 731 Hospital, Feng Tai District, Beijing, China
| | - Hongru Deng
- Department of Vascular Surgery, Fuxing Hospital Affiliated to Capital Medical University, Xicheng District, Beijing, China
| |
Collapse
|
8
|
Fu H, Kong B, Zhu J, Huang H, Shuai W. Phenylacetylglutamine increases the susceptibility of ventricular arrhythmias in heart failure mice by exacerbated activation of the TLR4/AKT/mTOR signaling pathway. Int Immunopharmacol 2023; 116:109795. [PMID: 36736224 DOI: 10.1016/j.intimp.2023.109795] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 01/18/2023] [Accepted: 01/24/2023] [Indexed: 02/04/2023]
Abstract
BACKGROUND Intestinal microbial metabolites are a risk factor for cardiovascular diseases, and phenylacetylglutamine (PAGln) is a newly discovered intestinal metabolite in the latest study. In addition, elevated plasma PAGln concentration was associated with increased mortality and hospitalization rates in patients with heart failure (HF). However, the mechanism of PAGln leading to increased HF mortality is unclear. The present study was performed to investigate whether the PAGln deteriorated the susceptibility of ventricular arrhythmias (VAs) in the setting of HF. METHODS Thoracic aortic coarctation (TAC) was used to construct an animal model of HF in mice. Intraperitoneal injection of PAGln for 4 weeks intervened in HF mice. The concentration of PAGln was quantitatively determined by liquid chromatography-tandem mass spectrometry. Cardiac function was assessed by echocardiography; assessment of cardiac electrophysiological indexes was measured by electrocardiogram (ECG) and programmed electrical stimulation in isolated cardiac perfusion. Masson was stained for collagen deposition, and wheat germ agglutinin (WGA) was stained for the cross-sectional area of the myocytes. The qRT-PCR and Western Blotting were used to determine target gene expression in vivo and in vitro. RESULTS PAGln promoted the activation of cardiac inflammation and fibrosis and deteriorated cardiac function in HF mice. Moreover, PAGln extended APD90, shortened the ERP/APD90 and increased the incidence of VAs following HF in isolated heart perfusion. Mechanistically, PAGln significantly enhanced the activation of the TLR4/AKT/mTOR signaling pathway in vivo and in vitro. CONCLUSIONS PAGln increased the susceptibility of VAs in HF mice by activating the TLR4/AKT/mTOR signaling pathway.
Collapse
Affiliation(s)
- Hui Fu
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan 430060, Hubei, China; Cardiovascular Research Institute of Wuhan University, Wuhan 430060, Hubei, China; Hubei Key Laboratory of Cardiology, Wuhan 430060, Hubei, China
| | - Bin Kong
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan 430060, Hubei, China; Cardiovascular Research Institute of Wuhan University, Wuhan 430060, Hubei, China; Hubei Key Laboratory of Cardiology, Wuhan 430060, Hubei, China
| | - Jun Zhu
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan 430060, Hubei, China; Cardiovascular Research Institute of Wuhan University, Wuhan 430060, Hubei, China; Hubei Key Laboratory of Cardiology, Wuhan 430060, Hubei, China
| | - He Huang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan 430060, Hubei, China; Cardiovascular Research Institute of Wuhan University, Wuhan 430060, Hubei, China; Hubei Key Laboratory of Cardiology, Wuhan 430060, Hubei, China.
| | - Wei Shuai
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan 430060, Hubei, China; Cardiovascular Research Institute of Wuhan University, Wuhan 430060, Hubei, China; Hubei Key Laboratory of Cardiology, Wuhan 430060, Hubei, China.
| |
Collapse
|
9
|
Jiang X, Ning P, Yan F, Wang J, Cai W, Yang F. Impact of myeloid differentiation protein 1 on cardiovascular disease. Biomed Pharmacother 2023; 157:114000. [PMID: 36379121 DOI: 10.1016/j.biopha.2022.114000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 11/07/2022] [Accepted: 11/09/2022] [Indexed: 11/13/2022] Open
Abstract
Cardiovascular disease remains the leading cause of disability and mortality worldwide and a significant global burden. Many lines of evidence suggest complex remodeling responses to cardiovascular disease, such as myocardial ischemia, hypertension and valve disease, which lead to poor clinical outcomes, including heart failure, arrhythmia and sudden cardiac death (SCD). The mechanisms underlying cardiac remodeling are closely related to reactive oxygen species (ROS) and inflammation. Myeloid differentiation protein 1 (MD1) is a secreted glycoprotein known as lymphocyte antigen 86. The complex of MD1 and radioprotective 105 (RP105) is an important regulator of inflammation and is involved in the modulation of vascular remodeling and atherosclerotic plaque development. A recent study suggested that the expression of MD1 in hypertrophic cardiomyopathy (HCM) patients is decreased compared with that in donor hearts. Therefore, MD1 may play an important role in the pathological processes of cardiovascular disease and have potential clinical value. Here, this review aims to discuss the current knowledge regarding the role of MD1 in the regulation of cardiac pathophysiology.
Collapse
Affiliation(s)
- Xiaobo Jiang
- Geriatric Diseases Institute of Chengdu, Department of Cardiology, Chengdu Fifth People's Hospital, Chengdu 611137, China; The Second Clinical Medical College, Affiliated Fifth People's Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.
| | - Peng Ning
- The Second Clinical Medical College, Affiliated Fifth People's Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; Geriatric Diseases Institute of Chengdu, Department of Endocrinology, Chengdu Fifth People's Hospital, Chengdu 611137, China.
| | - Fang Yan
- Geriatric Department, Chengdu Fifth People's Hospital, Chengdu 611137, China; Center for Medicine Research and Translation, Chengdu Fifth People's Hospital, Chengdu 611137, China.
| | - Jianfeng Wang
- Geriatric Diseases Institute of Chengdu, Department of Cardiology, Chengdu Fifth People's Hospital, Chengdu 611137, China; The Second Clinical Medical College, Affiliated Fifth People's Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.
| | - Wei Cai
- Geriatric Diseases Institute of Chengdu, Department of Cardiology, Chengdu Fifth People's Hospital, Chengdu 611137, China; The Second Clinical Medical College, Affiliated Fifth People's Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.
| | - Fan Yang
- The Second Clinical Medical College, Affiliated Fifth People's Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; Geriatric Diseases Institute of Chengdu, Department of Endocrinology, Chengdu Fifth People's Hospital, Chengdu 611137, China.
| |
Collapse
|
10
|
Gong Y, Kong B, Shuai W, Chen T, Zhang J, Huang H. Effect of sotagliflozin on ventricular arrhythmias in mice with myocardial infraction. Eur J Pharmacol 2022; 936:175357. [DOI: 10.1016/j.ejphar.2022.175357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 10/20/2022] [Accepted: 10/24/2022] [Indexed: 11/15/2022]
|
11
|
Wang W, Bale S, Yalavarthi B, Verma P, Tsou PS, Calderone KM, Bhattacharyya D, Fisher GJ, Varga J, Bhattacharyya S. Deficiency of inhibitory TLR4 homolog RP105 exacerbates fibrosis. JCI Insight 2022; 7:e160684. [PMID: 36136452 PMCID: PMC9675479 DOI: 10.1172/jci.insight.160684] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Accepted: 09/20/2022] [Indexed: 12/15/2022] Open
Abstract
Activation of TLR4 by its cognate damage-associated molecular patterns (DAMPs) elicits potent profibrotic effects and myofibroblast activation in systemic sclerosis (SSc), while genetic targeting of TLR4 or its DAMPs in mice accelerates fibrosis resolution. To prevent aberrant DAMP/TLR4 activity, a variety of negative regulators evolved to dampen the magnitude and duration of the signaling. These include radioprotective 105 kDa (RP105), a transmembrane TLR4 homolog that competitively inhibits DAMP recognition of TLR4, blocking TLR4 signaling in immune cells. The role of RP105 in TLR4-dependent fibrotic responses in SSc is unknown. Using unbiased transcriptome analysis of skin biopsies, we found that levels of both TLR4 and its adaptor protein MD2 were elevated in SSc skin and significantly correlated with each other. Expression of RP105 was negatively associated with myofibroblast differentiation in SSc. Importantly, RP105-TLR4 association was reduced, whereas TLR4-TLR4 showed strong association in fibroblasts from patients with SSc, as evidenced by PLA assays. Moreover, RP105 adaptor MD1 expression was significantly reduced in SSc skin biopsies and explanted SSc skin fibroblasts. Exogenous RP105-MD1 abrogated, while loss of RP105 exaggerated, fibrotic cellular responses. Importantly, ablation of RP105 in mice was associated with augmented TLR4 signaling and aggravated skin fibrosis in complementary disease models. Thus, we believe RP105-MD1 to be a novel cell-intrinsic negative regulator of TLR4-MD2-driven sustained fibroblast activation, representing a critical regulatory network governing the fibrotic process. Impaired RP105 function in SSc might contribute to persistence of progression of the disease.
