1
|
Batallas D, Gallego JJ, Casanova-Ferrer F, López-Gramaje A, Rivas-Diaz P, Megías J, Escudero-García D, Durbán L, Benlloch S, Urios A, Hidalgo V, Salvador A, Montoliu C. Sex differences in the mediating role of brain-derived neurotrophic factor between inflammation and memory in cirrhotic patients with minimal hepatic encephalopathy. Brain Behav Immun Health 2025; 46:100998. [PMID: 40343108 PMCID: PMC12060516 DOI: 10.1016/j.bbih.2025.100998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2024] [Revised: 03/12/2025] [Accepted: 04/21/2025] [Indexed: 05/11/2025] Open
Abstract
Minimal hepatic encephalopathy (MHE) affects attention, visuo-motor coordination, and visual perception, with mixed evidence on its impact on memory. Brain-derived neurotrophic factor (BDNF) is associated with memory dysfunction, and plays a crucial role in modulating neuroplasticity. This study investigates the mediating role of BDNF in the relationship between pro-inflammatory cytokines (IL-6, IL-15, IL-18), and declarative memory performance, and the moderating effects of sex. Sixty-eight cirrhotic patients and 22 healthy volunteers performed the Psychometric Hepatic Encephalopathy Score for MHE diagnosis and logical memory subtest (Wechsler Memory Scale-III). Moderated mediation analysis using bias-corrected bootstrapping and multiple regression was performed. Results showed that increased levels of IL-18 and IL-15 were significantly associated with lower BDNF levels (p = 0.03 and p = 0.02 respectively). However, no direct effect was observed between IL-18 and IL-15 and memory. The conditional effects of BDNF on memory were significant only for women with and without MHE, and lower BDNF levels were associated with lower memory performance (without MHE: p = 0.002; MHE: p = 0.001). Moreover, BDNF mediated indirectly the relationship between pro-inflammatory cytokines and memory. IL-18 and IL-15 impacted memory through reduced BDNF levels only in women with and without MHE, whereas IL-6 showed no significant effect on BDNF or memory across groups. These findings underscore the important role of BDNF in memory in cirrhotic patients, especially women with MHE, by mediating the IL-18 and IL-15 effects. The study highlights the role of IL-18 and IL-15 cytokines in neuroplasticity-related memory decline, positioning BDNF as a key biomarker for inflammation-associated cognitive impairment in this population.
Collapse
Affiliation(s)
- Daniela Batallas
- Laboratory of Social Cognitive Neuroscience, Department of Psychobiology and IDOCAL, University of Valencia, 46010, Valencia, Spain
| | - Juan José Gallego
- Fundación Investigación Hospital Clínico Universitario de Valencia. INCLIVA, 46010, Valencia, Spain
- Department of Pathology. University of Valencia, 46010, Valencia, Spain
| | - Franc Casanova-Ferrer
- Fundación Investigación Hospital Clínico Universitario de Valencia. INCLIVA, 46010, Valencia, Spain
| | - Adriá López-Gramaje
- Fundación Investigación Hospital Clínico Universitario de Valencia. INCLIVA, 46010, Valencia, Spain
- Department of Pathology. University of Valencia, 46010, Valencia, Spain
| | - Pablo Rivas-Diaz
- Laboratory of Social Cognitive Neuroscience, Department of Psychobiology and IDOCAL, University of Valencia, 46010, Valencia, Spain
| | - Javier Megías
- Department of Pathology. University of Valencia, 46010, Valencia, Spain
| | - Desamparados Escudero-García
- Servicio de Medicina Digestiva, Hospital Clínico Universitario de Valencia, Spain
- Departamento de Medicina. University of Valencia, 46010 Valencia, Spain
| | - Lucía Durbán
- Servicio de Medicina Digestiva, Hospital Arnau de Vilanova, 46015, Valencia, Spain
| | - Salvador Benlloch
- Servicio de Medicina Digestiva, Hospital Arnau de Vilanova, 46015, Valencia, Spain
- CIBERehd, Instituto de Salud Carlos III, 28029, Madrid, Spain
| | - Amparo Urios
- Fundación Investigación Hospital Clínico Universitario de Valencia. INCLIVA, 46010, Valencia, Spain
| | - Vanesa Hidalgo
- Laboratory of Social Cognitive Neuroscience, Department of Psychobiology and IDOCAL, University of Valencia, 46010, Valencia, Spain
- Department of Psychology and Sociology, Area of Psychobiology, University of Zaragoza, Teruel, Spain
| | - Alicia Salvador
- Laboratory of Social Cognitive Neuroscience, Department of Psychobiology and IDOCAL, University of Valencia, 46010, Valencia, Spain
- Spanish National Network for Research in Mental Health CIBERSAM, 28029, Madrid, Spain
| | - Carmina Montoliu
- Fundación Investigación Hospital Clínico Universitario de Valencia. INCLIVA, 46010, Valencia, Spain
- Department of Pathology. University of Valencia, 46010, Valencia, Spain
| |
Collapse
|
2
|
Gallego JJ, Ballester MP, Fiorillo A, Casanova-Ferrer F, López-Gramaje A, Urios A, Arenas YM, Ríos MP, Durbán L, Megías J, San-Miguel T, Benlloch S, Lluch P, Jalan R, Montoliu C. Ammonia and beyond - biomarkers of hepatic encephalopathy. Metab Brain Dis 2025; 40:100. [PMID: 39812958 PMCID: PMC11735499 DOI: 10.1007/s11011-024-01512-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Accepted: 12/17/2024] [Indexed: 01/16/2025]
Abstract
Ammonia is a product of amino acid metabolism that accumulates in the blood of patients with liver cirrhosis, leading to neurotoxic effects and hepatic encephalopathy (HE). HE manifestations can range from mild, subclinical disturbances in cognition, or minimal HE (mHE) to gross disorientation and coma, a condition referred to as overt HE. Many blood-based biomarkers reflecting these neurotoxic effects of ammonia and liver disease can be measured in the blood allowing the development of new biomarkers to diagnose cirrhosis patients at risk of developing HE. The effect of ammonia on the brain is modulated by severity of systemic inflammation, and both hyperammonemia and inflammation can induce oxidative stress, which may mediate the neurological alterations associated to HE. This review aims to provide the latest evidence on biomarkers of HE beyond ammonia. We present different approaches to predict overt HE based on the combination of blood ammonia with some analytical and clinical parameters. Magnetic resonance analysis of brain images could also provide sensitive diagnostic biomarkers based on neuroimaging parameters. Some reports suggest that markers of systemic inflammation, oxidative stress, and central nervous system-derived components, may serve as additional biomarkers of HE. The involvement of extracellular vesicles and microbiota in the pathophysiology of mHE and HE has recently acquired importance and it would be interesting to explore their usefulness as early biomarkers of the disease. It is important to have a biomarker or a combination of them for early diagnosis of mHE to improve its treatment and prevent progression to overt HE.
Collapse
Affiliation(s)
- Juan-José Gallego
- Fundación de Investigación Hospital Clínico Universitario de Valencia-INCLIVA, Valencia, 46010, Spain
- Departamento de Patología, Universidad de Valencia, Valencia, 46010, Spain
| | - María-Pilar Ballester
- Fundación de Investigación Hospital Clínico Universitario de Valencia-INCLIVA, Valencia, 46010, Spain
- Servicio de Medicina Digestiva, Hospital Clínico Universitario de Valencia, Valencia, 46010, Spain
| | - Alessandra Fiorillo
- Fundación de Investigación Hospital Clínico Universitario de Valencia-INCLIVA, Valencia, 46010, Spain
| | - Franc Casanova-Ferrer
- Fundación de Investigación Hospital Clínico Universitario de Valencia-INCLIVA, Valencia, 46010, Spain
| | | | - Amparo Urios
- Fundación de Investigación Hospital Clínico Universitario de Valencia-INCLIVA, Valencia, 46010, Spain
| | - Yaiza María Arenas
- Departamento de Patología, Universidad de Valencia, Valencia, 46010, Spain
| | - María-Pilar Ríos
- Servicio de Medicina Digestiva, Hospital Arnau de Vilanova, 46015, Valencia, Spain
| | - Lucía Durbán
- Servicio de Medicina Digestiva, Hospital Arnau de Vilanova, 46015, Valencia, Spain
| | - Javier Megías
- Departamento de Patología, Universidad de Valencia, Valencia, 46010, Spain
| | - Teresa San-Miguel
- Departamento de Patología, Universidad de Valencia, Valencia, 46010, Spain
| | - Salvador Benlloch
- Servicio de Medicina Digestiva, Hospital Arnau de Vilanova, 46015, Valencia, Spain
- CIBERehd. Instituto de Salud Carlos III, Madrid, 28029, Spain
- Universidad Cardenal Herrera-CEU Universities, Valencia, 46115, Spain
| | - Paloma Lluch
- Servicio de Medicina Digestiva, Hospital Clínico Universitario de Valencia, Valencia, 46010, Spain
| | - Rajiv Jalan
- Liver Failure Group, Institute for Liver and Digestive Health, University College London, Royal Free Campus, London, UK.
- European Foundation for the Study of Chronic Liver Failure (EF Clif), Barcelona, 08021, Spain.
| | - Carmina Montoliu
- Fundación de Investigación Hospital Clínico Universitario de Valencia-INCLIVA, Valencia, 46010, Spain.
- Departamento de Patología, Universidad de Valencia, Valencia, 46010, Spain.
| |
Collapse
|
3
|
Ntuli Y, Shawcross DL. Infection, inflammation and hepatic encephalopathy from a clinical perspective. Metab Brain Dis 2024; 39:1689-1703. [PMID: 39212845 PMCID: PMC11535002 DOI: 10.1007/s11011-024-01402-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Accepted: 07/23/2024] [Indexed: 09/04/2024]
Abstract
Hepatic encephalopathy (HE) is a syndrome that is associated with both acute and chronic liver injury. It manifests as a wide spectrum of neuropsychological abnormalities, ranging from subtle impairments in executive higher functions observed in cirrhosis, through to coma in acute liver failure. In acute liver failure, the central role of ammonia in the development of brain oedema has remained undisputed for 130 years. It latterly became apparent that infection and inflammation were profound determinants for the development of severe hepatic encephalopathy, associated with the development of cerebral oedema and intracranial hypertension. The relationship of the development of hepatic encephalopathy with blood ammonia levels in cirrhosis is less clear cut and the synergistic interplay of inflammation and infection with ammonia has been identified as being fundamental in the development and progression of hepatic encephalopathy. A perturbed gut microbiome and the presence of an impaired gut epithelial barrier that facilitates translocation of bacteria and bacterial degradation products into the systemic circulation, inducing systemic inflammation and innate and adaptive immune dysfunction, has now become the focus of therapies that treat hepatic encephalopathy in cirrhosis, and may explain why the prebiotic lactulose and rifaximin are efficacious. This review summarises the current clinical perspective on the roles of inflammation and infection in hepatic encephalopathy and presents the evidence base for existing therapies and those in development in the setting of acute and chronic liver failure.
Collapse
Affiliation(s)
- Yevedzo Ntuli
- School of Immunology and Microbial Sciences, Faculty of Life Sciences and Medicine, King's College London, King's College Hospital, 125 Coldharbour Lane, London, SE5 9NU, UK
- Institute of Liver Studies, King's College Hospital, Denmark Hill, London, SE5 9RS, UK
| | - Debbie L Shawcross
- School of Immunology and Microbial Sciences, Faculty of Life Sciences and Medicine, King's College London, King's College Hospital, 125 Coldharbour Lane, London, SE5 9NU, UK.
- Institute of Liver Studies, King's College Hospital, Denmark Hill, London, SE5 9RS, UK.
| |
Collapse
|
4
|
Llansola M, Izquierdo-Altarejos P, Montoliu C, Mincheva G, Palomares-Rodriguez A, Pedrosa MA, Arenas YM, Felipo V. Role of peripheral inflammation in minimal hepatic encephalopathy. Metab Brain Dis 2024; 39:1667-1677. [PMID: 39177864 DOI: 10.1007/s11011-024-01417-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Accepted: 08/16/2024] [Indexed: 08/24/2024]
Abstract
Many patients with liver cirrhosis show minimal hepatic encephalopathy (MHE) with mild cognitive impairment (MCI) and motor alterations that reduce their quality of life. Some patients with steatotic liver disease also suffer MCI. To design treatments to improve MHE/MCI it is necessary to understand the mechanisms by which liver disease induce them. This review summarizes studies showing that appearance of MHE/MCI is associated with a shift in the immunophenotype leading to an "autoimmune-like" form with increased pro-inflammatory monocytes, enhanced CD4 T and B lymphocytes activation and increased plasma levels of pro-inflammatory cytokines, including IL-17, IL-21, TNFα, IL-15 and CCL20. The contribution of peripheral inflammation to trigger MHE is supported by studies in animal models and by the fact that rifaximin treatment reverses MHE in around 60% of patients in parallel with reversal of the changes in peripheral inflammation. MHE does not improve in patients in which peripheral inflammation is not improved by rifaximin. The process by which peripheral inflammation induces MHE involves induction of neuroinflammation in brain, with activation of microglia and astrocytes and increased pro-inflammatory TNFα and IL-1β, which is observed in patients who died with steatotic liver disease (SLD) or liver cirrhosis and in animal models of MHE. Neuroinflammation alters glutamatergic and GABAergic neurotransmission, leading to cognitive and motor impairment. Transmission of peripheral alterations into the brain is mediated by infiltration in brain of extracellular vesicles from plasma and of cells from the peripheral immune system. Acting on any step of the process peripheral inflammation - neuroinflammation - altered neurotransmission may improve MHE.
