1
|
Radhakrishna U, Radhakrishnan R, Uppala LV, Trivedi TS, Prajapati J, Rawal RM, Muvvala SB, Bahado-Singh RO, Sadhasivam S. Prenatal opioid exposure alters pain perception and increases long-term health risks in infants with neonatal opioid withdrawal syndrome. FRONTIERS IN PAIN RESEARCH 2025; 6:1497801. [PMID: 40313396 PMCID: PMC12043715 DOI: 10.3389/fpain.2025.1497801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2025] [Accepted: 03/24/2025] [Indexed: 05/03/2025] Open
Abstract
Background Opioids are often prescribed for pain relief, yet they pose risks such as addiction, dependence, and overdose. Pregnant women have unique vulnerabilities to opioids and infants born to opioid-exposed mothers could develop neonatal opioid withdrawal syndrome (NOWS). The study of opioid-induced epigenetic changes in chronic pain is in its early stages. This study aimed to identify epigenetic changes in genes associated with chronic pain resulting from maternal opioid exposure during pregnancy. Methods We analyzed DNA methylation of chronic pain-related genes in 96 placental tissues using Illumina Infinium Methylation EPIC BeadChips. These samples comprised 32 from mothers with infants prenatally exposed to opioids who needed pharmacologic NOWS management (+Opioids/+NOWS), 32 from mothers with prenatally opioid-exposed infants not needing NOWS pharmacologic treatment (+Opioids/-NOWS), and 32 from unexposed control subjects (-Opioids/-NOWS). Results The study identified significant methylation changes at 111 CpG sites in pain-related genes among opioid-exposed infants, with 54 CpGs hypomethylated and 57 hypermethylated. These genes play a crucial role in various biological processes, including telomere length regulation (NOS3, ESR1, ESR2, MAPK3); inflammation (TNF, MAPK3, IL1B, IL23R); glucose metabolism (EIF2AK3, CACNA1H, NOTCH3, GJA1); ion channel function (CACNA1C, CACNA1H, CLIC4, KCNQ5); autophagy (CTSS, ULK1, ULK4, ATG5); oxidative stress (NGF, NRG1, OPRM1, ATP1A2); aging (GRIA1, NGFR, PRLR, EIF4E); cytokine activity (TRPV4, RUNX1, CXCL8, IL18R1); and the risk of suicide (ADORA2A, ANKK1, GABRG2, IGSF9B). These epigenetic changes may influence 48 signaling pathways-including cAMP, MAPK, GnRH secretion, estrogen signaling, morphine addiction, circadian rhythms, and insulin secretion-profoundly affecting pain and inflammation-related processes. Conclusion The identified methylation alterations may shed light on pain, neurodevelopmental changes, and other biological mechanisms in opioid-exposed infants and mothers with OUD, offering insights into NOWS and maternal-infant health. These findings may also pave the way for targeted interventions and improved pain management, highlighting the potential for integrated care strategies to address the interconnected health of mothers and infants.
Collapse
Affiliation(s)
- Uppala Radhakrishna
- Department of Anesthesiology and Perioperative Medicine, University of Pittsburgh, Pittsburgh, PA, United States
- Department of Obstetrics and Gynecology, Corewell Health William Beaumont University Hospital, Royal Oak, MI, United States
| | - Rupa Radhakrishnan
- Department of Radiology and Imaging Sciences, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Lavanya V. Uppala
- Department of Pharmacology & Neuroscience, School of Medicine, Creighton University, Omaha, NE, United States
| | - Tithi S. Trivedi
- Department of Botany, Bioinformatics and Climate Change Impacts Management, School of Sciences, Gujarat University, Ahmedabad, Gujarat, India
| | - Jignesh Prajapati
- Department of Biochemistry & Forensic Sciences, Gujarat University, Ahmedabad, India
| | - Rakesh M. Rawal
- Department of Medical Biotechnology, Gujarat Biotechnology University, Gandhinagar, Gujarat, India
| | - Srinivas B. Muvvala
- Department of Psychiatry, Yale School of Medicine, New Haven, CT, United States
| | - Ray O. Bahado-Singh
- Department of Obstetrics and Gynecology, Corewell Health William Beaumont University Hospital, Royal Oak, MI, United States
| | - Senthilkumar Sadhasivam
- Department of Anesthesiology and Perioperative Medicine, University of Pittsburgh, Pittsburgh, PA, United States
| |
Collapse
|
2
|
Ponce-Regalado MD, Becerril-Villanueva E, Maldonado-García JL, Moreno-Lafont MC, Martínez-Ramírez G, Jacinto-Gutiérrez S, Arreola R, Sánchez-Huerta K, Contis-Montes de Oca A, López-Martínez KM, Bautista-Rodríguez E, Chin-Chan JM, Pavón L, Pérez-Sánchez G. Comprehensive view of suicide: A neuro-immune-endocrine approach. World J Psychiatry 2025; 15:98484. [PMID: 39974471 PMCID: PMC11758041 DOI: 10.5498/wjp.v15.i2.98484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/29/2024] [Revised: 11/26/2024] [Accepted: 12/23/2024] [Indexed: 01/14/2025] Open
Abstract
Suicide is defined as the act of a person attempting to take their own life by causing death. Suicide is a complex phenomenon that is influenced by a multitude of factors, including psychosocial, cultural, and religious aspects, as well as genetic, biochemical, and environmental factors. From a biochemical perspective, it is crucial to consider the communication between the endocrine, immune, and nervous systems when studying the etiology of suicide. Several pathologies involve the bidirectional communication between the peripheral activity and the central nervous system by the action of molecules such as cytokines, hormones, and neurotransmitters. These humoral signals, when present in optimal quantities, are responsible for maintaining physiological homeostasis, including mood states. Stress elevates the cortisol and proinflammatory cytokines levels and alter neurotransmitters balance, thereby increasing the risk of developing a psychiatric disorder and subsequently the risk of suicidal behavior. This review provides an integrative perspective about the neurochemical, immunological, and endocrinological disturbances associated with suicidal behavior, with a particular focus on those alterations that may serve as potential risk markers and/or indicators of the state preceding such a tragic act.
