1
|
Zybin DI, Klishin AA, Orlova NV, Zyryanov DА, Prostyakova AI, Kapustin DV. Separation of recombinant erythropoietin and human serum albumin without the use of sophisticated equipment. Anal Biochem 2025; 696:115673. [PMID: 39278518 DOI: 10.1016/j.ab.2024.115673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 09/11/2024] [Accepted: 09/12/2024] [Indexed: 09/18/2024]
Abstract
A number of drugs based on recombinant erythropoietin contain human serum albumin as an auxiliary component. The presence of this protein hinders the proper control of the drug quality in accordance with the requirements of regulating agencies. We propose the novel method for separation of recombinant erythropoietin (epoetin beta) and human serum albumin. It is based on the subsequent use of hydrophobic sorbent and anion exchange resin placed in gravity flow columns (without the use of spin-columns). The proposed approach makes it possible to concentrate and purify the preparations containing the epoetin beta both at high and at minimal concentrations (the ratio of the amount of albumin and erythropoietin in the used preparations can reach 125:1). The average yield of epoetin beta after the use of hydrophobic sorbent and anion exchange resin was 75 % and 97 %, respectively. It was shown that the determined conditions of sample preparation had no affect on the content of the epoetin beta in the product.
Collapse
Affiliation(s)
| | | | | | | | - Anna I Prostyakova
- M.M. Shemyakin and Yu.A. Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997, Moscow, Russia
| | - Dmitry V Kapustin
- M.M. Shemyakin and Yu.A. Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997, Moscow, Russia
| |
Collapse
|
2
|
Molnarova K, Krizek T, Kozlik P. The potential of polyaniline-coated stationary phase in hydrophilic interaction liquid chromatography-based solid-phase extraction for glycopeptide enrichment. J Chromatogr B Analyt Technol Biomed Life Sci 2024; 1237:124099. [PMID: 38547700 DOI: 10.1016/j.jchromb.2024.124099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 03/06/2024] [Accepted: 03/17/2024] [Indexed: 04/13/2024]
Abstract
Glycopeptide enrichment is a crucial step in glycoproteomic analysis, often achieved through solid-phase extraction (SPE) on polar stationary phases in hydrophilic interaction liquid chromatography (HILIC). This study explores the potential of polyaniline (PANI)-coated silica gel for enriching human immunoglobulin G (IgG). Experimental conditions were varied to assess their impact on glycopeptide enrichment efficiency, comparing PANI-cotton wool SPE with conventional cotton wool as SPE sorbents. Two formic acid concentrations (0.1% and 1%) in elution solvent were tested, revealing that higher concentrations led to earlier elution of studied glycopeptides, especially for sialylated glycopeptides. Substituting formic acid with acetic acid increased the interaction of neutral glycopeptides with the PANI-modified sorbent, while sialylated glycopeptides showed no significant change in enrichment efficiency. Acetonitrile concentration in the elution solvent (5%, 10%, and 20%) affected the enrichment efficiency with most glycopeptides eluting at the lowest acetonitrile concentration. The acetonitrile concentration in conditioning and washing solutions (65%, 75%, and 85%) played a crucial role; at 65% acetonitrile, glycopeptides were least retained on the stationary phase, and neutral glycopeptides were even detected in the flow-through fraction. This study shows the potential of in-house-prepared PANI-modified sorbents for SPE-HILIC glycopeptide enrichment, highlighting the crucial role of tuning experimental conditions in sample preparation to enhance enrichment efficiency and selectivity.
Collapse
Affiliation(s)
- Katarina Molnarova
- Department of Analytical Chemistry, Faculty of Science, Charles University, Prague, Czech Republic
| | - Tomas Krizek
- Department of Analytical Chemistry, Faculty of Science, Charles University, Prague, Czech Republic
| | - Petr Kozlik
- Department of Analytical Chemistry, Faculty of Science, Charles University, Prague, Czech Republic.
| |
Collapse
|
3
|
O’Flaherty R, Amez Martín M, Gardner RA, Jennings PM, Rudd PM, Spencer DIR, Falck D. Erythropoietin N-glycosylation of Therapeutic Formulations Quantified and Characterized: An Interlab Comparability Study of High-Throughput Methods. Biomolecules 2024; 14:125. [PMID: 38254725 PMCID: PMC10813422 DOI: 10.3390/biom14010125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 01/05/2024] [Accepted: 01/10/2024] [Indexed: 01/24/2024] Open
Abstract
Recombinant human erythropoietin (EPO) is a biopharmaceutical frequently used in the treatment of anemia. It is a heavily glycosylated protein with a diverse and complex glycome. EPO N-glycosylation influences important pharmacological parameters, prominently serum half-life. Therefore, EPO N-glycosylation analysis is of the utmost importance in terms of controlling critical quality attributes. In this work, we performed an interlaboratory study of glycoanalytical techniques for profiling and in-depth characterization, namely (1) hydrophilic interaction liquid chromatography with fluorescence detection after 2-aminobenzamide labeling (HILIC-FLD(2AB)) and optional weak anion exchange chromatography (WAX) fractionation and exoglycosidase digestion, (2) HILIC-FLD after procainamide labeling (PROC) optionally coupled to electrospray ionization-MS and (3) matrix-assisted laser desorption ionization time-of-flight mass spectrometry (MALDI-MS). All techniques showed good precision and were able to differentiate the unique N-glycosylation profiles of the various EPO preparations. HILIC-FLD showed higher precision, while MALDI-TOF-MS covered the most analytes. However, HILIC-FLD differentiated isomeric N-glycans, i.e., N-acetyllactosamine repeats and O-acetylation regioisomers. For routine profiling, HILIC-FLD methods are more accessible and cover isomerism in major structures, while MALDI-MS covers more minor analytes with an attractively high throughput. For in-depth characterization, MALDI-MS and HILIC-FLD(2AB)/WAX give a similar amount of orthogonal information. HILIC-FLD(PROC)-MS is attractive for covering isomerism of major structures with a significantly less extensive workflow compared to HILIC-FLD(2AB)/WAX.
Collapse
Affiliation(s)
- Róisín O’Flaherty
- National Institute for Bioprocessing, Research and Training, Fosters Avenue, Blackrock, A94 X099 Dublin, Ireland (P.M.J.)
- Department of Chemistry, Maynooth University, W23 F2K8 Maynooth, Ireland
| | - Manuela Amez Martín
- Ludger Ltd., Culham Science Centre, Abingdon OX14 3EB, UK; (M.A.M.); (R.A.G.); (D.I.R.S.)