Collapse
Affiliation(s)
- Marta Llansola
- Laboratory of Neurobiology, Centro de Investigación Príncipe Felipe, Valencia, Spain
| | | | - Carmina Montoliu
- Departamento de Patología, Facultad de Medicina, Universidad Valencia, Valencia, Spain
- Fundación de Investigación Hospital Clínico Universitario de Valencia-INCLIVA, Valencia, Spain
| | - Gergana Mincheva
- Laboratory of Neurobiology, Centro de Investigación Príncipe Felipe, Valencia, Spain
| | | | - María A Pedrosa
- Laboratory of Neurobiology, Centro de Investigación Príncipe Felipe, Valencia, Spain
| | - Yaiza M Arenas
- Laboratory of Neurobiology, Centro de Investigación Príncipe Felipe, Valencia, Spain
- Departamento de Patología, Facultad de Medicina, Universidad Valencia, Valencia, Spain
| | - Vicente Felipo
- Laboratory of Neurobiology, Centro de Investigación Príncipe Felipe, Valencia, Spain.
| |
Collapse
|
5
|
Bäckström T, Doverskog M, Blackburn TP, Scharschmidt BF, Felipo V. Allopregnanolone and its antagonist modulate neuroinflammation and neurological impairment. Neurosci Biobehav Rev 2024; 161:105668. [PMID: 38608826 DOI: 10.1016/j.neubiorev.2024.105668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 03/18/2024] [Accepted: 04/07/2024] [Indexed: 04/14/2024]
Abstract
Neuroinflammation accompanies several brain disorders, either as a secondary consequence or as a primary cause and may contribute importantly to disease pathogenesis. Neurosteroids which act as Positive Steroid Allosteric GABA-A receptor Modulators (Steroid-PAM) appear to modulate neuroinflammation and their levels in the brain may vary because of increased or decreased local production or import from the systemic circulation. The increased synthesis of steroid-PAMs is possibly due to increased expression of the mitochondrial cholesterol transporting protein (TSPO) in neuroinflammatory tissue, and reduced production may be due to changes in the enzymatic activity. Microglia and astrocytes play an important role in neuroinflammation, and their production of inflammatory mediators can be both activated and inhibited by steroid-PAMs and GABA. What is surprising is the finding that both allopregnanolone, a steroid-PAM, and golexanolone, a novel GABA-A receptor modulating steroid antagonist (GAMSA), can inhibit microglia and astrocyte activation and normalize their function. This review focuses on the role of steroid-PAMs in neuroinflammation and their importance in new therapeutic approaches to CNS and liver disease.
Collapse
Affiliation(s)
| | | | | | | | - Vicente Felipo
- Laboratory of Neurobiology, Centro de Investigación Príncipe Felipe, Valencia, Spain
| |
Collapse
|
6
|
Llansola M. Preface for the Vicente Felipo Honorary Issue of Neurochemical Research. Neurochem Res 2024; 49:1421-1426. [PMID: 38641758 DOI: 10.1007/s11064-024-04139-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/21/2024]
Affiliation(s)
- Marta Llansola
- Laboratory of Neurobiology, Principe Felipe Research Center, Valencia, Spain.
| |
Collapse
|
7
|
Arenas YM, López-Gramaje A, Montoliu C, Llansola M, Felipo V. Increased levels and activation of the IL-17 receptor in microglia contribute to enhanced neuroinflammation in cerebellum of hyperammonemic rats. Biol Res 2024; 57:18. [PMID: 38671534 PMCID: PMC11055256 DOI: 10.1186/s40659-024-00504-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Accepted: 04/17/2024] [Indexed: 04/28/2024] Open
Abstract
BACKGROUND Patients with liver cirrhosis may show minimal hepatic encephalopathy (MHE) with mild cognitive impairment and motor incoordination. Rats with chronic hyperammonemia reproduce these alterations. Motor incoordination in hyperammonemic rats is due to increased GABAergic neurotransmission in cerebellum, induced by neuroinflammation, which enhances TNFα-TNFR1-S1PR2-CCL2-BDNF-TrkB pathway activation. The initial events by which hyperammonemia triggers activation of this pathway remain unclear. MHE in cirrhotic patients is triggered by a shift in inflammation with increased IL-17. The aims of this work were: (1) assess if hyperammonemia increases IL-17 content and membrane expression of its receptor in cerebellum of hyperammonemic rats; (2) identify the cell types in which IL-17 receptor is expressed and IL-17 increases in hyperammonemia; (3) assess if blocking IL-17 signaling with anti-IL-17 ex-vivo reverses activation of glia and of the TNFα-TNFR1-S1PR2-CCL2-BDNF-TrkB pathway. RESULTS IL-17 levels and membrane expression of the IL-17 receptor are increased in cerebellum of rats with hyperammonemia and MHE, leading to increased activation of IL-17 receptor in microglia, which triggers activation of STAT3 and NF-kB, increasing IL-17 and TNFα levels, respectively. TNFα released from microglia activates TNFR1 in Purkinje neurons, leading to activation of NF-kB and increased IL-17 and TNFα also in these cells. Enhanced TNFR1 activation also enhances activation of the TNFR1-S1PR2-CCL2-BDNF-TrkB pathway which mediates microglia and astrocytes activation. CONCLUSIONS All these steps are triggered by enhanced activation of IL-17 receptor in microglia and are prevented by ex-vivo treatment with anti-IL-17. IL-17 and IL-17 receptor in microglia would be therapeutic targets to treat neurological impairment in patients with MHE.
Collapse
Affiliation(s)
- Yaiza M Arenas
- Laboratory of Neurobiology, Centro de Investigación Príncipe Felipe, Eduardo Primo-Yufera 3, 46012, Valencia, Spain
- Departamento de Patología, Facultad de Medicina, Universidad Valencia, Valencia, Spain
- INCLIVA Instituto de Investigación Sanitaria, Valencia, Spain
| | - Adrià López-Gramaje
- Departamento de Patología, Facultad de Medicina, Universidad Valencia, Valencia, Spain
- INCLIVA Instituto de Investigación Sanitaria, Valencia, Spain
| | - Carmina Montoliu
- Departamento de Patología, Facultad de Medicina, Universidad Valencia, Valencia, Spain
- INCLIVA Instituto de Investigación Sanitaria, Valencia, Spain
| | - Marta Llansola
- Laboratory of Neurobiology, Centro de Investigación Príncipe Felipe, Eduardo Primo-Yufera 3, 46012, Valencia, Spain
| | - Vicente Felipo
- Laboratory of Neurobiology, Centro de Investigación Príncipe Felipe, Eduardo Primo-Yufera 3, 46012, Valencia, Spain.
| |
Collapse
|
8
|
Izquierdo-Altarejos P, Felipo V. Contribution of extracellular vesicles to neuroinflammation and cognitive and motor deficits in hyperammonemia and hepatic encephalopathy. EXTRACELLULAR VESICLES AND CIRCULATING NUCLEIC ACIDS 2024; 5:37-43. [PMID: 39698415 PMCID: PMC11648396 DOI: 10.20517/evcna.2023.66] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 01/08/2024] [Accepted: 01/12/2024] [Indexed: 12/20/2024]
Abstract
Cirrhotic patients can present hepatic encephalopathy (HE), showing motor and cognitive deficits. Hyperammonemia and peripheral inflammation are known to induce neuroinflammation and alter neurotransmission, which finally induces neurological impairment in HE. However, the mechanisms by which the deleterious effects of peripheral inflammation are transmitted to the brain are not well understood. Extracellular vesicles (EVs) have recently emerged as a new mediator between the periphery and the brain, particularly in pathologies associated with sustained inflammation and in neurological disorders. In this work, we summarized the main findings on the role of plasma EVs in hyperammonemia and HE and discussed its potential implication in the pathogenesis of hepatic encephalopathy.
Collapse
|
9
|
Casanova-Ferrer F, Gallego JJ, Fiorillo A, Urios A, Ríos MP, León JL, Ballester MP, Escudero-García D, Kosenko E, Belloch V, Montoliu C. Improved cognition after rifaximin treatment is associated with changes in intra- and inter-brain network functional connectivity. J Transl Med 2024; 22:49. [PMID: 38217008 PMCID: PMC10787503 DOI: 10.1186/s12967-023-04844-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Accepted: 12/29/2023] [Indexed: 01/14/2024] Open
Abstract
BACKGROUND Rifaximin is a non-reabsorbable antibiotic which acts at gut level, and improves cognition and inflammatory parameters in minimal hepatic encephalopathy (MHE) patients, but not all patients show the same level of response. This study aims to assess brain activity, both within and between brain networks, following rifaximin treatment, considering the differences between response groups as well. METHODS Twenty-two healthy controls and 53 patients with cirrhosis (22 without and 31 with MHE, diagnosed by Psychometric Hepatic Encephalopathy Score, PHES) performed psychometric, attention and coordination tests, and blood inflammatory parameters were measured. Resting-state functional magnetic resonance imaging (fMRI) acquisitions were performed on controls and MHE patients. Eighteen MHE patients underwent a rifaximin treatment for 6 months, after which all measures were repeated. fMRI images were analysed and changes after treatment were assessed. RESULTS After rifaximin treatment, 13 patients improved their PHES score (Responder patients) while 5 did not (Non-responder patients). No significant decrease in blood ammonia was observed after rifaximin treatment, but there was a decrease in plasma inflammatory cytokines in responder patients. A global effect of rifaximin was detected on the sensorimotor and fronto-parietal networks. Responder patients showed a relative increase of thalamic network connectivity in comparison to non-responder patients. Before treatment, responder and non-responder patients showed connectivity differences in basal ganglia network. The connection of the sensorimotor and thalamic networks between them and with other networks suffered changes after treatment. These connections between networks mostly decreased after treatment. All changes and differences showed a significant level of correlation with the performance of psychometric tests and the blood levels of inflammatory biomarkers. CONCLUSIONS There was an improvement of the communication between executive, motor and attention-related brain areas, and their functional independence following rifaximin treatment. Patients who respond also show a less deteriorated connection involved in these functions before treatment. Results suggest that the improved inflammatory state of MHE patients, following rifaximin treatment would favour the observed changes in brain function and enhanced cognitive performance.
Collapse
Affiliation(s)
- Franc Casanova-Ferrer
- Fundacion de Investigación Hospital Clinico Universitario de Valencia-INCLIVA, Valencia, Spain
| | - Juan-José Gallego
- Fundacion de Investigación Hospital Clinico Universitario de Valencia-INCLIVA, Valencia, Spain
| | - Alessandra Fiorillo
- Fundacion de Investigación Hospital Clinico Universitario de Valencia-INCLIVA, Valencia, Spain
| | - Amparo Urios
- Fundacion de Investigación Hospital Clinico Universitario de Valencia-INCLIVA, Valencia, Spain
| | - María-Pilar Ríos
- Servicio de Medicina Digestiva, Hospital Arnau de Vilanova de Valencia, Valencia, Spain
| | - José Luis León
- Universitats Neurorradiology Unit, Ascires Biomedical Group, Valencia, Spain
| | - María-Pilar Ballester
- Servicio de Medicina Digestiva, Hospital Clinico Universitario de Valencia, Valencia, Spain
| | - Desamparados Escudero-García
- Servicio de Medicina Digestiva, Hospital Clinico Universitario de Valencia, Valencia, Spain
- Departamento de Medicina, University of Valencia, Valencia, Spain
| | - Elena Kosenko
- Institute of Theoretical and Experimental Biophysics of Russian Academy of Sciences, Pushchino, Russia
| | - Vicente Belloch
- Universitats Neurorradiology Unit, Ascires Biomedical Group, Valencia, Spain
| | - Carmina Montoliu
- Fundacion de Investigación Hospital Clinico Universitario de Valencia-INCLIVA, Valencia, Spain.
- Department of Pathology, Faculty of Medicine, University of Valencia, Av Blasco Ibáñez, 15, 46010, Valencia, Spain.
| |
Collapse
|
10
|
Tamnanloo F, Ochoa-Sanchez R, Oliveira MM, Lima C, Lépine M, Dubois K, Bosoi C, Tremblay M, Sleno L, Rose CF. Multiple ammonia-induced episodes of hepatic encephalopathy provoke neuronal cell loss in bile-duct ligated rats. JHEP Rep 2023; 5:100904. [PMID: 37942225 PMCID: PMC10628859 DOI: 10.1016/j.jhepr.2023.100904] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/05/2023] [Revised: 07/25/2023] [Accepted: 08/31/2023] [Indexed: 11/10/2023] Open
Abstract
Background & Aims Hepatic encephalopathy (HE) is defined as a reversible syndrome and therefore should resolve following liver transplantation (LT). However, neurological complications have been reported in up to 47% of LT recipients, which have been documented to be associated with a history of overt HE pre-LT. We hypothesise that multiple episodes of HE lead to permanent cell injury and exacerbate neurological dysfunction. Our goal was to evaluate the impact of cumulative HE episodes on neurological status and brain integrity in rats with chronic liver disease. Methods Episodes of overt HE (loss of righting reflex) were induced following injection of ammonium acetate in bile duct ligation (BDL) rats (BDL-Ammonia) every 4 days starting at week 3 post-BDL. Neurobehaviour was evaluated after the last episode. Upon sacrifice, plasma ammonia, systemic oxidative stress, and inflammation markers were assessed. Neuronal markers including neuron-specific nuclear antigen and SMI311 (anti-neurofilament marker) and apoptotic markers (cleaved caspase-3, Bax, and Bcl2) were measured. Total antioxidant capacity, oxidative stress marker (4-hydroxynonenal), and proinflammatory cytokines (tumour necrosis factor-alpha and interleukin-1β) were measured in brain (hippocampus, frontal cortex, and cerebellum). Proteomic analysis was conducted in the hippocampus. Results In hippocampus of BDL-Ammonia rats, cleaved caspase-3 and Bax/Bcl2 ratio were significantly increased, whereas NeuN and SMI311 were significantly decreased compared with BDL-Vehicle rats. Higher levels of oxidative stress-induced post-translational modified proteins were found in hippocampus of BDL-Ammonia group which were associated with a lower total antioxidant capacity. Conclusions Ammonia-induced episodes of overt HE caused neuronal cell injury/death in BDL rats. These results suggest that multiple bouts of HE can be detrimental on the integrity of the brain, translating to irreversibility and hence neurological complications post-LT. Impact and implications Hepatic encephalopathy (HE) is defined as a reversible neuropsychiatric syndrome resolving following liver transplantation (LT); however, ∼47% of patients demonstrate neurological impairments after LT, which are associated with a previous history of overt HE pre-LT. Our study indicates that multiple episodes of overt HE can cause permanent neuronal damage which may lead to neurological complications after LT. Nevertheless, preventing the occurrence of overt HE episodes is critical for reducing the risk of irreversible neuronal injury in patients with cirrhosis.