Collapse
Affiliation(s)
- Wenxia Wang
- Northwestern Scleroderma Program, Feinberg School of Medicine, Chicago, Illinois, USA
| | - Swarna Bale
- Northwestern Scleroderma Program, Feinberg School of Medicine, Chicago, Illinois, USA
- Michigan Scleroderma Program, Division of Rheumatology, Department of Internal Medicine, and
| | - Bharath Yalavarthi
- Michigan Scleroderma Program, Division of Rheumatology, Department of Internal Medicine, and
| | - Priyanka Verma
- Michigan Scleroderma Program, Division of Rheumatology, Department of Internal Medicine, and
| | - Pei-Suen Tsou
- Michigan Scleroderma Program, Division of Rheumatology, Department of Internal Medicine, and
| | - Ken M. Calderone
- Derpartment of Dermatology, University of Michigan, Ann Arbor, Michigan, USA
| | - Dibyendu Bhattacharyya
- Michigan Scleroderma Program, Division of Rheumatology, Department of Internal Medicine, and
| | - Gary J. Fisher
- Derpartment of Dermatology, University of Michigan, Ann Arbor, Michigan, USA
| | - John Varga
- Northwestern Scleroderma Program, Feinberg School of Medicine, Chicago, Illinois, USA
- Michigan Scleroderma Program, Division of Rheumatology, Department of Internal Medicine, and
| | - Swati Bhattacharyya
- Northwestern Scleroderma Program, Feinberg School of Medicine, Chicago, Illinois, USA
- Michigan Scleroderma Program, Division of Rheumatology, Department of Internal Medicine, and
| |
Collapse
|
12
|
Zhang L, Gu J, Wang S, He F, Gong K. Identification of key differential genes in intimal hyperplasia induced by left carotid artery ligation. PeerJ 2022; 10:e13436. [PMID: 35586138 PMCID: PMC9109685 DOI: 10.7717/peerj.13436] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Accepted: 04/22/2022] [Indexed: 01/14/2023] Open
Abstract
Background Intimal hyperplasia is a common pathological process of restenosis following angioplasty, atherosclerosis, pulmonary hypertension, vein graft stenosis, and other proliferative diseases. This study aims to screen for potential novel gene targets and mechanisms related to vascular intimal hyperplasia through an integrated microarray analysis of the Gene Expression Omnibus Database (GEO) database. Material and Methods The gene expression profile of the GSE56143 dataset was downloaded from the Gene Expression Omnibus database. Functional enrichment analysis, protein-protein interaction (PPI) network analysis, and the transcription factor (TF)-target gene regulatory network were used to reveal the biological functions of differential genes (DEGs). Furthermore, the expression levels of the top 10 key DEGs were verified at the mRNA and protein level in the carotid artery 7 days after ligation. Results A total of 373 DEGs (199 upregulated DEGs and 174 downregulated DEGs) were screened. These DEGs were significantly enriched in biological processes, including immune system process, cell adhesion, and several pathways, which were mainly associated with cell adhesion molecules and the regulation of the actin cytoskeleton. The top 10 key DEGs (Ptprc, Fn1, Tyrobp, Emr1, Itgb2, Itgax, CD44, Ctss, Ly86, and Aif1) acted as key genes in the PPI network. The verification of these key DEGs at the mRNA and protein levels was consistent with the results of the above-mentioned bioinformatics analysis. Conclusion The present study identified key genes and pathways involved in intimal hyperplasia induced by carotid artery ligation. These results improved our understanding of the mechanisms underlying the development of intimal hyperplasia and provided candidate targets.
Collapse
Affiliation(s)
- Lina Zhang
- Department of Cardiology, The Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, Jiangsu, China
| | - Jianjun Gu
- Department of Cardiology, Northern Jiangsu People’s Hospital, Yangzhou University, Yangzhou, Jiangsu, China
| | - Sichuan Wang
- Department of Cardiology, The Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, Jiangsu, China
| | - Fuming He
- Department of Cardiology, The Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, Jiangsu, China
| | - Kaizheng Gong
- Department of Cardiology, The Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, Jiangsu, China
| |
Collapse
|
13
|
Bezhaeva T, Karper J, Quax PHA, de Vries MR. The Intriguing Role of TLR Accessory Molecules in Cardiovascular Health and Disease. Front Cardiovasc Med 2022; 9:820962. [PMID: 35237675 PMCID: PMC8884272 DOI: 10.3389/fcvm.2022.820962] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Accepted: 01/19/2022] [Indexed: 12/12/2022] Open
Abstract
Activation of Toll like receptors (TLR) plays an important role in cardiovascular disease development, progression and outcomes. Complex TLR mediated signaling affects vascular and cardiac function including tissue remodeling and repair. Being central components of both innate and adaptive arms of the immune system, TLRs interact as pattern recognition receptors with a series of exogenous ligands and endogenous molecules or so-called danger associated molecular patterns (DAMPs) that are released upon tissue injury and cellular stress. Besides immune cells, a number of structural cells within the cardiovascular system, including endothelial cells, smooth muscle cells, fibroblasts and cardiac myocytes express TLRs and are able to release or sense DAMPs. Local activation of TLR-mediated signaling cascade induces cardiovascular tissue repair but in a presence of constant stimuli can overshoot and cause chronic inflammation and tissue damage. TLR accessory molecules are essential in guiding and dampening these responses toward an adequate reaction. Furthermore, accessory molecules assure specific and exclusive TLR-mediated signal transduction for distinct cells and pathways involved in the pathogenesis of cardiovascular diseases. Although much has been learned about TLRs activation in cardiovascular remodeling, the exact role of TLR accessory molecules is not entirely understood. Deeper understanding of the role of TLR accessory molecules in cardiovascular system may open therapeutic avenues aiming at manipulation of inflammatory response in cardiovascular disease. The present review outlines accessory molecules for membrane TLRs that are involved in cardiovascular disease progression. We first summarize the up-to-date knowledge on TLR signaling focusing on membrane TLRs and their ligands that play a key role in cardiovascular system. We then survey the current evidence of the contribution of TLRs accessory molecules in vascular and cardiac remodeling including myocardial infarction, heart failure, stroke, atherosclerosis, vein graft disease and arterio-venous fistula failure.
Collapse
Affiliation(s)
- Taisiya Bezhaeva
- Department of Surgery and Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, Leiden, Netherlands
| | - Jacco Karper
- Department of Cardiology, Wilhelmina Hospital Assen, Assen, Netherlands
| | - Paul H. A. Quax
- Department of Surgery and Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, Leiden, Netherlands
| | - Margreet R. de Vries
- Department of Surgery and Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, Leiden, Netherlands
- *Correspondence: Margreet R. de Vries
| |
Collapse
|
14
|
Fan Z, Pathak JL, Ge L. The Potential Role of RP105 in Regulation of Inflammation and Osteoclastogenesis During Inflammatory Diseases. Front Cell Dev Biol 2021; 9:713254. [PMID: 34414191 PMCID: PMC8369417 DOI: 10.3389/fcell.2021.713254] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2021] [Accepted: 07/09/2021] [Indexed: 11/16/2022] Open
Abstract
Inflammatory diseases have a negative impact on bone homeostasis via exacerbated local and systemic inflammation. Bone resorbing osteoclasts are mainly derived from hematopoietic precursors and bone marrow monocytes. Induced osteoclastogenesis during inflammation, autoimmunity, metabolic diseases, and cancers is associated with bone loss and osteoporosis. Proinflammatory cytokines, pathogen-associated molecular patterns, or endogenous pathogenic factors induce osteoclastogenic differentiation by binding to the Toll-like receptor (TLR) family expressed on surface of osteoclast precursors. As a non-canonical member of the TLRs, radioprotective 105 kDa (RP105 or CD180) and its ligand, myeloid differentiation protein 1 (MD1), are involved in several bone metabolic disorders. Reports from literature had demonstrated RP105 as an important activator of B cells, bone marrow monocytes, and macrophages, which regulates inflammatory cytokines release from immune cells. Reports from literature had shown the association between RP105 and other TLRs, and the downstream signaling mechanisms of RP105 with different “signaling-competent” partners in immune cells during different disease conditions. This review is focused to summarize: (1) the role of RP105 on immune cells’ function and inflammation regulation (2) the potential regulatory roles of RP105 in different disease-mediated osteoclast activation and the underlying mechanisms, and (3) the different “signaling-competent” partners of RP105 that regulates osteoclastogenesis.