Collapse
Affiliation(s)
- María D Ponce-Regalado
- Departamento de Ciencias de la Salud, Centro Universitario de los Altos, Universidad de Guadalajara, Tepatitlán de Morelos 47620, Jalisco, Mexico
| | - Enrique Becerril-Villanueva
- Laboratorio de Psicoinmunología, Instituto Nacional de Psiquiatría Ramón de la Fuente Muñiz, Ciudad de México 11340, Mexico
| | - José Luis Maldonado-García
- Laboratorio de Psicoinmunología, Instituto Nacional de Psiquiatría Ramón de la Fuente Muñiz, Ciudad de México 11340, Mexico
- Departamento de Bioquímica, Facultad de Medicina, Universidad Nacional Autónoma de México, Coyoacán, Ciudad de México 04510, Mexico
- Departamento de Inmunología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Ciudad de México 11350, Mexico
| | - Martha C Moreno-Lafont
- Departamento de Inmunología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Ciudad de México 11350, Mexico
| | - Gabriela Martínez-Ramírez
- Laboratorio de Psicoinmunología, Instituto Nacional de Psiquiatría Ramón de la Fuente Muñiz, Ciudad de México 11340, Mexico
- Facultad de Medicina, Facultad de Estudios Superiores Iztacala, Universidad Nacional autónoma de México, Tlalnepantla 54090, Mexico
| | - Salomón Jacinto-Gutiérrez
- Laboratorio de Psicoinmunología, Instituto Nacional de Psiquiatría Ramón de la Fuente Muñiz, Ciudad de México 11340, Mexico
| | - Rodrigo Arreola
- Subdirección de Investigaciones Clínicas, Instituto Nacional de Psiquiatría Ramón de la Fuente Muñiz, Ciudad de México 11340, Mexico
| | - Karla Sánchez-Huerta
- Laboratorio de Neurociencias, Subdirección de Medicina Experimental, Instituto Nacional de Pediatría, Ciudad de México 04530, Mexico
| | - Arturo Contis-Montes de Oca
- Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina, Instituto Politécnico Nacional, Ciudad de México 11340, Mexico
| | | | | | - José Miguel Chin-Chan
- Facultad de Ciencias Químico-Biológicas, Universidad Autónoma de Campeche, Campeche 24039, Mexico
| | - Lenin Pavón
- Laboratorio de Psicoinmunología, Instituto Nacional de Psiquiatría Ramón de la Fuente Muñiz, Ciudad de México 11340, Mexico
| | - Gilberto Pérez-Sánchez
- Laboratorio de Psicoinmunología, Instituto Nacional de Psiquiatría Ramón de la Fuente Muñiz, Ciudad de México 11340, Mexico
| |
Collapse
|
3
|
Oh EY, Han KM, Kim A, Kang Y, Tae WS, Han MR, Ham BJ. Integration of whole-exome sequencing and structural neuroimaging analysis in major depressive disorder: a joint study. Transl Psychiatry 2024; 14:141. [PMID: 38461185 PMCID: PMC10924915 DOI: 10.1038/s41398-024-02849-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 02/07/2024] [Accepted: 02/22/2024] [Indexed: 03/11/2024] Open
Abstract
Major depressive disorder (MDD) is a common mental illness worldwide and is triggered by an intricate interplay between environmental and genetic factors. Although there are several studies on common variants in MDD, studies on rare variants are relatively limited. In addition, few studies have examined the genetic contributions to neurostructural alterations in MDD using whole-exome sequencing (WES). We performed WES in 367 patients with MDD and 161 healthy controls (HCs) to detect germline and copy number variations in the Korean population. Gene-based rare variants were analyzed to investigate the association between the genes and individuals, followed by neuroimaging-genetic analysis to explore the neural mechanisms underlying the genetic impact in 234 patients with MDD and 135 HCs using diffusion tensor imaging data. We identified 40 MDD-related genes and observed 95 recurrent regions of copy number variations. We also discovered a novel gene, FRMPD3, carrying rare variants that influence MDD. In addition, the single nucleotide polymorphism rs771995197 in the MUC6 gene was significantly associated with the integrity of widespread white matter tracts. Moreover, we identified 918 rare exonic missense variants in genes associated with MDD susceptibility. We postulate that rare variants of FRMPD3 may contribute significantly to MDD, with a mild penetration effect.
Collapse
Affiliation(s)
- Eun-Young Oh
- Division of Life Sciences, College of Life Sciences and Bioengineering, Incheon National University, Incheon, Republic of Korea
| | - Kyu-Man Han
- Department of Psychiatry, Korea University Anam Hospital, Korea University College of Medicine, Seoul, Republic of Korea
- Brain Convergence Research Center, Korea University College of Medicine, Seoul, Republic of Korea
| | - Aram Kim
- Department of Biomedical Sciences, Korea University College of Medicine, Seoul, Republic of Korea
| | - Youbin Kang
- Department of Biomedical Sciences, Korea University College of Medicine, Seoul, Republic of Korea
| | - Woo-Suk Tae
- Brain Convergence Research Center, Korea University College of Medicine, Seoul, Republic of Korea
| | - Mi-Ryung Han
- Division of Life Sciences, College of Life Sciences and Bioengineering, Incheon National University, Incheon, Republic of Korea.
| | - Byung-Joo Ham
- Department of Psychiatry, Korea University Anam Hospital, Korea University College of Medicine, Seoul, Republic of Korea.
- Brain Convergence Research Center, Korea University College of Medicine, Seoul, Republic of Korea.
| |
Collapse
|
4
|
Ajayi T, Thomas A, Nikolic M, Henderson L, Zaheri A, Dwyer DS. Evolutionary conservation of putative suicidality-related risk genes that produce diminished motivation corrected by clozapine, lithium and antidepressants. Front Psychiatry 2024; 15:1341735. [PMID: 38362034 PMCID: PMC10867104 DOI: 10.3389/fpsyt.2024.1341735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Accepted: 01/17/2024] [Indexed: 02/17/2024] Open
Abstract
Background Genome wide association studies (GWAS) and candidate gene analyses have identified genetic variants and genes that may increase the risk for suicidal thoughts and behaviors (STBs). Important unresolved issues surround these tentative risk variants such as the characteristics of the associated genes and how they might elicit STBs. Methods Putative suicidality-related risk genes (PSRGs) were identified by comprehensive literature search and were characterized with respect to evolutionary conservation, participation in gene interaction networks and associated phenotypes. Evolutionary conservation was established with database searches and BLASTP queries, whereas gene-gene interactions were ascertained with GeneMANIA. We then examined whether mutations in risk-gene counterparts in C. elegans produced a diminished motivation phenotype previously connected to suicide risk factors. Results and conclusions From the analysis, 105 risk-gene candidates were identified and found to be: 1) highly conserved during evolution, 2) enriched for essential genes, 3) involved in significant gene-gene interactions, and 4) associated with psychiatric disorders, metabolic disturbances and asthma/allergy. Evaluation of 17 mutant strains with loss-of-function/deletion mutations in PSRG orthologs revealed that 11 mutants showed significant evidence of diminished motivation that manifested as immobility in a foraging assay. Immobility was corrected in some or all of the mutants with clozapine, lithium and tricyclic antidepressant drugs. In addition, 5-HT2 receptor and muscarinic receptor antagonists restored goal-directed behavior in most or all of the mutants. These studies increase confidence in the validity of the PSRGs and provide initial clues about possible mechanisms that mediate STBs.
Collapse
Affiliation(s)
- Titilade Ajayi
- Department of Pharmacology, Toxicology and Neuroscience, LSU Health Shreveport, Shreveport, LA, United States
| | - Alicia Thomas
- Department of Pharmacology, Toxicology and Neuroscience, LSU Health Shreveport, Shreveport, LA, United States
| | - Marko Nikolic
- Department of Psychiatry and Behavioral Medicine, LSU Health Shreveport, Shreveport, LA, United States
| | - Lauryn Henderson
- Department of Psychiatry and Behavioral Medicine, LSU Health Shreveport, Shreveport, LA, United States
| | - Alexa Zaheri
- Department of Psychiatry and Behavioral Medicine, LSU Health Shreveport, Shreveport, LA, United States
| | - Donard S. Dwyer
- Department of Pharmacology, Toxicology and Neuroscience, LSU Health Shreveport, Shreveport, LA, United States
- Department of Psychiatry and Behavioral Medicine, LSU Health Shreveport, Shreveport, LA, United States
| |
Collapse
|
5
|
Yang Y, Yang J, Ma T, Yang X, Yuan Y, Guo Y. The role and mechanism of TGF-β1 in the antidepressant-like effects of tetrahydrocurcumin. Eur J Pharmacol 2023; 959:176075. [PMID: 37802279 DOI: 10.1016/j.ejphar.2023.176075] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 09/20/2023] [Accepted: 09/21/2023] [Indexed: 10/08/2023]
Abstract
Astrocytes and the activation of inflammatory factors are associated with depression. Tetrahydrocurcumin (THC), the principal metabolite of natural curcumin, is renowned for its anti-inflammatory properties. In this research, we explored the impact of THC on the expression of inflammatory factors, neurotrophins, and transforming growth factor β1 (TGF-β1) in the prefrontal cortex after chronic restraint stress (CRS) in mice and in lipopolysaccharide (LPS)-induced TNC1 astrocytes. Our findings indicated that THC mitigated the anxiety and depression-like behaviours observed in CRS mice. It also influenced the expression of TGF-β1, p-SMAD3/SMAD3, sirtuin 1 (SIRT1), brain-derived neurotrophic factor (BDNF), glial cell line-derived neurotrophic factor (GDNF), inducible nitric oxide synthase (iNOS), and tumour necrosis factor α (TNF-α). Specifically, THC augmented the expressions of TGF-β1, p-SMAD3/SMAD3, SIRT1, BDNF, and GDNF, whilst diminishing the expressions of iNOS and TNF-α in LPS-induced astrocytes. However, when pre-treated with SB431542, a TGF-β1 receptor inhibitor, it nullified the aforementioned effects of THC on astrocytes. Our results propose that THC delivers its anti-depressive effects through the activation of TGF-β1, enhancement of p-SMAD3/SMAD3 and SIRT1 expression, upregulation of BDNF and GDNF, and downregulation of iNOS and TNF-α. This research furnishes new perspectives on the anti-inflammatory mechanism that underpins the antidepressant-like impact of THC.