Collapse
Affiliation(s)
- Farzaneh Tamnanloo
- Hepato-Neuro Lab, CRCHUM, Montréal, Canada
- Medicine Department, Université de Montréal, Montréal, Canada
| | | | | | - Carina Lima
- Chemistry Department/CERMO-FC, Université du Québec à Montréal, Montréal, Canada
| | - Maggy Lépine
- Chemistry Department/CERMO-FC, Université du Québec à Montréal, Montréal, Canada
| | | | | | | | - Lekha Sleno
- Chemistry Department/CERMO-FC, Université du Québec à Montréal, Montréal, Canada
| | - Christopher F. Rose
- Hepato-Neuro Lab, CRCHUM, Montréal, Canada
- Medicine Department, Université de Montréal, Montréal, Canada
| |
Collapse
|
11
|
Fiorillo A, Gallego JJ, Casanova-Ferrer F, Urios A, Ballester MP, San Miguel T, Megías J, Kosenko E, Tosca J, Rios MP, Escudero-García D, Montoliu C. Neurofilament Light Chain Protein in Plasma and Extracellular Vesicles Is Associated with Minimal Hepatic Encephalopathy and Responses to Rifaximin Treatment in Cirrhotic Patients. Int J Mol Sci 2023; 24:14727. [PMID: 37834174 PMCID: PMC10572420 DOI: 10.3390/ijms241914727] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 09/19/2023] [Accepted: 09/27/2023] [Indexed: 10/15/2023] Open
Abstract
Neurofilament light chain protein (NfL) levels reflect neuronal damage in several neurological diseases and have been proposed as a possible biomarker. Plasma extracellular vesicles (EVs) could play an important role as mediators of the inflammatory changes associated with inducing minimal hepatic encephalopathy (MHE) in cirrhotic patients. This study investigated the association of NfL levels in plasma and EVs with the presence of MHE in cirrhotic patients, and with responses to rifaximin treatment. The NfL levels in plasma and EVs were assessed in 71 patients with liver cirrhosis (40 with MHE and 31 without MHE) and 26 controls. A total of 31 patients with MHE received rifaximin treatment. We examined changes in NfL levels in plasma and EVs before and after 6 months of rifaximin treatment. The NfL measures were correlated with cognitive alterations and plasma inflammatory cytokines. MHE patients showed increased plasma levels of NfL, which were reverted after rifaximin treatment in patients who responded to treatment. The NfL content in EVs also showed a reversal pattern in MHE patients treated with rifaximin. In multivariable analyses, NfL levels were independently associated with the presence of MHE. We also showed that patients with high levels of both ammonia and fractalkine had significantly higher NfL levels than patients with low levels of least one of these parameters. Rifaximin treatment in MHE patients showed promising results in improving axonal damage, suggesting that rifaximin may have therapeutic benefits against disease progression in MHE.
Collapse
Affiliation(s)
- Alessandra Fiorillo
- Fundación de Investigación, Hospital Clínico Universitario de Valencia-INCLIVA, 46010 Valencia, Spain; (A.F.); (J.J.G.); (F.C.-F.); (A.U.)
| | - Juan José Gallego
- Fundación de Investigación, Hospital Clínico Universitario de Valencia-INCLIVA, 46010 Valencia, Spain; (A.F.); (J.J.G.); (F.C.-F.); (A.U.)
| | - Franc Casanova-Ferrer
- Fundación de Investigación, Hospital Clínico Universitario de Valencia-INCLIVA, 46010 Valencia, Spain; (A.F.); (J.J.G.); (F.C.-F.); (A.U.)
| | - Amparo Urios
- Fundación de Investigación, Hospital Clínico Universitario de Valencia-INCLIVA, 46010 Valencia, Spain; (A.F.); (J.J.G.); (F.C.-F.); (A.U.)
| | - María-Pilar Ballester
- Servicio de Medicina Digestiva, Hospital Clínico Universitario de Valencia, 46010 Valencia, Spain; (M.-P.B.); (J.T.); (D.E.-G.)
| | - Teresa San Miguel
- Departamento de Patología, Facultad de Medicina, Universidad de Valencia, 46010 Valencia, Spain; (T.S.M.); (J.M.)
| | - Javier Megías
- Departamento de Patología, Facultad de Medicina, Universidad de Valencia, 46010 Valencia, Spain; (T.S.M.); (J.M.)
| | - Elena Kosenko
- Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, 142290 Pushchino, Russia;
| | - Joan Tosca
- Servicio de Medicina Digestiva, Hospital Clínico Universitario de Valencia, 46010 Valencia, Spain; (M.-P.B.); (J.T.); (D.E.-G.)
| | - Maria-Pilar Rios
- Servicio de Digestivo, Hospital Arnau de Vilanova, 46015 Valencia, Spain;
| | - Desamparados Escudero-García
- Servicio de Medicina Digestiva, Hospital Clínico Universitario de Valencia, 46010 Valencia, Spain; (M.-P.B.); (J.T.); (D.E.-G.)
- Departamento de Medicina, Facultad de Medicina, Universidad de Valencia, 46010 Valencia, Spain
| | - Carmina Montoliu
- Fundación de Investigación, Hospital Clínico Universitario de Valencia-INCLIVA, 46010 Valencia, Spain; (A.F.); (J.J.G.); (F.C.-F.); (A.U.)
- Departamento de Patología, Facultad de Medicina, Universidad de Valencia, 46010 Valencia, Spain; (T.S.M.); (J.M.)
| |
Collapse
|
12
|
Balzano T. Active Clinical Trials in Hepatic Encephalopathy: Something Old, Something New and Something Borrowed. Neurochem Res 2023; 48:2309-2319. [PMID: 36977964 PMCID: PMC10047473 DOI: 10.1007/s11064-023-03916-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 02/28/2023] [Accepted: 03/17/2023] [Indexed: 03/30/2023]
Abstract
Hepatic encephalopathy (HE) is a potentially reversible neurocognitive syndrome that occurs in patients with acute or chronic liver disease. Currently, most of the therapies for HE aim to reduce ammonia production or increase its elimination. To date, only two agents have been approved as treatments for HE: lactulose and rifaximin. Many other drugs have also been used, but data to support their use are limited, preliminary or lacking. The aim of this review is to provide an overview and discussion of the current development of treatments for HE. Data from ongoing clinical trials in HE were obtained from the ClinicalTrials.gov website, and a breakdown analysis of studies that were active on August 19th, 2022, was performed. Seventeen registered and ongoing clinical trials for therapeutics targeting HE were identified. More than 75% of these agents are in phase II (41.2%) or in phase III (34.7%). Among them, there are many old acquaintances in the field, such as lactulose and rifaximin, some new entries such as fecal microbiota transplantation and equine anti-thymocyte globulin, an immunosuppressive agent, but also some therapies borrowed from other conditions, such as rifamycin SV MMX and nitazoxanide, two antimicrobial agents FDA approved for the treatment of some types of diarrheas or VE303 and RBX7455, two microbiome restoration therapies, currently used as treatment of high-risk Clostridioides difficile infections. If working, some of these drugs could soon be used as valid alternatives to current therapies when ineffective or be approved as novel therapeutic approaches to improve the quality of life of HE patients.
Collapse
Affiliation(s)
- Tiziano Balzano
- HM CINAC (Centro Integral de Neurociencias Abarca Campal), Hospital Universitario HM Puerta del Sur, HM Hospitales, Madrid, Spain.
| |
Collapse
|
13
|
Fiorillo A, Gallego JJ, Casanova-Ferrer F, Giménez-Garzó C, Urios A, Ballester MP, Durbán L, Rios MP, Megías J, San Miguel T, Kosenko E, Escudero-García D, Benlloch S, Felipo V, Montoliu C. Mild Cognitive Impairment Is Associated with Enhanced Activation of Th17 Lymphocytes in Non-Alcoholic Fatty Liver Disease. Int J Mol Sci 2023; 24:10407. [PMID: 37373554 DOI: 10.3390/ijms241210407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 06/16/2023] [Accepted: 06/18/2023] [Indexed: 06/29/2023] Open
Abstract
Patients with nonalcoholic fatty liver disease (NAFLD) may show mild cognitive impairment (MCI). The mechanisms involved remain unclear. The plasma concentrations of several cytokines and chemokines were measured in 71 NAFLD patients (20 with and 51 without MCI) and 61 controls. Characterization and activation of leukocyte populations and CD4+ sub-populations were carried out and analyzed by flow cytometry. We analyzed the cytokines released from CD4+ cell cultures and the mRNA expression of transcription factors and receptors in peripheral blood mononuclear cells. The appearance of MCI in NAFLD patients was associated with increased activation of CD4+ T lymphocytes, mainly of the Th17 subtype, increased plasma levels of pro-inflammatory and anti-inflammatory cytokines such as IL-17A, IL-23, IL-21, IL-22, IL-6, INF-γ, and IL-13, and higher expression of the CCR2 receptor. Constitutive expression of IL-17 was found in cultures of CD4+ cells from MCI patients, reflecting Th17 activation. High IL-13 plasma levels were predictive of MCI and could reflect a compensatory anti-inflammatory response to the increased expression of pro-inflammatory cytokines. This study identified some specific alterations of the immune system associated with the appearance of neurological alterations in MCI patients with NAFLD that could be the basis to improve and restore cognitive functions and quality of life in these patients.
Collapse
Affiliation(s)
- Alessandra Fiorillo
- Fundación de Investigación Hospital Clínico Universitario de Valencia-INCLIVA, 46010 Valencia, Spain
| | - Juan-José Gallego
- Fundación de Investigación Hospital Clínico Universitario de Valencia-INCLIVA, 46010 Valencia, Spain
| | - Franc Casanova-Ferrer
- Fundación de Investigación Hospital Clínico Universitario de Valencia-INCLIVA, 46010 Valencia, Spain
| | - Carla Giménez-Garzó
- Laboratory of Neurobiology, Centro Investigación Príncipe Felipe, 46012 Valencia, Spain
| | - Amparo Urios
- Fundación de Investigación Hospital Clínico Universitario de Valencia-INCLIVA, 46010 Valencia, Spain
| | - Maria-Pilar Ballester
- Servicio de Medicina Digestiva, Hospital Clínico Universitario de Valencia, 46010 Valencia, Spain
| | - Lucia Durbán
- Servicio de Medicina Digestiva, Hospital Arnau de Vilanova, 46015 Valencia, Spain
| | - Maria-Pilar Rios
- Servicio de Medicina Digestiva, Hospital Arnau de Vilanova, 46015 Valencia, Spain
| | - Javier Megías
- Departamento de Patología, Facultad de Medicina, Universidad de Valencia, 46010 Valencia, Spain
| | - Teresa San Miguel
- Departamento de Patología, Facultad de Medicina, Universidad de Valencia, 46010 Valencia, Spain
| | - Elena Kosenko
- Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, 142290 Pushchino, Russia
| | - Desamparados Escudero-García
- Servicio de Medicina Digestiva, Hospital Clínico Universitario de Valencia, 46010 Valencia, Spain
- Departamento de Medicina, Facultad de Medicina, Universidad de Valencia, 46010 Valencia, Spain
| | - Salvador Benlloch
- Servicio de Medicina Digestiva, Hospital Arnau de Vilanova, 46015 Valencia, Spain
- CIBERehd, Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Vicente Felipo
- Laboratory of Neurobiology, Centro Investigación Príncipe Felipe, 46012 Valencia, Spain
| | - Carmina Montoliu
- Fundación de Investigación Hospital Clínico Universitario de Valencia-INCLIVA, 46010 Valencia, Spain
- Departamento de Patología, Facultad de Medicina, Universidad de Valencia, 46010 Valencia, Spain
| |
Collapse
|
14
|
Di Vincenzo F, Nicoletti A, Negri M, Vitale F, Zileri Dal Verme L, Gasbarrini A, Ponziani FR, Cerrito L. Gut Microbiota and Antibiotic Treatments for the Main Non-Oncologic Hepato-Biliary-Pancreatic Disorders. Antibiotics (Basel) 2023; 12:1068. [PMID: 37370387 DOI: 10.3390/antibiotics12061068] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 06/10/2023] [Accepted: 06/15/2023] [Indexed: 06/29/2023] Open
Abstract
The gut microbiota is a pivotal actor in the maintenance of the balance in the complex interconnections of hepato-biliary-pancreatic system. It has both metabolic and immunologic functions, with an influence on the homeostasis of the whole organism and on the pathogenesis of a wide range of diseases, from non-neoplastic ones to tumorigenesis. The continuous bidirectional metabolic communication between gut and hepato-pancreatic district, through bile ducts and portal vein, leads to a continuous interaction with translocated bacteria and their products. Chronic liver disease and pancreatic disorders can lead to reduced intestinal motility, decreased bile acid synthesis and intestinal immune dysfunction, determining a compositional and functional imbalance in gut microbiota (dysbiosis), with potentially harmful consequences on the host's health. The modulation of the gut microbiota by antibiotics represents a pioneering challenge with striking future therapeutic opportunities, even in non-infectious diseases. In this setting, antibiotics are aimed at harmonizing gut microbial function and, sometimes, composition. A more targeted and specific approach should be the goal to pursue in the future, tailoring the treatment according to the type of microbiota modulation to be achieved and using combined strategies.
