1
|
Chaurasia AK, Patil HB, Krishna B, Subramaniam VR, Sane PV, Sane AP. The transition from vegetative growth to flowering is associated with suppression of the MUSA CENTRORADIALIS (MCN) gene family in day neutral banana. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2025; 350:112289. [PMID: 39414148 DOI: 10.1016/j.plantsci.2024.112289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 09/17/2024] [Accepted: 10/10/2024] [Indexed: 10/18/2024]
Abstract
Control over flowering time is essential for reproductive success and survival of plants. The TERMINAL FLOWER1/CENTRORADIALIS/BROTHER OF FT AND TFL1 (TFL1/CEN/BFT) genes are key suppressor of flowering time that prevents premature conversion of the apical meristem into a floral meristem thereby allowing indeterminate vegetative growth. We have identified and characterized seven members of banana TFL1/CEN/BFT gene family (MCN1-7). All genes except MCN6 show overlapping expression in the shoot apical meristem as well as leaves from the initial to mid-vegetative phases. Their expression is collectively reduced to their lowest just prior to flowering initiation at around 171 days, 226 days and 297 days, respectively, in three differently flowering varieties. Thereafter, there is steady increase in their transcript levels in the apical meristem as well as leaves that correlates with the development and growth of the inflorescence. The ability of three of the genes, MCNs1-3, to functionally complement the tfl1-14 mutant of Arabidopsis provides additional evidence for structural and functional similarities of the MCN proteins to TFL1 even in a distantly related plant. Together, these results suggest that the MCN family in banana is associated with vegetative growth and suppression of flowering time initiation as well as indeterminate growth of inflorescence.
Collapse
Affiliation(s)
- Akhilesh K Chaurasia
- Plant Molecular Biology Lab, Jain R&D Lab, Jain Hills, Jain Irrigation Systems Limited, Jalgaon 425001, India
| | - Hemant B Patil
- Plant Molecular Biology Lab, Jain R&D Lab, Jain Hills, Jain Irrigation Systems Limited, Jalgaon 425001, India
| | - Bal Krishna
- Plant Molecular Biology Lab, Jain R&D Lab, Jain Hills, Jain Irrigation Systems Limited, Jalgaon 425001, India.
| | - Vadakanthara R Subramaniam
- Plant Molecular Biology Lab, Jain R&D Lab, Jain Hills, Jain Irrigation Systems Limited, Jalgaon 425001, India
| | - Prafullachandra V Sane
- Plant Molecular Biology Lab, Jain R&D Lab, Jain Hills, Jain Irrigation Systems Limited, Jalgaon 425001, India
| | - Aniruddha P Sane
- Plant Gene Expression Lab, CSIR-National Botanical Research Institute, Rana Pratap Marg, Lucknow 226001, India.
| |
Collapse
|
2
|
Zhao W, Sun X, Wu S, Wu S, Hu C, Huo H, Deng G, Sheng O, Bi F, He W, Dou T, Dong T, Li C, Liu S, Gao H, Li C, Yi G, Yang Q. MaGA20ox2f, an OsSD1 homolog, regulates flowering time and fruit yield in banana. MOLECULAR BREEDING : NEW STRATEGIES IN PLANT IMPROVEMENT 2025; 45:12. [PMID: 39803631 PMCID: PMC11717755 DOI: 10.1007/s11032-024-01523-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2024] [Accepted: 12/06/2024] [Indexed: 01/16/2025]
Abstract
Previous studies illustrated that two banana GA20 oxidase2 (MaGA20ox2) genes, Ma04g15900 and Ma08g32850, are implicated in controlling banana growth and development; however, the biological function of each gene remains unknown. Ma04g15900 protein (termed MaGA20ox2f in this article) is the closest homolog to the Rice SD1 (encoded by 'green revolution gene', OsSD1) in the banana genome. The expression of MaGA20ox2f is confined to leaves, peduncles, fruit peels, and pulp. Knockout of MaGA20ox2f by CRISPR/Cas9 led to late flowering and low-yielding phenotypes. The flowering time of ΔMaGA20ox2f #1 and ∆MaGA20ox2f #2 lines was delayed approximately by 61 and 58 days, respectively, while fruit yield decreased by 81.13% and 76.23% compared to wild type under normal conditions. The endogenous levels of downstream products of GA20 oxidase, GA15 and GA20, were significantly reduced in ∆MaGA20ox2f mutant shoots and fruits, but bioactive GA1 was only significantly reduced in the mutant fruits. Quantitative proteomics analysis identified 118 up-regulated proteins and 309 down-regulated proteins in both ΔMaGA20ox2f #1 and ∆MaGA20ox2f #2 lines, compared to wild type, with the down-regulated proteins primarily associated with photosynthesis, porphyrin and chlorophyll metabolism. The decreased chlorophyll contents in ΔMaGA20ox2f #1 and ∆MaGA20ox2f #2 lines corroborated the findings of the proteomics data. We propose that photosynthesis inhibition caused by lower chlorophyll contents in ΔMaGA20ox2f mutant leaves and GA1 deficiency in ΔMaGA20ox2f mutant fruits may be the two critical reasons contributing to the late flowering and low-yielding phenotypes of ΔMaGA20ox2f mutants. Supplementary Information The online version contains supplementary material available at 10.1007/s11032-024-01523-3.