Collapse
Affiliation(s)
- Yan Yang
- Kunming Medical University, Kunming, China
| | | | | | - Xueke Yang
- Kunming Medical University, Kunming, China
| | - Yun Yuan
- Kunming Medical University, Kunming, China.
| | - Ying Guo
- Kunming Medical University, Kunming, China.
| |
Collapse
|
6
|
Li Y, Wang H, Zhou J, Wang C. Research progress on the correlation between transforming growth factor- β level and symptoms of depression. Zhejiang Da Xue Xue Bao Yi Xue Ban 2023; 52:646-652. [PMID: 37916311 PMCID: PMC10630060 DOI: 10.3724/zdxbyxb-2023-0269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2023] [Accepted: 08/19/2023] [Indexed: 10/08/2023]
Abstract
Transforming growth factor (TGF)-β is a group of cytokines with anti-inflammatory effects in the TGF family, which participates in the development of stress and depression-related mechanisms, and plays roles in the regulation of inflammatory response in depression and the recovery of various cytokine imbalances. The core symptoms of depression is associated with TGF-β level, and the psychological symptoms of depression are related to TGF-β gene polymorphism. Various antidepressants may up-regulate TGF-β level through the complex interaction between neurotransmitters and inflammatory factors, inhibiting inflammatory response and regulating cytokine imbalance to improve depressive symptoms. Studies have shown that recombinant TGF-β1 protein has beneficial effects in mouse depression models, indicating TGF-β1 might be a potential therapeutic target for depression and nasal sprays having the advantage of being fast acting delivery method. This article reviews the research progress on dynamic changes of TGF-β level before and after depression treatment and the application of TGF-β level as an indicator for the improvement of depressive symptoms. We provide ideas for the development of new antidepressants and for the evaluation of the treatment efficacy in depression.
Collapse
Affiliation(s)
- Yanran Li
- Department of Psychiatry, the Second Affiliated Hospital of Xinxiang Medical College, Henan Key Laboratory of Biological Psychiatry, Henan Psychological Aid Cloud Platform and Application Engineering Research Center, Xinxiang 453002, Henan Province, China.
| | - Huiying Wang
- Department of Psychiatry, the Second Affiliated Hospital of Xinxiang Medical College, Henan Key Laboratory of Biological Psychiatry, Henan Psychological Aid Cloud Platform and Application Engineering Research Center, Xinxiang 453002, Henan Province, China
| | - Jiansong Zhou
- Department of Psychiatry, the Second Xiangya Hospital of Central South University, National Clinical Medical Research Center for Ment, Changsha 410011, China.
| | - Changhong Wang
- Department of Psychiatry, the Second Affiliated Hospital of Xinxiang Medical College, Henan Key Laboratory of Biological Psychiatry, Henan Psychological Aid Cloud Platform and Application Engineering Research Center, Xinxiang 453002, Henan Province, China.
| |
Collapse
|
7
|
Gao SQ, Chen JQ, Zhou HY, Luo L, Zhang BY, Li MT, He HY, Chen C, Guo Y. Thrombospondin1 mimics rapidly relieve depression via Shank3 dependent uncoupling between dopamine D1 and D2 receptors. iScience 2023; 26:106488. [PMID: 37091229 PMCID: PMC10119609 DOI: 10.1016/j.isci.2023.106488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Revised: 06/17/2022] [Accepted: 03/18/2023] [Indexed: 04/25/2023] Open
Abstract
Deficits in astrocyte function contribute to major depressive disorder (MDD) and suicide, but the therapeutic effect of directly reactivating astrocytes for depression remains unclear. Here, specific gains and losses of astrocytic cell functions in the medial prefrontal cortex (mPFC) bidirectionally regulate depression-like symptoms. Remarkably, recombinant human Thrombospondin-1 (rhTSP1), an astrocyte-secreted protein, exerted rapidly antidepressant-like actions through tyrosine hydroxylase (Th)/dopamine (DA)/dopamine D2 receptors (D2Rs) pathways, but not dopamine D1 receptors (D1Rs), which was dependent on SH3 and multiple ankyrin repeat domains 3 (Shank3) in the mPFC. TSP1 in the mPFC might have potential as a target for treating clinical depression.
Collapse
Affiliation(s)
- Shuang-Qi Gao
- Departments of Neurosurgery, Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong Province 510630, China
- Corresponding author
| | - Jun-Quan Chen
- Departments of Neurosurgery, Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong Province 510630, China
| | - Hai-Yun Zhou
- Department of Pharmacy, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Lun Luo
- Departments of Neurosurgery, Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong Province 510630, China
| | - Bao-Yu Zhang
- Departments of Neurosurgery, Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong Province 510630, China
| | - Man-Ting Li
- Departments of Neurosurgery, Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong Province 510630, China
| | - Hai-Yong He
- Departments of Neurosurgery, Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong Province 510630, China
| | - Chuan Chen
- Departments of Neurosurgery, Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong Province 510630, China
- Corresponding author
| | - Ying Guo
- Departments of Neurosurgery, Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong Province 510630, China
- Corresponding author
| |
Collapse
|
8
|
Bakian AV, Chen D, Zhang C, Hanson HA, Docherty AR, Keeshin B, Gray D, Smith KR, VanDerslice JA, Yu DZ, Zhang Y, Coon H. A population-wide analysis of the familial risk of suicide in Utah, USA. Psychol Med 2023; 53:1448-1457. [PMID: 37010215 PMCID: PMC10009406 DOI: 10.1017/s0033291721003020] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Revised: 03/25/2021] [Accepted: 07/09/2021] [Indexed: 11/07/2022]
Abstract
BACKGROUND The degree to which suicide risk aggregates in US families is unknown. The authors aimed to determine the familial risk of suicide in Utah, and tested whether familial risk varies based on the characteristics of the suicides and their relatives. METHODS A population-based sample of 12 160 suicides from 1904 to 2014 were identified from the Utah Population Database and matched 1:5 to controls based on sex and age using at-risk sampling. All first through third- and fifth-degree relatives of suicide probands and controls were identified (N = 13 480 122). The familial risk of suicide was estimated based on hazard ratios (HR) from an unsupervised Cox regression model in a unified framework. Moderation by sex of the proband or relative and age of the proband at time of suicide (<25 v. ⩾25 years) was examined. RESULTS Significantly elevated HRs were observed in first- (HR 3.45; 95% CI 3.12-3.82) through fifth-degree relatives (HR 1.07; 95% CI 1.02-1.12) of suicide probands. Among first-degree relatives of female suicide probands, the HR of suicide was 6.99 (95% CI 3.99-12.25) in mothers, 6.39 in sisters (95% CI 3.78-10.82), and 5.65 (95% CI 3.38-9.44) in daughters. The HR in first-degree relatives of suicide probands under 25 years at death was 4.29 (95% CI 3.49-5.26). CONCLUSIONS Elevated familial suicide risk in relatives of female and younger suicide probands suggests that there are unique risk groups to which prevention efforts should be directed - namely suicidal young adults and women with a strong family history of suicide.