Collapse
Affiliation(s)
- Federica Di Vincenzo
- Internal Medicine and Gastroenterology, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy
| | - Alberto Nicoletti
- Internal Medicine and Gastroenterology, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy
| | - Marcantonio Negri
- Internal Medicine and Gastroenterology, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy
| | - Federica Vitale
- Internal Medicine and Gastroenterology, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy
| | - Lorenzo Zileri Dal Verme
- Internal Medicine and Gastroenterology, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy
| | - Antonio Gasbarrini
- Internal Medicine and Gastroenterology, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy
- Dipartimento Universitario di Medicina e Chirurgia Traslazionale, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| | - Francesca Romana Ponziani
- Internal Medicine and Gastroenterology, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy
- Dipartimento Universitario di Medicina e Chirurgia Traslazionale, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| | - Lucia Cerrito
- Internal Medicine and Gastroenterology, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy
| |
Collapse
|
15
|
Izquierdo-Altarejos P, Martínez-García M, Felipo V. Extracellular vesicles from hyperammonemic rats induce neuroinflammation in hippocampus and impair cognition in control rats. Cell Mol Life Sci 2023; 80:90. [PMID: 36922433 PMCID: PMC11072842 DOI: 10.1007/s00018-023-04750-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 02/24/2023] [Accepted: 03/06/2023] [Indexed: 03/17/2023]
Abstract
Patients with liver cirrhosis show hyperammonemia and peripheral inflammation and may show hepatic encephalopathy with cognitive impairment, reproduced by rats with chronic hyperammonemia. Peripheral inflammation induces neuroinflammation in hippocampus of hyperammonemic rats, altering neurotransmission and leading to cognitive impairment. Extracellular vesicles (EVs) may transmit pathological effects from the periphery to the brain. We hypothesized that EVs from peripheral blood would contribute to cognitive alterations in hyperammonemic rats. The aims were to assess whether EVs from plasma of hyperammonemic rats (HA-EVs) induce cognitive impairment and to identify the underlying mechanisms. Injection of HA-EVs impaired learning and memory, induced microglia and astrocytes activation and increased TNFα and IL-1β. Ex vivo incubation of hippocampal slices from control rats with HA-EVs reproduced these alterations. HA-EVs increased membrane expression of TNFR1, reduced membrane expression of TGFβR2 and Smad7 and IκBα levels and increased IκBα phosphorylation. This led to increased activation of NF-κB and IL-1β production, altering membrane expression of NR2B, GluA1 and GluA2 subunits, which would be responsible for cognitive impairment. All these effects of HA-EVs were prevented by blocking TNFα, indicating that they were mediated by enhanced activation of TNFR1 by TNFα. We show that these mechanisms are very different from those leading to motor incoordination, which is due to altered GABAergic neurotransmission in cerebellum. This demonstrates that peripheral EVs play a key role in the transmission of peripheral alterations to the brain in hyperammonemia and hepatic encephalopathy, inducing neuroinflammation and altering neurotransmission in hippocampus, which in turn is responsible for the cognitive deficits.
Collapse
Affiliation(s)
- Paula Izquierdo-Altarejos
- Laboratory of Neurobiology, Centro de Investigacion Príncipe Felipe, Eduardo Primo-Yufera 3, 46012, Valencia, Spain
| | - Mar Martínez-García
- Laboratory of Neurobiology, Centro de Investigacion Príncipe Felipe, Eduardo Primo-Yufera 3, 46012, Valencia, Spain
| | - Vicente Felipo
- Laboratory of Neurobiology, Centro de Investigacion Príncipe Felipe, Eduardo Primo-Yufera 3, 46012, Valencia, Spain.
| |
Collapse
|
16
|
Luo M, Xin RJ, Hu FR, Yao L, Hu SJ, Bai FH. Role of gut microbiota in the pathogenesis and therapeutics of minimal hepatic encephalopathy via the gut-liver-brain axis. World J Gastroenterol 2023; 29:144-156. [PMID: 36683714 PMCID: PMC9850958 DOI: 10.3748/wjg.v29.i1.144] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 11/23/2022] [Accepted: 12/14/2022] [Indexed: 01/04/2023] Open
Abstract
Minimal hepatic encephalopathy (MHE) is a frequent neurological and psychiatric complication of liver cirrhosis. The precise pathogenesis of MHE is complicated and has yet to be fully elucidated. Studies in cirrhotic patients and experimental animals with MHE have indicated that gut microbiota dysbiosis induces systemic inflammation, hyperammonemia, and endotoxemia, subsequently leading to neuroinflammation in the brain via the gut-liver-brain axis. Related mechanisms initiated by gut microbiota dysbiosis have significant roles in MHE pathogenesis. The currently available therapeutic strategies for MHE in clinical practice, including lactulose, rifaximin, probiotics, synbiotics, and fecal microbiota transplantation, exert their effects mainly by modulating gut microbiota dysbiosis. Microbiome therapies for MHE have shown promised efficacy and safety; however, several controversies and challenges regarding their clinical use deserve to be intensively discussed. We have summarized the latest research findings concerning the roles of gut microbiota dysbiosis in the pathogenesis of MHE via the gut-liver-brain axis as well as the potential mechanisms by which microbiome therapies regulate gut microbiota dysbiosis in MHE patients.
Collapse
Affiliation(s)
- Ming Luo
- Department of Gastroenterology, People’s Hospital of Ningxia Hui Autonomous Region, Yinchuan 750021, Ningxia Hui Autonomous Region, China
| | - Rui-Juan Xin
- Department of Gastroenterology, People’s Hospital of Ningxia Hui Autonomous Region, Yinchuan 750021, Ningxia Hui Autonomous Region, China
| | - Fang-Rui Hu
- Department of Gastroenterology, People’s Hospital of Ningxia Hui Autonomous Region, Yinchuan 750021, Ningxia Hui Autonomous Region, China
| | - Li Yao
- Department of Gastroenterology, People’s Hospital of Ningxia Hui Autonomous Region, Yinchuan 750021, Ningxia Hui Autonomous Region, China
| | - Sheng-Juan Hu
- Department of Gastroenterology, People’s Hospital of Ningxia Hui Autonomous Region, Yinchuan 750021, Ningxia Hui Autonomous Region, China
| | - Fei-Hu Bai
- Department of Gastroenterology, People’s Hospital of Ningxia Hui Autonomous Region, Yinchuan 750021, Ningxia Hui Autonomous Region, China
| |
Collapse
|
17
|
Mikkelsen ACD, Thomsen KL, Mookerjee RP, Hadjihambi A. The role of brain inflammation and abnormal brain oxygen homeostasis in the development of hepatic encephalopathy. Metab Brain Dis 2022; 38:1707-1716. [PMID: 36326976 DOI: 10.1007/s11011-022-01105-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Accepted: 10/10/2022] [Indexed: 11/06/2022]
Abstract
Hepatic encephalopathy (HE) is a frequent complication of chronic liver disease (CLD) and has a complex pathogenesis. Several preclinical and clinical studies have reported the presence of both peripheral and brain inflammation in CLD and their potential impact in the development of HE. Altered brain vascular density and tone, as well as compromised cerebral and systemic blood flow contributing to the development of brain hypoxia, have also been reported in animal models of HE, while a decrease in cerebral metabolic rate of oxygen and cerebral blood flow has consistently been observed in patients with HE. Whilst significant strides in our understanding have been made over the years, evaluating all these mechanistic elements in vivo and showing causal association with development of HE, have been limited through the practical constraints of experimentation. Nonetheless, improvements in non-invasive assessments of different neurophysiological parameters, coupled with techniques to assess changes in inflammatory and metabolic pathways, will help provide more granular insights on these mechanisms. In this special issue we discuss some of the emerging evidence supporting the hypothesis that brain inflammation and abnormal oxygen homeostasis occur interdependently during CLD and comprise important contributors to the development of HE. This review aims at furnishing evidence for further research in brain inflammation and oxygen homeostasis as additional therapeutic targets and potentially diagnostic markers for HE.
Collapse
Affiliation(s)
| | - Karen Louise Thomsen
- Department of Hepatology and Gastroenterology, Aarhus University Hospital, Aarhus, Denmark
- UCL Institute of Liver and Digestive Health, University College London, London, UK
| | - Rajeshwar Prosad Mookerjee
- Department of Hepatology and Gastroenterology, Aarhus University Hospital, Aarhus, Denmark
- UCL Institute of Liver and Digestive Health, University College London, London, UK
| | - Anna Hadjihambi
- The Roger Williams Institute of Hepatology London, Foundation for Liver Research, London, SE5 9NT, UK.
- Faculty of Life Sciences and Medicine, King's College London, London, UK.
| |
Collapse
|
18
|
Mincheva G, Gimenez‐Garzo C, Izquierdo‐Altarejos P, Martinez‐Garcia M, Doverskog M, Blackburn TP, Hällgren A, Bäckström T, Llansola M, Felipo V. Golexanolone, a GABA A receptor modulating steroid antagonist, restores motor coordination and cognitive function in hyperammonemic rats by dual effects on peripheral inflammation and neuroinflammation. CNS Neurosci Ther 2022; 28:1861-1874. [PMID: 35880480 PMCID: PMC9532914 DOI: 10.1111/cns.13926] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 07/08/2022] [Accepted: 07/09/2022] [Indexed: 11/29/2022] Open
Abstract
AIMS Hyperammonemic rats show peripheral inflammation, increased GABAergic neurotransmission and neuroinflammation in cerebellum and hippocampus which induce motor incoordination and cognitive impairment. Neuroinflammation enhances GABAergic neurotransmission in cerebellum by enhancing the TNFR1-glutaminase-GAT3 and TNFR1-CCL2-TrkB-KCC2 pathways. Golexanolone reduces GABAA receptors potentiation by allopregnanolone. This work aimed to assess if treatment of hyperammonemic rats with golexanolone reduces peripheral inflammation and neuroinflammation and restores cognitive and motor function and to analyze underlying mechanisms. METHODS Rats were treated with golexanolone and effects on peripheral inflammation, neuroinflammation, TNFR1-glutaminase-GAT3 and TNFR1-CCL2-TrkB-KCC2 pathways, and cognitive and motor function were analyzed. RESULTS Hyperammonemic rats show increased TNFα and reduced IL-10 in plasma, microglia and astrocytes activation in cerebellum and hippocampus, and impaired motor coordination and spatial and short-term memories. Treating hyperammonemic rats with golexanolone reversed changes in peripheral inflammation, microglia and astrocytes activation and restored motor coordination and spatial and short-term memory. This was associated with reversal of the hyperammonemia-enhanced activation in cerebellum of the TNFR1-glutaminase-GAT3 and TNFR1-CCL2-TrkB-KCC2 pathways. CONCLUSION Reducing GABAA receptors activation with golexanolone reduces peripheral inflammation and neuroinflammation and improves cognitive and motor function in hyperammonemic rats. The effects identified would also occur in patients with hepatic encephalopathy and, likely, in other pathologies associated with neuroinflammation.
Collapse
Affiliation(s)
- Gergana Mincheva
- Laboratory of NeurobiologyCentro de Investigación Príncipe FelipeValenciaSpain
| | - Carla Gimenez‐Garzo
- Laboratory of NeurobiologyCentro de Investigación Príncipe FelipeValenciaSpain
| | | | - Mar Martinez‐Garcia
- Laboratory of NeurobiologyCentro de Investigación Príncipe FelipeValenciaSpain
| | | | | | | | - Torbjörn Bäckström
- Umecrine Cognition ABSolnaSweden
- Umeå Neurosteroid Research CenterClinical Sciences at Umeå UniversityUmeåSweden
| | - Marta Llansola
- Laboratory of NeurobiologyCentro de Investigación Príncipe FelipeValenciaSpain
| | - Vicente Felipo
- Laboratory of NeurobiologyCentro de Investigación Príncipe FelipeValenciaSpain
| |
Collapse
|
19
|
Gallego JJ, Fiorillo A, Casanova-Ferrer F, Urios A, Ballester MP, Durbán L, Megías J, Rubio T, Cabrera-Pastor A, Escudero-García D, Felipo V, Montoliu C. Plasma Extracellular Vesicles Play a Role in Immune System Modulation in Minimal Hepatic Encephalopathy. Int J Mol Sci 2022; 23:ijms232012335. [PMID: 36293192 PMCID: PMC9604313 DOI: 10.3390/ijms232012335] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 09/08/2022] [Accepted: 10/13/2022] [Indexed: 11/23/2022] Open
Abstract
Minimal hepatic encephalopathy (MHE) is associated with changes in the immune system including an increased pro-inflammatory environment and altered differentiation of CD4+ T lymphocytes. The mechanisms remain unknown. Changes in extracellular vesicle (EV) cargo including proteins and miRNAs could play a main role as mediators of immune system changes associated with MHE. The aim was to assess whether plasma EVs from MHE patients played a role in inducing the pro-inflammatory environment and altered differentiation of CD4+ T lymphocyte subtypes in MHE patients. We characterized the miRNA and protein cargo of plasma EVs from 50 cirrhotic patients (27 without and 23 with MHE) and 24 controls. CD4+ T cells from the controls were cultured with plasma EVs from the three groups of study, and the cytokine release and differentiation to CD4+ T-cell subtypes were assessed. Plasma EVs from MHE patients had altered miRNA and protein contents, and were enriched in inflammatory factors compared to the controls and patients without MHE. EVs from MHE patients modulated the expression of pro-inflammatory IL-17, IL-21, and TNF-α and anti-inflammatory TGF-β in cultured CD4+ T lymphocytes, and increased the proportion of Th follicular and Treg cells and the activation of Th17 cells. In conclusion, plasma EVs could play an important role in the induction of immune changes observed in MHE.
