1
|
Santoshi M, Tare P, Nagaraja V. Nucleoid-associated proteins of mycobacteria come with a distinctive flavor. Mol Microbiol 2025; 123:177-194. [PMID: 38922783 DOI: 10.1111/mmi.15287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 05/31/2024] [Accepted: 06/05/2024] [Indexed: 06/28/2024]
Abstract
In every bacterium, nucleoid-associated proteins (NAPs) play crucial roles in chromosome organization, replication, repair, gene expression, and other DNA transactions. Their central role in controlling the chromatin dynamics and transcription has been well-appreciated in several well-studied organisms. Here, we review the diversity, distribution, structure, and function of NAPs from the genus Mycobacterium. We highlight the progress made in our understanding of the effects of these proteins on various processes and in responding to environmental stimuli and stress of mycobacteria in their free-living as well as during distinctive intracellular lifestyles. We project them as potential drug targets and discuss future studies to bridge the information gap with NAPs from well-studied systems.
Collapse
Affiliation(s)
- Meghna Santoshi
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bengaluru, India
| | - Priyanka Tare
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bengaluru, India
| | - Valakunja Nagaraja
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bengaluru, India
- Jawaharlal Nehru Centre for Advanced Scientific Research, Bengaluru, India
| |
Collapse
|
2
|
Abbasnia S, Hashem Asnaashari AM, Sharebiani H, Soleimanpour S, Mosavat A, Rezaee SA. Mycobacterium tuberculosis and host interactions in the manifestation of tuberculosis. J Clin Tuberc Other Mycobact Dis 2024; 36:100458. [PMID: 38983441 PMCID: PMC11231606 DOI: 10.1016/j.jctube.2024.100458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/11/2024] Open
Abstract
The final step of epigenetic processes is changing the gene expression in a new microenvironment in the body, such as neuroendocrine changes, active infections, oncogenes, or chemical agents. The case of tuberculosis (TB) is an outcome of Mycobacterium tuberculosis (M.tb) and host interaction in the manifestation of active and latent TB or clearance. This comprehensive review explains and interprets the epigenetics findings regarding gene expressions on the host-pathogen interactions in the development and progression of tuberculosis. This review introduces novel insights into the complicated host-pathogen interactions, discusses the challengeable results, and shows the gaps in the clear understanding of M.tb behavior. Focusing on the biological phenomena of host-pathogen interactions, the epigenetic changes, and their outcomes provides a promising future for developing effective TB immunotherapies when converting gene expression toward appropriate host immune responses gradually becomes attainable. Overall, this review may shed light on the dark sides of TB pathogenesis as a life-threatening disease. Therefore, it may support effective planning and implementation of epigenetics approaches for introducing proper therapies or effective vaccines.
Collapse
Affiliation(s)
- Shadi Abbasnia
- Immunology Research Center, Inflammation and Inflammatory Diseases Division, Mashhad University of Medical Sciences, Mashhad, Iran
| | | | - Hiva Sharebiani
- Immunology Research Center, Inflammation and Inflammatory Diseases Division, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Saman Soleimanpour
- Antimicrobial Resistance Research Center, Bu-Ali Research Institute, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Microbiology and Virology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Arman Mosavat
- Blood Borne Infections Research Center, Academic Center for Education, Culture, and Research (ACECR), Razavi Khorasan, Mashhad, Iran
| | - Seyed Abdolrahim Rezaee
- Immunology Research Center, Inflammation and Inflammatory Diseases Division, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
3
|
Yasuda I, Saludar NRD, Sayo AR, Suzuki S, Yokoyama A, Ozeki Y, Kobayashi H, Nishiyama A, Matsumoto S, Cox SE, Tanaka T, Yamashita Y. Evaluation of cytokine profiles related to Mycobacterium tuberculosis latent antigens using a whole-blood assay in the Philippines. Front Immunol 2024; 15:1330796. [PMID: 38665909 PMCID: PMC11044679 DOI: 10.3389/fimmu.2024.1330796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 03/27/2024] [Indexed: 04/28/2024] Open
Abstract
Introduction There is no useful method to discriminate between latent tuberculosis infection (LTBI) and active pulmonary tuberculosis (PTB). This study aimed to investigate the potential of cytokine profiles to discriminate between LTBI and active PTB using whole-blood stimulation with Mycobacterium tuberculosis (MTB) antigens, including latency-associated antigens. Materials and methods Patients with active PTB, household contacts of active PTB patients and community exposure subjects were recruited in Manila, the Philippines. Peripheral blood was collected from the participants and used for whole-blood stimulation (WBS) with either the early secretory antigenic target and the 10-kDa culture filtrate protein (ESAT-6/CFP-10), Rv3879c or latency-associated MTB antigens, including mycobacterial DNA-binding protein 1 (MDP-1), α-crystallin (Acr) and heparin-binding hemagglutinin (HBHA). Multiple cytokine concentrations were analyzed using the Bio-Plex™ multiplex cytokine assay. Results A total of 78 participants consisting of 15 active PTB patients, 48 household contacts and 15 community exposure subjects were eligible. The MDP-1-specific IFN-γ level in the active PTB group was significantly lower than that in the household contact group (p < 0.001) and the community exposure group (p < 0.001). The Acr-specific TNF-α and IL-10 levels in the active PTB group were significantly higher than those in the household contact (TNF-α; p = 0.001, IL-10; p = 0.001) and community exposure (TNF-α; p < 0.001, IL-10; p = 0.01) groups. However, there was no significant difference in the ESAT-6/CFP-10-specific IFN-γ levels among the groups. Conclusion The patterns of cytokine profiles induced by latency-associated MTB antigens using WBS have the potential to discriminate between LTBI and active PTB. In particular, combinations of IFN-γ and MDP-1, TNF-α and Acr, and IL-10 and Acr are promising. This study provides the first demonstration of the utility of MDP-1-specific cytokine responses in WBS.
Collapse
Affiliation(s)
- Ikkoh Yasuda
- Department of Clinical Medicine, Institute of Tropical Medicine, Nagasaki University, Nagasaki, Japan
- School of Tropical Medicine and Global Health, Nagasaki University, Nagasaki, Japan
- Department of General Internal Medicine and Clinical Infectious Diseases, Fukushima Medical University, Fukushima, Japan
- Department of General Internal Medicine and Infectious Diseases, Kita-Fukushima Medical Center, Fukushima, Japan
| | | | | | - Shuichi Suzuki
- School of Tropical Medicine and Global Health, Nagasaki University, Nagasaki, Japan
| | - Akira Yokoyama
- Department of Bacteriology, Niigata University Graduate School of Medicine, Niigata, Japan
- Department of Respiratory Medicine, Graduate School of Medicine, University of Tokyo, Tokyo, Japan
| | - Yuriko Ozeki
- Department of Bacteriology, Niigata University Graduate School of Medicine, Niigata, Japan
| | - Haruka Kobayashi
- Department of Bacteriology, Niigata University Graduate School of Medicine, Niigata, Japan
| | - Akihito Nishiyama
- Department of Bacteriology, Niigata University Graduate School of Medicine, Niigata, Japan
| | - Sohkichi Matsumoto
- Department of Bacteriology, Niigata University Graduate School of Medicine, Niigata, Japan
- Department of Medical Microbiology, Universitas Airlangga, Faculty of Medicine, Surabaya, Indonesia
- Division of Research Aids, Hokkaido University Institute for Vaccine Research & Development, Sapporo, Japan
| | - Sharon E. Cox
- School of Tropical Medicine and Global Health, Nagasaki University, Nagasaki, Japan
- Department of Clinical Research, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Takeshi Tanaka
- Department of Clinical Medicine, Institute of Tropical Medicine, Nagasaki University, Nagasaki, Japan
- Department of Infectious Diseases, Nagasaki University Hospital, Nagasaki, Japan
- Infection Control and Education Center, Nagasaki University Hospital, Nagasaki, Japan
| | - Yoshiro Yamashita
- Department of Clinical Medicine, Institute of Tropical Medicine, Nagasaki University, Nagasaki, Japan
- Department of Respiratory Medicine, Shunkaikai Inoue Hospital, Nagasaki, Japan
| |
Collapse
|
4
|
Nishiyama A, Shimizu M, Narita T, Kodera N, Ozeki Y, Yokoyama A, Mayanagi K, Yamaguchi T, Hakamata M, Shaban A, Tateishi Y, Ito K, Matsumoto S. Dynamic action of an intrinsically disordered protein in DNA compaction that induces mycobacterial dormancy. Nucleic Acids Res 2024; 52:816-830. [PMID: 38048321 PMCID: PMC10810275 DOI: 10.1093/nar/gkad1149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 10/17/2023] [Accepted: 11/23/2023] [Indexed: 12/06/2023] Open
Abstract
Mycobacteria are the major human pathogens with the capacity to become dormant persisters. Mycobacterial DNA-binding protein 1 (MDP1), an abundant histone-like protein in dormant mycobacteria, induces dormancy phenotypes, e.g. chromosome compaction and growth suppression. For these functions, the polycationic intrinsically disordered region (IDR) is essential. However, the disordered property of IDR stands in the way of clarifying the molecular mechanism. Here we clarified the molecular and structural mechanism of DNA compaction by MDP1. Using high-speed atomic force microscopy, we observed that monomeric MDP1 bundles two adjacent DNA duplexes side-by-side via IDR. Combined with coarse-grained molecular dynamics simulation, we revealed the novel dynamic DNA cross-linking model of MDP1 in which a stretched IDR cross-links two DNA duplexes like double-sided tape. IDR is able to hijack HU function, resulting in the induction of strong mycobacterial growth arrest. This IDR-mediated reversible DNA cross-linking is a reasonable model for MDP1 suppression of the genomic function in the resuscitable non-replicating dormant mycobacteria.