Collapse
Affiliation(s)
- Amanda V. Bakian
- Department of Psychiatry, Huntsman Mental Health Institute, University of Utah School of Medicine, Salt Lake City, UT, USA
- Department of Family and Preventive Medicine, University of Utah School of Medicine, Salt Lake City, UT, USA
| | - Danli Chen
- Study Design & Biostatics Center, Utah Clinical & Translational Science Institute, Salt Lake City, Utah, USA
| | - Chong Zhang
- Study Design & Biostatics Center, Utah Clinical & Translational Science Institute, Salt Lake City, Utah, USA
| | - Heidi A. Hanson
- Department of Surgery, University of Utah School of Medicine, Salt Lake City, UT, USA
- Population Sciences, Huntsman Cancer Institute, Salt Lake City, UT, USA
- Scientific Computing Institute, University of Utah, Salt Lake City, UT, USA
| | - Anna R. Docherty
- Department of Psychiatry, Huntsman Mental Health Institute, University of Utah School of Medicine, Salt Lake City, UT, USA
| | - Brooks Keeshin
- Department of Pediatrics, University of Utah School of Medicine, Salt Lake City, UT, USA
| | - Douglas Gray
- Department of Psychiatry, Huntsman Mental Health Institute, University of Utah School of Medicine, Salt Lake City, UT, USA
| | - Ken R. Smith
- Population Sciences, Huntsman Cancer Institute, Salt Lake City, UT, USA
- Scientific Computing Institute, University of Utah, Salt Lake City, UT, USA
- Department of Family and Consumer Studies, University of Utah, Salt Lake City, UT, USA
| | - James A. VanDerslice
- Department of Family and Preventive Medicine, University of Utah School of Medicine, Salt Lake City, UT, USA
| | - David Z. Yu
- Population Sciences, Huntsman Cancer Institute, Salt Lake City, UT, USA
| | - Yue Zhang
- Department of Internal Medicine, University of Utah School of Medicine, Salt Lake City, UT, USA
| | - Hilary Coon
- Department of Psychiatry, Huntsman Mental Health Institute, University of Utah School of Medicine, Salt Lake City, UT, USA
| |
Collapse
|
9
|
Alvarenga AB, Oliveira HR, Turner SP, Garcia A, Retallick KJ, Miller SP, Brito LF. Unraveling the phenotypic and genomic background of behavioral plasticity and temperament in North American Angus cattle. Genet Sel Evol 2023; 55:3. [PMID: 36658485 PMCID: PMC9850537 DOI: 10.1186/s12711-023-00777-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Accepted: 01/04/2023] [Indexed: 01/20/2023] Open
Abstract
BACKGROUND Longitudinal records of temperament can be used for assessing behavioral plasticity, such as aptness to learn, memorize, or change behavioral responses based on affective state. In this study, we evaluated the phenotypic and genomic background of North American Angus cow temperament measured throughout their lifetime around the weaning season, including the development of a new indicator trait termed docility-based learning and behavioral plasticity. The analyses included 273,695 and 153,898 records for yearling (YT) and cow at weaning (CT) temperament, respectively, 723,248 animals in the pedigree, and 8784 genotyped animals. Both YT and CT were measured when the animal was loading into/exiting the chute. Moreover, CT was measured around the time in which the cow was separated from her calf. A random regression model fitting a first-order Legendre orthogonal polynomial was used to model the covariance structure of temperament and to assess the learning and behavioral plasticity (i.e., slope of the regression) of individual cows. This study provides, for the first time, a longitudinal perspective of the genetic and genomic mechanisms underlying temperament, learning, and behavioral plasticity in beef cattle. RESULTS CT measured across years is heritable (0.38-0.53). Positive and strong genetic correlations (0.91-1.00) were observed among all CT age-group pairs and between CT and YT (0.84). Over 90% of the candidate genes identified overlapped among CT age-groups and the estimated effect of genomic markers located within important candidate genes changed over time. A small but significant genetic component was observed for learning and behavioral plasticity (heritability = 0.02 ± 0.002). Various candidate genes were identified, revealing the polygenic nature of the traits evaluated. The pathways and candidate genes identified are associated with steroid and glucocorticoid hormones, development delay, cognitive development, and behavioral changes in cattle and other species. CONCLUSIONS Cow temperament is highly heritable and repeatable. The changes in temperament can be genetically improved by selecting animals with favorable learning and behavioral plasticity (i.e., habituation). Furthermore, the environment explains a large part of the variation in learning and behavioral plasticity, leading to opportunities to also improve the overall temperament by refining management practices. Moreover, behavioral plasticity offers opportunities to improve the long-term animal and handler welfare through habituation.
Collapse
Affiliation(s)
- Amanda B. Alvarenga
- grid.169077.e0000 0004 1937 2197Department of Animal Sciences, Purdue University, West Lafayette, IN USA
| | - Hinayah R. Oliveira
- grid.169077.e0000 0004 1937 2197Department of Animal Sciences, Purdue University, West Lafayette, IN USA ,Lactanet, Guelph, ON Canada
| | - Simon P. Turner
- grid.426884.40000 0001 0170 6644Animal and Veterinary Sciences Department, Scotland’s Rural College, Edinburgh, UK
| | - Andre Garcia
- American Angus Association, Angus Genetics Inc., Saint Joseph, MO USA
| | | | - Stephen P. Miller
- American Angus Association, Angus Genetics Inc., Saint Joseph, MO USA ,grid.1020.30000 0004 1936 7371AGBU, a joint venture of NSW Department of Primary Industries and University of New England, Armidale, 2351 Australia
| | - Luiz F. Brito
- grid.169077.e0000 0004 1937 2197Department of Animal Sciences, Purdue University, West Lafayette, IN USA
| |
Collapse
|
10
|
Hessenberger M, Haddad S, Obermair GJ. Pathophysiological Roles of Auxiliary Calcium Channel α 2δ Subunits. Handb Exp Pharmacol 2023; 279:289-316. [PMID: 36598609 DOI: 10.1007/164_2022_630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
α2δ proteins serve as auxiliary subunits of voltage-gated calcium channels, which are essential components of excitable cells such as skeletal and heart muscles, nerve cells of the brain and the peripheral nervous system, as well as endocrine cells. Over the recent years, α2δ proteins have been identified as critical regulators of synaptic functions, including the formation and differentiation of synapses. These functions require signalling mechanisms which are partly independent of calcium channels. Hence, in light of these features it is not surprising that the genes encoding for the four α2δ isoforms have recently been linked to neurological and neurodevelopmental disorders including epilepsy, autism spectrum disorders, schizophrenia, and depressive and bipolar disorders. Despite the increasing number of identified disease-associated mutations, the underlying pathophysiological mechanisms are only beginning to emerge. However, a thorough understanding of the pathophysiological role of α2δ proteins ideally serves two purposes: first, it will contribute to our understanding of general pathological mechanisms in synaptic disorders. Second, it may support the future development of novel and specific treatments for brain disorders. In this context, it is noteworthy that the antiepileptic and anti-allodynic drugs gabapentin and pregabalin both act via binding to α2δ proteins and are among the top sold drugs for treating neuropathic pain. In this book chapter, we will discuss recent developments in our understanding of the functions of α2δ proteins, both as calcium channel subunits and as independent regulatory entities. Furthermore, we present and summarize recently identified and likely pathogenic mutations in the genes encoding α2δ proteins and discuss potential underlying pathophysiological consequences at the molecular and structural level.