Collapse
Affiliation(s)
- Juan José Gallego
- Fundación de Investigación Hospital Clínico Universitario de Valencia-INCLIVA, 46010 Valencia, Spain
| | - Alessandra Fiorillo
- Fundación de Investigación Hospital Clínico Universitario de Valencia-INCLIVA, 46010 Valencia, Spain
| | - Franc Casanova-Ferrer
- Fundación de Investigación Hospital Clínico Universitario de Valencia-INCLIVA, 46010 Valencia, Spain
| | - Amparo Urios
- Fundación de Investigación Hospital Clínico Universitario de Valencia-INCLIVA, 46010 Valencia, Spain
| | - María-Pilar Ballester
- Fundación de Investigación Hospital Clínico Universitario de Valencia-INCLIVA, 46010 Valencia, Spain
- Servicio de Medicina Digestiva, Hospital Clínico Universitario de Valencia, 46010 Valencia, Spain
| | - Lucia Durbán
- Servicio de Medicina Digestiva, Hospital Arnau de Vilanova, 46015 Valencia, Spain
| | - Javier Megías
- Departamento de Patología, Universidad de Valencia, 46010 Valencia, Spain
| | - Teresa Rubio
- Laboratory of Neurobiology, Centro Investigación Príncipe Felipe, 46012 Valencia, Spain
| | - Andrea Cabrera-Pastor
- Fundación de Investigación Hospital Clínico Universitario de Valencia-INCLIVA, 46010 Valencia, Spain
| | | | - Vicente Felipo
- Laboratory of Neurobiology, Centro Investigación Príncipe Felipe, 46012 Valencia, Spain
| | - Carmina Montoliu
- Fundación de Investigación Hospital Clínico Universitario de Valencia-INCLIVA, 46010 Valencia, Spain
- Departamento de Patología, Universidad de Valencia, 46010 Valencia, Spain
- Correspondence: ; Tel.: +34-963864381
| |
Collapse
|
20
|
Arenas YM, Martínez-García M, Llansola M, Felipo V. Enhanced BDNF and TrkB Activation Enhance GABA Neurotransmission in Cerebellum in Hyperammonemia. Int J Mol Sci 2022; 23:ijms231911770. [PMID: 36233065 PMCID: PMC9570361 DOI: 10.3390/ijms231911770] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 09/28/2022] [Accepted: 09/29/2022] [Indexed: 11/28/2022] Open
Abstract
Background: Hyperammonemia is a main contributor to minimal hepatic encephalopathy (MHE) in cirrhotic patients. Hyperammonemic rats reproduce the motor incoordination of MHE patients, which is due to enhanced GABAergic neurotransmission in the cerebellum as a consequence of neuroinflammation. In hyperammonemic rats, neuroinflammation increases BDNF by activating the TNFR1–S1PR2–CCR2 pathway. (1) Identify mechanisms enhancing GABAergic neurotransmission in hyperammonemia; (2) assess the role of enhanced activation of TrkB; and (3) assess the role of the TNFR1–S1PR2–CCR2–BDNF pathway. In the cerebellum of hyperammonemic rats, increased BDNF levels enhance TrkB activation in Purkinje neurons, leading to increased GAD65, GAD67 and GABA levels. Enhanced TrkB activation also increases the membrane expression of the γ2, α2 and β3 subunits of GABAA receptors and of KCC2. Moreover, enhanced TrkB activation in activated astrocytes increases the membrane expression of GAT3 and NKCC1. These changes are reversed by blocking TrkB or the TNFR1–SP1PR2–CCL2–CCR2–BDNF–TrkB pathway. Hyperammonemia-induced neuroinflammation increases BDNF and TrkB activation, leading to increased synthesis and extracellular GABA, and the amount of GABAA receptors in the membrane and chloride gradient. These factors enhance GABAergic neurotransmission in the cerebellum. Blocking TrkB or the TNFR1–SP1PR2–CCL2–CCR2–BDNF–TrkB pathway would improve motor function in patients with hepatic encephalopathy and likely with other pathologies associated with neuroinflammation.
Collapse
|
21
|
Häussinger D, Dhiman RK, Felipo V, Görg B, Jalan R, Kircheis G, Merli M, Montagnese S, Romero-Gomez M, Schnitzler A, Taylor-Robinson SD, Vilstrup H. Hepatic encephalopathy. Nat Rev Dis Primers 2022; 8:43. [PMID: 35739133 DOI: 10.1038/s41572-022-00366-6] [Citation(s) in RCA: 108] [Impact Index Per Article: 36.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 05/12/2022] [Indexed: 01/18/2023]
Abstract
Hepatic encephalopathy (HE) is a prognostically relevant neuropsychiatric syndrome that occurs in the course of acute or chronic liver disease. Besides ascites and variceal bleeding, it is the most serious complication of decompensated liver cirrhosis. Ammonia and inflammation are major triggers for the appearance of HE, which in patients with liver cirrhosis involves pathophysiologically low-grade cerebral oedema with oxidative/nitrosative stress, inflammation and disturbances of oscillatory networks in the brain. Severity classification and diagnostic approaches regarding mild forms of HE are still a matter of debate. Current medical treatment predominantly involves lactulose and rifaximin following rigorous treatment of so-called known HE precipitating factors. New treatments based on an improved pathophysiological understanding are emerging.
Collapse
Affiliation(s)
- Dieter Häussinger
- Department of Gastroenterology, Hepatology and Infectious Diseases, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, Düsseldorf, Germany.
| | - Radha K Dhiman
- Department of Hepatology, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow, (Uttar Pradesh), India
| | - Vicente Felipo
- Laboratory of Neurobiology, Centro de Investigación Principe Felipe, Valencia, Spain
| | - Boris Görg
- Department of Gastroenterology, Hepatology and Infectious Diseases, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Rajiv Jalan
- Liver Failure Group ILDH, Division of Medicine, UCL Medical School, Royal Free Campus, London, UK.,European Foundation for the Study of Chronic Liver Failure, Barcelona, Spain
| | - Gerald Kircheis
- Department of Gastroenterology, Diabetology and Hepatology, University Hospital Brandenburg an der Havel, Brandenburg Medical School, Brandenburg an der Havel, Germany
| | - Manuela Merli
- Department of Translational and Precision Medicine, Universita' degli Studi di Roma - Sapienza, Roma, Italy
| | | | - Manuel Romero-Gomez
- UCM Digestive Diseases, Virgen del Rocío University Hospital, Institute of Biomedicine of Seville (HUVR/CSIC/US), University of Seville, Seville, Spain
| | - Alfons Schnitzler
- Institute of Clinical Neuroscience and Medical Psychology, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Simon D Taylor-Robinson
- Department of Surgery and Cancer, St. Mary's Hospital Campus, Imperial College London, London, UK
| | - Hendrik Vilstrup
- Department of Hepatology and Gastroenterology, Aarhus University Hospital, Aarhus, Denmark
| |
Collapse
|
22
|
Leone P, Mincheva G, Balzano T, Malaguarnera M, Felipo V, Llansola M. Rifaximin Improves Spatial Learning and Memory Impairment in Rats with Liver Damage-Associated Neuroinflammation. Biomedicines 2022; 10:1263. [PMID: 35740285 PMCID: PMC9219896 DOI: 10.3390/biomedicines10061263] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 05/23/2022] [Accepted: 05/26/2022] [Indexed: 12/04/2022] Open
Abstract
Patients with non-alcoholic fatty liver disease (NAFLD) may show mild cognitive impairment. Neuroinflammation in the hippocampus mediates cognitive impairment in rat models of minimal hepatic encephalopathy (MHE). Treatment with rifaximin reverses cognitive impairment in a large proportion of cirrhotic patients with MHE. However, the underlying mechanisms remain unclear. The aims of this work were to assess if rats with mild liver damage, as a model of NAFLD, show neuroinflammation in the hippocampus and impaired cognitive function, if treatment with rifaximin reverses it, and to study the underlying mechanisms. Mild liver damage was induced with carbon-tetrachloride. Infiltration of immune cells, glial activation, and cytokine expression, as well as glutamate receptors expression in the hippocampus and cognitive function were assessed. We assessed the effects of daily treatment with rifaximin on the alterations showed by these rats. Rats with mild liver damage showed hippocampal neuroinflammation, reduced membrane expression of glutamate N-methyl-D-aspartate (NMDA) receptor subunits, and impaired spatial memory. Increased C-C Motif Chemokine Ligand 2 (CCL2), infiltration of monocytes, microglia activation, and increased tumor necrosis factor α (TNFα) were reversed by rifaximin, that normalized NMDA receptor expression and improved spatial memory. Thus, rifaximin reduces neuroinflammation and improves cognitive function in rats with mild liver damage, being a promising therapy for patients with NAFLD showing mild cognitive impairment.
Collapse
Affiliation(s)
- Paola Leone
- Mar Lab Department of Neuroscience, NYU Grossman School of Medicine Science Building, New York, NY 10016, USA;
| | - Gergana Mincheva
- Laboratory of Neurobiology, Centro de Investigación Príncipe Felipe, 46012 Valencia, Spain; (G.M.); (M.L.)
| | - Tiziano Balzano
- Centro Integral de Neurociencias, A.C. HM Hospital Universitario Puerta del Sur CINAC, 28938 Madrid, Spain;
| | - Michele Malaguarnera
- Department of Psychobiology, Facultad de Psicología, Universitat de Valencia, 46010 Valencia, Spain;
| | - Vicente Felipo
- Laboratory of Neurobiology, Centro de Investigación Príncipe Felipe, 46012 Valencia, Spain; (G.M.); (M.L.)
| | - Marta Llansola
- Laboratory of Neurobiology, Centro de Investigación Príncipe Felipe, 46012 Valencia, Spain; (G.M.); (M.L.)
| |
Collapse
|
23
|
Wang L, Fan Y. Current Advances of Innate and Adaptive Immunity in Acute-on-Chronic Hepatitis B Liver Failure. INFECTIOUS DISEASES & IMMUNITY 2022; 2:113-121. [DOI: 10.1097/id9.0000000000000051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Indexed: 01/03/2025]
Abstract
Abstract
Acute-on-chronic hepatitis B liver failure (ACHBLF) is a term used to define the acute deterioration of liver function that occurs in patients with chronic hepatitis B virus infection or hepatitis B virus-related liver cirrhosis. The specific pathogenesis of ACHBLF is still not completely understood. Current research has shown that an intense systemic inflammation is involved in the development of acute-on-chronic liver failure (ACLF). Meanwhile, a subsequent immune paresis over the course of ACLF favors the development of infection and sepsis. Deregulation in both the innate and adaptive immunity is the notable feature of ACLF. The dysregulated immune responses play a crucial role in disease progression and potentially drive organ failure and mortality in ACHBLF. In this review, we highlight the current knowledge of innate and adaptive immune cells in ACHBLF.
Collapse
Affiliation(s)
- Liyuan Wang
- Department of Hepatology, Qilu Hospital of Shandong University, Jinan 250012, China
| | - Yuchen Fan
- Department of Hepatology, Qilu Hospital of Shandong University, Jinan 250012, China
- Department of Immunology, School of Basic Medical Science, Cheeloo College of Medicine, Shandong University, Jinan 250012, China
| |
Collapse
|
24
|
Protocatechuic acid protects against thioacetamide-induced chronic liver injury and encephalopathy in mice via modulating mTOR, p53 and the IL-6/ IL-17/ IL-23 immunoinflammatory pathway. Toxicol Appl Pharmacol 2022; 440:115931. [PMID: 35202709 DOI: 10.1016/j.taap.2022.115931] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2021] [Revised: 01/28/2022] [Accepted: 02/17/2022] [Indexed: 02/07/2023]
Abstract
Protocatechuic acid (PCA), a natural phenolic acid, is known for antioxidant, anti-inflammatory, anti-apoptotic, and anti-fibrotic activities. However, the protective mechanisms of PCA on thioacetamide (TAA)-induced liver/brain injury are not well addressed. Chronic liver injury was induced in mice by intraperitoneal injection of TAA (200 mg/kg, 3 times/week) for 8 weeks. Simultaneously, PCA (100, 150 mg/kg/day, p.o.) was given daily from the 4th week. Protocatechuic acid ameliorated liver and brain damage indicated by the decrease in serum activities of aminotransferases, gamma-glutamyl transferase, alkaline phosphatase, lactate dehydrogenase, levels of bilirubin, and ammonia concomitant with restoration of normal albumin levels. Additionally, PCA treatment ameliorated oxidative stress in liver and brain, confirmed by the decrease in malondialdehyde and nitric oxide levels and the increase in antioxidant activities. Moreover, PCA showed anti-inflammatory actions through downregulation of TNF-α expression in the liver and IL-6/IL-17/IL-23 levels in the brain, which is confirmed by the decrease in CD4+ T brain cell numbers. Most importantly, PCA treatment showed a significant decrease in mTOR level and number of LC3 positive cells in both liver and brain tissues. Consequently, PCA could inhibit mTOR-induced apoptosis, as it showed anti-apoptotic actions through downregulation of caspase-3 expression in liver and p53 expression in liver and brain. Furthermore, liver and brain tissues of treated mice showed restoration of normal histology. It can be concluded that, several mechanisms, including: antioxidant, anti-inflammatory, anti-autophagic and anti-apoptotic activities can be implicated in the hepato- and neuroprotective potentials of PCA.
Collapse
|
25
|
Ballester MP, Gallego JJ, Fiorillo A, Casanova-Ferrer F, Giménez-Garzó C, Escudero-García D, Tosca J, Ríos MP, Montón C, Durbán L, Ballester J, Benlloch S, Urios A, San-Miguel T, Kosenko E, Serra MÁ, Felipo V, Montoliu C. Metabolic syndrome is associated with poor response to rifaximin in minimal hepatic encephalopathy. Sci Rep 2022; 12:2463. [PMID: 35165326 PMCID: PMC8844048 DOI: 10.1038/s41598-022-06416-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Accepted: 01/18/2022] [Indexed: 12/13/2022] Open
Abstract
AbstractPatients with cirrhosis may show minimal hepatic encephalopathy (MHE), for which rifaximin is effective. Metabolic syndrome may be associated with cognitive impairment. Our aims were to evaluate the influence of metabolic syndrome features on response to rifaximin for neurological and inflammatory alterations in MHE. A prospective cohort study was conducted in 63 cirrhotic patients and 30 controls from two tertiary centres recruited between 2015 and 2019. Metabolic syndrome was defined according to the Adult Treatment Panel-III. Patients were classified into 31 without and 32 with MHE according to the Psychometric Hepatic Encephalopathy Score (PHES). All participants performed specific psychometric tests, and inflammatory parameters were studied. Patients with MHE received rifaximin (400 mg/8 h). Response was evaluated by PHES at 3 and 6 months. Response according to metabolic syndrome manifestations was compared. The response rate was 66%. Older age (p = 0.012) and all metabolic syndrome diseases (p < 0.05) were associated with non-response, plus an increase in risk as the number of manifestations rose (p < 0.001). Patients with metabolic manifestations exhibited worse processing speed (p = 0.011), working memory (p = 0.005), visual coordination (p = 0.013) and lower proportion of activated CD4+ lymphocytes (p = 0.039) at baseline, as well as worse concentration (p = 0.030), bimanual coordination (p = 0.004) and higher levels of intermediate monocytes (p = 0.026), CX3CL1 (p < 0.05), IL-17 (p = 0.022), AHR (p = 0.010) and IgG (p < 0.05) at 3 and/or 6 months of rifaximin. Patients with clinical signs of metabolic syndrome have poor response to rifaximin for MHE, with a higher proportion of neurological alterations associated with a pro-inflammatory environment.