Collapse
Affiliation(s)
- Zhou Fan
- Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangzhou, China
| | - Janak L Pathak
- Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangzhou, China
| | - Linhu Ge
- Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangzhou, China.,Institute of Oral Disease, Guangzhou Medical University, Guangzhou, China
| |
Collapse
|
15
|
Peng J, Zeng G, Zhong P, Wang G, Lei C, Tian G, Chen J, Wu J, Shen C. The Akt pathway mediates the protective effects of myeloid differentiation protein 1 in pathological cardiac remodelling. ESC Heart Fail 2021; 8:3214-3222. [PMID: 34041859 PMCID: PMC8318477 DOI: 10.1002/ehf2.13447] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2020] [Revised: 05/11/2021] [Accepted: 05/16/2021] [Indexed: 12/24/2022] Open
Abstract
Aims Myeloid differentiation protein 1 (MD1) was shown to ameliorate pressure overload‐induced cardiac hypertrophy and fibrosis by negatively regulating the MEK–ERK1/2 and NF‐κB pathways. However, whether MD1 modulates cardiac function and whether the Akt pathway mediates the benefits of MD1 in pressure overload‐induced cardiac remodelling remain unclear. Methods and Results Male cardiac‐specific transgenic MD1 (MD1‐TG) mice, MD1‐knockout (KO) mice and wild‐type (WT) littermates aged 8–10 weeks were subjected to sham operation and aortic banding (AB) for 4 weeks. Then, left ventricular (LV) hypertrophy, fibrosis and function of the mice were assessed. When compared with WT‐AB mice, MD1‐TGs showed decreased cross‐sectional area (CSA) of cardiomyocytes (P < 0.001), mRNA expression of β‐myosin heavy chain (β‐MHC) (P < 0.02), ratios of heart weight/body weight and heart weight/tibia length (P < 0.04) and collagen volume fraction (P < 0.001). The LV end‐diastolic diameter was reduced, and LV ejection fraction and fractional shortening were improved in MD1‐TG‐AB mice than in WT‐AB mice (P < 0.05). In cultured H9C2 cells, adenovirus vector‐mediated MD1 overexpression decreased angiotensin II‐induced mRNA expression of brain natriuretic peptide (BNP) and β‐MHC and cell CSA (P < 0.002), whereas knockdown of MD1 by shRNA exhibited opposite effects (P < 0.04). Mechanistically, MD1 suppressed pathological cardiac remodelling at least partly by blocking Akt pathway. Akt inactivation by MK2206 largely offset the pro‐hypertrophic effects of MD1 deficiency in angiotensin II‐stimulated cardiomyocytes. Conclusions The Akt pathway mediates the protective effects of MD1 in pressure overload‐induced cardiac remodelling in mice. Targeting MD1 may provide therapeutic strategy for the treatment of pathological cardiac remodelling and heart failure.
Collapse
Affiliation(s)
- Jianye Peng
- Department of Cardiovascular Medicine, Key Laboratory of Heart Failure Prevention & Treatment of Hengyang, The Second Affiliated Hospital of the University of South China, Hengyang, China
| | - Gaofeng Zeng
- Department of Cardiovascular Medicine, Key Laboratory of Heart Failure Prevention & Treatment of Hengyang, The Second Affiliated Hospital of the University of South China, Hengyang, China
| | - Peng Zhong
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Guangji Wang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China
| | - ChangCheng Lei
- Department of Cardiovascular Medicine, Key Laboratory of Heart Failure Prevention & Treatment of Hengyang, The Second Affiliated Hospital of the University of South China, Hengyang, China
| | - Guoping Tian
- Department of Cardiovascular Medicine, Key Laboratory of Heart Failure Prevention & Treatment of Hengyang, The Second Affiliated Hospital of the University of South China, Hengyang, China
| | - Jingsong Chen
- Department of Cardiovascular Medicine, Key Laboratory of Heart Failure Prevention & Treatment of Hengyang, The Second Affiliated Hospital of the University of South China, Hengyang, China
| | - Jianfeng Wu
- Department of Cardiovascular Medicine, Key Laboratory of Heart Failure Prevention & Treatment of Hengyang, The Second Affiliated Hospital of the University of South China, Hengyang, China
| | - Caijie Shen
- Department of Cardiology, Ningbo First Hospital, Ningbo, China
| |
Collapse
|
16
|
Yang F, Jiang X, Cao H, Shuai W, Zhang L, Wang G, Quan D, Jiang X. Daphnetin Preconditioning Decreases Cardiac Injury and Susceptibility to Ventricular Arrhythmia following Ischaemia-Reperfusion through the TLR4/MyD88/NF-Κb Signalling Pathway. Pharmacology 2021; 106:369-383. [PMID: 33902056 DOI: 10.1159/000513631] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2020] [Accepted: 11/24/2020] [Indexed: 01/04/2023]
Abstract
BACKGROUND/AIMS Daphnetin (7,8-dihydroxycoumarin, DAP) exhibits various bioactivities, such as anti-inflammatory and antioxidant activities. However, the role of DAP in myocardial ischaemia/reperfusion (I/R) injury and I/R-related arrhythmia is still uncertain. This study aimed to investigate the mechanisms underlying the effects of DAP on myocardial I/R injury and electrophysiological properties in vivo and in vitro. METHODS Myocardial infarct size was measured by triphenyltetrazolium chloride staining. Cardiac function was assessed by echocardiographic and haemodynamic analyses. The levels of creatine kinase-MB, lactate dehydrogenase, malondialdehyde, superoxide dismutase, interleukin-6 (IL-6), and tumour necrosis factor-alpha (TNF-α) were detected using commercial kits. Apoptosis was measured by terminal deoxynucleotidyl-transferase-mediated dUTP nick-end labelling staining and flow cytometry. The viability of H9c2 cells was determined by the Cell Counting Kit-8 assay. In vitro, the levels of IL-6 and TNF-α were measured by quantitative PCR. The expression levels of proteins associated with apoptosis, inflammation, and the Toll-like receptor 4/myeloid differentiation factor 88/nuclear factor kappa B (TLR4/MyD88/NF-κB) signalling pathway were detected by Western blot analysis. The RR, PR, QRS, and QTc intervals were assessed by surface ECG. The 90% action potential duration (APD90), threshold of APD alternans, and ventricular tachycardia inducibility were measured by the Langendorff perfusion technique. RESULTS DAP preconditioning decreased myocardial I/R injury and hypoxia/reoxygenation (H/R) injury in cells. DAP preconditioning improved cardiac function after myocardial I/R injury. DAP preconditioning also suppressed apoptosis, attenuated oxidative stress, and inhibited inflammatory responses in vivo and in vitro. Furthermore, DAP preconditioning decreased the susceptibility to ventricular arrhythmia after myocardial I/R. Finally, DAP preconditioning inhibited the expression of TLR4, MyD88, and phosphorylated NF-κB (p-NF-κB)/P65 in mice subjected to I/R and cells subjected to H/R. CONCLUSIONS DAP preconditioning protected against myocardial I/R injury and decreased susceptibility to ventricular arrhythmia by inhibiting the TLR4/MyD88/NF-κB signalling pathway.