Collapse
Affiliation(s)
- Manuel Hessenberger
- Division Physiology, Department Pharmacology, Physiology and Microbiology, Karl Landsteiner University of Health Sciences, Krems, Austria
| | - Sabrin Haddad
- Division Physiology, Department Pharmacology, Physiology and Microbiology, Karl Landsteiner University of Health Sciences, Krems, Austria
- Institute of Physiology, Medical University of Innsbruck, Innsbruck, Austria
| | - Gerald J Obermair
- Division Physiology, Department Pharmacology, Physiology and Microbiology, Karl Landsteiner University of Health Sciences, Krems, Austria.
| |
Collapse
|
11
|
Mirza S, Docherty AR, Bakian A, Coon H, Soares JC, Walss-Bass C, Fries GR. Genetics and epigenetics of self-injurious thoughts and behaviors: Systematic review of the suicide literature and methodological considerations. Am J Med Genet B Neuropsychiatr Genet 2022; 189:221-246. [PMID: 35975759 PMCID: PMC9900606 DOI: 10.1002/ajmg.b.32917] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 05/26/2022] [Accepted: 07/26/2022] [Indexed: 02/01/2023]
Abstract
Suicide is a multifaceted and poorly understood clinical outcome, and there is an urgent need to advance research on its phenomenology and etiology. Epidemiological studies have demonstrated that suicidal behavior is heritable, suggesting that genetic and epigenetic information may serve as biomarkers for suicide risk. Here we systematically review the literature on genetic and epigenetic alterations observed in phenotypes across the full range of self-injurious thoughts and behaviors (SITB). We included 577 studies focused on genome-wide and epigenome-wide associations, candidate genes (SNP and methylation), noncoding RNAs, and histones. Convergence of specific genes is limited across units of analysis, although pathway-based analyses do indicate nervous system development and function and immunity/inflammation as potential underlying mechanisms of SITB. We provide suggestions for future work on the genetic and epigenetic correlates of SITB with a specific focus on measurement issues.
Collapse
Affiliation(s)
- Salahudeen Mirza
- Faillace Department of Psychiatry and Behavioral Sciences, McGovern Medical School, University of Texas Health Science Center at Houston, (UTHealth), Houston, Texas, USA,Institute of Child Development, University of Minnesota, Minneapolis, Minnesota, USA
| | - Anna R. Docherty
- Department of Psychiatry, University of Utah School of Medicine, Salt Lake City, Utah, USA,Huntsman Mental Health Institute, Salt Lake City, Utah, USA,Department of Psychiatry, The Virginia Commonwealth University, Richmond, Virginia, USA
| | - Amanda Bakian
- Department of Psychiatry, University of Utah School of Medicine, Salt Lake City, Utah, USA,Huntsman Mental Health Institute, Salt Lake City, Utah, USA
| | - Hilary Coon
- Department of Psychiatry, University of Utah School of Medicine, Salt Lake City, Utah, USA,Huntsman Mental Health Institute, Salt Lake City, Utah, USA
| | - Jair C. Soares
- Faillace Department of Psychiatry and Behavioral Sciences, McGovern Medical School, University of Texas Health Science Center at Houston, (UTHealth), Houston, Texas, USA,Neuroscience Graduate Program, The University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston, Texas, USA
| | - Consuelo Walss-Bass
- Faillace Department of Psychiatry and Behavioral Sciences, McGovern Medical School, University of Texas Health Science Center at Houston, (UTHealth), Houston, Texas, USA,Neuroscience Graduate Program, The University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston, Texas, USA
| | - Gabriel R. Fries
- Faillace Department of Psychiatry and Behavioral Sciences, McGovern Medical School, University of Texas Health Science Center at Houston, (UTHealth), Houston, Texas, USA,Neuroscience Graduate Program, The University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston, Texas, USA,Center for Precision Health, School of Biomedical Informatics, The University of Texas Health Science Center at Houston (UTHealth), Houston, Texas, USA
| |
Collapse
|
12
|
Cheng B, Qi X, Meng P, Cheng S, Yang X, Liu L, Yao Y, Jia Y, Wen Y, Zhang F. Genome-wide association studies in non-anxiety individuals identified novel risk loci for depression. Eur Psychiatry 2022; 65:e38. [PMID: 35730328 PMCID: PMC9353885 DOI: 10.1192/j.eurpsy.2022.32] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
BACKGROUND Depression is a debilitating mental disorder that often coexists with anxiety. The genetic mechanisms of depression and anxiety have considerable overlap, and studying depression in non-anxiety samples could help to discover novel gene. We assess the genetic variation of depression in non-anxiety samples, using genome-wide association studies (GWAS) and linkage disequilibrium score regression (LDSC). METHODS The GWAS of depression score and self-reported depression were conducted using the UK Biobank samples, comprising 99,178 non-anxiety participants with anxiety score <5 and 86,503 non-anxiety participants without self-reported anxiety, respectively. Replication analysis was then performed using two large-scale GWAS summary data of depression from Psychiatric Genomics Consortium (PGC). LDSC was finally used to evaluate genetic correlations with 855 health-related traits based on the primary GWAS. RESULTS Two genome-wide significant loci for non-anxiety depression were identified: rs139702470 (p = 1.54 × 10-8, OR = 0.29) locate in PIEZO2, and rs6046722 (p = 2.52 × 10-8, OR = 1.09) locate in CFAP61. These associated genes were replicated in two GWAS of depression from PGC, such as rs1040582 (preplication GWAS1 = 0.02, preplication GWAS2 = 2.71 × 10-3) in CFAP61, and rs11661122 (preplication GWAS1 = 8.16 × 10-3, preplication GWAS2 = 8.08 × 10-3) in PIEZO2. LDSC identified 19 traits genetically associated with non-anxiety depression (p < 0.001), such as marital separation/divorce (rg = 0.45, SE = 0.15). CONCLUSIONS Our findings provide novel clues for understanding of the complex genetic architecture of depression.
Collapse
Affiliation(s)
- Bolun Cheng
- Key Laboratory of Trace Elements and Endemic Diseases, Collaborative Innovation Center of Endemic Disease and Health Promotion for Silk Road Region, School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an710061, China
| | - Xin Qi
- Precision Medicine Center, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Peilin Meng
- Key Laboratory of Trace Elements and Endemic Diseases, Collaborative Innovation Center of Endemic Disease and Health Promotion for Silk Road Region, School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an710061, China
| | - Shiqiang Cheng
- Key Laboratory of Trace Elements and Endemic Diseases, Collaborative Innovation Center of Endemic Disease and Health Promotion for Silk Road Region, School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an710061, China
| | - Xuena Yang
- Key Laboratory of Trace Elements and Endemic Diseases, Collaborative Innovation Center of Endemic Disease and Health Promotion for Silk Road Region, School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an710061, China
| | - Li Liu
- Key Laboratory of Trace Elements and Endemic Diseases, Collaborative Innovation Center of Endemic Disease and Health Promotion for Silk Road Region, School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an710061, China
| | - Yao Yao
- Key Laboratory of Trace Elements and Endemic Diseases, Collaborative Innovation Center of Endemic Disease and Health Promotion for Silk Road Region, School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an710061, China
| | - Yumeng Jia
- Key Laboratory of Trace Elements and Endemic Diseases, Collaborative Innovation Center of Endemic Disease and Health Promotion for Silk Road Region, School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an710061, China
| | - Yan Wen
- Key Laboratory of Trace Elements and Endemic Diseases, Collaborative Innovation Center of Endemic Disease and Health Promotion for Silk Road Region, School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an710061, China
| | - Feng Zhang
- Key Laboratory of Trace Elements and Endemic Diseases, Collaborative Innovation Center of Endemic Disease and Health Promotion for Silk Road Region, School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an710061, China
| |
Collapse
|
13
|
Bani-Fatemi A, Adanty C, Dai N, Graff A, Gerretsen P, De Luca V. Chromosome 22 Deletions and Suicidal Behavior in Schizophrenia. Neuropsychobiology 2022; 80:393-400. [PMID: 33601401 DOI: 10.1159/000513645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Accepted: 12/07/2020] [Indexed: 11/19/2022]
Abstract
BACKGROUND Studies have shown that the overall copy number variant (CNV) load is associated with schizophrenia. Schizophrenia is a mental disorder that is frequently associated with suicidal behavior. METHODS We recruited 263 patients with schizophrenia from the Centre for Addiction and Mental Health. The Columbia Suicide Severity Rating Scale was used to assess the presence of lifetime suicide attempt. Genotyping was completed using the Illumina Omni 2.5 chip. We tested the association between deletion events on chromosome 22 with suicide attempt in our schizophrenia sample. RESULTS There was no significant difference between suicide attempters and non-attempters considering the presence/absence of deletion events on chromosome 22. CONCLUSION Although our results did not show a significant association between deletions on chromosome 22 and suicide attempt in schizophrenia, CNV studies may reveal important, novel insights and open further investigation for the treatment of neuropsychiatric diseases.