- Center for Proteomics and Metabolomics, Leiden University Medical Center, Albinusdreef 2, 2333 ZA Leiden, The Netherlands
| | - Richard A. Gardner
- Ludger Ltd., Culham Science Centre, Abingdon OX14 3EB, UK; (M.A.M.); (R.A.G.); (D.I.R.S.)
| | - Patrick M. Jennings
- National Institute for Bioprocessing, Research and Training, Fosters Avenue, Blackrock, A94 X099 Dublin, Ireland (P.M.J.)
| | - Pauline M. Rudd
- National Institute for Bioprocessing, Research and Training, Fosters Avenue, Blackrock, A94 X099 Dublin, Ireland (P.M.J.)
| | - Daniel I. R. Spencer
- Ludger Ltd., Culham Science Centre, Abingdon OX14 3EB, UK; (M.A.M.); (R.A.G.); (D.I.R.S.)
| | - David Falck
- Center for Proteomics and Metabolomics, Leiden University Medical Center, Albinusdreef 2, 2333 ZA Leiden, The Netherlands
| |
Collapse
|
4
|
Harvey DJ. Analysis of carbohydrates and glycoconjugates by matrix-assisted laser desorption/ionization mass spectrometry: An update for 2017-2018. MASS SPECTROMETRY REVIEWS 2023; 42:227-431. [PMID: 34719822 DOI: 10.1002/mas.21721] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2021] [Revised: 07/26/2021] [Accepted: 07/26/2021] [Indexed: 06/13/2023]
Abstract
This review is the tenth update of the original article published in 1999 on the application of matrix-assisted laser desorption/ionization mass spectrometry (MALDI) mass spectrometry to the analysis of carbohydrates and glycoconjugates and brings coverage of the literature to the end of 2018. Also included are papers that describe methods appropriate to glycan and glycoprotein analysis by MALDI, such as sample preparation techniques, even though the ionization method is not MALDI. Topics covered in the first part of the review include general aspects such as theory of the MALDI process, new methods, matrices, derivatization, MALDI imaging, fragmentation and the use of arrays. The second part of the review is devoted to applications to various structural types such as oligo- and poly-saccharides, glycoproteins, glycolipids, glycosides, and biopharmaceuticals. Most of the applications are presented in tabular form. The third part of the review covers medical and industrial applications of the technique, studies of enzyme reactions, and applications to chemical synthesis. The reported work shows increasing use of combined new techniques such as ion mobility and highlights the impact that MALDI imaging is having across a range of diciplines. MALDI is still an ideal technique for carbohydrate analysis and advancements in the technique and the range of applications continue steady progress.
Collapse
Affiliation(s)
- David J Harvey
- Nuffield Department of Medicine, Target Discovery Institute, University of Oxford, Oxford, UK
| |
Collapse
|
5
|
Saghaleyni R, Malm M, Moruzzi N, Zrimec J, Razavi R, Wistbacka N, Thorell H, Pintar A, Hober A, Edfors F, Chotteau V, Berggren PO, Grassi L, Zelezniak A, Svensson T, Hatton D, Nielsen J, Robinson JL, Rockberg J. Enhanced metabolism and negative regulation of ER stress support higher erythropoietin production in HEK293 cells. Cell Rep 2022; 39:110936. [PMID: 35705050 DOI: 10.1016/j.celrep.2022.110936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 01/05/2022] [Accepted: 05/18/2022] [Indexed: 11/16/2022] Open
Abstract
Recombinant protein production can cause severe stress on cellular metabolism, resulting in limited titer and product quality. To investigate cellular and metabolic characteristics associated with these limitations, we compare HEK293 clones producing either erythropoietin (EPO) (secretory) or GFP (non-secretory) protein at different rates. Transcriptomic and functional analyses indicate significantly higher metabolism and oxidative phosphorylation in EPO producers compared with parental and GFP cells. In addition, ribosomal genes exhibit specific expression patterns depending on the recombinant protein and the production rate. In a clone displaying a dramatically increased EPO secretion, we detect higher gene expression related to negative regulation of endoplasmic reticulum (ER) stress, including upregulation of ATF6B, which aids EPO production in a subset of clones by overexpression or small interfering RNA (siRNA) knockdown. Our results offer potential target pathways and genes for further development of the secretory power in mammalian cell factories.
Collapse
Affiliation(s)
- Rasool Saghaleyni
- Department of Biology and Biological Engineering, Chalmers University of Technology, 412 96 Gothenburg, Sweden
| | - Magdalena Malm
- KTH - Royal Institute of Technology, School of Engineering Sciences in Chemistry, Biotechnology, and Health, Department of Protein Science, 106 91 Stockholm, Sweden
| | - Noah Moruzzi
- The Rolf Luft Research Center for Diabetes and Endocrinology, Department of Molecular Medicine and Surgery, Karolinska Institute, 17176 Stockholm, Sweden
| | - Jan Zrimec
- Department of Biology and Biological Engineering, Chalmers University of Technology, 412 96 Gothenburg, Sweden
| | - Ronia Razavi
- KTH - Royal Institute of Technology, School of Engineering Sciences in Chemistry, Biotechnology, and Health, Department of Protein Science, 106 91 Stockholm, Sweden
| | - Num Wistbacka
- KTH - Royal Institute of Technology, School of Engineering Sciences in Chemistry, Biotechnology, and Health, Department of Protein Science, 106 91 Stockholm, Sweden
| | - Hannes Thorell
- KTH - Royal Institute of Technology, School of Engineering Sciences in Chemistry, Biotechnology, and Health, Department of Protein Science, 106 91 Stockholm, Sweden
| | - Anton Pintar
- KTH - Royal Institute of Technology, School of Engineering Sciences in Chemistry, Biotechnology, and Health, Department of Protein Science, 106 91 Stockholm, Sweden
| | - Andreas Hober
- Science for Life Laboratory, KTH - Royal Institute of Technology, 171 65 Solna, Sweden
| | - Fredrik Edfors
- Science for Life Laboratory, KTH - Royal Institute of Technology, 171 65 Solna, Sweden
| | - Veronique Chotteau
- KTH - Royal Institute of Technology, School of Engineering Sciences in Chemistry, Biotechnology, and Health, Department of Industrial Biotechnology, 106 91 Stockholm, Sweden
| | - Per-Olof Berggren
- The Rolf Luft Research Center for Diabetes and Endocrinology, Department of Molecular Medicine and Surgery, Karolinska Institute, 17176 Stockholm, Sweden
| | - Luigi Grassi
- Cell Culture & Fermentation Sciences, BioPharmaceutical Development, BioPharmaceuticals R&D, AstraZeneca, Cambridge, UK
| | - Aleksej Zelezniak
- Department of Biology and Biological Engineering, Chalmers University of Technology, 412 96 Gothenburg, Sweden
| | - Thomas Svensson
- Department of Biology and Biological Engineering, Chalmers University of Technology, 412 96 Gothenburg, Sweden; Department of Biology and Biological Engineering, National Bioinformatics Infrastructure Sweden, Science for Life Laboratory, Chalmers University of Technology, Kemivägen 10, 41258 Gothenburg, Sweden
| | - Diane Hatton
- Cell Culture & Fermentation Sciences, BioPharmaceutical Development, BioPharmaceuticals R&D, AstraZeneca, Cambridge, UK
| | - Jens Nielsen
- Department of Biology and Biological Engineering, Chalmers University of Technology, 412 96 Gothenburg, Sweden; Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, 2800 Kongens Lyngby, Denmark
| | - Jonathan L Robinson
- Department of Biology and Biological Engineering, Chalmers University of Technology, 412 96 Gothenburg, Sweden; Department of Biology and Biological Engineering, National Bioinformatics Infrastructure Sweden, Science for Life Laboratory, Chalmers University of Technology, Kemivägen 10, 41258 Gothenburg, Sweden.