Collapse
Affiliation(s)
- Fan Yang
- Department of Cardiology, Renmin Hospital of Wuhan University, Cardiovascular Research Institute of Wuhan University, Hubei Key Laboratory of Cardiology, Wuhan, China
| | - Xiaobo Jiang
- Department of Cardiology, Renmin Hospital of Wuhan University, Cardiovascular Research Institute of Wuhan University, Hubei Key Laboratory of Cardiology, Wuhan, China
| | - Hongyi Cao
- Department of Endocrinology, Chengdu Fifth People's Hospital, Chengdu, China
| | - Wei Shuai
- Department of Cardiology, Renmin Hospital of Wuhan University, Cardiovascular Research Institute of Wuhan University, Hubei Key Laboratory of Cardiology, Wuhan, China
| | - Lijun Zhang
- Department of Geriatrics, Renmin Hospital of Wuhan University, Wuhan, China
| | - Guangji Wang
- Department of Cardiology, Renmin Hospital of Wuhan University, Cardiovascular Research Institute of Wuhan University, Hubei Key Laboratory of Cardiology, Wuhan, China
| | - Dajun Quan
- Department of Cardiology, Renmin Hospital of Wuhan University, Cardiovascular Research Institute of Wuhan University, Hubei Key Laboratory of Cardiology, Wuhan, China
| | - Xuejun Jiang
- Department of Cardiology, Renmin Hospital of Wuhan University, Cardiovascular Research Institute of Wuhan University, Hubei Key Laboratory of Cardiology, Wuhan, China
| |
Collapse
|
17
|
Deshmukh T, Kumar S, Chong JJH. Cardiac Inflammation After Myocardial Infarction and its Impact on Ventricular Arrhythmias. Heart Lung Circ 2021; 30:783-785. [PMID: 33814304 DOI: 10.1016/j.hlc.2021.03.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Tejas Deshmukh
- Department of Cardiology, Westmead Hospital, Sydney, NSW, Australia; Westmead Applied Research Centre, University of Sydney, NSW, Australia; Centre for Heart Research, Westmead Institute for Medical Research, University of Sydney, NSW, Australia
| | - Saurabh Kumar
- Department of Cardiology, Westmead Hospital, Sydney, NSW, Australia; Westmead Applied Research Centre, University of Sydney, NSW, Australia
| | - James J H Chong
- Department of Cardiology, Westmead Hospital, Sydney, NSW, Australia; Westmead Applied Research Centre, University of Sydney, NSW, Australia; Centre for Heart Research, Westmead Institute for Medical Research, University of Sydney, NSW, Australia.
| |
Collapse
|
18
|
Zhong P, Zeng G, Lei C, Tian G, Ouyang S, Liu F, Peng J. Ciliary neurotrophic factor overexpression protects the heart against pathological remodelling in angiotensin II-infused mice. Biochem Biophys Res Commun 2021; 547:15-22. [PMID: 33588234 DOI: 10.1016/j.bbrc.2021.01.111] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Accepted: 01/31/2021] [Indexed: 11/28/2022]
Abstract
BACKGROUND Ciliary neurotrophic factor (CNTF), which is a neural peptide, has been reported to confer cardioprotective effects. However, whether CNTF-based gene therapy could prevent cardiac remodelling remains incompletely clear. In this study, we used adeno-associated viral vector serotype 9 (AAV9)-based cardiac gene therapy to test the effects of CNTF overexpression on adverse ventricular remodelling in angiotensin II (Ang II)-infused mice. METHODS First, AAV9-EGFP and AAV9-CNTF constructs were generated with virus concentration at 5 × 1012 vg/ml. Next, postnatal (P3-P10) mice with C57BL/6J background were administered with 5 × 1011 vg of AAV9 recombinant genome diluted in 50 μl of saline, and delivered through intraperitoneal injection. Implantation of osmotic minipumps was performed in 8-week-old male mice and human Ang II solution was administrated in the mice subcutaneously for 14 days through the pumps. Finally, we evaluated the effects of CNTF overexpression on mouse cardiac function, hypertrophy and fibrosis, as well as investigated the possible mechanisms. RESULTS Our data showed that CNTF overexpression in mouse cardiomyocytes prevents cardiac hypertrophy and fibrosis induced by chronic Ang II stimulation. Mechanistic study found that CNTF overexpression upregulated NFE2-related factor 2 (Nrf2) antioxidant pathway, coupled with decreased ROS level in the cardiac tissues. Additionally, inflammatory cytokines were found to be reduced upon cardiac CNTF overexpression in response to chronic Ang II stimulation. CONCLUSIONS Altogether, these results provide further evidence that CNTF can alleviate the condition of cardiac remodelling induced by chronic Ang II stimulation. Therefore, our results suggest a potential therapeutic role of CNTF in cardiac pathological remodelling.
Collapse
Affiliation(s)
- Peng Zhong
- Department of Cardiology, Renmin Hospital of Wuhan University, Jiefang Road 238, Wuhan, 430060, Hubei, PR China
| | - Gaofeng Zeng
- Department of Cardiovascular Medicine, Key Laboratory of Heart Failure Prevention & Treatment of Hengyang, The Second Affiliated Hospital of the University of South China, Jiefang Road 30, Hengyang, 421000, Hunan, PR China
| | - ChangCheng Lei
- Department of Cardiovascular Medicine, Key Laboratory of Heart Failure Prevention & Treatment of Hengyang, The Second Affiliated Hospital of the University of South China, Jiefang Road 30, Hengyang, 421000, Hunan, PR China
| | - Guoping Tian
- Department of Cardiovascular Medicine, Key Laboratory of Heart Failure Prevention & Treatment of Hengyang, The Second Affiliated Hospital of the University of South China, Jiefang Road 30, Hengyang, 421000, Hunan, PR China
| | - Shao Ouyang
- Department of Cardiovascular Medicine, Key Laboratory of Heart Failure Prevention & Treatment of Hengyang, The Second Affiliated Hospital of the University of South China, Jiefang Road 30, Hengyang, 421000, Hunan, PR China
| | - Fangyao Liu
- Department of Cardiovascular Medicine, Key Laboratory of Heart Failure Prevention & Treatment of Hengyang, The Second Affiliated Hospital of the University of South China, Jiefang Road 30, Hengyang, 421000, Hunan, PR China
| | - Jianye Peng
- Department of Cardiovascular Medicine, Key Laboratory of Heart Failure Prevention & Treatment of Hengyang, The Second Affiliated Hospital of the University of South China, Jiefang Road 30, Hengyang, 421000, Hunan, PR China.
| |
Collapse
|
19
|
Xiao Z, Kong B, Yang H, Dai C, Fang J, Qin T, Huang H. Key Player in Cardiac Hypertrophy, Emphasizing the Role of Toll-Like Receptor 4. Front Cardiovasc Med 2020; 7:579036. [PMID: 33324685 PMCID: PMC7725871 DOI: 10.3389/fcvm.2020.579036] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Accepted: 11/02/2020] [Indexed: 12/20/2022] Open
Abstract
Toll-like receptor 4 (TLR4), a key pattern recognition receptor, initiates the innate immune response and leads to chronic and acute inflammation. In the past decades, accumulating evidence has implicated TLR4-mediated inflammatory response in regulation of myocardium hypertrophic remodeling, indicating that regulation of the TLR4 signaling pathway may be an effective strategy for managing cardiac hypertrophy's pathophysiology. Given TLR4's significance, it is imperative to review the molecular mechanisms and roles underlying TLR4 signaling in cardiac hypertrophy. Here, we comprehensively review the current knowledge of TLR4-mediated inflammatory response and its interaction ligands and co-receptors, as well as activation of various intracellular signaling. We also describe the associated roles in promoting immune cell infiltration and inflammatory mediator secretion, that ultimately cause cardiac hypertrophy. Finally, we provide examples of some of the most promising drugs and new technologies that have the potential to attenuate TLR4-mediated inflammatory response and prevent or reverse the ominous cardiac hypertrophy outcomes.