Collapse
Affiliation(s)
- Wei Zhao
- Institute of Fruit Tree Research, Key Laboratory of South Subtropical Fruit Biology and Genetic Resource Utilization, Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of Science and Technology Research On Fruit Tree, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640 Guangdong China
- Maoming Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510640 Guangdong China
- Key Laboratory of Horticultural Plant Biology of the Ministry of Education, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070 Hubei China
| | - Xiaoxuan Sun
- Jiangsu Agri-Animal Husbandry Vocational College, Taizhou, 225300 Jiangsu China
| | - Shaoping Wu
- Life Sciences College, Zhaoqing University, Zhaoqing, 526061 Guangdong China
| | - Shuofan Wu
- College of Life Sciences, South China Agricultural University, Guangzhou, 510642 Guangdong China
| | - Chunhua Hu
- Institute of Fruit Tree Research, Key Laboratory of South Subtropical Fruit Biology and Genetic Resource Utilization, Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of Science and Technology Research On Fruit Tree, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640 Guangdong China
- Maoming Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510640 Guangdong China
| | - Heqiang Huo
- Mid-Florida Research and Education Center, University of Florida, Apopka, FL 32703 USA
| | - Guiming Deng
- Institute of Fruit Tree Research, Key Laboratory of South Subtropical Fruit Biology and Genetic Resource Utilization, Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of Science and Technology Research On Fruit Tree, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640 Guangdong China
- Maoming Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510640 Guangdong China
| | - Ou Sheng
- Institute of Fruit Tree Research, Key Laboratory of South Subtropical Fruit Biology and Genetic Resource Utilization, Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of Science and Technology Research On Fruit Tree, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640 Guangdong China
- Maoming Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510640 Guangdong China
| | - Fangcheng Bi
- Institute of Fruit Tree Research, Key Laboratory of South Subtropical Fruit Biology and Genetic Resource Utilization, Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of Science and Technology Research On Fruit Tree, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640 Guangdong China
- Maoming Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510640 Guangdong China
| | - Weidi He
- Institute of Fruit Tree Research, Key Laboratory of South Subtropical Fruit Biology and Genetic Resource Utilization, Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of Science and Technology Research On Fruit Tree, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640 Guangdong China
- Maoming Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510640 Guangdong China
| | - Tongxin Dou
- Institute of Fruit Tree Research, Key Laboratory of South Subtropical Fruit Biology and Genetic Resource Utilization, Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of Science and Technology Research On Fruit Tree, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640 Guangdong China
- Maoming Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510640 Guangdong China
| | - Tao Dong
- Institute of Fruit Tree Research, Key Laboratory of South Subtropical Fruit Biology and Genetic Resource Utilization, Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of Science and Technology Research On Fruit Tree, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640 Guangdong China
- Maoming Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510640 Guangdong China
| | - Chunyu Li
- Institute of Fruit Tree Research, Key Laboratory of South Subtropical Fruit Biology and Genetic Resource Utilization, Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of Science and Technology Research On Fruit Tree, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640 Guangdong China
- Maoming Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510640 Guangdong China