Collapse
Affiliation(s)
- Akihito Nishiyama
- Department of Bacteriology, Niigata University School of Medicine, 1-757 Asahimachi-dori, Chuo-ku, Niigata 951-8510, Japan
| | - Masahiro Shimizu
- Nano Life Science Institute, Kanazawa University, Kakumamachi, Kanazawa, Ishikawa 920-1192, Japan
- Division of Quantum Beam Material Science, Institute for Integrated Radiation and Nuclear Science, Kyoto University, 2 Asashiro-Nishi, Kumatori, Sennan-gun, Osaka 590-0494, Japan
| | - Tomoyuki Narita
- Nano Life Science Institute, Kanazawa University, Kakumamachi, Kanazawa, Ishikawa 920-1192, Japan
| | - Noriyuki Kodera
- Nano Life Science Institute, Kanazawa University, Kakumamachi, Kanazawa, Ishikawa 920-1192, Japan
| | - Yuriko Ozeki
- Department of Bacteriology, Niigata University School of Medicine, 1-757 Asahimachi-dori, Chuo-ku, Niigata 951-8510, Japan
| | - Akira Yokoyama
- Department of Bacteriology, Niigata University School of Medicine, 1-757 Asahimachi-dori, Chuo-ku, Niigata 951-8510, Japan
- Department of Respiratory Medicine, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8655, Japan
| | - Kouta Mayanagi
- Medical Institute of Bioregulation, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | - Takehiro Yamaguchi
- Department of Bacteriology, Niigata University School of Medicine, 1-757 Asahimachi-dori, Chuo-ku, Niigata 951-8510, Japan
- Department of Pharmacology, Osaka Metropolitan University Graduate School of Medicine, 1-4-3 Asahimachi, Abeno-ku, Osaka 545-8585, Japan
| | - Mariko Hakamata
- Department of Bacteriology, Niigata University School of Medicine, 1-757 Asahimachi-dori, Chuo-ku, Niigata 951-8510, Japan
- Department of Respiratory Medicine and Infectious Disease, Niigata University School of Medicine, 1-757 Asahimachi-dori, Chuo-ku, Niigata 951-8510, Japan
| | - Amina Kaboso Shaban
- Department of Bacteriology, Niigata University School of Medicine, 1-757 Asahimachi-dori, Chuo-ku, Niigata 951-8510, Japan
| | - Yoshitaka Tateishi
- Department of Bacteriology, Niigata University School of Medicine, 1-757 Asahimachi-dori, Chuo-ku, Niigata 951-8510, Japan
| | - Kosuke Ito
- Graduate School of Science and Technology, Niigata University, 2-8050 Ikarashi, Nishi-ku, Niigata 950-2181, Japan
| | - Sohkichi Matsumoto
- Department of Bacteriology, Niigata University School of Medicine, 1-757 Asahimachi-dori, Chuo-ku, Niigata 951-8510, Japan
- Laboratory of Tuberculosis, Institute of Tropical Disease, Universitas Airlangga, Kampus C Jl. Mulyorejo, Surabaya, East Java 60115, Indonesia
- Division of Research Aids, Hokkaido University Institute for Vaccine Research & Development, Kita 20, Nishi 10, Kita-ku, Sapporo, 001-0020, Japan
| |
Collapse
|
5
|
Keshavam CC, Naz S, Gupta A, Sanyal P, Kochar M, Gangwal A, Sangwan N, Kumar N, Tyagi E, Goel S, Singh NK, Sowpati DT, Khare G, Ganguli M, Raze D, Locht C, Basu-Modak S, Gupta M, Nandicoori VK, Singh Y. The heparin-binding hemagglutinin protein of Mycobacterium tuberculosis is a nucleoid-associated protein. J Biol Chem 2023; 299:105364. [PMID: 37865319 PMCID: PMC10665949 DOI: 10.1016/j.jbc.2023.105364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 10/05/2023] [Accepted: 10/10/2023] [Indexed: 10/23/2023] Open
Abstract
Nucleoid-associated proteins (NAPs) regulate multiple cellular processes such as gene expression, virulence, and dormancy throughout bacterial species. NAPs help in the survival and adaptation of Mycobacterium tuberculosis (Mtb) within the host. Fourteen NAPs have been identified in Escherichia coli; however, only seven NAPs are documented in Mtb. Given its complex lifestyle, it is reasonable to assume that Mtb would encode for more NAPs. Using bioinformatics tools and biochemical experiments, we have identified the heparin-binding hemagglutinin (HbhA) protein of Mtb as a novel sequence-independent DNA-binding protein which has previously been characterized as an adhesion molecule required for extrapulmonary dissemination. Deleting the carboxy-terminal domain of HbhA resulted in a complete loss of its DNA-binding activity. Atomic force microscopy showed HbhA-mediated architectural modulations in the DNA, which may play a regulatory role in transcription and genome organization. Our results showed that HbhA colocalizes with the nucleoid region of Mtb. Transcriptomics analyses of a hbhA KO strain revealed that it regulates the expression of ∼36% of total and ∼29% of essential genes. Deletion of hbhA resulted in the upregulation of ∼73% of all differentially expressed genes, belonging to multiple pathways suggesting it to be a global repressor. The results show that HbhA is a nonessential NAP regulating gene expression globally and acting as a plausible transcriptional repressor.