Collapse
Affiliation(s)
- Ali Bani-Fatemi
- Centre for Addiction and Mental Health, Toronto, Ontario, Canada
| | | | - Nasia Dai
- Centre for Addiction and Mental Health, Toronto, Ontario, Canada
| | - Ariel Graff
- Centre for Addiction and Mental Health, Toronto, Ontario, Canada
| | - Philip Gerretsen
- Centre for Addiction and Mental Health, Toronto, Ontario, Canada
| | - Vincenzo De Luca
- Centre for Addiction and Mental Health, Toronto, Ontario, Canada, .,Department of Psychiatry, University of Toronto, Toronto, Ontario, Canada,
| |
Collapse
|
14
|
McPherson P, Sall S, Santos A, Thompson W, Dwyer DS. Catalytic Reaction Model of Suicide. Front Psychiatry 2022; 13:817224. [PMID: 35356712 PMCID: PMC8959568 DOI: 10.3389/fpsyt.2022.817224] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Accepted: 02/07/2022] [Indexed: 12/20/2022] Open
Abstract
Suicide is a devastating outcome of unresolved issues that affect mental health, general wellbeing and socioeconomic stress. The biology of suicidal behavior is still poorly understood, although progress has been made. Suicidal behavior runs in families and genetic studies have provided initial glimpses into potential genes that contribute to suicide risk. Here, we attempt to unify the biology and behavioral dimensions into a model that can guide research in this area. The proposed model envisions suicidal behavior as a catalytic reaction that may result in suicide depending on the conditions, analogously to enzyme catalysis of chemical reactions. A wide array of substrates or reactants, such as hopelessness, depression, debilitating illnesses and diminished motivation can mobilize suicidal thoughts and behaviors (STBs), which can then catalyze the final step/act of suicide. Here, we focus on three biological substrates in particular: threat assessment, motivation to engage in life and impulsivity. Genetic risk factors can affect each of these processes and tilt the balance toward suicidal behavior when existential crises (real or perceived) emerge such as loss of a loved one, sudden changes in social status or serious health issues. Although suicide is a uniquely human behavior, many of the fundamental biological processes are evolutionarily conserved. Insights from animal models may help to shape our understanding of suicidal behavior in man. By examining counterparts of the major biological processes in other organisms, new ideas about the role of genetic risk factors may emerge along with possible therapeutic interventions or preventive measures.
Collapse
Affiliation(s)
- Pamela McPherson
- Department of Psychiatry and Behavioral Medicine, Shreveport, LA, United States
| | - Saveen Sall
- Department of Psychiatry and Behavioral Medicine, Shreveport, LA, United States
| | - Aurianna Santos
- Department of Psychiatry and Behavioral Medicine, Shreveport, LA, United States
| | - Willie Thompson
- Department of Psychiatry and Behavioral Medicine, Shreveport, LA, United States
| | - Donard S Dwyer
- Department of Psychiatry and Behavioral Medicine, Shreveport, LA, United States.,Department of Pharmacology, Toxicology and Neuroscience, LSU Health Shreveport, Shreveport, LA, United States
| |
Collapse
|
15
|
Wei Y, Chang L, Hashimoto K. Molecular mechanisms underlying the antidepressant actions of arketamine: beyond the NMDA receptor. Mol Psychiatry 2022; 27:559-573. [PMID: 33963284 PMCID: PMC8960399 DOI: 10.1038/s41380-021-01121-1] [Citation(s) in RCA: 157] [Impact Index Per Article: 52.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 04/01/2021] [Accepted: 04/13/2021] [Indexed: 02/08/2023]
Abstract
The discovery of robust antidepressant actions exerted by the N-methyl-D-aspartate receptor (NMDAR) antagonist (R,S)-ketamine has been a crucial breakthrough in mood disorder research. (R,S)-ketamine is a racemic mixture of equal amounts of (R)-ketamine (arketamine) and (S)-ketamine (esketamine). In 2019, an esketamine nasal spray from Johnson & Johnson was approved in the United States of America and Europe for treatment-resistant depression. However, an increasing number of preclinical studies show that arketamine has greater potency and longer-lasting antidepressant-like effects than esketamine in rodents, despite the lower binding affinity of arketamine for the NMDAR. In clinical trials, non-ketamine NMDAR-related compounds did not exhibit ketamine-like robust antidepressant actions in patients with depression, despite these compounds showing antidepressant-like effects in rodents. Thus, the rodent data do not necessarily translate to humans due to the complexity of human psychiatric disorders. Collectively, the available studies indicate that it is unlikely that NMDAR plays a major role in the antidepressant action of (R,S)-ketamine and its enantiomers, although the precise molecular mechanisms underlying antidepressant actions of (R,S)-ketamine and its enantiomers remain unclear. In this paper, we review recent findings on the molecular mechanisms underlying the antidepressant actions of (R,S)-ketamine and its potent enantiomer arketamine. Furthermore, we discuss the possible role of the brain-gut-microbiota axis and brain-spleen axis in stress-related psychiatric disorders and in the antidepressant-like action of arketamine. Finally, we discuss the potential of arketamine as a treatment for cognitive impairment in psychiatric disorders, Parkinson's disease, osteoporosis, inflammatory bowel diseases, and stroke.
Collapse
Affiliation(s)
- Yan Wei
- grid.411500.1Division of Clinical Neuroscience, Chiba University Center for Forensic Mental Health, Chiba, Japan ,grid.410578.f0000 0001 1114 4286Key Laboratory of Medical Electrophysiology of Ministry of Education and Medical Electrophysiological Key Laboratory of Sichuan Province, Collaborative Innovation Center for Prevention and Treatment of Cardiovascular Disease, Institute of Cardiovascular Research, Southwest Medical University, Luzhou, Sichuan China
| | - Lijia Chang
- grid.411500.1Division of Clinical Neuroscience, Chiba University Center for Forensic Mental Health, Chiba, Japan
| | - Kenji Hashimoto
- Division of Clinical Neuroscience, Chiba University Center for Forensic Mental Health, Chiba, Japan.
| |
Collapse
|
16
|
DiBlasi E, Shabalin AA, Monson ET, Keeshin BR, Bakian AV, Kirby AV, Ferris E, Chen D, William N, Gaj E, Klein M, Jerominski L, Callor WB, Christensen E, Smith KR, Fraser A, Yu Z, Gray D, Camp NJ, Stahl EA, Li QS, Docherty AR, Coon H. Rare protein-coding variants implicate genes involved in risk of suicide death. Am J Med Genet B Neuropsychiatr Genet 2021; 186:508-520. [PMID: 34042246 PMCID: PMC9292859 DOI: 10.1002/ajmg.b.32861] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 04/24/2021] [Accepted: 05/05/2021] [Indexed: 12/19/2022]
Abstract
Identification of genetic factors leading to increased risk of suicide death is critical to combat rising suicide rates, however, only a fraction of the genetic variation influencing risk has been accounted for. To address this limitation, we conducted the first comprehensive analysis of rare genetic variation in suicide death leveraging the largest suicide death biobank, the Utah Suicide Genetic Risk Study (USGRS). We conducted a single-variant association analysis of rare (minor allele frequency <1%) putatively functional single-nucleotide polymorphisms (SNPs) present on the Illumina PsychArray genotyping array in 2,672 USGRS suicide deaths of non-Finnish European (NFE) ancestry and 51,583 NFE controls from the Genome Aggregation Database. Secondary analyses used an independent control sample of 21,324 NFE controls from the Psychiatric Genomics Consortium. Five novel, high-impact, rare SNPs were identified with significant associations with suicide death (SNAPC1, rs75418419; TNKS1BP1, rs143883793; ADGRF5, rs149197213; PER1, rs145053802; and ESS2, rs62223875). 119 suicide decedents carried these high-impact SNPs. Both PER1 and SNAPC1 have other supporting gene-level evidence of suicide risk, and psychiatric associations exist for PER1 (bipolar disorder, schizophrenia), and for TNKS1BP1 and ESS2 (schizophrenia). Three of the genes (PER1, TNKS1BP1, and ADGRF5), together with additional genes implicated by genome-wide association studies on suicidal behavior, showed significant enrichment in immune system, homeostatic and signal transduction processes. No specific diagnostic phenotypes were associated with the subset of suicide deaths with the identified rare variants. These findings suggest an important role for rare variants in suicide risk and implicate genes and gene pathways for targeted replication.