Collapse
|
26
|
Balzano T, Leone P, Ivaylova G, Castro MC, Reyes L, Ramón C, Malaguarnera M, Llansola M, Felipo V. Rifaximin Prevents T-Lymphocytes and Macrophages Infiltration in Cerebellum and Restores Motor Incoordination in Rats with Mild Liver Damage. Biomedicines 2021; 9:1002. [PMID: 34440206 PMCID: PMC8393984 DOI: 10.3390/biomedicines9081002] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 08/02/2021] [Accepted: 08/03/2021] [Indexed: 12/30/2022] Open
Abstract
In patients with liver cirrhosis, minimal hepatic encephalopathy (MHE) is triggered by a shift in peripheral inflammation, promoting lymphocyte infiltration into the brain. Rifaximin improves neurological function in MHE by normalizing peripheral inflammation. Patients who died with steatohepatitis showed T-lymphocyte infiltration and neuroinflammation in the cerebellum, suggesting that MHE may already occur in these patients. The aims of this work were to assess, in a rat model of mild liver damage similar to steatohepatitis, whether: (1) the rats show impaired motor coordination in the early phases of liver damage; (2) this is associated with changes in the immune system and infiltration of immune cells into the brain; and (3) rifaximin improves motor incoordination, associated with improved peripheral inflammation, reduced infiltration of immune cells and neuroinflammation in the cerebellum, and restoration of the alterations in neurotransmission. Liver damage was induced by carbon tetrachloride (CCl4) injection over four weeks. Peripheral inflammation, immune cell infiltration, neuroinflammation, and neurotransmission in the cerebellum and motor coordination were assessed. Mild liver damage induces neuroinflammation and altered neurotransmission in the cerebellum and motor incoordination. These alterations are associated with increased TNFa, CCL20, and CX3CL1 in plasma and cerebellum, IL-17 and IL-15 in plasma, and CCL2 in cerebellum. This promotes T-lymphocyte and macrophage infiltration in the cerebellum. Early treatment with rifaximin prevents the shift in peripheral inflammation, immune cell infiltration, neuroinflammation, and motor incoordination. This report provides new clues regarding the mechanisms of the beneficial effects of rifaximin, suggesting that early rifaximin treatment could prevent neurological impairment in patients with steatohepatitis.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Marta Llansola
- Laboratory of Neurobiology, Centro Investigación Príncipe Felipe, 46012 Valencia, Spain; (T.B.); (P.L.); (G.I.); (M.C.C.); (L.R.); (C.R.); (M.M.); (V.F.)
| | | |
Collapse
|
27
|
Giménez-Garzó C, Fiorillo A, Ballester-Ferré MP, Gallego JJ, Casanova-Ferrer F, Urios A, Benlloch S, Martí-Aguado D, San-Miguel T, Tosca J, Ríos MP, Montón C, Durbán L, Escudero-García D, Aparicio L, Felipo V, Montoliu C. A New Score Unveils a High Prevalence of Mild Cognitive Impairment in Patients with Nonalcoholic Fatty Liver Disease. J Clin Med 2021; 10:2806. [PMID: 34202269 PMCID: PMC8268962 DOI: 10.3390/jcm10132806] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 06/21/2021] [Accepted: 06/24/2021] [Indexed: 01/10/2023] Open
Abstract
Patients with nonalcoholic fatty liver disease (NAFLD) may show mild cognitive impairment (MCI). The neurological functions affected remain unclear. The aims were to: (1) Characterize the neuropsychological alterations in NAFLD patients; (2) assess the prevalence of impairment of neurological functions evaluated; (3) develop a new score for sensitive and rapid MCI detection in NAFLD; (4) assess differences in MCI features between patients with nonalcoholic fatty liver (NAFL) and nonalcoholic steatohepatitis (NASH); and (5) compare neuropsychological alterations in NAFLD patients with cirrhotic patients with MCI. Fifty-nine NAFLD patients and 53 controls performed psychometric tests assessing different neurological functions: PHES (Psychometric Hepatic Encephalopathy Score) battery, d2, Stroop, Oral SDMT (Symbol Digit Modalities Test), Digit Span, number-letter test, and bimanual and visual-motor coordination tests. NAFLD patients show impairment in attention, mental concentration, psychomotor speed, cognitive flexibility, inhibitory mental control, and working memory. We developed a new, rapid, and sensitive score based on the most affected parameters in NAFLD patients, unveiling that 32% of NAFLD show MCI. Prevalence was similar in NAFL (36%) or NASH (27%) patients, but lower in NAFLD than in cirrhosis (65%). MCI prevalence is significant in NAFLD patients. Psychometric testing is warranted in these patients to unveil MCI and take appropriate measures to reverse and prevent its progression.
Collapse
Affiliation(s)
- Carla Giménez-Garzó
- Laboratory of Neurobiology, Centro Investigación Príncipe Felipe, 46012 Valencia, Spain; (C.G.-G.); (A.U.)
- Fundación Investigación Hospital Clínico, Instituto de Investigación Sanitaria, INCLIVA, 46010 Valencia, Spain; (A.F.); (M.-P.B.-F.); (J.-J.G.); (F.C.-F.); (D.M.-A.); (J.T.); (C.M.); (D.E.-G.); (C.M.)
| | - Alessandra Fiorillo
- Fundación Investigación Hospital Clínico, Instituto de Investigación Sanitaria, INCLIVA, 46010 Valencia, Spain; (A.F.); (M.-P.B.-F.); (J.-J.G.); (F.C.-F.); (D.M.-A.); (J.T.); (C.M.); (D.E.-G.); (C.M.)
| | - María-Pilar Ballester-Ferré
- Fundación Investigación Hospital Clínico, Instituto de Investigación Sanitaria, INCLIVA, 46010 Valencia, Spain; (A.F.); (M.-P.B.-F.); (J.-J.G.); (F.C.-F.); (D.M.-A.); (J.T.); (C.M.); (D.E.-G.); (C.M.)
- Servicio de Medicina Digestiva, Hospital Clínico Valencia, 46010 Valencia, Spain
| | - Juan-José Gallego
- Fundación Investigación Hospital Clínico, Instituto de Investigación Sanitaria, INCLIVA, 46010 Valencia, Spain; (A.F.); (M.-P.B.-F.); (J.-J.G.); (F.C.-F.); (D.M.-A.); (J.T.); (C.M.); (D.E.-G.); (C.M.)
| | - Franc Casanova-Ferrer
- Fundación Investigación Hospital Clínico, Instituto de Investigación Sanitaria, INCLIVA, 46010 Valencia, Spain; (A.F.); (M.-P.B.-F.); (J.-J.G.); (F.C.-F.); (D.M.-A.); (J.T.); (C.M.); (D.E.-G.); (C.M.)
| | - Amparo Urios
- Laboratory of Neurobiology, Centro Investigación Príncipe Felipe, 46012 Valencia, Spain; (C.G.-G.); (A.U.)
- Fundación Investigación Hospital Clínico, Instituto de Investigación Sanitaria, INCLIVA, 46010 Valencia, Spain; (A.F.); (M.-P.B.-F.); (J.-J.G.); (F.C.-F.); (D.M.-A.); (J.T.); (C.M.); (D.E.-G.); (C.M.)
| | - Salvador Benlloch
- Servicio de Digestivo, Hospital Arnau de Vilanova, 46015 Valencia, Spain; (S.B.); (M.-P.R.); (L.D.)
- CIBERehd, Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - David Martí-Aguado
- Fundación Investigación Hospital Clínico, Instituto de Investigación Sanitaria, INCLIVA, 46010 Valencia, Spain; (A.F.); (M.-P.B.-F.); (J.-J.G.); (F.C.-F.); (D.M.-A.); (J.T.); (C.M.); (D.E.-G.); (C.M.)
- Servicio de Medicina Digestiva, Hospital Clínico Valencia, 46010 Valencia, Spain
| | - Teresa San-Miguel
- Departamento de Patología, Universidad Valencia, 46010 Valencia, Spain;
| | - Joan Tosca
- Fundación Investigación Hospital Clínico, Instituto de Investigación Sanitaria, INCLIVA, 46010 Valencia, Spain; (A.F.); (M.-P.B.-F.); (J.-J.G.); (F.C.-F.); (D.M.-A.); (J.T.); (C.M.); (D.E.-G.); (C.M.)
- Servicio de Medicina Digestiva, Hospital Clínico Valencia, 46010 Valencia, Spain
| | - María-Pilar Ríos
- Servicio de Digestivo, Hospital Arnau de Vilanova, 46015 Valencia, Spain; (S.B.); (M.-P.R.); (L.D.)
| | - Cristina Montón
- Fundación Investigación Hospital Clínico, Instituto de Investigación Sanitaria, INCLIVA, 46010 Valencia, Spain; (A.F.); (M.-P.B.-F.); (J.-J.G.); (F.C.-F.); (D.M.-A.); (J.T.); (C.M.); (D.E.-G.); (C.M.)
- Servicio de Medicina Digestiva, Hospital Clínico Valencia, 46010 Valencia, Spain
| | - Lucía Durbán
- Servicio de Digestivo, Hospital Arnau de Vilanova, 46015 Valencia, Spain; (S.B.); (M.-P.R.); (L.D.)
| | - Desamparados Escudero-García
- Fundación Investigación Hospital Clínico, Instituto de Investigación Sanitaria, INCLIVA, 46010 Valencia, Spain; (A.F.); (M.-P.B.-F.); (J.-J.G.); (F.C.-F.); (D.M.-A.); (J.T.); (C.M.); (D.E.-G.); (C.M.)
- Servicio de Medicina Digestiva, Hospital Clínico Valencia, 46010 Valencia, Spain
- Departamento de Medicina, Universidad Valencia, 46010 Valencia, Spain
| | - Luis Aparicio
- Departamento de Anatomía y Embriología, Universidad Valencia, 46010 Valencia, Spain;
| | - Vicente Felipo
- Laboratory of Neurobiology, Centro Investigación Príncipe Felipe, 46012 Valencia, Spain; (C.G.-G.); (A.U.)
| | - Carmina Montoliu
- Fundación Investigación Hospital Clínico, Instituto de Investigación Sanitaria, INCLIVA, 46010 Valencia, Spain; (A.F.); (M.-P.B.-F.); (J.-J.G.); (F.C.-F.); (D.M.-A.); (J.T.); (C.M.); (D.E.-G.); (C.M.)
- Departamento de Patología, Universidad Valencia, 46010 Valencia, Spain;
| |
Collapse
|
28
|
Rubio T, Felipo V, Tarazona S, Pastorelli R, Escudero-García D, Tosca J, Urios A, Conesa A, Montoliu C. Multi-omic analysis unveils biological pathways in peripheral immune system associated to minimal hepatic encephalopathy appearance in cirrhotic patients. Sci Rep 2021; 11:1907. [PMID: 33479266 PMCID: PMC7820002 DOI: 10.1038/s41598-020-80941-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Accepted: 12/23/2020] [Indexed: 01/29/2023] Open
Abstract
Patients with liver cirrhosis may develop minimal hepatic encephalopathy (MHE) which affects their quality of life and life span. It has been proposed that a shift in peripheral inflammation triggers the appearance of MHE. However, the mechanisms involved in this immune system shift remain unknown. In this work we studied the broad molecular changes involved in the induction of MHE with the goal of identifying (1) altered genes and pathways in peripheral blood cells associated to the appearance of MHE, (2) serum metabolites and cytokines with modified levels in MHE patients and (3) MHE-regulated immune response processes related to changes in specific serum molecules. We adopted a multi-omic approach to profile the transcriptome, metabolome and a panel of cytokines of blood samples taken from cirrhotic patients with or without MHE. Transcriptomic analysis supports the hypothesis of alternations in the Th1/Th2 and Th17 lymphocytes cell populations as major drivers of MHE. Cluster analysis of serum molecules resulted in six groups of chemically similar compounds, suggesting that functional modules operate during the induction of MHE. Finally, the multi-omic integrative analysis suggested a relationship between cytokines CCL20, CX3CL1, CXCL13, IL-15, IL-22 and IL-6 with alteration in chemotaxis, as well as a link between long-chain unsaturated phospholipids and the increased fatty acid transport and prostaglandin production. We found altered immune pathways that may collectively contribute to the mild cognitive impairment phenotype in MHE. Our approach is able to combine extracellular and intracellular information, opening new insights to the understanding of the disease.