Collapse
Affiliation(s)
- Zheng Xiao
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China
- Cardiovascular Research Institute of Wuhan University, Wuhan, China
- Hubei Key Laboratory of Cardiology, Wuhan, China
| | - Bin Kong
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China
- Cardiovascular Research Institute of Wuhan University, Wuhan, China
- Hubei Key Laboratory of Cardiology, Wuhan, China
| | - Hongjie Yang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China
- Cardiovascular Research Institute of Wuhan University, Wuhan, China
- Hubei Key Laboratory of Cardiology, Wuhan, China
| | - Chang Dai
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China
- Cardiovascular Research Institute of Wuhan University, Wuhan, China
- Hubei Key Laboratory of Cardiology, Wuhan, China
| | - Jin Fang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China
- Cardiovascular Research Institute of Wuhan University, Wuhan, China
- Hubei Key Laboratory of Cardiology, Wuhan, China
| | - Tianyou Qin
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China
- Cardiovascular Research Institute of Wuhan University, Wuhan, China
- Hubei Key Laboratory of Cardiology, Wuhan, China
| | - He Huang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China
- Cardiovascular Research Institute of Wuhan University, Wuhan, China
- Hubei Key Laboratory of Cardiology, Wuhan, China
| |
Collapse
|
20
|
Yang HJ, Kong B, Shuai W, Zhang JJ, Huang H. MD1 deletion exaggerates cardiomyocyte autophagy induced by heart failure with preserved ejection fraction through ROS/MAPK signalling pathway. J Cell Mol Med 2020; 24:9300-9312. [PMID: 32648659 PMCID: PMC7417689 DOI: 10.1111/jcmm.15579] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Revised: 06/07/2020] [Accepted: 06/10/2020] [Indexed: 12/28/2022] Open
Abstract
In our previous studies, we reported that myeloid differentiation protein 1 (MD1) serves as a negative regulator in several cardiovascular diseases. However, the role of MD1 in heart failure with preserved ejection fraction (HFpEF) and the underlying mechanisms of its action remain unclear. Eight‐week‐old MD1‐knockout (MD1‐KO) and wild‐type (WT) mice served as models of HFpEF induced by uninephrectomy, continuous saline or d‐aldosterone infusion and a 1.0% sodium chloride treatment in drinking water for 4 weeks to investigate the effect of MD1 on HFpEF in vivo. H9C2 cells were treated with aldosterone to evaluate the role of MD1 KO in vitro. MD1 expression was down‐regulated in the HFpEF mice; HFpEF significantly increased the levels of intracellular reactive oxygen species (ROS) and promoted autophagy; and in the MD1‐KO mice, the HFpEF‐induced intracellular ROS and autophagy effects were significantly exacerbated. Moreover, MD1 loss activated the p38‐MAPK pathway both in vivo and in vitro. Aldosterone‐mediated cardiomyocyte autophagy was significantly inhibited in cells pre‐treated with the ROS scavenger N‐acetylcysteine (NAC) or p38 inhibitor SB203580. Furthermore, inhibition with the autophagy inhibitor 3‐methyladenine (3‐MA) offset the aggravating effect of aldosterone‐induced autophagy in the MD1‐KO mice and cells both in vivo and in vitro. Our results validate a critical role of MD1 in the pathogenesis of HFpEF. MD1 deletion exaggerates cardiomyocyte autophagy in HFpEF via the activation of the ROS‐mediated MAPK signalling pathway.
Collapse
Affiliation(s)
- Hong-Jie Yang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuchang, China.,Cardiovascular Research Institute, Wuhan University, Wuchang, China.,Hubei Key Laboratory of Cardiology, Wuchang, China
| | - Bin Kong
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuchang, China.,Cardiovascular Research Institute, Wuhan University, Wuchang, China.,Hubei Key Laboratory of Cardiology, Wuchang, China
| | - Wei Shuai
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuchang, China.,Cardiovascular Research Institute, Wuhan University, Wuchang, China.,Hubei Key Laboratory of Cardiology, Wuchang, China
| | - Jing-Jing Zhang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuchang, China.,Cardiovascular Research Institute, Wuhan University, Wuchang, China.,Hubei Key Laboratory of Cardiology, Wuchang, China
| | - He Huang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuchang, China.,Cardiovascular Research Institute, Wuhan University, Wuchang, China.,Hubei Key Laboratory of Cardiology, Wuchang, China
| |
Collapse
|
21
|
Liu Z, Tao B, Fan S, Cui S, Pu Y, Qiu L, Xia H, Xu L. Over-expression of microRNA-145 drives alterations in β-adrenergic signaling and attenuates cardiac remodeling in heart failure post myocardial infarction. Aging (Albany NY) 2020; 12:11603-11622. [PMID: 32554856 PMCID: PMC7343449 DOI: 10.18632/aging.103320] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Accepted: 04/28/2020] [Indexed: 12/13/2022]
Abstract
Background: Numerous studies have highlighted the crucial role of microRNA-145 (miR-145) in coronary atherosclerosis and myocardial ischemia reperfusion injury. However, effects of miR-145 on β-adrenergic signaling and cardiac remodeling in heart failure (HF) remains unclarified. Methods and Results: We established HF model in rats with left anterior descending coronary artery (LAD) occlusion. Four weeks after LAD ligation, rats showed substantial aggravation of cardiac dilation and electrophysiological instability. Up-regulation of miR-145 ameliorated HF-induced myocardial fibrosis and prolonged action potential duration. Echocardiography revealed increased basal contractility and decreased left ventricular inner-diameter in miR-145 over-expressed heart, while cardiac response to β-adrenergic receptor (βAR) stimulation was reduced. Furthermore, miR-145 increased L-type calcium current (ICa) density while decreased ICa response to β-adrenergic stimulation with isoproterenol. The alterations in βAR signaling might be predominant due to miR-145-mediated activation of Akt/CREB cascades. At high frequency pacing, Ca2+ transient, cell shortening and frequency of Ca2+ waves were significantly improved in AD-miR-145 group. Western blotting revealed that increased expression of Cav1.2, Ca2+-ATPase, β2AR, GNAI3 and decreased level of CaMKII might be attributed to the cardioprotective effects of miR-145. Conclusion: miR-145 effectively alleviates HF-related cardiac remodeling by improving cardiac dilation, fibrosis, intracellular Ca2+ mishandling and electrophysiological instability.
Collapse
Affiliation(s)
- Zhebo Liu
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, PR China.,Cardiovascular Research Institute, Wuhan University, Wuhan, PR China.,Hubei Key Laboratory of Cardiology, Wuhan, PR China
| | - Bo Tao
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, PR China.,Cardiovascular Research Institute, Wuhan University, Wuhan, PR China.,Hubei Key Laboratory of Cardiology, Wuhan, PR China
| | - Suzhen Fan
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, PR China.,Cardiovascular Research Institute, Wuhan University, Wuhan, PR China.,Hubei Key Laboratory of Cardiology, Wuhan, PR China
| | - Shengyu Cui
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, PR China.,Cardiovascular Research Institute, Wuhan University, Wuhan, PR China.,Hubei Key Laboratory of Cardiology, Wuhan, PR China
| | - Yong Pu
- Renmin Hospital of Hannan, Renmin Hospital of Wuhan University, Wuhan, PR China
| | - Liqiang Qiu
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, PR China.,Cardiovascular Research Institute, Wuhan University, Wuhan, PR China.,Hubei Key Laboratory of Cardiology, Wuhan, PR China
| | - Hao Xia
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, PR China.,Cardiovascular Research Institute, Wuhan University, Wuhan, PR China.,Hubei Key Laboratory of Cardiology, Wuhan, PR China
| | - Lin Xu
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, PR China.,Cardiovascular Research Institute, Wuhan University, Wuhan, PR China.,Hubei Key Laboratory of Cardiology, Wuhan, PR China
| |
Collapse
|
22
|
Wang G, Kong B, Shuai W, Fu H, Jiang X, Huang H. 3,3-Dimethyl-1-butanol attenuates cardiac remodeling in pressure-overload-induced heart failure mice. J Nutr Biochem 2020; 78:108341. [PMID: 32004931 DOI: 10.1016/j.jnutbio.2020.108341] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2019] [Revised: 12/23/2019] [Accepted: 12/30/2019] [Indexed: 12/15/2022]
Abstract
Trimethylamine N-oxide (TMAO) is closely related to cardiovascular diseases, particularly heart failure (HF). Recent studies shows that 3,3-dimethyl-1-butanol (DMB) can reduce plasma TMAO levels. However, the role of DMB in overload-induced HF is not well understood. In this research study, we explored the effects and the underlying mechanisms of DMB in overload-induced HF. Aortic banding (AB) surgery was performed in C57BL6/J mice to induce HF, and a subset group of mice underwent a sham operation. After surgery, the mice were fed with a normal diet and given water supplemented with or without 1% DMB for 6 weeks. Cardiac function, plasma TMAO level, cardiac hypertrophy and fibrosis, expression of inflammatory, electrophysiological studies and signaling pathway were analyzed at the sixth week after AB surgery. DMB reduced TMAO levels in overload-induced HF mice. Adverse cardiac structural remodeling, such as cardiac hypertrophy, fibrosis and inflammation, was elevated in overload-induced HF mice. Susceptibility to ventricular arrhythmia also significantly increased in overload-induced HF mice. However, these changes were prevented by DMB treatment. DMB attenuated all of these changes by reducing plasma TMAO levels, hence negatively inhibiting the p65 NF-κB signaling pathway and TGF-β1/Smad3 signaling pathway. DMB plays an important role in attenuating the development of cardiac structural remodeling and electrical remodeling in overload-induced HF mice. This may be attributed to the p65 NF-κB signaling pathway and TGF-β1/Smad3 signaling pathway inhibition.