Collapse
Affiliation(s)
- Emily DiBlasi
- Department of PsychiatryUniversity of Utah School of MedicineSalt Lake CityUtahUSA
- University of Utah Health, Huntsman Mental Health InstituteSalt Lake CityUtahUSA
| | - Andrey A. Shabalin
- Department of PsychiatryUniversity of Utah School of MedicineSalt Lake CityUtahUSA
- University of Utah Health, Huntsman Mental Health InstituteSalt Lake CityUtahUSA
| | - Eric T. Monson
- Department of PsychiatryUniversity of Utah School of MedicineSalt Lake CityUtahUSA
- University of Utah Health, Huntsman Mental Health InstituteSalt Lake CityUtahUSA
| | - Brooks R. Keeshin
- Department of PsychiatryUniversity of Utah School of MedicineSalt Lake CityUtahUSA
- University of Utah Health, Huntsman Mental Health InstituteSalt Lake CityUtahUSA
- Department of PediatricsUniversity of UtahSalt Lake CityUtahUSA
- Safe and Healthy Families, Primary Children's HospitalIntermountain HealthcareSalt Lake CityUtahUSA
| | - Amanda V. Bakian
- Department of PsychiatryUniversity of Utah School of MedicineSalt Lake CityUtahUSA
- University of Utah Health, Huntsman Mental Health InstituteSalt Lake CityUtahUSA
| | - Anne V. Kirby
- Department of Occupational & Recreational TherapiesUniversity of UtahSalt Lake CityUtahUSA
| | - Elliott Ferris
- Department of Neurobiology & AnatomyUniversity of Utah School of MedicineSalt Lake CityUtahUSA
| | - Danli Chen
- Department of PsychiatryUniversity of Utah School of MedicineSalt Lake CityUtahUSA
- University of Utah Health, Huntsman Mental Health InstituteSalt Lake CityUtahUSA
| | - Nancy William
- Department of PsychiatryUniversity of Utah School of MedicineSalt Lake CityUtahUSA
- University of Utah Health, Huntsman Mental Health InstituteSalt Lake CityUtahUSA
| | - Eoin Gaj
- Department of PsychiatryUniversity of Utah School of MedicineSalt Lake CityUtahUSA
- University of Utah Health, Huntsman Mental Health InstituteSalt Lake CityUtahUSA
| | - Michael Klein
- Health Sciences Center Core Research FacilityUniversity of UtahSalt Lake CityUtahUSA
| | - Leslie Jerominski
- Department of PsychiatryUniversity of Utah School of MedicineSalt Lake CityUtahUSA
- University of Utah Health, Huntsman Mental Health InstituteSalt Lake CityUtahUSA
| | - W. Brandon Callor
- Utah State Office of the Medical ExaminerUtah Department of HealthSalt Lake CityUtahUSA
| | - Erik Christensen
- Utah State Office of the Medical ExaminerUtah Department of HealthSalt Lake CityUtahUSA
| | - Ken R. Smith
- Pedigree & Population Resource, Huntsman Cancer InstituteUniversity of UtahSalt Lake CityUtahUSA
| | - Alison Fraser
- Pedigree & Population Resource, Huntsman Cancer InstituteUniversity of UtahSalt Lake CityUtahUSA
| | - Zhe Yu
- Pedigree & Population Resource, Huntsman Cancer InstituteUniversity of UtahSalt Lake CityUtahUSA
| | - Douglas Gray
- Department of PsychiatryUniversity of Utah School of MedicineSalt Lake CityUtahUSA
- University of Utah Health, Huntsman Mental Health InstituteSalt Lake CityUtahUSA
| | | | - Nicola J. Camp
- Department of Internal MedicineUniversity of Utah School of MedicineSalt Lake CityUtahUSA
| | - Eli A. Stahl
- Pamela Sklar Division of Psychiatric GenomicsIcahn School of Medicine at Mount SinaiNew YorkNew YorkUSA
- Medical and Population Genetics, Broad InstituteCambridgeMassachusettsUSA
| | - Qingqin S. Li
- Neuroscience Data Science, Janssen Research & Development LLCTitusvilleNew JerseyUSA
| | - Anna R. Docherty
- Department of PsychiatryUniversity of Utah School of MedicineSalt Lake CityUtahUSA
- University of Utah Health, Huntsman Mental Health InstituteSalt Lake CityUtahUSA
- Virginia Institute for Psychiatric & Behavioral GeneticsVirginia Commonwealth School of MedicineRichmondVirginiaUSA
| | - Hilary Coon
- Department of PsychiatryUniversity of Utah School of MedicineSalt Lake CityUtahUSA
- University of Utah Health, Huntsman Mental Health InstituteSalt Lake CityUtahUSA
| |
Collapse
|
17
|
Neupane SP. Psychoneuroimmunology: The new frontier in suicide research. Brain Behav Immun Health 2021; 17:100344. [PMID: 34589823 PMCID: PMC8474243 DOI: 10.1016/j.bbih.2021.100344] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2021] [Revised: 09/03/2021] [Accepted: 09/06/2021] [Indexed: 12/14/2022] Open
Abstract
Elucidating complex, multifactorial phenomena like suicide and suicidal behaviors (SSB) require multidisciplinary fields such as Psychoneuroimmunology (PNI). Indeed, our appreciation of the bidirectional communication channels between the brain and the rest of the body with its immune arsenal as the key player has positioned PNI as a promising field of research. We now know that major psychiatric, behavioral, and somatic disorders related to SSB accompany neuroimmune dysregulation. These disorders range from depression, emotional dysregulation, atopy, and epilepsy to certain viral and parasitic infections. By utilizing epidemiological, genetic, microbial, and molecular approaches, the PNI research community has excogitated novel biomarker candidates and pathways in support of SSB risk stratification at individual level. This remarkable progress in just two previous decades shall, if successful, help implement personalized prevention and treatment strategies, using PNI-assisted tools. The aims of this narrative review and opinion piece are to summarize important discoveries concerning the role of neuroimmune activation in SSB and to highlight important future directions for the field. Major caveats of the findings concerning methodological approaches, clinical reality of frequent comorbid psychopathology, and novel molecular targets are presented. Finally, this review calls on the PNI research community for increased attention towards factors that promote resilience to suicide, while accepting "consciousness" under its wing. Thus, PNI represents the new frontier in suicide research. Future breakthroughs in this discipline shall bring us closer to understanding the biological substrates of qualia i.e., subjective, and experiential meanings of life and death.