| | - Johan Rockberg
- KTH - Royal Institute of Technology, School of Engineering Sciences in Chemistry, Biotechnology, and Health, Department of Protein Science, 106 91 Stockholm, Sweden.
| |
Collapse
|
6
|
Forgrave LM, Wang M, Yang D, DeMarco ML. Proteoforms and their expanding role in laboratory medicine. Pract Lab Med 2022; 28:e00260. [PMID: 34950758 PMCID: PMC8672040 DOI: 10.1016/j.plabm.2021.e00260] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2021] [Revised: 10/31/2021] [Accepted: 11/22/2021] [Indexed: 12/17/2022] Open
Abstract
The term “proteoforms” describes the range of different structures of a protein product of a single gene, including variations in amino acid sequence and post-translational modifications. This diversity in protein structure contributes to the biological complexity observed in living organisms. As the concentration of a particular proteoform may increase or decrease in abnormal physiological states, proteoforms have long been used in medicine as biomarkers of health and disease. Notably, the analytical approaches used to analyze proteoforms have evolved considerably over the years. While ligand binding methods continue to play a large role in proteoform measurement in the clinical laboratory, unanticipated or unknown post-translational modifications and sequence variants can upend even extensively tested and vetted assays that have successfully made it through the medical regulatory process. As an alternate approach, mass spectrometry—with its high molecular selectivity—has become an essential tool in detection, characterization, and quantification of proteoforms in biological fluids and tissues. This review explores the analytical techniques used for proteoform detection and quantification, with an emphasis on mass spectrometry and its various applications in clinical research and patient care including, revealing new biomarker targets, helping improve the design of contemporary ligand binding in vitro diagnostics, and as mass spectrometric laboratory developed tests used in routine patient care.
Collapse
Affiliation(s)
- Lauren M. Forgrave
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, Canada
| | - Meng Wang
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, Canada
| | - David Yang
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, Canada
| | - Mari L. DeMarco
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, Canada
- Department of Pathology and Laboratory Medicine, St. Paul's Hospital, Providence Health Care, 1081 Burrard St, Vancouver, V6Z 1Y6, Canada
- Corresponding author. Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, Canada.
| |
Collapse
|
7
|
Lippold S, Thavarajah R, Reusch D, Wuhrer M, Nicolardi S. Glycoform analysis of intact erythropoietin by MALDI FT-ICR mass spectrometry. Anal Chim Acta 2021; 1185:339084. [PMID: 34711323 DOI: 10.1016/j.aca.2021.339084] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 09/13/2021] [Accepted: 09/19/2021] [Indexed: 10/20/2022]
Abstract
Recombinant human erythropoietin (EPO) is a complex therapeutic glycoprotein with three N- and one O-glycosylation sites. Glycosylation of EPO influences its safety and efficacy and is defined as a critical quality attribute. Thus, analytical methods for profiling EPO glycosylation are highly demanded. Owing to the complexity of the intact protein, information about EPO glycosylation is commonly derived from released glycan and glycopeptide analysis using mass spectrometry (MS). Alternatively, comprehensive insights into the glycoform heterogeneity of intact EPO are obtained using ESI MS-based methods with or without upfront separation of EPO glycoforms. MALDI MS, typically performed with TOF mass analyzers, has been also used for the analysis of intact EPO but, due to the poor glycoform resolution, has only provided limited glycoform information. Here, we present a MALDI FT-ICR MS method for the glycosylation profiling of intact EPO with improved glycoform resolution and without loss of sialic acid residues commonly observed in MALDI analysis. Three EPO variants were characterized in-depth and up to 199 glycoform compositions were assigned from the evaluation of doubly-charged ions, without any deconvolution of the mass spectra. Key glycosylation features such as sialylation, acetylation, and N-acetyllactosamine repeats were determined and found to agree with previously reported data obtained from orthogonal analyses. The developed method allowed for a fast and straightforward data acquisition and evaluation and can be potentially used for the high-throughput comparison of EPO samples throughout its manufacturing process.
Collapse
Affiliation(s)
- Steffen Lippold
- Center for Proteomics and Metabolomics, Leiden University Medical Center, Leiden, the Netherlands.
| | - Raashina Thavarajah
- Center for Proteomics and Metabolomics, Leiden University Medical Center, Leiden, the Netherlands
| | - Dietmar Reusch
- Pharma Technical Development Penzberg, Roche Diagnostics GmbH, Penzberg, Germany
| | - Manfred Wuhrer
- Center for Proteomics and Metabolomics, Leiden University Medical Center, Leiden, the Netherlands
| | - Simone Nicolardi
- Center for Proteomics and Metabolomics, Leiden University Medical Center, Leiden, the Netherlands.
| |
Collapse
|
8
|
Guzman NA, Guzman DE. Immunoaffinity Capillary Electrophoresis in the Era of Proteoforms, Liquid Biopsy and Preventive Medicine: A Potential Impact in the Diagnosis and Monitoring of Disease Progression. Biomolecules 2021; 11:1443. [PMID: 34680076 PMCID: PMC8533156 DOI: 10.3390/biom11101443] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 09/22/2021] [Accepted: 09/29/2021] [Indexed: 01/08/2023] Open
Abstract
Over the years, multiple biomarkers have been used to aid in disease screening, diagnosis, prognosis, and response to therapy. As of late, protein biomarkers are gaining strength in their role for early disease diagnosis and prognosis in part due to the advancements in identification and characterization of a distinct functional pool of proteins known as proteoforms. Proteoforms are defined as all of the different molecular forms of a protein derived from a single gene caused by genetic variations, alternative spliced RNA transcripts and post-translational modifications. Monitoring the structural changes of each proteoform of a particular protein is essential to elucidate the complex molecular mechanisms that guide the course of disease. Clinical proteomics therefore holds the potential to offer further insight into disease pathology, progression, and prevention. Nevertheless, more technologically advanced diagnostic methods are needed to improve the reliability and clinical applicability of proteomics in preventive medicine. In this manuscript, we review the use of immunoaffinity capillary electrophoresis (IACE) as an emerging powerful diagnostic tool to isolate, separate, detect and characterize proteoform biomarkers obtained from liquid biopsy. IACE is an affinity capture-separation technology capable of isolating, concentrating and analyzing a wide range of biomarkers present in biological fluids. Isolation and concentration of target analytes is accomplished through binding to one or more biorecognition affinity ligands immobilized to a solid support, while separation and analysis are achieved by high-resolution capillary electrophoresis (CE) coupled to one or more detectors. IACE has the potential to generate rapid results with significant accuracy, leading to reliability and reproducibility in diagnosing and monitoring disease. Additionally, IACE has the capability of monitoring the efficacy of therapeutic agents by quantifying companion and complementary protein biomarkers. With advancements in telemedicine and artificial intelligence, the implementation of proteoform biomarker detection and analysis may significantly improve our capacity to identify medical conditions early and intervene in ways that improve health outcomes for individuals and populations.