Collapse
Affiliation(s)
- Guangji Wang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, Hubei, China; Cardiovascular Research Institute, Wuhan University, Wuhan, Hubei, China; Hubei Key Laboratory of Cardiology, Wuhan, Hubei, China
| | - Bin Kong
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, Hubei, China; Cardiovascular Research Institute, Wuhan University, Wuhan, Hubei, China; Hubei Key Laboratory of Cardiology, Wuhan, Hubei, China
| | - Wei Shuai
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, Hubei, China; Cardiovascular Research Institute, Wuhan University, Wuhan, Hubei, China; Hubei Key Laboratory of Cardiology, Wuhan, Hubei, China
| | - Hui Fu
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, Hubei, China; Cardiovascular Research Institute, Wuhan University, Wuhan, Hubei, China; Hubei Key Laboratory of Cardiology, Wuhan, Hubei, China
| | - Xiaobo Jiang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, Hubei, China; Cardiovascular Research Institute, Wuhan University, Wuhan, Hubei, China; Hubei Key Laboratory of Cardiology, Wuhan, Hubei, China
| | - He Huang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, Hubei, China; Cardiovascular Research Institute, Wuhan University, Wuhan, Hubei, China; Hubei Key Laboratory of Cardiology, Wuhan, Hubei, China.
| |
Collapse
|
23
|
Shuai W, Kong B, Fu H, Jiang X, Huang H. The effect of MD1 on potassium and L-type calcium current of cardiomyocytes from high-fat diet mice. Channels (Austin) 2020; 14:181-189. [PMID: 32491968 PMCID: PMC7515570 DOI: 10.1080/19336950.2020.1772628] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
Myeloid differentiation protein 1 (MD1) is exerted an anti-arrhythmic effect in obese mice. Therefore, we sought to clarify whether MD1 can alter the electrophysiological remodeling of cardiac myocytes from obese mice by regulating voltage-gated potassium current and calcium current. MD1 knock-out (KO) and wild type (WT) mice were given a high-fat diet (HFD) for 20 weeks, starting at the age of 6 weeks. The potential electrophysiological mechanisms were estimated by whole-cell patch-clamp and molecular analysis. After 20-week HFD feeding, action potential duration (APD) from left ventricular myocytes of MD1-KO mice revealed APD20, APD50, and APD90 were profoundly enlarged. Furthermore, HFD mice showed a decrease in the fast transient outward potassium currents (Ito,f), slowly inactivating potassium current (IK, slow), and inward rectifier potassium current (IK1). Besides, HFD-fed mice showed that the current density of ICaL was significantly lower, and the haft inactivation voltage was markedly shifted right. These HFD induced above adverse effects were further exacerbated in KO mice. The mRNA expression of potassium ion channels (Kv4.2, Kv4.3, Kv2.1, Kv1.5, and Kir2.1) and calcium ion channel (Cav1.2) was markedly decreased in MD1-KO HFD-fed mice. MD1 deletion led to down-regulated potassium currents and slowed inactivation of L-type calcium channel in an obese mice model.
Collapse
Affiliation(s)
- Wei Shuai
- Department of Cardiology, Renmin Hospital of Wuhan University , Wuhan, Hubei, China.,Cardiovascular Research Institute of Wuhan University , Wuhan, Hubei, China.,Hubei Key Laboratory of Cardiology , Wuhan, Hubei, China
| | - Bin Kong
- Department of Cardiology, Renmin Hospital of Wuhan University , Wuhan, Hubei, China.,Cardiovascular Research Institute of Wuhan University , Wuhan, Hubei, China.,Hubei Key Laboratory of Cardiology , Wuhan, Hubei, China
| | - Hui Fu
- Department of Cardiology, Renmin Hospital of Wuhan University , Wuhan, Hubei, China.,Cardiovascular Research Institute of Wuhan University , Wuhan, Hubei, China.,Hubei Key Laboratory of Cardiology , Wuhan, Hubei, China
| | - Xiaobo Jiang
- Department of Cardiology, Renmin Hospital of Wuhan University , Wuhan, Hubei, China.,Cardiovascular Research Institute of Wuhan University , Wuhan, Hubei, China.,Hubei Key Laboratory of Cardiology , Wuhan, Hubei, China
| | - He Huang
- Department of Cardiology, Renmin Hospital of Wuhan University , Wuhan, Hubei, China.,Cardiovascular Research Institute of Wuhan University , Wuhan, Hubei, China.,Hubei Key Laboratory of Cardiology , Wuhan, Hubei, China
| |
Collapse
|
24
|
Zhang YJ, Huang H, Liu Y, Kong B, Wang G. MD-1 Deficiency Accelerates Myocardial Inflammation and Apoptosis in Doxorubicin-Induced Cardiotoxicity by Activating the TLR4/MAPKs/Nuclear Factor kappa B (NF-κB) Signaling Pathway. Med Sci Monit 2019; 25:7898-7907. [PMID: 31636246 PMCID: PMC6820359 DOI: 10.12659/msm.919861] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Accepted: 10/02/2019] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Myocardial apoptosis and inflammation play important roles in doxorubicin (DOX)-caused cardiotoxicity. Our prior studies have characterized the effects of myeloid differentiation protein 1(MD-1) in pathological cardiac remodeling and myocardial ischemia/reperfusion (I/R) injury, but its participations and potential molecular mechanisms in DOX-caused cardiotoxicity remain unknown. MATERIAL AND METHODS In the present study, MD-1 knockout mice were generated, and a single intraperitoneal injection of DOX (15 mg/kg) was performed to elicit DOX-induced cardiotoxicity. Cardiac function, histological change, mitochondrial structure, myocardial death, apoptosis, inflammation, and molecular alterations were measured systemically. RESULTS The results showed that the protein and mRNA levels of MD-1 were dramatically downregulated in DOX-treated cardiomyocytes. DOX insult markedly accelerated cardiac dysfunction and injury, followed by enhancements of apoptosis and inflammation, all of which were further aggravated in MD-1 knockout mice. Mechanistically, the TLR4/MAPKs/NF-kappaB pathways, which were over-activated in MD-1-deficient mice, were significantly increased in DOX-damaged cardiomyocytes. Moreover, the abolishment of TLR4 or NF-kappaB via a specific inhibitor exerted protective effects against the adverse effects of MD-1 loss on DOX-caused cardiotoxicity. CONCLUSIONS Collectively, these findings suggest that MD-1 is a novel target for the treatment of DOX-induced cardiotoxicity.