| | - Siwen Liu
- Institute of Fruit Tree Research, Key Laboratory of South Subtropical Fruit Biology and Genetic Resource Utilization, Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of Science and Technology Research On Fruit Tree, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640 Guangdong China
- Maoming Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510640 Guangdong China
| | - Huijun Gao
- Institute of Fruit Tree Research, Key Laboratory of South Subtropical Fruit Biology and Genetic Resource Utilization, Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of Science and Technology Research On Fruit Tree, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640 Guangdong China
- Maoming Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510640 Guangdong China
| | - Chunlong Li
- Key Laboratory of Horticultural Plant Biology of the Ministry of Education, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070 Hubei China
| | - Ganjun Yi
- Institute of Fruit Tree Research, Key Laboratory of South Subtropical Fruit Biology and Genetic Resource Utilization, Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of Science and Technology Research On Fruit Tree, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640 Guangdong China
- Maoming Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510640 Guangdong China
| | - Qiaosong Yang
- Institute of Fruit Tree Research, Key Laboratory of South Subtropical Fruit Biology and Genetic Resource Utilization, Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of Science and Technology Research On Fruit Tree, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640 Guangdong China
- Maoming Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510640 Guangdong China
| |
Collapse
|
3
|
Lee N, Shim JS, Kang MK, Kwon M. Insight from expression profiles of FT orthologs in plants: conserved photoperiodic transcriptional regulatory mechanisms. FRONTIERS IN PLANT SCIENCE 2024; 15:1397714. [PMID: 38887456 PMCID: PMC11180818 DOI: 10.3389/fpls.2024.1397714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Accepted: 05/20/2024] [Indexed: 06/20/2024]
Abstract
Floral transition from the vegetative to the reproductive stages is precisely regulated by both environmental and endogenous signals. Among these signals, photoperiod is one of the most important environmental factors for onset of flowering. A florigen, FLOWERING LOCUS T (FT) in Arabidopsis, has thought to be a major hub in the photoperiod-dependent flowering time regulation. Expression levels of FT likely correlates with potence of flowering. Under long days (LD), FT is mainly synthesized in leaves, and FT protein moves to shoot apical meristem (SAM) where it functions and in turns induces flowering. Recently, it has been reported that Arabidopsis grown under natural LD condition flowers earlier than that grown under laboratory LD condition, in which a red (R)/far-red (FR) ratio of light sources determines FT expression levels. Additionally, FT expression profile changes in response to combinatorial effects of FR light and photoperiod. FT orthologs exist in most of plants and functions are thought to be conserved. Although molecular mechanisms underlying photoperiodic transcriptional regulation of FT orthologs have been studied in several plants, such as rice, however, dynamics in expression profiles of FT orthologs have been less spotlighted. This review aims to revisit previously reported but overlooked expression information of FT orthologs from various plant species and classify these genes depending on the expression profiles. Plants, in general, could be classified into three groups depending on their photoperiodic flowering responses. Thus, we discuss relationship between photoperiodic responsiveness and expression of FT orthologs. Additionally, we also highlight the expression profiles of FT orthologs depending on their activities in flowering. Comparative analyses of diverse plant species will help to gain insight into molecular mechanisms for flowering in nature, and this can be utilized in the future for crop engineering to improve yield by controlling flowering time.