Collapse
Affiliation(s)
| | - Daniel E. Guzman
- Princeton Biochemicals, Inc., Princeton, NJ 08543, USA;
- Division of Hospital Medicine, Department of Medicine, University of California at San Francisco, San Francisco, CA 94143, USA
| |
Collapse
|
9
|
Shanta PV, Li B, Stuart DD, Cheng Q. Lipidomic Profiling of Algae with Microarray MALDI-MS toward Ecotoxicological Monitoring of Herbicide Exposure. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2021; 55:10558-10568. [PMID: 34286960 DOI: 10.1021/acs.est.1c01138] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Misuse of agrochemicals has a long-lasting negative impact on aquatic systems. Mismanagement of herbicides in agri-food sectors is often linked to a simultaneous decline in the health of downstream waterways. However, monitoring the herbicide levels in these areas is a laborious task, and modern analytical approaches, such as solid-phase extraction-liquid chromatography-mass spectrometry (SPE-LC-MS) and enzyme-linked immunosorbent assay, are low-throughput and require significant sample preparation. We report here the use of microchip technology in combination with matrix-assisted laser desorption ionization mass spectrometry (MALDI-MS) for the assessment of the ecotoxicological effect of agrochemicals on aquatic species at the single-cell level. This approach quantifies the fluctuations in lipid content in sentinel organisms and targets the microalga, Chlamydomonas reinhardtii (C. reinhardtii), as the model system. Specifically, we investigated the cytotoxicity of three herbicides (atrazine, clomazone, and norflurazon) on C. reinhardtii by analyzing the lipid component variation upon assorted herbicide exposure. Lipidomic profiling reveals a significantly altered lipid content at >EC50 in atrazine-exposed cells. The response for norflurazon showed similar trends but diminished in magnitude, while the result for clomazone was near muted. At lower herbicide concentrations, digalactosyldiacylglycerols showed a rapid decrease in abundance, while several other lipids displayed a moderate increase. The microchip-based MALDI technique demonstrates the ability to achieve lipidomic profiling of aquatic species exposed to different stressors, proving effective for high-throughput screening and single-cell analysis in ecotoxicity studies.
Collapse
Affiliation(s)
- Peter V Shanta
- Environmental Toxicology, University of California, Riverside, California 92521, United States
| | - Bochao Li
- Environmental Toxicology, University of California, Riverside, California 92521, United States
| | - Daniel D Stuart
- Department of Chemistry, University of California, Riverside, California 92521, United States
| | - Quan Cheng
- Environmental Toxicology, University of California, Riverside, California 92521, United States
- Department of Chemistry, University of California, Riverside, California 92521, United States
| |
Collapse
|
10
|
Chen S, Wu D, Robinson CV, Struwe WB. Native Mass Spectrometry Meets Glycomics: Resolving Structural Detail and Occupancy of Glycans on Intact Glycoproteins. Anal Chem 2021; 93:10435-10443. [PMID: 34279906 DOI: 10.1021/acs.analchem.1c01460] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Glycoproteins are inherently heterogeneous and therefore resolving structures in their entirety remains a major challenge in structural biology. Native mass spectrometry has transformed our ability to study glycoproteins, and despite advances in high-resolution instrumentation, there are comparatively a few studies demonstrating its potential with data largely limited to an overall measure of monosaccharide composition for all glycans across glycosylation sites for a given protein. Clearly, these readouts lack glycan topology information, namely, monosaccharide linkage and glycan branching. To address this deficiency, we developed a new approach that joins native mass spectrometry with glycan exoglycosidase sequencing, the combination of which provides remarkable glycoprotein structural details. We show how N-glycan branching, terminal fucosylation, LacNAc extensions, and N- and O-glycan occupancy (i.e., total number of glycans) can be directly characterized on intact glycoproteins with minimal sample preparation. Taken together, native exoglycosidase sequencing mass spectrometry (NES-MS) notably improves our ability to characterize protein glycosylation, addressing a significant need in structural biology that will enable new routes to understand glycoprotein function.
Collapse
Affiliation(s)
- Siyun Chen
- Physical and Theoretical Chemistry, Department of Chemistry, University of Oxford, OX1 3QZ Oxford, U.K
| | - Di Wu
- Physical and Theoretical Chemistry, Department of Chemistry, University of Oxford, OX1 3QZ Oxford, U.K
| | - Carol V Robinson
- Physical and Theoretical Chemistry, Department of Chemistry, University of Oxford, OX1 3QZ Oxford, U.K
| | - Weston B Struwe
- Physical and Theoretical Chemistry, Department of Chemistry, University of Oxford, OX1 3QZ Oxford, U.K
| |
Collapse
|
11
|
Guan Y, Zhang M, Gaikwad M, Voss H, Fazel R, Ansari S, Shen H, Wang J, Schlüter H. An Integrated Strategy Reveals Complex Glycosylation of Erythropoietin Using Mass Spectrometry. J Proteome Res 2021; 20:3654-3663. [PMID: 34110173 PMCID: PMC9472269 DOI: 10.1021/acs.jproteome.1c00221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Abstract
![]()
The characterization of therapeutic glycoproteins is challenging
due to the structural heterogeneity of the therapeutic protein glycosylation.
This study presents an in-depth analytical strategy for glycosylation
of first-generation erythropoietin (epoetin beta), including a developed
mass spectrometric workflow for N-glycan analysis, bottom-up mass
spectrometric methods for site-specific N-glycosylation, and a LC-MS
approach for O-glycan identification. Permethylated N-glycans, peptides,
and enriched glycopeptides of erythropoietin were analyzed by nanoLC-MS/MS,
and de-N-glycosylated erythropoietin was measured by LC-MS, enabling
the qualitative and quantitative analysis of glycosylation and different
glycan modifications (e.g., phosphorylation and O-acetylation). The
newly developed Python scripts enabled the identification of 140 N-glycan
compositions (237 N-glycan structures) from erythropoietin, especially
including 8 phosphorylated N-glycan species. The site-specificity
of N-glycans was revealed at the glycopeptide level by pGlyco software
using different proteases. In total, 114 N-glycan compositions were
identified from glycopeptide analysis. Moreover, LC-MS analysis of
de-N-glycosylated erythropoietin species identified two O-glycan compositions
based on the mass shifts between non-O-glycosylated and O-glycosylated
species. Finally, this integrated strategy was proved to realize the
in-depth glycosylation analysis of a therapeutic glycoprotein to understand
its pharmacological properties and improving the manufacturing processes.