Collapse
Affiliation(s)
| | - Saba Naz
- Department of Zoology, University of Delhi, Delhi, India; CSIR-Centre for Cellular and Molecular Biology, Hyderabad, India
| | - Aanchal Gupta
- CSIR-Institute of Genomics and Integrative Biology, New Delhi, India
| | - Priyadarshini Sanyal
- CSIR-Centre for Cellular and Molecular Biology, Hyderabad, India; Academy of Scientific and Innovative Research (AcSIR), CSIR- Centre for Cellular and Molecular Biology (CSIR-CCMB) Campus, Hyderabad, India
| | - Manisha Kochar
- Department of Zoology, University of Delhi, Delhi, India; CSIR-Institute of Genomics and Integrative Biology, New Delhi, India
| | | | - Nitika Sangwan
- Department of Zoology, University of Delhi, Delhi, India
| | - Nishant Kumar
- Department of Zoology, University of Delhi, Delhi, India
| | - Ekta Tyagi
- Department of Zoology, University of Delhi, Delhi, India
| | - Simran Goel
- Department of Zoology, University of Delhi, Delhi, India
| | | | | | - Garima Khare
- Department of Biochemistry, University of Delhi South Campus, New Delhi, India
| | - Munia Ganguli
- CSIR-Institute of Genomics and Integrative Biology, New Delhi, India
| | - Dominique Raze
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019 - UMR9017 - CIIL - Centre for Infection and Immunity of Lille, Lille, France
| | - Camille Locht
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019 - UMR9017 - CIIL - Centre for Infection and Immunity of Lille, Lille, France
| | | | - Meetu Gupta
- CSIR-Institute of Genomics and Integrative Biology, New Delhi, India.
| | - Vinay Kumar Nandicoori
- CSIR-Centre for Cellular and Molecular Biology, Hyderabad, India; Academy of Scientific and Innovative Research (AcSIR), CSIR- Centre for Cellular and Molecular Biology (CSIR-CCMB) Campus, Hyderabad, India; National Institute of Immunology, Aruna Asaf Ali Marg, New Delhi, India.
| | - Yogendra Singh
- Department of Zoology, University of Delhi, Delhi, India; Delhi School of Public Health, Institution of Eminence, University of Delhi, Delhi, India.
| |
Collapse
|
6
|
Yoshida Y, Nishiyama A, Suameitria Dewi DNS, Yamazaki T, Yokoyama A, Kobayashi D, Kondo H, Ozeki Y, Matsumoto S. Limited proteolysis of mycobacterial DNA-binding protein 1 with an extended, lysine-rich, intrinsically disordered region to unveil posttranslational modifications. Biochem Biophys Res Commun 2023; 681:111-119. [PMID: 37774568 DOI: 10.1016/j.bbrc.2023.09.028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 08/13/2023] [Accepted: 09/13/2023] [Indexed: 10/01/2023]
Abstract
The basic, intrinsically disordered regions of eukaryotic histones and their bacterial counterparts are presumed to act as signaling hubs to regulate the compaction of chromosomes or nucleoids and various DNA processes such as gene expression, recombination, and DNA replication. Posttranslational modifications (PTMs) on these regions are pivotal in regulating chromosomal or nucleoid compaction and DNA processes. However, the low sequence complexity and the presence of short lysine-rich repeats in the regions have hindered the accurate determination of types and locations of PTMs using conventional proteomic procedures. We described a limited proteolysis protocol using trypsin to analyze PTMs on mycobacterial DNA-binding protein 1 (MDP1), a nucleoid-associated protein in mycobacterial species that possesses an extended, lysine-rich, intrinsically disordered region in its C-terminal domain. This limited proteolysis approach successfully revealed significant methylation on many lysine residues in the C-terminal domain of MDP1 purified from Mycobacterium tuberculosis, which was lacking in the corresponding region of recombinant MDP1 expressed in Escherichia coli.
Collapse
Affiliation(s)
- Yutaka Yoshida
- Department of Bacteriology, Niigata University Graduate School of Medical and Dental Sciences, 1-757 Asahimachi-Dori, Chuo-Ku, Niigata, 951-8510, Japan.
| | - Akihito Nishiyama
- Department of Bacteriology, Niigata University Graduate School of Medical and Dental Sciences, 1-757 Asahimachi-Dori, Chuo-Ku, Niigata, 951-8510, Japan
| | - Desak Nyoman Surya Suameitria Dewi
- Department of Bacteriology, Niigata University Graduate School of Medical and Dental Sciences, 1-757 Asahimachi-Dori, Chuo-Ku, Niigata, 951-8510, Japan
| | - Tomoya Yamazaki
- Department of Bacteriology, Niigata University Graduate School of Medical and Dental Sciences, 1-757 Asahimachi-Dori, Chuo-Ku, Niigata, 951-8510, Japan
| | - Akira Yokoyama
- Department of Bacteriology, Niigata University Graduate School of Medical and Dental Sciences, 1-757 Asahimachi-Dori, Chuo-Ku, Niigata, 951-8510, Japan
| | - Daiki Kobayashi
- Omics Unit, Niigata University Graduate School of Medical and Dental Sciences, 1-757 Asahimachi-Dori, Chuo-Ku, Niigata, 951-8510, Japan
| | - Hitoshi Kondo
- Department of Bacteriology, Niigata University Graduate School of Medical and Dental Sciences, 1-757 Asahimachi-Dori, Chuo-Ku, Niigata, 951-8510, Japan
| | - Yuriko Ozeki
- Department of Bacteriology, Niigata University Graduate School of Medical and Dental Sciences, 1-757 Asahimachi-Dori, Chuo-Ku, Niigata, 951-8510, Japan
| | - Sohkichi Matsumoto
- Department of Bacteriology, Niigata University Graduate School of Medical and Dental Sciences, 1-757 Asahimachi-Dori, Chuo-Ku, Niigata, 951-8510, Japan
| |
Collapse
|
7
|
Shaban AK, Gebretsadik G, Hakamata M, Takihara H, Inouchi E, Nishiyama A, Ozeki Y, Tateishi Y, Nishiuchi Y, Yamaguchi T, Ohara N, Okuda S, Matsumoto S. Mycobacterial DNA-binding protein 1 is critical for BCG survival in stressful environments and simultaneously regulates gene expression. Sci Rep 2023; 13:14157. [PMID: 37644087 PMCID: PMC10465568 DOI: 10.1038/s41598-023-40941-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Accepted: 08/18/2023] [Indexed: 08/31/2023] Open
Abstract
Survival of the live attenuated Bacillus Calmette-Guérin (BCG) vaccine amidst harsh host environments is key for BCG effectiveness as it allows continuous immune response induction and protection against tuberculosis. Mycobacterial DNA binding protein 1 (MDP1), a nucleoid associated protein, is essential in BCG. However, there is limited knowledge on the extent of MDP1 gene regulation and how this influences BCG survival. Here, we demonstrate that MDP1 conditional knockdown (cKD) BCG grows slower than vector control in vitro, and dies faster upon exposure to antibiotics (bedaquiline) and oxidative stress (H2O2 and menadione). MDP1-cKD BCG also exhibited low infectivity and survival in THP-1 macrophages and mice indicating possible susceptibility to host mediated stress. Consequently, low in vivo survival resulted in reduced cytokine (IFN-gamma and TNF-alpha) production by splenocytes. Temporal transcriptome profiling showed more upregulated (81-240) than downregulated (5-175) genes in response to MDP1 suppression. Pathway analysis showed suppression of biosynthetic pathways that coincide with low in vitro growth. Notable was the deferential expression of genes involved in stress response (sigI), maintenance of DNA integrity (mutT1), REDOX balance (WhiB3), and host interactions (PE/PE_PGRS). Thus, this study shows MDP1's importance in BCG survival and highlights MDP1-dependent gene regulation suggesting its role in growth and stress adaptation.