Collapse
Affiliation(s)
- Teresa Rubio
- Laboratory of Neurobiology, Centro Investigación Príncipe Felipe, Valencia, Spain
| | - Vicente Felipo
- Laboratory of Neurobiology, Centro Investigación Príncipe Felipe, Valencia, Spain
| | - Sonia Tarazona
- Departamento de Estadística e Investigación Operativa Aplicadas y Calidad, Universitat Politècnica de València, Valencia, Spain
| | - Roberta Pastorelli
- Protein and Metabolite Biomarkers Unit, Laboratory of Mass Spectrometry, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milan, Italy
| | - Desamparados Escudero-García
- Unidad de Digestivo, Hospital Clínico de Valencia, Departamento Medicina, Universidad de Valencia, Valencia, Spain
| | - Joan Tosca
- Unidad de Digestivo, Hospital Clínico de Valencia, Valencia, Spain
| | - Amparo Urios
- Laboratory of Neurobiology, Centro Investigación Príncipe Felipe, Valencia, Spain
- Neurological Impairment Laboratory, Fundación Investigación Hospital Clínico Universitario de Valencia, Instituto de Investigación Sanitaria-INCLIVA, Valencia, Spain
| | - Ana Conesa
- Microbiology and Cell Science Department, Institute for Food and Agricultural Sciences, Genetics Institute, University of Florida, Gainesville, USA.
| | - Carmina Montoliu
- Neurological Impairment Laboratory, Fundación Investigación Hospital Clínico Universitario de Valencia, Instituto de Investigación Sanitaria-INCLIVA, Valencia, Spain
- Departamento de Patología, Facultad de Medicina, Universidad de Valencia, Valencia, Spain
| |
Collapse
|
29
|
Chen Z, Ruan J, Li D, Wang M, Han Z, Qiu W, Wu G. The Role of Intestinal Bacteria and Gut-Brain Axis in Hepatic Encephalopathy. Front Cell Infect Microbiol 2021; 10:595759. [PMID: 33553004 PMCID: PMC7859631 DOI: 10.3389/fcimb.2020.595759] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Accepted: 12/04/2020] [Indexed: 12/12/2022] Open
Abstract
Hepatic encephalopathy (HE) is a neurological disorder that occurs in patients with liver insufficiency. However, its pathogenesis has not been fully elucidated. Pharmacotherapy is the main therapeutic option for HE. It targets the pathogenesis of HE by reducing ammonia levels, improving neurotransmitter signal transduction, and modulating intestinal microbiota. Compared to healthy individuals, the intestinal microbiota of patients with liver disease is significantly different and is associated with the occurrence of HE. Moreover, intestinal microbiota is closely associated with multiple links in the pathogenesis of HE, including the theory of ammonia intoxication, bile acid circulation, GABA-ergic tone hypothesis, and neuroinflammation, which contribute to cognitive and motor disorders in patients. Restoring the homeostasis of intestinal bacteria or providing specific probiotics has significant effects on neurological disorders in HE. Therefore, this review aims at elucidating the potential microbial mechanisms and metabolic effects in the progression of HE through the gut-brain axis and its potential role as a therapeutic target in HE.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Guobin Wu
- Guangxi Medical University Cancer Hospital, Nanning, China
| |
Collapse
|
30
|
Kimer N, Gluud LL, Pedersen JS, Tavenier J, Møller S, Bendtsen F. The Psychometric Hepatic Encephalopathy Syndrome score does not correlate with blood ammonia, endotoxins or markers of inflammation in patients with cirrhosis. Transl Gastroenterol Hepatol 2021; 6:8. [PMID: 33409402 DOI: 10.21037/tgh.2020.02.14] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Accepted: 02/10/2020] [Indexed: 12/18/2022] Open
Abstract
Background The pathogenesis of hepatic encephalopathy (HE) remains unclear but impaired clearance of gut-derived neurotoxins and increased systemic inflammation are thought to play key roles. The diagnosis is based on detection of neurophysiological and neuropsychometric abnormalities. The Psychometric Hepatic Encephalopathy Score (PHES) have been found to correlate with markers of systematic inflammation including interleukin 6, C-reactive protein (CRP) and tumor necrosis factor-α (TNF-α). This study explores the associations between the PHES score and systemic inflammation, endotoxins and disease severity using baseline data from a trial involving patients with cirrhosis and minimal or no HE (NCT01769040). Methods Arterial blood was obtained during hepatic vein catheterization, from 54 patients [median age 55 (range, 33-70) years; 83% men] with decompensated but stable cirrhosis. None had clinical evidence of HE but 34 (55.6%) had an abnormal PHES score indicating the presence of minimal HE. Relationships were sought between the PHES score and markers of systemic inflammation, high sensitivity-CRP, cytokines (SDF-1α, TGF-b1, IP-10, IL-6, 10 and 18, and TNF-α; lipopolysaccharide (LPS), the lipopolysaccharide binding protein (LBP) and soluble CD14 (sCD14); and the blood ammonia. Results No significant relationships were found between the PHES score and any of the variables tested with the single exception of the correlation with serum IL-6 (r=-0.29, 95% confidence interval, -0.53 to -0.02, P=0.031). No independent predictors of the PHES score were identified in regression analyses. Conclusions No predictive associations were identified between the PHES scores and circulating blood ammonia, endotoxins, or markers of systemic inflammation in this patient population.
Collapse
Affiliation(s)
- Nina Kimer
- Gastrounit, Medical Division, University Hospital Hvidovre, Hvidovre, Denmark.,Centre of Diagnostic Imaging and Research, Department of Clinical Physiology and Nuclear Medicine, University Hospital Hvidovre, Hvidovre, Denmark
| | - Lise Lotte Gluud
- Gastrounit, Medical Division, University Hospital Hvidovre, Hvidovre, Denmark
| | | | - Juliette Tavenier
- Clinical Research Centre, University Hospital Hvidovre, Hvidovre, Denmark
| | - Søren Møller
- Centre of Diagnostic Imaging and Research, Department of Clinical Physiology and Nuclear Medicine, University Hospital Hvidovre, Hvidovre, Denmark
| | - Flemming Bendtsen
- Gastrounit, Medical Division, University Hospital Hvidovre, Hvidovre, Denmark
| |
Collapse
|
31
|
Balzano T, Dadsetan S, Forteza J, Cabrera-Pastor A, Taoro-Gonzalez L, Malaguarnera M, Gil-Perotin S, Cubas-Nuñez L, Casanova B, Castro-Quintas A, Ponce-Mora A, Arenas YM, Leone P, Erceg S, Llansola M, Felipo V. Chronic hyperammonemia induces peripheral inflammation that leads to cognitive impairment in rats: Reversed by anti-TNF-α treatment. J Hepatol 2020; 73:582-592. [PMID: 30654069 DOI: 10.1016/j.jhep.2019.01.008] [Citation(s) in RCA: 95] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/17/2018] [Revised: 01/03/2019] [Accepted: 01/04/2019] [Indexed: 01/04/2023]
Abstract
BACKGROUND & AIMS Chronic hyperammonemia induces neuroinflammation which mediates cognitive impairment. How hyperammonemia induces neuroinflammation remains unclear. We aimed to assess whether: chronic hyperammonemia induces peripheral inflammation, and whether this then contributes to neuroinflammation, altered neurotransmission and impaired spatial learning - before assessing whether this neuroinflammation and impairment is reversible following hyperammonemia elimination or treatment of peripheral inflammation with anti-TNF-α. METHODS Chronic hyperammonemia was induced by feeding rats an ammonia-containing diet. Peripheral inflammation was analyzed by measuring PGE2, TNF-α, IL-6 and IL-10. We tested whether chronic anti-TNF-α treatment improves peripheral inflammation, neuroinflammation, membrane expression of glutamate receptors in the hippocampus and spatial learning. RESULTS Hyperammonemic rats show a rapid and reversible induction of peripheral inflammation, with increased pro-inflammatory PGE2, TNF-α and IL-6, followed at around 10 days by reduced anti-inflammatory IL-10. Peripheral anti-TNF-α treatment prevents peripheral inflammation induction and the increase in IL-1b and TNF-α and microglia activation in hippocampus of the rats, which remain hyperammonemic. This is associated with prevention of the altered membrane expression of glutamate receptors and of the impairment of spatial memory assessed in the radial and Morris water mazes. CONCLUSIONS This report unveils a new mechanism by which chronic hyperammonemia induces neurological alterations: induction of peripheral inflammation. This suggests that reducing peripheral inflammation by safe procedures would improve cognitive function in patients with minimal hepatic encephalopathy. LAY SUMMARY This article unveils a new mechanism by which chronic hyperammonemia induces cognitive impairment in rats: chronic hyperammonemia per se induces peripheral inflammation, which mediates many of its effects on the brain, including induction of neuroinflammation, which alters neurotransmission, leading to cognitive impairment. It is also shown that reducing peripheral inflammation by treating rats with anti-TNF-α, which does not cross the blood-brain barrier, prevents hyperammonemia-induced neuroinflammation, alterations in neurotransmission and cognitive impairment.
Collapse
Affiliation(s)
- Tiziano Balzano
- Laboratory of Neurobiology, Centro Investigación Príncipe Felipe, Valencia, Spain
| | - Sherry Dadsetan
- Laboratory of Neurobiology, Centro Investigación Príncipe Felipe, Valencia, Spain
| | - Jerónimo Forteza
- Instituto Valenciano de Patología, Unidad Mixta de Patología Molecular, Centro Investigación Príncipe Felipe/Universidad Católica de Valencia Valencia, Spain
| | | | - Lucas Taoro-Gonzalez
- Laboratory of Neurobiology, Centro Investigación Príncipe Felipe, Valencia, Spain
| | - Michele Malaguarnera
- Laboratory of Neurobiology, Centro Investigación Príncipe Felipe, Valencia, Spain
| | - Sara Gil-Perotin
- Multiple Sclerosis and Neuroimmunology Research Group, Fundación para la Investigación La Fe, Valencia, Spain; Neurology Department, Hospital Universitario y Politécnico La Fe, 46026, Valencia, Spain
| | - Laura Cubas-Nuñez
- Multiple Sclerosis and Neuroimmunology Research Group, Fundación para la Investigación La Fe, Valencia, Spain
| | - Bonaventura Casanova
- Multiple Sclerosis and Neuroimmunology Research Group, Fundación para la Investigación La Fe, Valencia, Spain; Neurology Department, Hospital Universitario y Politécnico La Fe, 46026, Valencia, Spain
| | | | - Alejandro Ponce-Mora
- Laboratory of Neurobiology, Centro Investigación Príncipe Felipe, Valencia, Spain
| | - Yaiza M Arenas
- Laboratory of Neurobiology, Centro Investigación Príncipe Felipe, Valencia, Spain
| | - Paola Leone
- Laboratory of Neurobiology, Centro Investigación Príncipe Felipe, Valencia, Spain
| | - Slaven Erceg
- Stem Cells Therapies in Neurodegenerative Diseases Lab, Centro Investigación Príncipe Felipe, Valencia, Spain; National Stem Cell Bank-Valencia Node, Platform for Proteomics, Genotyping and Cell Lines, PRB3, ISCIII, Centro Investigación Príncipe Felipe, Valencia, Spain
| | - Marta Llansola
- Laboratory of Neurobiology, Centro Investigación Príncipe Felipe, Valencia, Spain
| | - Vicente Felipo
- Laboratory of Neurobiology, Centro Investigación Príncipe Felipe, Valencia, Spain.
| |
Collapse
|
32
|
Extracellular Vesicles from Hyperammonemic Rats Induce Neuroinflammation and Motor Incoordination in Control Rats. Cells 2020; 9:cells9030572. [PMID: 32121257 PMCID: PMC7140428 DOI: 10.3390/cells9030572] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Revised: 02/24/2020] [Accepted: 02/25/2020] [Indexed: 12/12/2022] Open
Abstract
Minimal hepatic encephalopathy is associated with changes in the peripheral immune system which are transferred to the brain, leading to neuroinflammation and thus to cognitive and motor impairment. Mechanisms by which changes in the immune system induce cerebral alterations remain unclear. Extracellular vesicles (EVs) seem to play a role in this process in certain pathologies. The aim of this work was to assess whether EVs play a role in the induction of neuroinflammation in cerebellum and motor incoordination by chronic hyperammonemia. We characterized the differences in protein cargo of EVs from plasma of hyperammonemic and control rats by proteomics and Western blot. We assessed whether injection of EVs from hyperammonemic to normal rats induces changes in neuroinflammation in cerebellum and motor incoordination similar to those exhibited by hyperammonemic rats. We found that hyperammonemia increases EVs amount and alters their protein cargo. Differentially expressed proteins are mainly associated with immune system processes. Injected EVs enter Purkinje neurons and microglia. Injection of EVs from hyperammonemic, but not from control rats, induces motor incoordination, which is mediated by neuroinflammation, microglia and astrocytes activation and increased IL-1β, TNFα, its receptor TNFR1, NF-κB in microglia, glutaminase I, and GAT3 in cerebellum. Plasma EVs from hyperammonemic rats carry molecules necessary and sufficient to trigger neuroinflammation in cerebellum and the mechanisms leading to motor incoordination.
Collapse
|
33
|
Urios A, Ordoño F, García-García R, Mangas-Losada A, Leone P, José Gallego J, Cabrera-Pastor A, Megías J, Fermin Ordoño J, Felipo V, Montoliu C. Tadalafil Treatment Improves Inflammation, Cognitive Function, And Mismatch Negativity Of Patients With Low Urinary Tract Symptoms And Erectile Dysfunction. Sci Rep 2019; 9:17119. [PMID: 31745217 PMCID: PMC6863868 DOI: 10.1038/s41598-019-53136-y] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Accepted: 10/21/2019] [Indexed: 12/11/2022] Open
Abstract
Patients with Benign prostatic hyperplasia, low urinary tract symptoms, and erectile dysfunction (BPH/LUTS-ED) present chronic inflammation. We studied in patients with BPH/LUTS-ED the effect of tadalafil treatment (5 mg/day) on changes in peripheral inflammation, cognitive function, and the auditory evoked potential, “mismatch negativity” (MMN). Nine patients with BPH/LUTS-ED and 12 controls performed psychometric tests, MMN. IL-6, IL-17, IL-18, cGMP and CD4+CD28− autoreactive T-cells were measured in blood. Patients with BPH/LUTS-ED performed psychometric tests, MMN, and blood extraction at baseline and after tadalafil treatment. Patients with BPH/LUTS-ED showed increased CD4+CD28− autoreactive T-cells (p < 0.05), and higher levels of pro-inflammatory interleukins IL-6 (p < 0.001), IL-17 and IL-18 (p < 0.05), compared to controls. Patients got lower scores than controls in psychometric tests assessing mental processing speed and attention (p < 0.05), and showed lower amplitude (p < 0.01) and area (p < 0.05) of MMN wave than controls. Inflammatory, psychometric and electrophysiological parameters were normalized after tadalafil treatment. In conclusion, there is a pro-inflammatory environment in blood in patients with BPH/LUTS-ED which would induce cognitive impairment and alter MMN. Phosphodiesterase-5 inhibition with tadalafil exerts anti-inflammatory effects and ameliorates cognitive function and MMN parameters. Tadalafil could be a promising candidate for chronic treatment in other inflammatory pathologies associated with mild cognitive impairment.