Collapse
Affiliation(s)
- Nayoung Lee
- Research Institute of Molecular Alchemy (RIMA), Gyeongsang National University, Jinju, Republic of Korea
| | - Jae Sung Shim
- School of Biological Sciences and Technology, Chonnam National University, Gwangju, Republic of Korea
| | - Min-Kyoung Kang
- Division of Applied Life Science (BK21 Four), Anti-aging Bio Cell factory Regional Leading Research Center (ABC-RLRC), Gyeongsang National University, Jinju, Republic of Korea
| | - Moonhyuk Kwon
- Division of Applied Life Science (BK21 Four), ABC-RLRC, RIMA, Gyeongsang National University, Jinju, Republic of Korea
| |
Collapse
|
4
|
Rehman S, Bahadur S, Xia W. An overview of floral regulatory genes in annual and perennial plants. Gene 2023; 885:147699. [PMID: 37567454 DOI: 10.1016/j.gene.2023.147699] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 07/31/2023] [Accepted: 08/08/2023] [Indexed: 08/13/2023]
Abstract
The floral initiation in angiosperms is a complex process influenced by endogenous and exogenous signals. With this approach, we aim to provide a comprehensive review to integrate this complex floral regulatory process and summarize the regulatory genes and their functions in annuals and perennials. Seven primary paths leading to flowering have been discovered in Arabidopsis under several growth condition that include; photoperiod, ambient temperature, vernalization, gibberellins, autonomous, aging and carbohydrates. These pathways involve a series of interlinked signaling pathways that respond to both internal and external signals, such as light, temperature, hormones, and developmental cues, to coordinate the expression of genes that are involved in flower development. Among them, the photoperiodic pathway was the most important and conserved as some of the fundamental loci and mechanisms are shared even by closely related plant species. The activation of floral regulatory genes such as FLC, FT, LFY, and SOC1 that determine floral meristem identity and the transition to the flowering stage result from the merging of these pathways. Recent studies confirmed that alternative splicing, antisense RNA and epigenetic modification play crucial roles by regulating the expression of genes related to blooming. In this review, we documented recent progress in the floral transition time in annuals and perennials, with emphasis on the specific regulatory mechanisms along with the application of various molecular approaches including overexpression studies, RNA interference and Virus-induced flowering. Furthermore, the similarities and differences between annual and perennial flowering will aid significant contributions to the field by elucidating the mechanisms of perennial plant development and floral initiation regulation.
Collapse
Affiliation(s)
- Shazia Rehman
- Sanya Nanfan Research Institution, Hainan University, Haikou 572025, China; College of Tropical Crops, Hainan University, Haikou 570228, China
| | - Saraj Bahadur
- College of Forestry, Hainan University, Haikou 570228 China
| | - Wei Xia
- Sanya Nanfan Research Institution, Hainan University, Haikou 572025, China; College of Tropical Crops, Hainan University, Haikou 570228, China.
| |
Collapse
|
5
|
Surkova SY, Samsonova MG. Mechanisms of Vernalization-Induced Flowering in Legumes. Int J Mol Sci 2022; 23:ijms23179889. [PMID: 36077286 PMCID: PMC9456104 DOI: 10.3390/ijms23179889] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 08/25/2022] [Accepted: 08/26/2022] [Indexed: 11/16/2022] Open
Abstract
Vernalization is the requirement for exposure to low temperatures to trigger flowering. The best knowledge about the mechanisms of vernalization response has been accumulated for Arabidopsis and cereals. In Arabidopsis thaliana, vernalization involves an epigenetic silencing of the MADS-box gene FLOWERING LOCUS C (FLC), which is a flowering repressor. FLC silencing releases the expression of the main flowering inductor FLOWERING LOCUS T (FT), resulting in a floral transition. Remarkably, no FLC homologues have been identified in the vernalization-responsive legumes, and the mechanisms of cold-mediated transition to flowering in these species remain elusive. Nevertheless, legume FT genes have been shown to retain the function of the main vernalization signal integrators. Unlike Arabidopsis, legumes have three subclades of FT genes, which demonstrate distinct patterns of regulation with respect to environmental cues and tissue specificity. This implies complex mechanisms of vernalization signal propagation in the flowering network, that remain largely elusive. Here, for the first time, we summarize the available information on the genetic basis of cold-induced flowering in legumes with a special focus on the role of FT genes.