Collapse
Affiliation(s)
- Amina K Shaban
- Department of Bacteriology, School of Medicine, Niigata University, Niigata, Japan.
| | - Gebremichal Gebretsadik
- Department of Bacteriology, School of Medicine, Niigata University, Niigata, Japan
- Department of Biology, Assosa University, Assosa, Ethiopia
| | - Mariko Hakamata
- Department of Bacteriology, School of Medicine, Niigata University, Niigata, Japan
- Department of Respiratory Medicine and Infectious Disease, School of Medicine, Niigata University, Niigata, Japan
| | - Hayato Takihara
- Bioinformatics Department, School of Medicine, Niigata University, Niigata, Japan
| | - Erina Inouchi
- Department of Bacteriology, School of Medicine, Niigata University, Niigata, Japan
| | - Akihito Nishiyama
- Department of Bacteriology, School of Medicine, Niigata University, Niigata, Japan
| | - Yuriko Ozeki
- Department of Bacteriology, School of Medicine, Niigata University, Niigata, Japan
| | - Yoshitaka Tateishi
- Department of Bacteriology, School of Medicine, Niigata University, Niigata, Japan
| | - Yukiko Nishiuchi
- Department of Bacteriology, School of Medicine, Niigata University, Niigata, Japan
- Toneyama Tuberculosis Research Institute, Osaka Metropolitan University, Osaka, Japan
- Center for the Planetary Health and Innovation Science (PHIS), The IDEC Institute, Hiroshima University, Hiroshima, Japan
| | - Takehiro Yamaguchi
- Department of Bacteriology, School of Medicine, Niigata University, Niigata, Japan
- Department of Pharmacology, Osaka Metropolitan University, Osaka, Japan
| | - Naoya Ohara
- Department of Oral Microbiology, Okayama University, Okayama, Japan
| | - Shujiro Okuda
- Bioinformatics Department, School of Medicine, Niigata University, Niigata, Japan
| | - Sohkichi Matsumoto
- Department of Bacteriology, School of Medicine, Niigata University, Niigata, Japan.
- Laboratory of Tuberculosis, Institute of Tropical Disease, Universitas Airlangga, Surabaya, East Java, Indonesia.
- Division of Research Aids, Hokkaido University Institute for Vaccine Research & Development, Sapporo, Japan.
| |
Collapse
|
8
|
Dewi DNSS, Mertaniasih NM, Soedarsono, Hagino K, Yamazaki T, Ozeki Y, Artama WT, Kobayashi H, Inouchi E, Yoshida Y, Ishikawa S, Shaban AK, Tateishi Y, Nishiyama A, Ato M, Matsumoto S. Antibodies against native proteins of Mycobacterium tuberculosis can detect pulmonary tuberculosis patients. Sci Rep 2023; 13:12685. [PMID: 37542102 PMCID: PMC10403504 DOI: 10.1038/s41598-023-39436-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Accepted: 07/25/2023] [Indexed: 08/06/2023] Open
Abstract
Accurate point-of-care testing (POCT) is critical for managing tuberculosis (TB). However, current antibody-based diagnosis shows low specificity and sensitivity. To find proper antigen candidates for TB diagnosis by antibodies, we assessed IgGs responsiveness to Mycobacterium tuberculosis proteins in pulmonary TB (PTB) patients. We employed major secreted proteins, such as Rv1860, Ag85C, PstS1, Rv2878c, Ag85B, and Rv1926c that were directly purified from M. tuberculosis. In the first screening, we found that IgG levels were significantly elevated in PTB patients only against Rv1860, PstS1, and Ag85B among tested antigens. However, recombinant PstS1 and Ag85B from Escherichia coli (E. coli) couldn't distinguish PTB patients and healthy controls (HC). Recombinant Rv1860 was not checked due to its little expression. Then, the 59 confirmed PTB patients from Soetomo General Academic Hospital, Surabaya, Indonesia, and 102 HC were tested to Rv1860 and Ag85B only due to the low yield of the PstS1 from M. tuberculosis. The ROC analysis using native Ag85B and Rv1860 showed an acceptable area under curve for diagnosis, which is 0.812 (95% CI 0.734-0.890, p < 0.0001) and 0.821 (95% CI 0.752-0.890, p < 0.0001). This study indicates that taking consideration of native protein structure is key in developing TB's POCT by antibody-based diagnosis.
Collapse
Affiliation(s)
- Desak Nyoman Surya Suameitria Dewi
- Department of Bacteriology, School of Medicine, Niigata University, Asahimachi-Dori 1-757, Chuo-ku, Niigata, 951-8510, Japan.
- Department of Microbiology, Faculty of Medicine, Universitas Ciputra, CitraLand CBD Boulevard, Made, Kec. Sambikerep, Surabaya, 60219, Indonesia.
| | - Ni Made Mertaniasih
- Department of Medical Microbiology, Faculty of Medicine, Universitas Airlangga, Jl. Mayjen Prof. Dr. Moestopo 47, Surabaya, 60131, Indonesia.
- Laboratory of Tuberculosis, Institute of Tropical Disease, Universitas Airlangga, Kampus C Jl. Mulyorejo, Surabaya, 60115, Indonesia.
| | - Soedarsono
- Sub-Pulmonology Department of Internal Medicine, Faculty of Medicine, Hang Tuah University, Komplek Barat RSAL Dr. Ramelan, Jl. Gadung No.1, Jagir, Surabaya, 60111, Indonesia
| | - Kimika Hagino
- Department of Bacteriology, School of Medicine, Niigata University, Asahimachi-Dori 1-757, Chuo-ku, Niigata, 951-8510, Japan
| | - Tomoya Yamazaki
- Department of Bacteriology, School of Medicine, Niigata University, Asahimachi-Dori 1-757, Chuo-ku, Niigata, 951-8510, Japan
| | - Yuriko Ozeki
- Department of Bacteriology, School of Medicine, Niigata University, Asahimachi-Dori 1-757, Chuo-ku, Niigata, 951-8510, Japan
| | - Wayan Tunas Artama
- Department of Biochemistry, Faculty of Veterinary Medicine, Universitas Gadjah Mada, Jl. Fauna 2 Karangmalang, Yogyakarta, 55281, Indonesia
- One Health/Eco-Health Resource Center, Universitas Gadjah Mada, Jl. Teknika Utara, Barek, Sleman, Yogyakarta, 55281, Indonesia
| | - Haruka Kobayashi
- Department of Bacteriology, School of Medicine, Niigata University, Asahimachi-Dori 1-757, Chuo-ku, Niigata, 951-8510, Japan
| | - Erina Inouchi
- Department of Bacteriology, School of Medicine, Niigata University, Asahimachi-Dori 1-757, Chuo-ku, Niigata, 951-8510, Japan
| | - Yutaka Yoshida
- Department of Bacteriology, School of Medicine, Niigata University, Asahimachi-Dori 1-757, Chuo-ku, Niigata, 951-8510, Japan
| | - Satoshi Ishikawa
- Department of Bacteriology, School of Medicine, Niigata University, Asahimachi-Dori 1-757, Chuo-ku, Niigata, 951-8510, Japan
- Fukuyama Zoo, 276‑1, Fukuda, Ashida‑cho, Fukuyama, Hiroshima, 720‑1264, Japan
| | - Amina Kaboso Shaban
- Department of Bacteriology, School of Medicine, Niigata University, Asahimachi-Dori 1-757, Chuo-ku, Niigata, 951-8510, Japan
| | - Yoshitaka Tateishi
- Department of Bacteriology, School of Medicine, Niigata University, Asahimachi-Dori 1-757, Chuo-ku, Niigata, 951-8510, Japan
| | - Akihito Nishiyama
- Department of Bacteriology, School of Medicine, Niigata University, Asahimachi-Dori 1-757, Chuo-ku, Niigata, 951-8510, Japan
| | - Manabu Ato
- Department of Mycobacteriology, Leprosy Research Center, National Institute of Infectious Diseases, Aoba-cho 4-2-1, Higashimurayama-shi, Tokyo, 189-0002, Japan
| | - Sohkichi Matsumoto
- Department of Bacteriology, School of Medicine, Niigata University, Asahimachi-Dori 1-757, Chuo-ku, Niigata, 951-8510, Japan.