Collapse
Affiliation(s)
- Amparo Urios
- Fundación Investigación Hospital Clínico Valencia, INCLIVA, Valencia, Spain
| | - Felipe Ordoño
- Servicio Urología, Hospital Arnau Vilanova, Valencia, Spain
| | - Raquel García-García
- Laboratorio de Neurobiologia, Centro Investigación Príncipe Felipe, Valencia, Spain
| | - Alba Mangas-Losada
- Fundación Investigación Hospital Clínico Valencia, INCLIVA, Valencia, Spain
| | - Paola Leone
- Laboratorio de Neurobiologia, Centro Investigación Príncipe Felipe, Valencia, Spain
| | - Juan José Gallego
- Fundación Investigación Hospital Clínico Valencia, INCLIVA, Valencia, Spain
| | | | - Javier Megías
- Departamento Patología, Facultad Medicina, Universidad Valencia, Valencia, Spain
| | - Juan Fermin Ordoño
- Servicio Neurofisiología, Hospital Arnau Vilanova, Valencia, Spain, Psychopatology and Neurophysiology Unit, Paterna Mental Health Center, CIBERSAM, Valencia, Spain
| | - Vicente Felipo
- Laboratorio de Neurobiologia, Centro Investigación Príncipe Felipe, Valencia, Spain
| | - Carmina Montoliu
- Fundación Investigación Hospital Clínico Valencia, INCLIVA, Valencia, Spain. .,Departamento Patología, Facultad Medicina, Universidad Valencia, Valencia, Spain.
| |
Collapse
|
34
|
Mangas-Losada A, García-García R, Leone P, Ballester MP, Cabrera-Pastor A, Urios A, Gallego JJ, Martínez-Pretel JJ, Giménez-Garzó C, Revert F, Escudero-García D, Tosca J, Ríos MP, Montón C, Durbán L, Aparicio L, Montoliu C, Felipo V. Selective improvement by rifaximin of changes in the immunophenotype in patients who improve minimal hepatic encephalopathy. J Transl Med 2019; 17:293. [PMID: 31462286 PMCID: PMC6714107 DOI: 10.1186/s12967-019-2046-5] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Accepted: 08/22/2019] [Indexed: 02/08/2023] Open
Abstract
Background Minimal hepatic encephalopathy (MHE) in cirrhotic patients is associated with specific changes in parameters of the immune system reflecting a more pro-inflammatory environment than in patients without MHE. The aims of this work were to assess the effects of rifaximin treatment of cirrhotic patients with MHE on: (1) MHE; (2) intermediate (CD14++CD16+) pro-inflammatory monocytes; (3) expression of early activation marker CD69 in T lymphocytes; (4) autoreactive CD4+CD28− T lymphocytes; (5) differentiation of CD4+ T lymphocytes to Th follicular and Th22; (6) serum IgG levels; and (7) levels of some pro-inflammatory cytokines. Methods These parameters were measured by immunophenotyping and cytokine profile analysis in 30 controls without liver disease, 30 cirrhotic patients without MHE and 22 patients with MHE. Patients with MHE were treated with rifaximin and the same parameters were measured at 3 and 6 months of treatment. We assessed if changes in these parameters are different in patients who improve MHE (responders) and those who remain in MHE (non-responders). Results Rifaximin improved MHE in 59% of patients with MHE. In these responder patients rifaximin normalized all alterations in the immune system measured while in non-responders it normalizes only IL-6, CCL20, and differentiation of T lymphocytes to Th22. Non-responder patients do not show increased expression of CD69 before treatment. Conclusions Rifaximin normalizes changes in the immune system in patients who improve MHE but not in non-responders. Some alterations before treatment are different in responders and non-responders. Understanding these differences may identify predictors of the response of MHE to rifaximin.
Collapse
Affiliation(s)
- Alba Mangas-Losada
- Fundación Investigación Hospital Clínico, Instituto de Investigación Sanitaria, INCLIVA, Avda Menéndez Pelayo, 4acc, 46010, Valencia, Spain
| | - Raquel García-García
- Laboratory of Neurobiology, Centro Investigación Príncipe Felipe, Valencia, Spain
| | - Paola Leone
- Laboratory of Neurobiology, Centro Investigación Príncipe Felipe, Valencia, Spain
| | - María Pilar Ballester
- Unidad de Digestivo, Departamento Medicina, Hospital Clínico Valencia, Universidad Valencia, Valencia, Spain
| | - Andrea Cabrera-Pastor
- Fundación Investigación Hospital Clínico, Instituto de Investigación Sanitaria, INCLIVA, Avda Menéndez Pelayo, 4acc, 46010, Valencia, Spain
| | - Amparo Urios
- Fundación Investigación Hospital Clínico, Instituto de Investigación Sanitaria, INCLIVA, Avda Menéndez Pelayo, 4acc, 46010, Valencia, Spain
| | - Juan-José Gallego
- Fundación Investigación Hospital Clínico, Instituto de Investigación Sanitaria, INCLIVA, Avda Menéndez Pelayo, 4acc, 46010, Valencia, Spain
| | - Juan-José Martínez-Pretel
- Fundación Investigación Hospital Clínico, Instituto de Investigación Sanitaria, INCLIVA, Avda Menéndez Pelayo, 4acc, 46010, Valencia, Spain
| | - Carla Giménez-Garzó
- Laboratory of Neurobiology, Centro Investigación Príncipe Felipe, Valencia, Spain
| | - Fernando Revert
- Fundación Investigación Hospital Clínico, Instituto de Investigación Sanitaria, INCLIVA, Avda Menéndez Pelayo, 4acc, 46010, Valencia, Spain
| | | | - Joan Tosca
- Unidad de Digestivo, Departamento Medicina, Hospital Clínico Valencia, Universidad Valencia, Valencia, Spain
| | - María Pilar Ríos
- Servicio de Digestivo, Hospital Arnau de Vilanova, Valencia, Spain
| | - Cristina Montón
- Unidad de Digestivo, Departamento Medicina, Hospital Clínico Valencia, Universidad Valencia, Valencia, Spain
| | - Lucia Durbán
- Servicio de Digestivo, Hospital Arnau de Vilanova, Valencia, Spain
| | - Luis Aparicio
- Departamento de Anatomía Y Embriología, Universidad Valencia, Valencia, Spain
| | - Carmina Montoliu
- Fundación Investigación Hospital Clínico, Instituto de Investigación Sanitaria, INCLIVA, Avda Menéndez Pelayo, 4acc, 46010, Valencia, Spain. .,Departamento de Patología, Universidad Valencia, Valencia, Spain.
| | - Vicente Felipo
- Laboratory of Neurobiology, Centro Investigación Príncipe Felipe, Valencia, Spain
| |
Collapse
|
35
|
Cabrera-Pastor A, Llansola M, Montoliu C, Malaguarnera M, Balzano T, Taoro-Gonzalez L, García-García R, Mangas-Losada A, Izquierdo-Altarejos P, Arenas YM, Leone P, Felipo V. Peripheral inflammation induces neuroinflammation that alters neurotransmission and cognitive and motor function in hepatic encephalopathy: Underlying mechanisms and therapeutic implications. Acta Physiol (Oxf) 2019; 226:e13270. [PMID: 30830722 DOI: 10.1111/apha.13270] [Citation(s) in RCA: 86] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Revised: 03/01/2019] [Accepted: 03/01/2019] [Indexed: 12/11/2022]
Abstract
Several million patients with liver cirrhosis suffer minimal hepatic encephalopathy (MHE), with mild cognitive and coordination impairments that reduce their quality of life and life span. Hyperammonaemia and peripheral inflammation act synergistically to induce these neurological alterations. We propose that MHE appearance is because of the changes in peripheral immune system, which are transmitted to brain, leading to neuroinflammation that alters neurotransmission leading to cognitive and motor alterations. We summarize studies showing that MHE in cirrhotic patients is associated with alterations in the immune system and that patients died with HE show neuroinflammation in cerebellum, with microglial and astrocytic activation and Purkinje cell loss. We also summarize studies in animal models of MHE on the role of peripheral inflammation in neuroinflammation induction, how neuroinflammation alters neurotransmission and how this leads to cognitive and motor alterations. These studies identify therapeutic targets and treatments that improve cognitive and motor function. Rats with MHE show neuroinflammation in hippocampus and altered NMDA and AMPA receptor membrane expression, which impairs spatial learning and memory. Neuroinflammation in cerebellum is associated with altered GABA transporters and extracellular GABA, which impair motor coordination and learning in a Y maze. These alterations are reversed by treatments that reduce peripheral inflammation (anti-TNFα, ibuprofen), neuroinflammation (sulphoraphane, p38 inhibitors), GABAergic tone (bicuculline, pregnenolone sulphate) or increase extracellular cGMP (sildenafil or cGMP). The mechanisms identified would also occur in other chronic diseases associated with inflammation, aging and some mental and neurodegenerative diseases. Treatments that improve MHE may also be beneficial to treat these pathologies.
Collapse
Affiliation(s)
- Andrea Cabrera-Pastor
- Laboratory of Neurobiology, Centro de Investigación Principe Felipe, Valencia, Spain
- Fundacion Investigacion Hospital Clinico Valencia, INCLIVA, Valencia, Spain
| | - Marta Llansola
- Laboratory of Neurobiology, Centro de Investigación Principe Felipe, Valencia, Spain
| | - Carmina Montoliu
- Fundacion Investigacion Hospital Clinico Valencia, INCLIVA, Valencia, Spain
| | - Michele Malaguarnera
- Laboratory of Neurobiology, Centro de Investigación Principe Felipe, Valencia, Spain
| | - Tiziano Balzano
- Laboratory of Neurobiology, Centro de Investigación Principe Felipe, Valencia, Spain
| | - Lucas Taoro-Gonzalez
- Laboratory of Neurobiology, Centro de Investigación Principe Felipe, Valencia, Spain
| | - Raquel García-García
- Laboratory of Neurobiology, Centro de Investigación Principe Felipe, Valencia, Spain
| | - Alba Mangas-Losada
- Fundacion Investigacion Hospital Clinico Valencia, INCLIVA, Valencia, Spain
| | | | - Yaiza M Arenas
- Laboratory of Neurobiology, Centro de Investigación Principe Felipe, Valencia, Spain
| | - Paola Leone
- Laboratory of Neurobiology, Centro de Investigación Principe Felipe, Valencia, Spain
| | - Vicente Felipo
- Laboratory of Neurobiology, Centro de Investigación Principe Felipe, Valencia, Spain
| |
Collapse
|
36
|
Balzano T, Forteza J, Molina P, Giner J, Monzó A, Sancho-Jiménez J, Urios A, Montoliu C, Felipo V. The Cerebellum of Patients with Steatohepatitis Shows Lymphocyte Infiltration, Microglial Activation and Loss of Purkinje and Granular Neurons. Sci Rep 2018; 8:3004. [PMID: 29445232 PMCID: PMC5813099 DOI: 10.1038/s41598-018-21399-6] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2017] [Accepted: 02/05/2018] [Indexed: 12/21/2022] Open
Abstract
Peripheral inflammation contributes to minimal hepatic encephalopathy in chronic liver diseases, which could be mediated by neuroinflammation. Neuroinflammation in cerebellum of patients with chronic liver diseases has not been studied in detail. Our aim was to analyze in cerebellum of patients with different grades of liver disease, from mild steatohepatitis to cirrhosis and hepatic encephalopathy: (a) neuronal density in Purkinje and granular layers; (b) microglial activation; (c) astrocyte activation; (d) peripheral lymphocytes infiltration; (e) subtypes of lymphocytes infiltrated. Steatohepatitis was classified as SH1, SH2 and SH3. Patients with SH1 show Th17 and Tfh lymphocytes infiltration in the meninges, microglia activation in the molecular layer and loss of 16 ± 4% of Purkinje and 19 ± 2% of granular neurons. White matter remains unaffected. With the progression of liver disease to worse stages (SH2, SH3, cirrhosis) activation of microglia and astrocytes extends to white matter, Bergman glia is damaged in the molecular layer and there is a further loss of Purkinje neurons. The results reported show that neuroinflammation in cerebellum occurs at early stages of liver disease, even before reaching cirrhosis. Neuroinflammation occurs earlier in the molecular layer than in white matter, and is associated with infiltration of peripheral Th17 and Tfh lymphocytes.
Collapse
Affiliation(s)
- Tiziano Balzano
- Laboratory of Neurobiology, Centro Investigación Príncipe Felipe, Valencia, Spain
| | - Jerónimo Forteza
- Instituto Valenciano de Patología, Unidad Mixta de Patología Molecular. CIPF/Universidad Católica, Valencia, Spain
| | - Pilar Molina
- Instituto de Medicina Legal y Ciencias Forenses, Valencia, Spain
- Departamento de Patología, Facultad de Medicina, Universidad Valencia, Valencia, Spain
| | - Juan Giner
- Instituto de Medicina Legal y Ciencias Forenses, Valencia, Spain
| | - Ana Monzó
- Instituto de Medicina Legal y Ciencias Forenses, Valencia, Spain
| | | | - Amparo Urios
- Laboratory of Neurobiology, Centro Investigación Príncipe Felipe, Valencia, Spain
| | - Carmina Montoliu
- Departamento de Patología, Facultad de Medicina, Universidad Valencia, Valencia, Spain
- Instituto de Investigación Sanitaria-INCLIVA, Valencia, Spain
| | - Vicente Felipo
- Laboratory of Neurobiology, Centro Investigación Príncipe Felipe, Valencia, Spain.
| |
Collapse
|