Collapse
Affiliation(s)
- Yudong Guan
- The First Affiliated Hospital (Shenzhen People's Hospital), Southern University of Science and Technology, Shenzhen 518055, China
| | - Min Zhang
- Section Mass Spectrometric Proteomics, Institute of Clinical Chemistry and Laboratory Medicine, University Medical Center Hamburg-Eppendorf, Hamburg 20246, Germany
| | - Manasi Gaikwad
- Section Mass Spectrometric Proteomics, Institute of Clinical Chemistry and Laboratory Medicine, University Medical Center Hamburg-Eppendorf, Hamburg 20246, Germany
| | - Hannah Voss
- Section Mass Spectrometric Proteomics, Institute of Clinical Chemistry and Laboratory Medicine, University Medical Center Hamburg-Eppendorf, Hamburg 20246, Germany
| | - Ramin Fazel
- Reasearch and Innovation Center, Livogen Pharmed Co., Tehran 1417755358, Iran
| | - Samira Ansari
- CinnaGen Medical Biotechnology Research Center, Alborz University of Medical Sciences, Karaj 3165933155, Iran
| | - Huali Shen
- Department of Systems Biology for Medicine, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China
| | - Jigang Wang
- The First Affiliated Hospital (Shenzhen People's Hospital), Southern University of Science and Technology, Shenzhen 518055, China
| | - Hartmut Schlüter
- Section Mass Spectrometric Proteomics, Institute of Clinical Chemistry and Laboratory Medicine, University Medical Center Hamburg-Eppendorf, Hamburg 20246, Germany
| |
Collapse
|
12
|
Pongracz T, Verhoeven A, Wuhrer M, de Haan N. The structure and role of lactone intermediates in linkage-specific sialic acid derivatization reactions. Glycoconj J 2021; 38:157-166. [PMID: 33459939 PMCID: PMC8052245 DOI: 10.1007/s10719-020-09971-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 12/21/2020] [Accepted: 12/30/2020] [Indexed: 01/12/2023]
Abstract
Sialic acids occur ubiquitously throughout vertebrate glycomes and often endcap glycans in either α2,3- or α2,6-linkage with diverse biological roles. Linkage-specific sialic acid characterization is increasingly performed by mass spectrometry, aided by differential sialic acid derivatization to discriminate between linkage isomers. Typically, during the first step of such derivatization reactions, in the presence of a carboxyl group activator and a catalyst, α2,3-linked sialic acids condense with the subterminal monosaccharides to form lactones, while α2,6-linked sialic acids form amide or ester derivatives. In a second step, the lactones are converted into amide derivatives. Notably, the structure and role of the lactone intermediates in the reported reactions remained ambiguous, leaving it unclear to which extent the amidation of α2,3-linked sialic acids depended on direct aminolysis of the lactone, rather than lactone hydrolysis and subsequent amidation. In this report, we used mass spectrometry to unravel the role of the lactone intermediate in the amidation of α2,3-linked sialic acids by applying controlled reaction conditions on simple and complex glycan standards. The results unambiguously show that in common sialic acid derivatization protocols prior lactone formation is a prerequisite for the efficient, linkage-specific amidation of α2,3-linked sialic acids, which proceeds predominantly via direct aminolysis. Furthermore, nuclear magnetic resonance spectroscopy confirmed that exclusively the C2 lactone intermediate is formed on a sialyllactose standard. These insights allow a more rationalized method development for linkage-specific sialic derivatization in the future.
Collapse
Affiliation(s)
- Tamas Pongracz
- Center for Proteomics and Metabolomics, Leiden University Medical Center, 2333ZA, Leiden, The Netherlands
| | - Aswin Verhoeven
- Center for Proteomics and Metabolomics, Leiden University Medical Center, 2333ZA, Leiden, The Netherlands
| | - Manfred Wuhrer
- Center for Proteomics and Metabolomics, Leiden University Medical Center, 2333ZA, Leiden, The Netherlands
| | - Noortje de Haan
- Center for Proteomics and Metabolomics, Leiden University Medical Center, 2333ZA, Leiden, The Netherlands.
- Copenhagen Center for Glycomics, University of Copenhagen, 2200, Copenhagen, Denmark.
| |
Collapse
|
13
|
Lin Z, King R, Tang V, Myers G, Balbin-Cuesta G, Friedman A, McGee B, Desch K, Ozel AB, Siemieniak D, Reddy P, Emmer B, Khoriaty R. The Endoplasmic Reticulum Cargo Receptor SURF4 Facilitates Efficient Erythropoietin Secretion. Mol Cell Biol 2020; 40:e00180-20. [PMID: 32989016 PMCID: PMC7652404 DOI: 10.1128/mcb.00180-20] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 05/20/2020] [Accepted: 09/24/2020] [Indexed: 12/16/2022] Open
Abstract
Erythropoietin (EPO) stimulates erythroid differentiation and maturation. Though the transcriptional regulation of EPO has been well studied, the molecular determinants of EPO secretion remain unknown. Here, we generated a HEK293T reporter cell line that provides a quantifiable and selectable readout of intracellular EPO levels and performed a genome-scale CRISPR screen that identified SURF4 as an important mediator of EPO secretion. Targeting SURF4 with multiple independent single guide RNAs (sgRNAs) resulted in intracellular accumulation and extracellular depletion of EPO. Both of these phenotypes were rescued by expression of SURF4 cDNA. Additionally, we found that disruption of SURF4 resulted in accumulation of EPO in the endoplasmic reticulum (ER) compartment and that SURF4 and EPO physically interact. Furthermore, SURF4 disruption in Hep3B cells also caused a defect in the secretion of endogenous EPO under conditions mimicking hypoxia, ruling out an artifact of heterologous overexpression. This work demonstrates that SURF4 functions as an ER cargo receptor that mediates the efficient secretion of EPO. Our findings also suggest that modulating SURF4 may be an effective treatment for disorders of erythropoiesis that are driven by aberrant EPO levels. Finally, we show that SURF4 overexpression results in increased secretion of EPO, suggesting a new strategy for more efficient production of recombinant EPO.