- Department of Medical Microbiology, Faculty of Medicine, Universitas Airlangga, Jl. Mayjen Prof. Dr. Moestopo 47, Surabaya, 60131, Indonesia.
| |
Collapse
|
9
|
Silva FJ, Santos-Garcia D, Zheng X, Zhang L, Han XY. Construction and Analysis of the Complete Genome Sequence of Leprosy Agent Mycobacterium lepromatosis. Microbiol Spectr 2022; 10:e0169221. [PMID: 35467405 PMCID: PMC9248898 DOI: 10.1128/spectrum.01692-21] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Accepted: 04/07/2022] [Indexed: 12/29/2022] Open
Abstract
Leprosy is caused by Mycobacterium leprae and Mycobacterium lepromatosis. We report construction and analyses of the complete genome sequence of M. lepromatosis FJ924. The genome contained 3,271,694 nucleotides to encode 1,789 functional genes and 1,564 pseudogenes. It shared 1,420 genes and 885 pseudogenes (71.4%) with M. leprae but differed in 1,281 genes and pseudogenes (28.6%). In phylogeny, the leprosy bacilli started from a most recent common ancestor (MRCA) that diverged ~30 million years ago (Mya) from environmental organism Mycobacterium haemophilum. The MRCA then underwent reductive evolution with pseudogenization, gene loss, and chromosomal rearrangements. Analysis of the shared pseudogenes estimated the pseudogenization event ~14 Mya, shortly before species bifurcation. Afterwards, genomic changes occurred to lesser extent in each species. Like M. leprae, four major types of highly repetitive sequences were detected in M. lepromatosis, contributing to chromosomal rearrangements within and after MRCA. Variations in genes and copy numbers were noted, such as three copies of the gene encoding bifunctional diguanylate cyclase/phosphodiesterase in M. lepromatosis, but single copy in M. leprae; 6 genes encoding the TetR family transcriptional regulators in M. lepromatosis, but 11 such genes in M. leprae; presence of hemW gene in M. lepromatosis, but absence in M. leprae; and others. These variations likely aid unique pathogenesis, such as diffuse lepromatous leprosy associated with M. lepromatosis, while the shared genomic features should explain the common pathogenesis of dermatitis and neuritis in leprosy. Together, these findings and the genomic data of M. lepromatosis may facilitate future research and care for leprosy. IMPORTANCE Leprosy is a dreaded infection that still affects millions of people worldwide. Mycobacterium lepromatosis is a recently recognized cause in addition to the well-known Mycobacterium leprae. M. lepromatosis is likely specific for diffuse lepromatous leprosy, a severe form of the infection and endemic in Mexico. This study constructed and annotated the complete genome sequence of M. lepromatosis FJ924 and performed comparative genomic analyses with related mycobacteria. The results afford new and refined insights into the genome size, gene repertoire, pseudogenes, phylogenomic relationship, genome organization and plasticity, process and timing of reductive evolution, and genetic and proteomic basis for pathogenesis. The availability of the complete M. lepromatosis genome may prove to be useful for future research and care for the infection.
Collapse
Affiliation(s)
- Francisco J. Silva
- Institute for Integrative Systems Biology (I2SysBio), University of Valencia and CSIC, Paterna, Spain
- Genomics and Health Area, Foundation for the Promotion of Sanitary and Biomedical Research, Valencia, Spain
| | - Diego Santos-Garcia
- Laboratory of Biometry and Evolutionary Biology UMR CNRS, University of Lyon, Villeurbanne, France
| | - Xiaofeng Zheng
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Li Zhang
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Xiang Y. Han
- Department of Laboratory Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| |
Collapse
|
10
|
Differential Protein Expression in Exponential and Stationary Growth Phases of Mycobacterium avium subsp. hominissuis 104. Molecules 2021; 26:molecules26020305. [PMID: 33435591 PMCID: PMC7827551 DOI: 10.3390/molecules26020305] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2020] [Revised: 12/29/2020] [Accepted: 12/30/2020] [Indexed: 12/03/2022] Open
Abstract
Mycobacterium avium complex (MAC) is the most common non-tuberculous mycobacterium (NTM) and causes different types of pulmonary diseases. While genomic and transcriptomic analysis of Mycobacterium avium 104 (M. avium 104) has been extensive, little is known about the proteomics of M. avium 104. We utilized proteomics technology to analyze the changes in the whole proteome of M. avium 104 during exponential and stationary growth phases. We found 12 dys-regulated proteins; the up-regulated protein hits in the stationary phase were involved in aminopeptidase, choline dehydrogenase, oxidoreductase, and ATP binding, while the down-regulated proteins in the stationary phase were acetyl-CoA acetyltransferase, universal stress protein, catalase peroxidase, and elongation factor (Tu). The differently expressed proteins between exponential and stationary phases were implicated in metabolism and stress response, pointing to the functional adaptation of the cells to the environment. Proteomic analysis in different growth phases could participate in understanding the course of infection, the mechanisms of virulence, the means of survival, and the possible targets for treatment.
Collapse
|
11
|
Kandil A, Hanora A, Azab M, Enany S. Proteomic analysis of bacterial communities associated with atopic dermatitis. J Proteomics 2020; 229:103944. [DOI: 10.1016/j.jprot.2020.103944] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Revised: 08/04/2020] [Accepted: 08/13/2020] [Indexed: 12/24/2022]
|
12
|
Wahdan A, Riad EM, Enany S. Genetic differentiation of Mycobacterium bovis and Mycobacterium tuberculosis isolated from cattle and human sources in, Egypt (Suez Canal area). Comp Immunol Microbiol Infect Dis 2020; 73:101553. [PMID: 33166715 DOI: 10.1016/j.cimid.2020.101553] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Revised: 09/09/2020] [Accepted: 09/10/2020] [Indexed: 10/23/2022]
Abstract
Bovine tuberculosis is a devastating illness in cattle and it has the ability to transmit causing severe troubles in human. Mycobacterium bovis (M. bovis) infection in human indeed becomes increasingly critical especially in developing countries. Early diagnosis is very important to control and limit its spreading. The aim of this study is to examine the genetic differentiation and possibilities of transmission between cattle and human. Lymph node and sputum samples were collected from cattle and patients showing tuberculin test positive; respectively for phenotypic identification and for molecular examination by detection of IS6110 and oxyR genes which are specific for MTC and M. bovis; respectively. The phenotypic identification of sputum samples showed 80 % positive by both stain and culture, while, lymph nodes revealed 66 % and 84 % positive by stain and culture method; respectively. Alignment of oxyR gene sequences of M. tuberculosis and M. bovis was used as a feature for differentiation between the 2 genes in these two genetically closely similar microorganisms showed 99 % identities between the 2 genes. Alignment and phylogenetic analysis of Mpb70 gene sequences from animal and human origin showed very high relatedness (99.32 %) to each other confirming that the zoonotic transmission is most probably occurred.
Collapse
Affiliation(s)
- Ali Wahdan
- Bacteriology, Immunology and Mycology Department, Faculty of Veterinary Medicine, Suez Canal University, Egypt
| | | | - Shymaa Enany
- Microbiology and Immunology Department, Faculty of Pharmacy, Suez Canal University, Egypt.
| |
Collapse
|
13
|
Hołówka J, Zakrzewska-Czerwińska J. Nucleoid Associated Proteins: The Small Organizers That Help to Cope With Stress. Front Microbiol 2020; 11:590. [PMID: 32373086 PMCID: PMC7177045 DOI: 10.3389/fmicb.2020.00590] [Citation(s) in RCA: 68] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2020] [Accepted: 03/18/2020] [Indexed: 12/11/2022] Open
Abstract
The bacterial chromosome must be efficiently compacted to fit inside the small and crowded cell while remaining accessible for the protein complexes involved in replication, transcription, and DNA repair. The dynamic organization of the nucleoid is a consequence of both intracellular factors (i.e., simultaneously occurring cell processes) and extracellular factors (e.g., environmental conditions, stress agents). Recent studies have revealed that the bacterial chromosome undergoes profound topological changes under stress. Among the many DNA-binding proteins that shape the bacterial chromosome structure in response to various signals, NAPs (nucleoid associated proteins) are the most abundant. These small, basic proteins bind DNA with low specificity and can influence chromosome organization under changing environmental conditions (i.e., by coating the chromosome in response to stress) or regulate the transcription of specific genes (e.g., those involved in virulence).