Collapse
Affiliation(s)
- Ying-Jun Zhang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, Hubei, P.R. China
- Cardiovascular Research Institute of Wuhan University, Wuhan, Hubei, P.R. China
- Hubei Key Laboratory of Cardiology, Wuhan, Hubei, P.R. China
| | - He Huang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, Hubei, P.R. China
- Cardiovascular Research Institute of Wuhan University, Wuhan, Hubei, P.R. China
- Hubei Key Laboratory of Cardiology, Wuhan, Hubei, P.R. China
| | - Yu Liu
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, Hubei, P.R. China
- Cardiovascular Research Institute of Wuhan University, Wuhan, Hubei, P.R. China
- Hubei Key Laboratory of Cardiology, Wuhan, Hubei, P.R. China
| | - Bin Kong
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, Hubei, P.R. China
- Cardiovascular Research Institute of Wuhan University, Wuhan, Hubei, P.R. China
- Hubei Key Laboratory of Cardiology, Wuhan, Hubei, P.R. China
| | - Guangji Wang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, Hubei, P.R. China
- Cardiovascular Research Institute of Wuhan University, Wuhan, Hubei, P.R. China
- Hubei Key Laboratory of Cardiology, Wuhan, Hubei, P.R. China
| |
Collapse
|
25
|
MicroRNA-145 Protects against Myocardial Ischemia Reperfusion Injury via CaMKII-Mediated Antiapoptotic and Anti-Inflammatory Pathways. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2019; 2019:8948657. [PMID: 31583047 PMCID: PMC6754948 DOI: 10.1155/2019/8948657] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Revised: 06/14/2019] [Accepted: 08/02/2019] [Indexed: 12/16/2022]
Abstract
MicroRNA-145 (miR-145) has been shown to play an important role in cardiovascular system disorders; however, the underlying mechanism is not completely understood. The purpose of this study was aimed at elucidating the cardioprotective effects of miR-145 against myocardial ischemia/reperfusion (I/R) injury. We established a rat myocardial I/R model with 45 min left anterior descending coronary artery (LAD) occlusion and 2 h reperfusion. The levels of myocardial enzymes, apoptotic, inflammatory, and oxidative indices were determined. The arrhythmia score was assessed by programmed electrical stimulation (PES). Quantitative real-time PCR and western blot were applied to evaluate the expression levels of miR-145 and related target proteins, respectively. I/R injury decreased the expression of miR-145; however, upregulated miR-145 markedly reduced the elevation of ST segment, decreased corrected QT (QTc) intervals, and attenuated I/R-induced electrophysiological instability. Furthermore, miR-145 suppressed myocardium apoptotic, inflammatory, and oxidative response as well as the phosphorylation of Ca2+/calmodulin-dependent protein kinase II (CaMKII), ryanodine receptor2 (RyR2 Ser2814), apoptosis signal-regulating kinase 1 (ASK1), c-Jun NH2-terminal kinases (JNK), and nuclear translocation of nuclear factor kappa-B (NF-κB) p65. In summary, overexpression of miR-145 alleviates I/R-induced myocardial electrophysiological instability and apoptotic and inflammatory response via inhibition of the CaMKII-mediated ASK1 antiapoptotic pathway and NF-κB p65 anti-inflammatory pathways.
Collapse
|
26
|
Shuai W, Kong B, Fu H, Shen C, Huang H. Loss of MD1 increases vulnerability to ventricular arrhythmia in diet-induced obesity mice via enhanced activation of the TLR4/MyD88/CaMKII signaling pathway. Nutr Metab Cardiovasc Dis 2019; 29:991-998. [PMID: 31353205 DOI: 10.1016/j.numecd.2019.06.004] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/24/2019] [Revised: 05/09/2019] [Accepted: 06/10/2019] [Indexed: 12/18/2022]
Abstract
BACKGROUND AND AIM Obesity is an important risk factor for ventricular arrhythmia (VA), and myeloid differentiation protein 1 (MD1) has been reported to decrease in obese hearts. Nevertheless, underlying mechanisms linking MD1 and VA have not been fully studied. This study aims to investigate the regulatory role of MD1 in VA caused by diet-induced obesity. METHODS AND RESULTS MD1 knock-out (KO) and wild type (WT) mice from experimental groups were fed with a high-fat diet (HFD) since the age of six weeks for 20 weeks. The body weight gain, fast glucose and serum lipid levels were measured and recorded. In addition, pathological analysis, echocardiography, electrocardiography, langendorff-perfused heart and molecular analysis were performed to detect HFD-induced vulnerability to VA and its underlying mechanisms. After a 20-week HFD feeding, the mice showed an increase in body weight, glycemic, lipid levels, QTc interval, LVEDd, LVEDs and LVFS. HFD feeding also increased vulnerability to VA, as shown by the prolonged action potential duration (APD), enhanced APD alternans threshold and greater incidence of VA. Moreover, HFD feeding caused LV hypertrophy and fibrosis, and decreased the protein expressions of Kv4.2, Kv4.3, Kv1.5, Kv2.1 and Cav1.2 channels. At last, the above-mentioned HFD-induced adverse effects were further exacerbated in KO mice compared with WT mice. Mechanistically, MD1 deletion markedly enhanced the activation of TLR4/MyD88/CaMKII signaling pathway in HFD-fed mice. CONCLUSION MD1 deficiency increased HFD-induced vulnerability to VA. This is mainly caused by the aggravated maladaptive LV hypertrophy, fibrosis and decreased protein expressions of ion channels, which are induced by the enhanced activation of the TLR4/MyD88/CaMKII signaling pathway.
Collapse
Affiliation(s)
- Wei Shuai
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, Hubei, China; Cardiovascular Research Institute of Wuhan University, Wuhan, Hubei, China; Hubei Key Laboratory of Cardiology, Wuhan, Hubei, China
| | - Bin Kong
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, Hubei, China; Cardiovascular Research Institute of Wuhan University, Wuhan, Hubei, China; Hubei Key Laboratory of Cardiology, Wuhan, Hubei, China
| | - Hui Fu
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, Hubei, China; Cardiovascular Research Institute of Wuhan University, Wuhan, Hubei, China; Hubei Key Laboratory of Cardiology, Wuhan, Hubei, China
| | - Caijie Shen
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, Hubei, China; Cardiovascular Research Institute of Wuhan University, Wuhan, Hubei, China; Hubei Key Laboratory of Cardiology, Wuhan, Hubei, China
| | - He Huang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, Hubei, China; Cardiovascular Research Institute of Wuhan University, Wuhan, Hubei, China; Hubei Key Laboratory of Cardiology, Wuhan, Hubei, China.
| |
Collapse
|
27
|
Shen CJ, Kong B, Shuai W, Liu Y, Wang GJ, Xu M, Zhao JJ, Fang J, Fu H, Jiang XB, Huang H. Myeloid differentiation protein 1 protected myocardial function against high-fat stimulation induced pathological remodelling. J Cell Mol Med 2019; 23:5303-5316. [PMID: 31140723 PMCID: PMC6653035 DOI: 10.1111/jcmm.14407] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2018] [Revised: 04/08/2019] [Accepted: 05/06/2019] [Indexed: 11/30/2022] Open
Abstract
Myeloid differentiation 1 (MD‐1) is a secreted protein that regulates the immune response of B cell through interacting with radioprotective 105 (RP105). Disrupted immune response may contribute to the development of cardiac diseases, while the roles of MD‐1 remain elusive. Our studies aimed to explore the functions and molecular mechanisms of MD‐1 in obesity‐induced cardiomyopathy. H9C2 myocardial cells were treated with free fatty acid (FFA) containing palmitic acid and oleic acid to challenge high‐fat stimulation and adenoviruses harbouring human MD‐1 coding sequences or shRNA for MD‐1 overexpression or knockdown in vitro. MD‐1 overexpression or knockdown transgenic mice were generated to assess the effects of MD‐1 on high‐fat diet (HD) induced cardiomyopathy in vivo. Our results showed that MD‐1 was down‐regulated in H9C2 cells exposed to FFA stimulation for 48 hours and in obesity mice induced by HD for 20 weeks. Both in vivo and in vitro, silencing of MD‐1 accelerated myocardial function injury induced by HD stimulation through increased cardiac hypertrophy and fibrosis, while overexpression of MD‐1 alleviated the effects of HD by inhibiting the process of cardiac remodelling. Moreover, the MAPK and NF‐κB pathways were overactivated in MD‐1 deficient mice and H9C2 cells after high‐fat treatment. Inhibition of MAPK and NF‐κB pathways played a cardioprotective role against the adverse effects of MD‐1 silencing on high‐fat stimulation induced pathological remodelling. In conclusion, MD‐1 protected myocardial function against high‐fat stimulation induced cardiac pathological remodelling through negative regulation for MAPK/NF‐κB signalling pathways, providing feasible strategies for obesity cardiomyopathy.