Collapse
Affiliation(s)
- Zesen Lin
- Department of Pharmacology, University of Michigan, Ann Arbor, Michigan, USA
| | - Richard King
- Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, USA
| | - Vi Tang
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, Michigan, USA
| | - Greggory Myers
- Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, Michigan, USA
| | - Ginette Balbin-Cuesta
- Cellular and Molecular Biology Program, University of Michigan, Ann Arbor, Michigan, USA
- Medical Scientist Training Program, University of Michigan, Ann Arbor, Michigan, USA
| | - Ann Friedman
- Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, USA
| | - Beth McGee
- Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, USA
| | - Karl Desch
- Cellular and Molecular Biology Program, University of Michigan, Ann Arbor, Michigan, USA
- Department of Pediatrics, University of Michigan, Ann Arbor, Michigan, USA
| | - Ayse Bilge Ozel
- Department of Human Genetics, University of Michigan, Ann Arbor, Michigan, USA
| | - David Siemieniak
- Life Sciences Institute, University of Michigan, Ann Arbor, Michigan, USA
| | - Pavan Reddy
- Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, USA
- Cellular and Molecular Biology Program, University of Michigan, Ann Arbor, Michigan, USA
- University of Michigan Rogel Cancer Center, Ann Arbor, Michigan, USA
| | - Brian Emmer
- Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, USA
| | - Rami Khoriaty
- Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, USA
- Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, Michigan, USA
- Cellular and Molecular Biology Program, University of Michigan, Ann Arbor, Michigan, USA
- University of Michigan Rogel Cancer Center, Ann Arbor, Michigan, USA
| |
Collapse
|
14
|
Capdeville P, Martin L, Cholet S, Damont A, Audran M, Ericsson M, Fenaille F, Marchand A. Evaluation of erythropoietin biosimilars Epotin™, Hemax® and Jimaixin™ by electrophoretic methods used for doping control analysis and specific N-glycan analysis revealed structural differences from original epoetin alfa drug Eprex®. J Pharm Biomed Anal 2020; 194:113750. [PMID: 33234415 DOI: 10.1016/j.jpba.2020.113750] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Revised: 10/28/2020] [Accepted: 10/30/2020] [Indexed: 12/24/2022]
Abstract
Recombinant human erythropoietin (rEPO) biosimilars are copies of epoetin drugs developed after the first patents ended. However differences in the process of production can result in small structural differences when compared to the reference product. Differences in N-glycosylation profiles are of particular importance for rEPOs, because they can drastically impact the half-life in circulation and activity. Changes of structure can also impact electrophoretic profiles that are used to reveal the presence of a rEPO in a doping control sample. In this study three not well characterized biosimilars were evaluated (Jimaixin™ authorized in China, and Hemax® and Epotin™ authorized in Algeria). As these products could be used for doping, first their EPO profiles were determined using the antidoping methods (electrophoretic separation by the charge (isolectric focusing, IEF-PAGE) or the molecular weight (SDS-PAGE) and specific EPO immunodetection). Compared to the original epoetin alfa Eprex®, it revealed more basic isoforms for Epotin™ and Jimaixin™ after IEF-PAGE and a slightly lower molecular weight after SDS-PAGE in particular for Hemax®. To better understand the reason for these differences, EPO specific N-glycans were evaluated using two complementary approaches: MALDI-TOF mass spectrometry (MS) and hydrophilic interaction liquid chromatography (HILIC) with fluorescence detection. All three biosimilars presented a significant decrease in the major glycan forms of Eprex® along with an increase in less complex forms. Jimaixin™ and Epotin™ presented also a lower amount of fully sialylated forms. HILIC method also showed that O-acetylation level of sialic acid residues might vary from one rEPO to the other.
Collapse
Affiliation(s)
- Perrine Capdeville
- Analyses Department, Agence Française de Lutte contre le Dopage (AFLD), Châtenay-Malabry, France
| | - Laurent Martin
- Analyses Department, Agence Française de Lutte contre le Dopage (AFLD), Châtenay-Malabry, France
| | - Sophie Cholet
- Université Paris-Saclay, CEA, INRAE, Département Médicaments et Technologies pour la Santé (DMTS), MetaboHUB, F-91191, Gif sur Yvette, France
| | - Annelaure Damont
- Université Paris-Saclay, CEA, INRAE, Département Médicaments et Technologies pour la Santé (DMTS), MetaboHUB, F-91191, Gif sur Yvette, France
| | - Michel Audran
- Analyses Department, Agence Française de Lutte contre le Dopage (AFLD), Châtenay-Malabry, France
| | - Magnus Ericsson
- Analyses Department, Agence Française de Lutte contre le Dopage (AFLD), Châtenay-Malabry, France
| | - François Fenaille
- Université Paris-Saclay, CEA, INRAE, Département Médicaments et Technologies pour la Santé (DMTS), MetaboHUB, F-91191, Gif sur Yvette, France
| | - Alexandre Marchand
- Analyses Department, Agence Française de Lutte contre le Dopage (AFLD), Châtenay-Malabry, France.
| |
Collapse
|
15
|
Pralow A, Cajic S, Alagesan K, Kolarich D, Rapp E. State-of-the-Art Glycomics Technologies in Glycobiotechnology. ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 2020; 175:379-411. [PMID: 33112988 DOI: 10.1007/10_2020_143] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Glycosylation affects the properties of biologics; thus regulatory bodies classified it as critical quality attribute and force biopharma industry to capture and control it throughout all phases, from R&D till end of product lifetime. The shift from originators to biosimilars further increases importance and extent of glycoanalysis, which thus increases the need for technology platforms enabling reliable high-throughput and in-depth glycan analysis. In this chapter, we will first summarize on established glycoanalytical methods based on liquid chromatography focusing on hydrophilic interaction chromatography, capillary electrophoresis focusing on multiplexed capillary gel electrophoresis, and mass spectrometry focusing on matrix-assisted laser desorption; we will then highlight two emerging technologies based on porous graphitized carbon liquid chromatography and on ion-mobility mass spectrometry as both are highly promising tools to deliver an additional level of information for in-depth glycan analysis; additionally we elaborate on the advantages and challenges of different glycoanalytical technologies and their complementarity; finally, we briefly review applications thereof to biopharmaceutical products. This chapter provides an overview of current state-of-the-art analytical approaches for glycan characterization of biopharmaceuticals that can be employed to capture glycoprotein heterogeneity in a biopharmaceutical context.
Collapse
Affiliation(s)
- Alexander Pralow
- Max Planck Institute for Dynamics of Complex Technical Systems, Magdeburg, Germany
| | - Samanta Cajic
- Max Planck Institute for Dynamics of Complex Technical Systems, Magdeburg, Germany
| | - Kathirvel Alagesan
- Institute for Glycomics, Griffith University, Gold Coast, QLD, Australia
| | - Daniel Kolarich
- Institute for Glycomics, Griffith University, Gold Coast, QLD, Australia
- ARC Centre of Excellence in Nanoscale Biophotonics, Griffith University, Gold Coast, QLD, Australia
| | - Erdmann Rapp
- Max Planck Institute for Dynamics of Complex Technical Systems, Magdeburg, Germany.