Collapse
|
6
|
Ochola D, Boekelo B, van de Ven GWJ, Taulya G, Kubiriba J, van Asten PJA, Giller KE. Mapping spatial distribution and geographic shifts of East African highland banana (Musa spp.) in Uganda. PLoS One 2022; 17:e0263439. [PMID: 35176065 PMCID: PMC8853547 DOI: 10.1371/journal.pone.0263439] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Accepted: 01/20/2022] [Indexed: 11/24/2022] Open
Abstract
East African highland banana (Musa acuminata genome group AAA-EA; hereafter referred to as banana) is critical for Uganda's food supply, hence our aim to map current distribution and to understand changes in banana production areas over the past five decades. We collected banana presence/absence data through an online survey based on high-resolution satellite images and coupled this data with independent covariates as inputs for ensemble machine learning prediction of current banana distribution. We assessed geographic shifts of production areas using spatially explicit differences between the 1958 and 2016 banana distribution maps. The biophysical factors associated with banana spatial distribution and geographic shift were determined using a logistic regression model and classification and regression tree, respectively. Ensemble models were superior (AUC = 0.895; 0.907) compared to their constituent algorithms trained with 12 and 17 covariates, respectively: random forests (AUC = 0.883; 0.901), gradient boosting machines (AUC = 0.878; 0.903), and neural networks (AUC = 0.870; 0.890). The logistic regression model (AUC = 0.879) performance was similar to that for the ensemble model and its constituent algorithms. In 2016, banana cultivation was concentrated in the western (44%) and central (36%) regions, while only a small proportion was in the eastern (18%) and northern (2%) regions. About 60% of increased cultivation since 1958 was in the western region; 50% of decreased cultivation in the eastern region; and 44% of continued cultivation in the central region. Soil organic carbon, soil pH, annual precipitation, slope gradient, bulk density and blue reflectance were associated with increased banana cultivation while precipitation seasonality and mean annual temperature were associated with decreased banana cultivation over the past 50 years. The maps of spatial distribution and geographic shift of banana can support targeting of context-specific intensification options and policy advocacy to avert agriculture driven environmental degradation.
Collapse
Affiliation(s)
- Dennis Ochola
- International Institute of Tropical Agriculture (IITA), Kampala, Uganda
- Wageningen University and Research (WUR), Wageningen, The Netherlands
| | - Bastiaen Boekelo
- Wageningen University and Research (WUR), Wageningen, The Netherlands
| | | | - Godfrey Taulya
- International Institute of Tropical Agriculture (IITA), Kampala, Uganda
| | - Jerome Kubiriba
- National Agricultural Research Laboratories (NARL), Kawanda, Uganda
| | | | - Ken E. Giller
- Wageningen University and Research (WUR), Wageningen, The Netherlands
| |
Collapse
|
7
|
Kim G, Rim Y, Cho H, Hyun TK. Identification and Functional Characterization of FLOWERING LOCUS T in Platycodon grandiflorus. PLANTS (BASEL, SWITZERLAND) 2022; 11:plants11030325. [PMID: 35161306 PMCID: PMC8840131 DOI: 10.3390/plants11030325] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 01/21/2022] [Accepted: 01/21/2022] [Indexed: 05/20/2023]
Abstract
Platycodon grandiflorus roots have been used as a foodstuff and traditional medicine for thousands of years in East Asia. In order to increase the root development of P. grandiflorus, cultivators removed the inflorescences, suggesting the possible negative effect of flowering on root development. This indicates that the genetic improvement of P. grandiflorus by late flowering is a potential approach to increase productivity. However, nothing is known about key genes integrating multiple flowering pathways in P. grandiflorus. In order to fill this gap, we identified potential homologs of the FLOWERING LOCUS T (FT) gene in P. grandiflorus. The alignment with other FT members and phylogenetic analysis revealed that the P. grandiflorus FT (PlgFT) protein contains highly conserved functional domains and belongs to the FT-like clade. The expression analysis revealed spatial variations in the transcription of PlgFT in different organs. In addition, the expression level of PlgFT was increased by high temperature but not by photoperiodic light input signals, presumably due to lacking the CONSTANS binding motif in its promoter region. Furthermore, PlgFT induced early flowering upon its overexpression in P. grandiflorus, suggesting the functional role of PlgFT in flowering. Taken together, we functionally characterized PlgFT as a master regulator of P. grandiflorus flowering under inductive high temperature, which will serve as an important target gene for improving the root productivity.