Collapse
Affiliation(s)
- Joanna Hołówka
- Department of Molecular Microbiology, Faculty of Biotechnology, University of Wrocław, Wrocław, Poland
| | | |
Collapse
|
14
|
Trutneva KA, Shleeva MO, Demina GR, Vostroknutova GN, Kaprelyans AS. One-Year Old Dormant, "Non-culturable" Mycobacterium tuberculosis Preserves Significantly Diverse Protein Profile. Front Cell Infect Microbiol 2020; 10:26. [PMID: 32117801 PMCID: PMC7025520 DOI: 10.3389/fcimb.2020.00026] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Accepted: 01/15/2020] [Indexed: 12/15/2022] Open
Abstract
For adaptation to stressful conditions, Mycobacterium tuberculosis (Mtb) is prone to transit to a dormant, non-replicative state, which is believed to be the basis of the latent form of tuberculosis infection. Dormant bacteria persist in the host for a long period without multiplication, cannot be detected from biological samples by microbiological methods, however, their "non-culturable" state is reversible. Mechanisms supporting very long capacity of mycobacteria for resuscitation and further multiplication after prolonged survival in a dormant phase remain unclear. Using methods of 2D electrophoresis and MALDI-TOF analysis, in this study we characterized changes in the proteomic profile of Mtb stored for more than a year as dormant, non-replicating cells with a negligible metabolic activity, full resistance to antibiotics, and altered morphology (ovoid forms). Despite some protein degradation, the proteome of 1-year-old dormant mycobacteria retained numerous intact proteins. Their protein profile differed profoundly from that of metabolically active cells, but was similar to the proteome of the 4-month-old dormant bacteria. Such protein stability is likely to be due to the presence of a significant number of enzymes involved in the protection from oxidative stress (katG/Rv1908, sodA/Rv3846, sodC/Rv0432, bpoC/Rv0554), as well as chaperones (dnaJ1/Rv0352, htpG/Rv2299, groEL2/Rv0440, dnaK/Rv0350, groES/Rv3418, groEL1/Rv3417, HtpG/Rv2299c, hspX/Rv2031), and DNA-stabilizing proteins. In addition, dormant cells proteome contains enzymes involved in specific metabolic pathways (glycolytic reactions, shortened TCA cycle, degradative processes) potentially providing a low-level metabolism, or these proteins could be "frozen" for usage in the reactivation process before biosynthetic processes start. The observed stability of proteins in a dormant state could be a basis for the long-term preservation of Mtb cell vitality and hence for latent tuberculosis.
Collapse
Affiliation(s)
- Kseniya A Trutneva
- Federal Research Centre "Fundamentals of Biotechnology" of the Russian Academy of Sciences, A.N. Bach Institute of Biochemistry, Moscow, Russia
| | - Margarita O Shleeva
- Federal Research Centre "Fundamentals of Biotechnology" of the Russian Academy of Sciences, A.N. Bach Institute of Biochemistry, Moscow, Russia
| | - Galina R Demina
- Federal Research Centre "Fundamentals of Biotechnology" of the Russian Academy of Sciences, A.N. Bach Institute of Biochemistry, Moscow, Russia
| | - Galina N Vostroknutova
- Federal Research Centre "Fundamentals of Biotechnology" of the Russian Academy of Sciences, A.N. Bach Institute of Biochemistry, Moscow, Russia
| | - Arseny S Kaprelyans
- Federal Research Centre "Fundamentals of Biotechnology" of the Russian Academy of Sciences, A.N. Bach Institute of Biochemistry, Moscow, Russia
| |
Collapse
|
15
|
Enany S, Zakeer S, Sayed AA, Magdeldin S. Shotgun proteomic analysis of ESBL-producing and non-ESBL-producing Klebsiella Pneumoniae clinical isolates. Microbiol Res 2020; 234:126423. [PMID: 32078895 DOI: 10.1016/j.micres.2020.126423] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Revised: 12/17/2019] [Accepted: 01/24/2020] [Indexed: 10/25/2022]
Abstract
Klebsiella pneumoniae is a pathogenic bacterium that is responsible for a wide range of infections in humans. An increased rate of infections caused by multi-drug-resistant K. pneumoniae has been noted in the last two decades. The association between antimicrobial resistance and virulence is an important topic of study. Genomic tools have been used widely for the detection of virulence. In our study, we used proteomic analysis with mass spectrometry and bioinformatics tools to explore the virulence factors of both ESBL-producing and non-ESBL-producing K. pneumoniae and to determine the association between virulence and antimicrobial resistance in these clinical isolates. We have revealed different proteomic profiles and different pathways between the ESBL- and non-ESBL-producing groups. Many proteins involved in stress responses have been reported in the shared proteome between ESBL-and non-ESBL producers, such as ElaB protein, Lon protease, and universal stress proteins G and A. The virulence and pathogenicity of ESBL-producing bacteria were stronger than those of the non-ESBL-producing bacteria. Several unique virulence determinants were identified in ESBL-producing K. pneumoniae, such as proteins with lyase, catalase, isochorismatase, and oxidoreductase activity.
Collapse
Affiliation(s)
- Shymaa Enany
- Department of Microbiology and Immunology, Faculty of Pharmacy, Suez Canal University, Egypt.
| | - Samira Zakeer
- Department of Microbiology and Immunology, Faculty of Pharmacy, Suez Canal University, Egypt
| | - Ahmed A Sayed
- Genomic Research Program, Basic Research Department, Children's Cancer Hospital Egypt 57357, 11441 Cairo, Egypt; Department of Biochemistry, Faculty of Science, Ain Shams University, Cairo, Egypt
| | - Sameh Magdeldin
- Proteomics and Metabolomics Unit, Department of Basic Research, Children's Cancer Hospital Egypt 57357, 11441 Cairo, Egypt; Department of Physiology, Faculty of Veterinary Medicine, Suez Canal University, 41522 Ismailia, Egypt
| |
Collapse
|
16
|
Tartor YH, Abo Hashem ME, Enany S. Towards a rapid identification and a novel proteomic analysis for dermatophytes from human and animal dermatophytosis. Mycoses 2019; 62:1116-1126. [PMID: 31493312 DOI: 10.1111/myc.12998] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Revised: 07/11/2019] [Accepted: 08/22/2019] [Indexed: 12/23/2022]
Abstract
BACKGROUND Since accurate identification of dermatophyte species is essential for epidemiological studies and implementing antifungal treatment, overcoming limitations of conventional diagnostics is a fruitful subject. OBJECTIVES AND METHODS In this study, we investigated real-time polymerase chain reaction(q-PCR), matrix-assisted laser desorption/ionisation time of flight mass spectrometry (MALDI-TOF MS) and nano-electrospray ionisation mass spectrometry (nano-ESI-MS) to detect and identify the most frequently isolated dermatophytes from human and animal dermatophytosis in comparison with conventional methods. RESULTS Among 200 samples, the identified species were Microsporum canis (78.22%), Trichophyton verrucosum (10.89%) and T. mentagrophytes (5.94%). Q-PCR assay displayed great execution attributes for dermatophytes detection and identification. Using MALDI-TOF MS, M. canis, but none of T. violacium, T. verrucosum or T. mentagrophytes, could be identified. Nano-ESI-MS accurately identified all species. The potential virulence attributes of secreted proteases were anticipated and compared between species. Secreted endoproteases belonging to families/subfamilies of metalloproteases, subtilisins and aspartic protease were detected. The analysed exoproteases are aminopeptidases, dipeptidyl peptidases and carboxypeptidases. Microsporum canis have three immunogenic proteins, siderophore iron transporter mirB, protease inhibitors, plasma membrane proteolipid 3 and annexin. CONCLUSION In essence, q-PCR, MALDI-TOF MS and nano-ESI-MS assays are very nearly defeating difficulties of dermatophytes detection and identification, thereby, supplement or supplant conventional diagnosis of dermatophytosis.