Collapse
Affiliation(s)
- Cai-Jie Shen
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, PR China.,Cardiovascular Research Institute of Wuhan University, Wuhan, PR China.,Hubei Key Laboratory of Cardiology, Wuhan, PR China
| | - Bin Kong
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, PR China.,Cardiovascular Research Institute of Wuhan University, Wuhan, PR China.,Hubei Key Laboratory of Cardiology, Wuhan, PR China
| | - Wei Shuai
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, PR China.,Cardiovascular Research Institute of Wuhan University, Wuhan, PR China.,Hubei Key Laboratory of Cardiology, Wuhan, PR China
| | - Yu Liu
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, PR China.,Cardiovascular Research Institute of Wuhan University, Wuhan, PR China.,Hubei Key Laboratory of Cardiology, Wuhan, PR China
| | - Guang-Ji Wang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, PR China.,Cardiovascular Research Institute of Wuhan University, Wuhan, PR China.,Hubei Key Laboratory of Cardiology, Wuhan, PR China
| | - Min Xu
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, PR China.,Cardiovascular Research Institute of Wuhan University, Wuhan, PR China.,Hubei Key Laboratory of Cardiology, Wuhan, PR China
| | - Jing-Jing Zhao
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, PR China.,Cardiovascular Research Institute of Wuhan University, Wuhan, PR China.,Hubei Key Laboratory of Cardiology, Wuhan, PR China
| | - Jin Fang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, PR China.,Cardiovascular Research Institute of Wuhan University, Wuhan, PR China.,Hubei Key Laboratory of Cardiology, Wuhan, PR China
| | - Hui Fu
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, PR China.,Cardiovascular Research Institute of Wuhan University, Wuhan, PR China.,Hubei Key Laboratory of Cardiology, Wuhan, PR China
| | - Xiao-Bo Jiang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, PR China.,Cardiovascular Research Institute of Wuhan University, Wuhan, PR China.,Hubei Key Laboratory of Cardiology, Wuhan, PR China
| | - He Huang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, PR China.,Cardiovascular Research Institute of Wuhan University, Wuhan, PR China.,Hubei Key Laboratory of Cardiology, Wuhan, PR China
| |
Collapse
|
28
|
Jiang X, Kong B, Shuai W, Shen C, Yang F, Fu H, Huang H. Loss of MD1 exacerbates myocardial ischemia/reperfusion injury and susceptibility to ventricular arrhythmia. Eur J Pharmacol 2019; 844:79-86. [DOI: 10.1016/j.ejphar.2018.11.025] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2018] [Revised: 11/13/2018] [Accepted: 11/16/2018] [Indexed: 12/23/2022]
|
29
|
Shuai W, Kong B, Fu H, Shen C, Jiang X, Huang H. MD1 Deficiency Promotes Inflammatory Atrial Remodelling Induced by High-Fat Diets. Can J Cardiol 2018; 35:208-216. [PMID: 30760428 DOI: 10.1016/j.cjca.2018.11.020] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Revised: 11/26/2018] [Accepted: 11/26/2018] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Myeloid differentiation protein 1 (MD1) is expressed in various tissues, including the heart. However, the role of MD1 in obesity-related atrial remodelling remains incompletely understood. Here, this study intends to determine the regulatory role and underlying mechanisms of MD1 in obesity-related atrial remodelling. METHODS A high-fat diet (HFD) feeding was performed in 6-week-old MD1-knockout (MD1-KO) mice and wild-type (WT) littermates for 20 weeks. Morphological, biochemical, functional, histological, and electrophysiological studies were conducted at the age of 26 weeks. RESULTS Our results revealed that the MD1 expression levels were downregulated in the atrium of the HFD-fed induced obesity mice. An increase in body weight, glucose intolerance, hyperlipidemia, and adverse atrial remodelling, such as atrial inflammation and fibrosis, were induced by HFD feeding in WT mice. Vulnerability to atrial fibrillation (AF) was also significantly increased by HFD feeding in WT mice. In addition, these adverse effects caused by HFD-fed induced obesity were further exaggerated in MD1-KO mice compared with WT mice. Mechanistically, MD1-KO activated TLR4/NF-κB signaling pathways, which led to atrial remodelling in mice fed by HFD by increasing the phosphorylation of p65 and IκBα. CONCLUSIONS Our data suggested that MD1 deficiency played an important role in accelerating the development of inflammatory atrial fibrosis and increasing vulnerability to AF in mice with HFD-fed induced obesity, providing an essential target for improving HFD-induced atrial remodelling.
Collapse
Affiliation(s)
- Wei Shuai
- Department of Cardiology, Renmin Hospital of Wuhan University, Cardiovascular Research Institute of Wuhan University, and Hubei Key Laboratory of Cardiology, Hubei, China
| | - Bin Kong
- Department of Cardiology, Renmin Hospital of Wuhan University, Cardiovascular Research Institute of Wuhan University, and Hubei Key Laboratory of Cardiology, Hubei, China
| | - Hui Fu
- Department of Cardiology, Renmin Hospital of Wuhan University, Cardiovascular Research Institute of Wuhan University, and Hubei Key Laboratory of Cardiology, Hubei, China
| | - Caijie Shen
- Department of Cardiology, Renmin Hospital of Wuhan University, Cardiovascular Research Institute of Wuhan University, and Hubei Key Laboratory of Cardiology, Hubei, China
| | - Xiaobo Jiang
- Department of Cardiology, Renmin Hospital of Wuhan University, Cardiovascular Research Institute of Wuhan University, and Hubei Key Laboratory of Cardiology, Hubei, China
| | - He Huang
- Department of Cardiology, Renmin Hospital of Wuhan University, Cardiovascular Research Institute of Wuhan University, and Hubei Key Laboratory of Cardiology, Hubei, China.
| |
Collapse
|
30
|
Sun Y, Liu L, Yuan J, Sun Q, Wang N, Wang Y. RP105 protects PC12 cells from oxygen‑glucose deprivation/reoxygenation injury via activation of the PI3K/AKT signaling pathway. Int J Mol Med 2018; 41:3081-3089. [PMID: 29436577 DOI: 10.3892/ijmm.2018.3482] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2017] [Accepted: 01/10/2018] [Indexed: 11/06/2022] Open
Abstract
Radioprotective 105 kDa protein (RP105) has been reported to produce favorable outcomes in various cardiovascular disorders via a toll‑like receptor 4‑dependent or ‑independent manner. However, whether RP105 exerts neuroprotective effects against oxygen‑glucose deprivation (OGD)/reoxygenation (OGD/R) injury remains to be elucidated. In the present study, the PC12 neuronal cell line was exposed to 4 h of OGD followed by 24 h of reoxygenation. Adenoviral vectors encoding RP105 were utilized to upregulate the level of RP105 in PC12 cells prior to OGD/R induction. The results demonstrated that OGD/R reduced the expression of RP105 at the mRNA and protein levels. The overexpression of RP105 significantly reversed OGD/R‑induced neuronal injuries, as demonstrated by the reduced release of lactate dehydrogenate and enhanced cellular viability, in addition to decreased inflammation, apoptosis and reactive oxygen species. The mechanistic evaluations indicated that the neuroprotective functions of RP105 were, in part, a result of activation of the phosphatidylinositol 3‑kinase (PI3K)/protein kinase B (AKT) pathway. In addition, elimination of the PI3K/AKT axis via the use of a pharmacological inhibitor inhibited the OGD/R‑inhibitory effects induced by the overexpression of RP105. Taken together, RP105 protected PC12 cells from OGD/R injury through promotion of the PI3K/AKT pathway; therefore, the RP105‑PI3K‑AKT axis may provide a novel therapeutic target for the prevention of cerebral ischemia/reperfusion injury.
Collapse
Affiliation(s)
- Yanpeng Sun
- Department of Neurology, Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei 442000, P.R. China
| | - Lu Liu
- Department of Neurology, Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei 442000, P.R. China
| | - Jiang Yuan
- Department of Neurology, Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei 442000, P.R. China
| | - Qiang Sun
- Department of Neurology, Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei 442000, P.R. China
| | - Na Wang
- Department of Neurology, Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei 442000, P.R. China
| | - Yunfu Wang
- Department of Neurology, Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei 442000, P.R. China
| |
Collapse
|