Collapse
Affiliation(s)
- Gayeon Kim
- Department of Industrial Plant Science and Technology, Chungbuk National University, Cheongju 28644, Korea;
| | - Yeonggil Rim
- Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Jinju 52828, Korea;
| | - Hyunwoo Cho
- Department of Industrial Plant Science and Technology, Chungbuk National University, Cheongju 28644, Korea;
- Correspondence: (H.C.); (T.K.H.)
| | - Tae Kyung Hyun
- Department of Industrial Plant Science and Technology, Chungbuk National University, Cheongju 28644, Korea;
- Correspondence: (H.C.); (T.K.H.)
| |
Collapse
|
8
|
Patil HB, Chaurasia AK, Kumar S, Krishna B, Subramaniam VR, Sane AP, Sane PV. Synchronized flowering in pomegranate, following pruning, is associated with expression of the FLOWERING LOCUS T homolog, PgFT1. PHYSIOLOGIA PLANTARUM 2022; 174:e13620. [PMID: 34989003 DOI: 10.1111/ppl.13620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2021] [Revised: 11/04/2021] [Accepted: 12/27/2021] [Indexed: 06/14/2023]
Abstract
Flowering in angiosperms is a crucial event that marks the transition from the vegetative to the reproductive phase. In many perennials, pruning is an important horticultural practice that induces synchronized and profuse flowering. In pomegranate, vegetative growth immediately after pruning is associated with activation of PgCENa, a flowering suppressor of the phosphatidyl ethanolamine binding protein (PEBP) family, while a reduction is associated with synchronous flowering. We show that flowering in pomegranate is activated by expression of another PEBP family member, PgFT1, a homolog of the FLOWERING LOCUS T (FT) gene that promotes flowering. PgFT1 shows a rapid reduction in expression during the extensive vegetative growth immediately after pruning but shows robust expression during synchronous flowering post-pruning, in flower-bearing shoots but not in branches that do not bear flowers. A continuous low-level flowering in the absence of pruning is associated with continuous but reduced expression of PgFT1. Flowering by heterologous expression of PgFT1 in Arabidopsis is affected by a single amino acid change in the C-terminal region of PgFT1, which upon correction, promotes flowering in Arabidopsis. Our study provides insights into the molecular mechanisms by which pruning affects flowering pathways in tropical perennial fruit plants such as pomegranate.
Collapse
Affiliation(s)
- Hemant Bhagwan Patil
- Plant Molecular Biology Lab, Jain R&D Laboratory, Jain Irrigation Systems Limited, Agri Park, Jalgaon, India
| | - Akhilesh Kumar Chaurasia
- Plant Molecular Biology Lab, Jain R&D Laboratory, Jain Irrigation Systems Limited, Agri Park, Jalgaon, India
| | - Sandeep Kumar
- Plant Molecular Biology Lab, Jain R&D Laboratory, Jain Irrigation Systems Limited, Agri Park, Jalgaon, India
| | - Bal Krishna
- Plant Molecular Biology Lab, Jain R&D Laboratory, Jain Irrigation Systems Limited, Agri Park, Jalgaon, India
| | | | | | - Prafullachandra Vishnu Sane
- Plant Molecular Biology Lab, Jain R&D Laboratory, Jain Irrigation Systems Limited, Agri Park, Jalgaon, India
| |
Collapse
|
9
|
Enzymatic Hydrolysis and Fermentation of Banana Pseudostem Hydrolysate to Produce Bioethanol. Int J Microbiol 2021; 2021:5543104. [PMID: 34335778 PMCID: PMC8294991 DOI: 10.1155/2021/5543104] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 06/11/2021] [Accepted: 07/05/2021] [Indexed: 11/25/2022] Open
Abstract
Banana pseudostem (BPS) is an agricultural waste with a high holocellulose content, which, upon hydrolysis, releases fermentable sugars that can be used for bioethanol production. Different pretreatment methods, namely, 3% (w/v) NaOH, 5% (v/v) H2SO4, and liquid hot water, applied on the BPS resulted in the availability of 52%, 48%, and 25% cellulose after treatment, respectively. Saccharification of the pretreated BPS with 10 FPU/g dry solids (29.3 mg protein/g d.s) crude enzyme from Trichoderma harzianum LMLBP07 13-5 at 50°C and a substrate loading of 10 to 15% released 3.8 to 21.8 g/L and from T. longibrachiatum LMLSAUL 14-1 released 5.4 to 43.5 g/L glucose to the biomass. Ethanol was produced through separate hydrolysis and fermentation (SHF) of alkaline pretreated BPS hydrolysate using Saccharomyces cerevisiae UL01 at 30°C and 100 rpm. Highest ethanol produced was 17.6 g/L. Banana pseudostem was shown as a potentially cheap substrate for bioethanol production.