Collapse
Affiliation(s)
- Yasmine H Tartor
- Department of Microbiology, Faculty of Veterinary Medicine, Zagazig University, Zagazig, Egypt
| | - Marwa E Abo Hashem
- Department of Bacteriology, Immunology and Mycology, Faculty of Veterinary Medicine, Suez Canal University, Ismailia, Egypt
| | - Shymaa Enany
- Department of Microbiology and Immunology, Faculty of Pharmacy, Suez Canal University, Ismailia, Egypt
| |
Collapse
|
17
|
Wang W, Chen J, Liao B, Xia L, Hou S, Wang Z, Lu Y. Identification and functional characterization of Histone-like DNA-binding protein in Nocardia seriolae (NsHLP) involved in cell apoptosis. JOURNAL OF FISH DISEASES 2019; 42:657-666. [PMID: 30854666 DOI: 10.1111/jfd.12962] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2018] [Revised: 12/29/2018] [Accepted: 12/31/2018] [Indexed: 06/09/2023]
Abstract
Nocardia seriolae, a facultative intracellular bacterium, is the main pathogen of fish nocardiosis. Bioinformatic analysis showed that the histone-like DNA-binding protein (HLP) gene of N. seriolae (nshlp) encoded a secreted protein and might target the mitochondria in the host cell. To further study the preliminary function of HLP in N. seriolae (NsHLP), the gene cloning, extracellular products identification, subcellular localization, overexpression and apoptosis detection assay were carried out in this study. Mass spectrometry analysis of the extracellular products from N. seriolae showed that NsHLP was a secreted protein. Subcellular localization of HLP-GFP fusion proteins mainly assembled in the nucleus, which indicated that the NsHLP was co-located with the nucleus rather than mitochondria in fathead minnow (FHM) cells. Notably, the expression of NsHLP had changed the distribution of mitochondria into lumps in the FHM cell. In addition, apoptotic features were found in the transfected FHM cells by overexpression of NsHLP. Quantitative assays of mitochondrial membrane potential value, caspase-3 activity and pro-apoptotic genes mRNA (Bad, Bid and Bax) expression level demonstrated that the cell apoptosis was induced in the transfected FHM cells. All the results presented in this study provided insight on the function of NsHLP, which suggested that it may participate in the cell apoptosis regulation and play an important role in the pathogenesis of N. seriolae.
Collapse
Affiliation(s)
- Wenji Wang
- Shenzhen Research Institute of Guangdong Ocean University, Shenzhen, China
- Fisheries College of Guangdong Ocean University, Zhanjiang, China
- Guangdong Provincial Key Laboratory of Pathogenic Biology and Epidemiology for Aquatic Economic Animals, Zhanjiang, China
- Guangdong Provincial Engineering Research Center for Aquatic Animal Health Assessment, Shenzhen, China
| | - Jianlin Chen
- Shenzhen Research Institute of Guangdong Ocean University, Shenzhen, China
- Fisheries College of Guangdong Ocean University, Zhanjiang, China
- Guangdong Provincial Key Laboratory of Pathogenic Biology and Epidemiology for Aquatic Economic Animals, Zhanjiang, China
- Guangdong Provincial Engineering Research Center for Aquatic Animal Health Assessment, Shenzhen, China
| | - Baoshan Liao
- Fisheries College of Guangdong Ocean University, Zhanjiang, China
| | - Liqun Xia
- Shenzhen Research Institute of Guangdong Ocean University, Shenzhen, China
- Fisheries College of Guangdong Ocean University, Zhanjiang, China
- Guangdong Provincial Engineering Research Center for Aquatic Animal Health Assessment, Shenzhen, China
| | - Suying Hou
- Shenzhen Research Institute of Guangdong Ocean University, Shenzhen, China
- Fisheries College of Guangdong Ocean University, Zhanjiang, China
- Guangdong Provincial Key Laboratory of Pathogenic Biology and Epidemiology for Aquatic Economic Animals, Zhanjiang, China
- Guangdong Provincial Engineering Research Center for Aquatic Animal Health Assessment, Shenzhen, China
| | - Zhiwen Wang
- Shenzhen Research Institute of Guangdong Ocean University, Shenzhen, China
- Fisheries College of Guangdong Ocean University, Zhanjiang, China
- Guangdong Provincial Key Laboratory of Pathogenic Biology and Epidemiology for Aquatic Economic Animals, Zhanjiang, China
- Guangdong Provincial Engineering Research Center for Aquatic Animal Health Assessment, Shenzhen, China
| | - Yishan Lu
- Shenzhen Research Institute of Guangdong Ocean University, Shenzhen, China
- Fisheries College of Guangdong Ocean University, Zhanjiang, China
- Guangdong Provincial Key Laboratory of Pathogenic Biology and Epidemiology for Aquatic Economic Animals, Zhanjiang, China
- Guangdong Provincial Engineering Research Center for Aquatic Animal Health Assessment, Shenzhen, China
| |
Collapse
|
18
|
Stojkova P, Spidlova P, Lenco J, Rehulkova H, Kratka L, Stulik J. HU protein is involved in intracellular growth and full virulence of Francisella tularensis. Virulence 2018; 9:754-770. [PMID: 29473442 PMCID: PMC5955460 DOI: 10.1080/21505594.2018.1441588] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2017] [Revised: 01/18/2018] [Accepted: 02/13/2018] [Indexed: 12/23/2022] Open
Abstract
The nucleoid-associated HU proteins are small abundant DNA-binding proteins in bacterial cell which play an important role in the initiation of DNA replication, cell division, SOS response, control of gene expression and recombination. HU proteins bind to double stranded DNA non-specifically, but they exhibit high affinity to abnormal DNA structures as four-way junctions, gaps or nicks, which are generated during DNA damage. In many pathogens HU proteins regulate expression of genes involved in metabolism and virulence. Here, we show that the Francisella tularensis subsp. holarctica gene locus FTS_0886 codes for functional HU protein which is essential for full Francisella virulence and its resistance to oxidative stress. Further, our results demonstrate that the recombinant FtHU protein binds to double stranded DNA and protects it against free hydroxyl radicals generated via Fenton's reaction. Eventually, using an iTRAQ approach we identified proteins levels of which are affected by the deletion of hupB, among them for example Francisella pathogenicity island (FPI) proteins. The pleiotropic role of HU protein classifies it as a potential target for the development of therapeutics against tularemia.