- glyXera GmbH, Magdeburg, Germany.
| |
Collapse
|
16
|
Lippold S, Büttner A, Choo MSF, Hook M, de Jong CJ, Nguyen-Khuong T, Haberger M, Reusch D, Wuhrer M, de Haan N. Cysteine Aminoethylation Enables the Site-Specific Glycosylation Analysis of Recombinant Human Erythropoietin using Trypsin. Anal Chem 2020; 92:9476-9481. [PMID: 32578997 DOI: 10.1021/acs.analchem.0c01794] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Recombinant human erythropoietin (rhEPO) is an important biopharmaceutical for which glycosylation is a critical quality attribute. Therefore, robust analytical methods are needed for the in-depth characterization of rhEPO glycosylation. Currently, the protease GluC is widely established for the site-specific glycosylation analysis of rhEPO. However, this enzyme shows disadvantages, such as its specificity and the characteristics of the resulting (glyco)peptides. The use of trypsin, the gold standard protease in proteomics, as the sole protease for rhEPO is compromised, as no natural tryptic cleavage site is located between the glycosylation sites Asn24 and Asn38. Here, cysteine aminoethylation using 2-bromoethylamine was applied as an alternative alkylation strategy to introduce artificial tryptic cleavage sites at Cys29 and Cys33 in rhEPO. The (glyco)peptides resulting from a subsequent digestion using trypsin were analyzed by reverse-phase liquid chromatography-mass spectrometry. The new trypsin-based workflow was easily implemented by adapting the alkylation step in a conventional workflow and was directly compared to an established approach using GluC. The new method shows an improved specificity, a significantly reduced chromatogram complexity, allows for shorter analysis times, and simplifies data evaluation. Furthermore, the method allows for the monitoring of additional attributes, such as oxidation and deamidation at specific sites in parallel to the site-specific glycosylation analysis of rhEPO.
Collapse
Affiliation(s)
- Steffen Lippold
- Center for Proteomics and Metabolomics, Leiden University Medical Center, Albinusdreef 2, 2333 ZA Leiden, The Netherlands
| | - Alexander Büttner
- Pharma Technical Development, Roche Diagnostics GmbH, Nonnenwald 2, 82377 Penzberg, Germany
| | - Matthew S F Choo
- Bioprocessing Technology Institute, Agency for Science Technology and Research, 20 Biopolis Way No. 06-01, Singapore 138668
| | - Michaela Hook
- Pharma Technical Development, Roche Diagnostics GmbH, Nonnenwald 2, 82377 Penzberg, Germany
| | - Coen J de Jong
- Center for Proteomics and Metabolomics, Leiden University Medical Center, Albinusdreef 2, 2333 ZA Leiden, The Netherlands
| | - Terry Nguyen-Khuong
- Bioprocessing Technology Institute, Agency for Science Technology and Research, 20 Biopolis Way No. 06-01, Singapore 138668
| | - Markus Haberger
- Pharma Technical Development, Roche Diagnostics GmbH, Nonnenwald 2, 82377 Penzberg, Germany
| | - Dietmar Reusch
- Pharma Technical Development, Roche Diagnostics GmbH, Nonnenwald 2, 82377 Penzberg, Germany
| | - Manfred Wuhrer
- Center for Proteomics and Metabolomics, Leiden University Medical Center, Albinusdreef 2, 2333 ZA Leiden, The Netherlands
| | - Noortje de Haan
- Center for Proteomics and Metabolomics, Leiden University Medical Center, Albinusdreef 2, 2333 ZA Leiden, The Netherlands
| |
Collapse
|
17
|
Glycomics studies using sialic acid derivatization and mass spectrometry. Nat Rev Chem 2020; 4:229-242. [PMID: 37127981 DOI: 10.1038/s41570-020-0174-3] [Citation(s) in RCA: 78] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/20/2020] [Indexed: 12/13/2022]
Abstract
Proteins can undergo glycosylation during and/or after translation to afford glycoconjugates, which are often secreted by a cell or populate cell surfaces. Changes in the glycan portion can have a strong influence on a glycoconjugate and are associated with a multitude of human pathologies. Of particular interest are sialylated glycoconjugates, which exist as constitutional isomers that differ in their linkages (α2,3, α2,6, α2,8 or α2,9) between sialic acids and their neighbouring monosaccharides. In general, mass spectrometry enables the rapid and sensitive characterization of glycosylation, but there are challenges specific to identifying and (relatively) quantifying sialic acid isomers. These challenges can be addressed using linkage-specific methodologies for sialic acid derivatization, after which mass spectrometry can enable product identification. This Review is concerned with the new and important derivatization approaches reported in the past decade, which have been implemented in various mass-spectrometry-glycomics workflows and have found clinical glycomics applications. The convenience and wide applicability of the approaches make them attractive for studies of sialylation in different types of glycoconjugate.
Collapse
|
18
|
Chi B, Veyssier C, Kasali T, Uddin F, Sellick CA. At-line high throughput site-specific glycan profiling using targeted mass spectrometry. ACTA ACUST UNITED AC 2020; 25:e00424. [PMID: 32071892 PMCID: PMC7016254 DOI: 10.1016/j.btre.2020.e00424] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Revised: 12/24/2019] [Accepted: 01/21/2020] [Indexed: 11/26/2022]
Abstract
High throughput, site-specific glycan profiling using targeted mass spectrometry. Rapid analysis of glycan profiles directly from culture media. Methodology is fully compatible with automation. Methodology can be integrated into cell line selection and process development. Strategy can be used for multi-attribute product quality screening/monitoring.
Protein post-translational modification (PTM) plays an important role in many biological processes; of which glycosylation is arguably one of the most complex and diverse modifications and is crucial for the safety and efficacy of biotherapeutic proteins. Mass spectrometric characterization of protein glycosylation is well established with clear advantages and disadvantages; on one hand it is precise and information-rich, as well as being relative inexpensive in terms of the reagents and consumables despite the instrumentation cost and, depending on the method, can give site specific information; on the other hand it generally suffers from low throughput, restriction to largely purified samples and is less quantitative, especially for sialylated glycan species. Here, we describe a high throughput, site-specific, targeted mass spectrometric peptide mapping approach to quickly screen/rank candidate production cell lines and culture conditions that give favourable glycosylation profiles directly from conditioned culture media for an Fc-fusion protein. The methodology is fully compatible with automation and combines the speed of ‘top-down’ mass spectrometry with the site-specific information of ‘bottom-up’ mass spectrometry. In addition, this strategy can be used for multi-attribute product quality screening/monitoring as an integral part of cell line selection and process development.