Collapse
|
10
|
Evolution and functional diversification of FLOWERING LOCUS T/TERMINAL FLOWER 1 family genes in plants. Semin Cell Dev Biol 2020; 109:20-30. [PMID: 32507412 DOI: 10.1016/j.semcdb.2020.05.007] [Citation(s) in RCA: 81] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Revised: 05/11/2020] [Accepted: 05/11/2020] [Indexed: 01/01/2023]
Abstract
Plant growth and development, particularly the induction of flowering, are tightly controlled by key regulators in response to endogenous and environmental cues. The FLOWERING LOCUS T (FT)/TERMINAL FLOWER 1 (TFL1) family of phosphatidylethanolamine-binding protein (PEBP) genes is central to plant development, especially the regulation of flowering time and plant architecture. FT, the long-sought florigen, promotes flowering and TFL1 represses flowering. The balance between FT and TFL1 modulates plant architecture by switching the meristem from indeterminate to determinate growth, or vice versa. Recent studies in a broad range of plant species demonstrated that, in addition to their roles in flowering time and plant architecture, FT/TFL1 family genes participate in diverse aspects of plant development, such as bamboo seed germination and potato tuber formation. In this review, we briefly summarize the evolution of the FT/TFL1 family and highlight recent findings on their conserved and divergent functions in different species.
Collapse
|
11
|
Ospina-Zapata DA, Madrigal Y, Alzate JF, Pabón-Mora N. Evolution and Expression of Reproductive Transition Regulatory Genes FT/ TFL1 With Emphasis in Selected Neotropical Orchids. FRONTIERS IN PLANT SCIENCE 2020; 11:469. [PMID: 32373149 PMCID: PMC7186885 DOI: 10.3389/fpls.2020.00469] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Accepted: 03/30/2020] [Indexed: 05/23/2023]
Abstract
Flowering is a rigorously timed and morphologically complex shift in plant development. This change depends on endogenous as well as environmental factors. FLOWERING LOCUS T (FT) integrates several cues from different pathways acting as a flowering promoter. Contrary to the role of FT, its paralog TERMINAL FLOWER 1 (TFL1) delays floral transition. Although FT/TFL1 homologs have been studied in model eudicots and monocots, scarce studies are available in non-model monocots like the Orchidaceae. Orchids are very diverse and their floral complexity is translated into a unique aesthetic display, which appeals the ornamental plant market. Nonetheless, orchid trade faces huge limitations due to their long vegetative phase and intractable indoor flowering seasons. Little is known about the genetic basis that control reproductive transition in orchids and, consequently, manipulating their flowering time remains a challenge. In order to contribute to the understanding of the genetic bases that control flowering in orchids we present here the first broad-scale analysis of FT/TFL1-like genes in monocots with an expanded sampling in Orchidaceae. We also compare expression patterns in three selected species and propose hypotheses on the putative role of these genes in their reproductive transition. Our findings show that FT-like genes are by far more diversified than TFL1-like genes in monocots with six subclades in the former and only one in the latter. Within MonFT1, the comparative protein sequences of MonFT1A and MonFT1B suggest that they could have recruited functional roles in delaying flowering, a role typically assigned to TFL1-like proteins. On the other hand, MonFT2 proteins have retained their canonical motifs and roles in promoting flowering transition. This is also shown by their increased expression levels from the shoot apical meristem (SAM) and leaves to inflorescence meristems (IM) and floral buds (FBs). Finally, TFL1-like genes are retained as single copy and often times are lost. Their loss could be linked to the parallel recruitment of MonFT1A and MonFT1B homologs in delaying flowering and maintaining indeterminacy of the inflorescence meristem. These hypotheses lay the foundation for future functional validation in emerging model orchid species and comparative analyses in orchids with high horticultural potential in the market.