Collapse
Affiliation(s)
- Pavla Stojkova
- Department of Molecular Pathology and Biology, Faculty of Military Health Sciences, University of Defence, Hradec Kralove, Czech Republic
| | - Petra Spidlova
- Department of Molecular Pathology and Biology, Faculty of Military Health Sciences, University of Defence, Hradec Kralove, Czech Republic
| | - Juraj Lenco
- Department of Molecular Pathology and Biology, Faculty of Military Health Sciences, University of Defence, Hradec Kralove, Czech Republic
| | - Helena Rehulkova
- Department of Molecular Pathology and Biology, Faculty of Military Health Sciences, University of Defence, Hradec Kralove, Czech Republic
| | - Lucie Kratka
- Department of Molecular Pathology and Biology, Faculty of Military Health Sciences, University of Defence, Hradec Kralove, Czech Republic
| | - Jiri Stulik
- Department of Molecular Pathology and Biology, Faculty of Military Health Sciences, University of Defence, Hradec Kralove, Czech Republic
| |
Collapse
|
19
|
Elitas M. On-Chip Isoniazid Exposure of Mycobacterium smegmatis Penicillin-Binding Protein (PBP) Mutant Using Time-Lapse Fluorescent Microscopy. MICROMACHINES 2018; 9:mi9110561. [PMID: 30715060 PMCID: PMC6266593 DOI: 10.3390/mi9110561] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/30/2018] [Revised: 10/26/2018] [Accepted: 10/27/2018] [Indexed: 01/08/2023]
Abstract
Antibiotic resistance has been one of the biggest threats to global health. Despite the available prevention and control strategies and efforts in developing new antibiotics, the need remains for effective approaches against antibiotic resistance. Efficient strategies to cope with antimicrobial resistance require a quantitative and deeper understanding of microbial behavior, which can be obtained using different techniques to provide the missing pieces of the current antibiotic-resistance puzzle. Microfluidic-microscopy techniques are among the most promising methods that contribute modernization of traditional assays in microbiology. They provide monitoring and manipulation of cells at micro-scale volumes. Here, we combined population-level, culture-based assays with single-cell resolution, microfluidic-microscopy systems to investigate isoniazid response of Mycobacterium smegmatis penicillin-binding protein (PBP) mutant. This mutant exhibited normal growth in plain medium and sensitivity to stress responses when treated with thermal stress (45 °C), detergent stress (0.1% sodium dodecyl sulfate), acid stress (pH 4.5), and nutrient starvation (1XPBS). The impact of msm0031 transposon insertion on drug-mediated killing was determined for isoniazid (INH, 50 µg/mL), rifampicin (RIF, 200 µg/mL), ethionamide (ETH, 200 µg/mL), and ethambutol (EMB, 5 µg/mL). The PBP mutant demonstrated remarkable isoniazid-killing phenotype in batch culture. Therefore, we hypothesized that single-cell analysis will show increased lysis kinetics and fewer intact cells after drug treatment. However, the single-cell analysis data showed that upon isoniazid exposure, the percentage of the intact PBP mutant cells was 24%, while the percentage of the intact wild-type cells was 4.6%. The PBP mutant cells exhibited decreased cell-lysis profile. Therefore, the traditional culture-based assays were not sufficient to provide insights about the subpopulation of viable but non-culture cells. Consequently, we need more adequate tools to be able to comprehend and fight the antibiotic resistance of bacteria.
Collapse
Affiliation(s)
- Meltem Elitas
- Faculty of Engineering and Natural Sciences, Sabanci University, Tuzla, 34956 Istanbul, Turkey.
| |
Collapse
|
20
|
Iwao Y, Nakata N. Roles of the three Mycobacterium smegmatis katG genes for peroxide detoxification and isoniazid susceptibility. Microbiol Immunol 2018; 62:158-167. [PMID: 29345334 DOI: 10.1111/1348-0421.12574] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2017] [Revised: 01/02/2018] [Accepted: 01/08/2018] [Indexed: 11/30/2022]
Abstract
Three different katG sequences (katGI, katGII and katGIII) were identified in the Mycobacterium smegmatis genome. The contributions of the three katG genes to survival of the bacterium were examined by constructing disruptants of these three genes. The katGIII sequence did not produce a functional catalase-peroxidase. Analyses of peroxidase activity and mRNA expression revealed that in wild type M. smegmatis, expression dominance between KatGI and KatGII was switched in the exponential and stationary growth phases. Susceptibility of the M. smegmatis gene disruptants to hydrogen peroxide (H2 O2 ) was tested in two growth phases. In the exponential phase, the katGI-null strain was more susceptible to H2 O2 than the katGII-null strain, indicating that KatGI plays a more important role in survival than KatGII in this growth phase. In contrast, in the stationary phase, growth of the katGII-null strain was inhibited at lower concentrations of H2 O2 . These results suggest that M. smegmatis has two types of catalase-peroxidases, expressions of which are controlled under different gene regulatory systems. Isoniazid (INH) susceptibilities of the katG-null strains were also examined and it was found that katGI is a major determinant of M. smegmatis susceptibility to INH.
Collapse
Affiliation(s)
- Yasuhisa Iwao
- Department of Mycobacteriology, Leprosy Research Center, National Institute of Infectious Diseases, 4-2-1 Aoba-cho, Higashimurayama, Tokyo 189-0002, Japan.,Antimicrobial Resistance Research Center, National Institute of Infectious Diseases, 4-2-1 Aoba-cho, Higashimurayama, Tokyo 189-0002, Japan
| | - Noboru Nakata
- Department of Mycobacteriology, Leprosy Research Center, National Institute of Infectious Diseases, 4-2-1 Aoba-cho, Higashimurayama, Tokyo 189-0002, Japan.,Antimicrobial Resistance Research Center, National Institute of Infectious Diseases, 4-2-1 Aoba-cho, Higashimurayama, Tokyo 189-0002, Japan
| |
Collapse
|
21
|
C-terminal intrinsically disordered region-dependent organization of the mycobacterial genome by a histone-like protein. Sci Rep 2018; 8:8197. [PMID: 29844400 PMCID: PMC5974015 DOI: 10.1038/s41598-018-26463-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2018] [Accepted: 05/11/2018] [Indexed: 11/23/2022] Open
Abstract
The architecture of the genome influences the functions of DNA from bacteria to eukaryotes. Intrinsically disordered regions (IDR) of eukaryotic histones have pivotal roles in various processes of gene expression. IDR is rare in bacteria, but interestingly, mycobacteria produce a unique histone-like protein, MDP1 that contains a long C-terminal IDR. Here we analyzed the role of IDR in MDP1 function. By employing Mycobacterium smegmatis that inducibly expresses MDP1 or its IDR-deficient mutant, we observed that MDP1 induces IDR-dependent DNA compaction. MDP1-IDR is also responsible for the induction of growth arrest and tolerance to isoniazid, a front line tuberculosis drug that kills growing but not growth-retardated mycobacteria. We demonstrated that MDP1-deficiency and conditional knock out of MDP1 cause spreading of the M. smegmatis genome in the stationary phase. This study thus demonstrates for the first time a C-terminal region-dependent organization of the genome architecture by MDP1, implying the significance of IDR in the function of bacterial histone-like protein.
Collapse
|
22
|
Abstract
In bacteria, chromosomal DNA must be efficiently compacted to fit inside the small cell compartment while remaining available for the proteins involved in replication, segregation, and transcription. Among the nucleoid-associated proteins (NAPs) responsible for maintaining this highly organized and yet dynamic chromosome structure, the HU protein is one of the most conserved and highly abundant. HupB, a homologue of HU, was recently identified in mycobacteria. This intriguing mycobacterial NAP is composed of two domains: an N-terminal domain that resembles bacterial HU, and a long and distinctive C-terminal domain that contains several PAKK/KAAK motifs, which are characteristic of the H1/H5 family of eukaryotic histones. In this study, we analyzed the in vivo binding of HupB on the chromosome scale. By using PALM (photoactivated localization microscopy) and ChIP-Seq (chromatin immunoprecipitation followed by deep sequencing), we observed that the C-terminal domain is indispensable for the association of HupB with the nucleoid. Strikingly, the in vivo binding of HupB displayed a bias from the origin (oriC) to the terminus (ter) of the mycobacterial chromosome (numbers of binding sites decreased toward ter). We hypothesized that this binding mode reflects a role for HupB in organizing newly replicated oriC regions. Thus, HupB may be involved in coordinating replication with chromosome segregation.IMPORTANCE We currently know little about the organization of the mycobacterial chromosome and its dynamics during the cell cycle. Among the mycobacterial nucleoid-associated proteins (NAPs) responsible for chromosome organization and dynamics, HupB is one of the most intriguing. It contains a long and distinctive C-terminal domain that harbors several PAKK/KAAK motifs, which are characteristic of the eukaryotic histone H1/H5 proteins. The HupB protein is also known to be crucial for the survival of tubercle bacilli during infection. Here, we provide in vivo experimental evidence showing that the C-terminal domain of HupB is crucial for its DNA binding. Our results suggest that HupB may be involved in organizing newly replicated regions and could help coordinate chromosome replication with segregation. Given that tuberculosis (TB) remains a serious worldwide health problem (10.4 million new TB cases were diagnosed in 2015, according to WHO) and new multidrug-resistant Mycobacterium tuberculosis strains are continually emerging, further studies of the biological function of HupB are needed to determine if this protein could be a prospect for novel antimicrobial drug development.
Collapse
|