Collapse
Affiliation(s)
- Bertie Chi
- MedImmune, Milstein Building, Granta Park, Cambridge, CB21 6GH, UK
| | | | - Toyin Kasali
- MedImmune, Milstein Building, Granta Park, Cambridge, CB21 6GH, UK
| | - Faisal Uddin
- MedImmune, Milstein Building, Granta Park, Cambridge, CB21 6GH, UK
| | | |
Collapse
|
19
|
Ghezlou M, Mokhtari F, Kalbasi A, Riazi G, Kaghazian H, Emadi R, Aref AR. Aggregate Forms of Recombinant Human Erythropoietin With Different Charge Profile Substantially Impact Biological Activities. J Pharm Sci 2019; 109:277-283. [PMID: 31216452 DOI: 10.1016/j.xphs.2019.05.036] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2019] [Revised: 05/13/2019] [Accepted: 05/24/2019] [Indexed: 11/17/2022]
Abstract
Recombinant human erythropoietin (rHuEPO) as a glycoprotein growth factor has been considered a biological drug for treatment of anemic patients with chronic renal failure or who receive cancer chemotherapy. Biological activity and circulation time are 2 parameters that are important to achieve EPO's efficacy. Previous efforts for increasing EPO's efficacy have focused on glycosylation modification via adding more sialic acid antenna and generates more negative charged protein. Evidences cleared that EPO's activity increased by numbers of N-glycan moieties with presence of sialic acids at their terminus. Correlation between bioactivity and glycosylation with terminal sialylation is theoretically achieved using the calculation of the amount of charge profile of the EPO variants called "I-number." Here, we studied and compared the relationship between bioactivities of different EPOs that contained various I-numbers and the effect of their secondary and tertiary protein structures on measured in vivo efficacy. Eight recombinant EPOs batches were produced under the same condition. I-numbers found out by EPO's charge profiles determination using capillary electrophoresis and activities were studied upon erythroid precursor cell stimulation in mice. Analyzing the bioactivity, I-number, and structural studies revealed that in spite of I-number, conformational changes in protein structure and presence of aggregated species impact bioactivity substantially.
Collapse
Affiliation(s)
- Mansoureh Ghezlou
- Biophysics Department, Science and Research Branch, Islamic Azad University, Tehran, Iran; Bioorganic Lab, Biochemistry Department, University of Tehran, Tehran, Iran
| | - Farzad Mokhtari
- Bioorganic Lab, Biochemistry Department, University of Tehran, Tehran, Iran
| | - Alireza Kalbasi
- Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts 02215.
| | | | - Hooman Kaghazian
- Department of Recombinant Biopharmaceutical Production, Research and Production Complex, Pasteur Institute of Iran, Tehran, Iran
| | - Reza Emadi
- Bioorganic Lab, Biochemistry Department, University of Tehran, Tehran, Iran
| | - Amir Reza Aref
- Belfer Center for Applied Cancer Science, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts 02215.
| |
Collapse
|
20
|
Holst S, Wilding JL, Koprowska K, Rombouts Y, Wuhrer M. N-Glycomic and Transcriptomic Changes Associated with CDX1 mRNA Expression in Colorectal Cancer Cell Lines. Cells 2019; 8:cells8030273. [PMID: 30909444 PMCID: PMC6468459 DOI: 10.3390/cells8030273] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2019] [Revised: 03/13/2019] [Accepted: 03/18/2019] [Indexed: 12/13/2022] Open
Abstract
The caudal-related homeobox protein 1 (CDX1) is a transcription factor, which is important in the development, differentiation, and homeostasis of the gut. Although the involvement of CDX genes in the regulation of the expression levels of a few glycosyltransferases has been shown, associations between glycosylation phenotypes and CDX1 mRNA expression have hitherto not been well studied. Triggered by our previous study, we here characterized the N-glycomic phenotype of 16 colon cancer cell lines, selected for their differential CDX1 mRNA expression levels. We found that high CDX1 mRNA expression associated with a higher degree of multi-fucosylation on N-glycans, which is in line with our previous results and was supported by up-regulated gene expression of fucosyltransferases involved in antenna fucosylation. Interestingly, hepatocyte nuclear factors (HNF)4A and HNF1A were, among others, positively associated with high CDX1 mRNA expression and have been previously proven to regulate antenna fucosylation. Besides fucosylation, we found that high CDX1 mRNA expression in cancer cell lines also associated with low levels of sialylation and galactosylation and high levels of bisection on N-glycans. Altogether, our data highlight a possible role of CDX1 in altering the N-glycosylation of colorectal cancer cells, which is a hallmark of tumor development.
Collapse
Affiliation(s)
- Stephanie Holst
- Center for Proteomics and Metabolomics, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands.
| | - Jennifer L Wilding
- Cancer and Immunogenetics Laboratory, Weatherall Institute of Molecular Medicine, Department of Oncology, University of Oxford, Oxford OX3 9DS, UK.
| | - Kamila Koprowska
- Cancer and Immunogenetics Laboratory, Weatherall Institute of Molecular Medicine, Department of Oncology, University of Oxford, Oxford OX3 9DS, UK.
| | - Yoann Rombouts
- Center for Proteomics and Metabolomics, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands.
- Institut de Pharmacologie et de Biologie Structurale, IPBS, Université de Toulouse, CNRS, UPS, 31077 Toulouse, France.
| | - Manfred Wuhrer
- Center for Proteomics and Metabolomics, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands.
| |
Collapse
|
21
|
Molnár T, Bartošová M, Antošová M, Škultéty Ľ, Polakovič M. Cost-effective indirect ELISA method for determination of recombinant human erythropoietin in production streams. CHEMICAL PAPERS 2019. [DOI: 10.1007/s11696-019-00680-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
22
|
Szabo Z, Thayer JR, Reusch D, Agroskin Y, Viner R, Rohrer J, Patil SP, Krawitzky M, Huhmer A, Avdalovic N, Khan SH, Liu Y, Pohl C. High Performance Anion Exchange and Hydrophilic Interaction Liquid Chromatography Approaches for Comprehensive Mass Spectrometry-Based Characterization of the N-Glycome of a Recombinant Human Erythropoietin. J Proteome Res 2018; 17:1559-1574. [DOI: 10.1021/acs.jproteome.7b00862] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Zoltan Szabo
- ThermoFisher Scientific, 1228 Titan Way, Sunnyvale, California 94088, United States
| | - James R. Thayer
- ThermoFisher Scientific, 1228 Titan Way, Sunnyvale, California 94088, United States
| | - Dietmar Reusch
- Roche Diagnostics GmbH, 2 Nonnenwald, Penzberg 82377, Germany
| | - Yury Agroskin
- ThermoFisher Scientific, 1228 Titan Way, Sunnyvale, California 94088, United States
| | - Rosa Viner
- ThermoFisher Scientific, 355 River Oaks Parkway, San Jose, California 95134, United States
| | - Jeff Rohrer
- ThermoFisher Scientific, 1214 Oakmead Parkway, Sunnyvale, California 94085, United States
| | - Sachin P. Patil
- ThermoFisher Scientific, 1214 Oakmead Parkway, Sunnyvale, California 94085, United States
| | - Michael Krawitzky
- ThermoFisher Scientific, 355 River Oaks Parkway, San Jose, California 95134, United States
| | - Andreas Huhmer
- ThermoFisher Scientific, 355 River Oaks Parkway, San Jose, California 95134, United States
| | - Nebojsa Avdalovic
- ThermoFisher Scientific, 1228 Titan Way, Sunnyvale, California 94088, United States
| | - Shaheer H. Khan
- ThermoFisher Scientific, 180 Oyster Point Blvd, South San Francisco, California 94080, United States
| | - Yan Liu
- ThermoFisher Scientific, 1228 Titan Way, Sunnyvale, California 94088, United States
| | - Christopher Pohl
- ThermoFisher Scientific, 1228 Titan Way, Sunnyvale, California 94088, United States
| |
Collapse
|