Collapse
Affiliation(s)
- Diego A. Ospina-Zapata
- Facultad de Ciencias Exactas y Naturales, Instituto de Biología, Universidad de Antioquia, Medellín, Colombia
| | - Yesenia Madrigal
- Facultad de Ciencias Exactas y Naturales, Instituto de Biología, Universidad de Antioquia, Medellín, Colombia
| | - Juan F. Alzate
- Centro Nacional de Secuenciación Genómica, Sede de Investigación Universitaria, Facultad de Medicina, Universidad de Antioquia, Medellín, Colombia
| | - Natalia Pabón-Mora
- Facultad de Ciencias Exactas y Naturales, Instituto de Biología, Universidad de Antioquia, Medellín, Colombia
- *Correspondence: Natalia Pabón-Mora,
| |
Collapse
|
12
|
Tyagi S, Mazumdar PA, Mayee P, Shivaraj SM, Anand S, Singh A, Madhurantakam C, Sharma P, Das S, Kumar A, Singh A. Natural variation in Brassica FT homeologs influences multiple agronomic traits including flowering time, silique shape, oil profile, stomatal morphology and plant height in B. juncea. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2018; 277:251-266. [PMID: 30466591 DOI: 10.1016/j.plantsci.2018.09.018] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Revised: 09/17/2018] [Accepted: 09/21/2018] [Indexed: 06/09/2023]
Abstract
Natural structural variants of regulatory proteins causing quantitative phenotypic consequences have not been reported in plants. Herein, we show that 28 natural structural variants of FT homeologs, isolated from 6 species of Brassica, differ with respect to amino-acid substitutions in regions critical for interactions with FD and represent two evolutionarily distinct categories. Analysis of structural models of selected candidates from Brassica juncea (BjuFT_AAMF1) and Brassica napus (BnaFT_CCLF) predicted stronger binding between BjuFT and Arabidopsis thaliana FD. Over-expression of BjuFT and BnaFT in wild type and ft-10 mutant backgrounds of Arabidopsis validated higher potency of BjuFT in triggering floral transition. Analysis of gain-of-function and artificial miRNA mediated silenced lines of B. juncea implicated Brassica FT in multiple agronomic traits beyond flowering, consistent with a pleiotropic effect. Several dependent and independent traits such as lateral branching, silique shape, seed size, oil-profile, stomatal morphology and plant height were found altered in mutant lines. Enhanced FT levels caused early flowering, which in turn was positively correlated to a higher proportion of desirable fatty acids (PUFA). However, higher FT levels also resulted in altered silique shape and reduced seed size, suggesting trait trade-offs. Modulation of FT levels for achieving optimal balance of trait values and parsing pair-wise interactions among a reportoire of regulatory protein homeologs in polyploid genomes are indeed future areas of crop research.
Collapse
Affiliation(s)
- Shikha Tyagi
- Department of Biotechnology, TERI School of Advanced Studies, 10, Institutional Area, Vasant Kunj, New Delhi, 110070, India
| | | | - Pratiksha Mayee
- Department of Biotechnology, TERI School of Advanced Studies, 10, Institutional Area, Vasant Kunj, New Delhi, 110070, India; Department of Research, Ankur Seeds Pvt. Ltd., 27, Nagpur, Maharashtra, 440018, India
| | - S M Shivaraj
- Department of Biotechnology, TERI School of Advanced Studies, 10, Institutional Area, Vasant Kunj, New Delhi, 110070, India; Departement de Phytologie, Université Laval, Quebec City, Quebec, G1V 0A6, Canada
| | - Saurabh Anand
- Department of Botany, University of Delhi, New Delhi, 110007, India
| | - Anupama Singh
- Department of Biotechnology, TERI School of Advanced Studies, 10, Institutional Area, Vasant Kunj, New Delhi, 110070, India
| | - Chaithanya Madhurantakam
- Department of Biotechnology, TERI School of Advanced Studies, 10, Institutional Area, Vasant Kunj, New Delhi, 110070, India
| | - Prateek Sharma
- Department of Energy and Environment, TERI School of Advanced Studies, 10, Institutional Area, Vasant Kunj, New Delhi, 110070, India
| | - Sandip Das
- Department of Botany, University of Delhi, New Delhi, 110007, India
| | - Arun Kumar
- National Phytotron Facility, IARI, New Delhi, 110012, India
| | - Anandita Singh
- Department of Biotechnology, TERI School of Advanced Studies, 10, Institutional Area, Vasant Kunj, New Delhi, 110070, India.
| |
Collapse
|