Collapse
Affiliation(s)
- Sudan Prasad Neupane
- National Centre for Suicide Research and Prevention, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- Oral Health Center of Expertise in Rogaland, Stavanger, Norway
| |
Collapse
|
18
|
Sokolowski M, Wasserman D. A candidate biological network formed by genes from genomic and hypothesis-free scans of suicide. Prev Med 2021; 152:106604. [PMID: 34538375 DOI: 10.1016/j.ypmed.2021.106604] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 04/30/2021] [Accepted: 05/06/2021] [Indexed: 12/26/2022]
Abstract
Information about genes and the biology of suicidal behavior (SB) is noisy due to heterogenous outcomes (suicide attempts or deaths), as well as many different genes and overlapping biological processes implicated. One approach to test the unbiased biological coherence of disease genes, is to use genes from hypothesis-free genetic scans and to investigate if they aggregate close to each other in cellular gene and protein interaction networks ("interactomes"). Therefore, we used network methods to study the biological coherence among genes (n = 229) from genome-wide association studies (GWAS) and whole exome sequencing (WES) of suicide outcome. Results showed that the suicide GWAS+WES genes has significant aggregation in three major interactome database assemblies, a hallmark of biological similarity and increased likelihood of being involved in the same outcome (suicide). This pinpointed e.g. genes on chromosome 19, which are also associated with lipid metabolism, schizophrenia and bipolar disorder. We identified a subset of GWAS+WES "core" genes (n = 54) which are the most proximal to each other in the context of three interactome assemblies, and present a candidate network module of suicide which is specific for nervous system tissues. The n = 54 most proximal "core" genes showed overrepresentation of synaptic and nervous system development genes, as well as network paths to other SB genes having increased evidence diversity. Overall, results suggested the existence of a coherent biology in suicide outcome and provide unbiased biological support concerning links to other SB genes, as well as e.g. bipolar disorder, excitatory/inhibitory function and ketamine treatment in SB.
Collapse
Affiliation(s)
- Marcus Sokolowski
- National Centre for Suicide Research and Prevention of Mental Ill-Health (NASP), Karolinska Institute (KI), Stockholm, Sweden.
| | - Danuta Wasserman
- National Centre for Suicide Research and Prevention of Mental Ill-Health (NASP), Karolinska Institute (KI), Stockholm, Sweden; WHO Collaborating Centre for Research, Methods, Development and Training in Suicide Prevention, Sweden
| |
Collapse
|
19
|
DiBlasi E, Kang J, Docherty AR. Genetic contributions to suicidal thoughts and behaviors. Psychol Med 2021; 51:2148-2155. [PMID: 34030748 PMCID: PMC8477225 DOI: 10.1017/s0033291721001720] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Revised: 03/28/2021] [Accepted: 04/19/2021] [Indexed: 12/27/2022]
Abstract
Suicidal ideation, suicide attempt (SA) and suicide are significantly heritable phenotypes. However, the extent to which these phenotypes share genetic architecture is unclear. This question is of great relevance to determining key risk factors for suicide, and to alleviate the societal burden of suicidal thoughts and behaviors (STBs). To help address the question of heterogeneity, consortia efforts have recently shifted from a focus on suicide within the context of major psychopathology (e.g. major depressive disorder, schizophrenia) to suicide as an independent entity. Recent molecular studies of suicide risk by members of the Psychiatric Genomics Consortium and the International Suicide Genetics Consortium have identified genome-wide significant loci associated with SA and with suicide death, and have examined these phenotypes within and outside of the context of major psychopathology. This review summarizes important insights from epidemiological and biometrical research on suicide, and discusses key empirical findings from molecular genetic examinations of STBs. Polygenic risk scores for these phenotypes have been observed to be associated with case-control status and other risk phenotypes. In addition, estimated shared genetic covariance with other phenotypes suggests specific medical and psychiatric risks beyond major depressive disorder. Broadly, molecular studies suggest a complexity of suicide etiology that cannot simply be accounted for by depression. Discussion of the state of suicide genetics, a growing field, also includes important ethical and clinical implications of studying the genetic risk of suicide.
Collapse
Affiliation(s)
- Emily DiBlasi
- Department of Psychiatry & the Center for Genomic Medicine, University of Utah School of Medicine, Salt Lake City, UT, USA
- Huntsman Mental Health Institute, Salt Lake City, UT, USA
| | - Jooeun Kang
- Division of Genetic Medicine, Department of Medicine, Vanderbilt Genetics Institute, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Anna R. Docherty
- Department of Psychiatry & the Center for Genomic Medicine, University of Utah School of Medicine, Salt Lake City, UT, USA
- Huntsman Mental Health Institute, Salt Lake City, UT, USA
- Virginia Institute for Psychiatric & Behavioral Genetics, Virginia Commonwealth University School of Medicine, Richmond, VA, USA
| |
Collapse
|
20
|
Kendall KM, Van Assche E, Andlauer TFM, Choi KW, Luykx JJ, Schulte EC, Lu Y. The genetic basis of major depression. Psychol Med 2021; 51:2217-2230. [PMID: 33682643 DOI: 10.1017/s0033291721000441] [Citation(s) in RCA: 87] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Major depressive disorder (MDD) is a common, debilitating, phenotypically heterogeneous disorder with heritability ranges from 30% to 50%. Compared to other psychiatric disorders, its high prevalence, moderate heritability, and strong polygenicity have posed major challenges for gene-mapping in MDD. Studies of common genetic variation in MDD, driven by large international collaborations such as the Psychiatric Genomics Consortium, have confirmed the highly polygenic nature of the disorder and implicated over 100 genetic risk loci to date. Rare copy number variants associated with MDD risk were also recently identified. The goal of this review is to present a broad picture of our current understanding of the epidemiology, genetic epidemiology, molecular genetics, and gene-environment interplay in MDD. Insights into the impact of genetic factors on the aetiology of this complex disorder hold great promise for improving clinical care.
Collapse
Affiliation(s)
- K M Kendall
- MRC Centre for Neuropsychiatric Genetics and Genomics, Cardiff University, Cardiff, UK
| | - E Van Assche
- Department of Psychiatry, University of Muenster, Muenster, Germany
| | - T F M Andlauer
- Department of Neurology, Klinikum rechts der Isar, School of Medicine, Technical University of Munich, Munich, Germany
| | - K W Choi
- Department of Psychiatry, Massachusetts General Hospital, Boston, MA02114, USA
- Psychiatric and Neurodevelopmental Genetics Unit, Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA02114, USA
- Department of Epidemiology, Harvard TH Chan School of Public Health, Boston, MA02115, USA
| | - J J Luykx
- Department of Psychiatry, UMC Utrecht Brain Center, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
- Department of Translational Neuroscience, UMC Utrecht Brain Center, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
- Outpatient Second Opinion Clinic, GGNet Mental Health, Warnsveld, The Netherlands
| | - E C Schulte
- Institute of Psychiatric Phenomics and Genomics (IPPG), University Hospital, LMU Munich, Munich, Germany
- Department of Psychiatry and Psychotherapy, University Hospital, LMU Munich, Munich, Germany
| | - Y Lu
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
21
|
Sall S, Thompson W, Santos A, Dwyer DS. Analysis of Major Depression Risk Genes Reveals Evolutionary Conservation, Shared Phenotypes, and Extensive Genetic Interactions. Front Psychiatry 2021; 12:698029. [PMID: 34335334 PMCID: PMC8319724 DOI: 10.3389/fpsyt.2021.698029] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Accepted: 06/21/2021] [Indexed: 12/29/2022] Open
Abstract
Major depressive disorder (MDD) affects around 15% of the population at some stage in their lifetime. It can be gravely disabling and it is associated with increased risk of suicide. Genetics play an important role; however, there are additional environmental contributions to the pathogenesis. A number of possible risk genes that increase liability for developing symptoms of MDD have been identified in genome-wide association studies (GWAS). The goal of this study was to characterize the MDD risk genes with respect to the degree of evolutionary conservation in simpler model organisms such as Caenorhabditis elegans and zebrafish, the phenotypes associated with variation in these genes and the extent of network connectivity. The MDD risk genes showed higher conservation in C. elegans and zebrafish than genome-to-genome comparisons. In addition, there were recurring themes among the phenotypes associated with variation of these risk genes in C. elegans. The phenotype analysis revealed enrichment for essential genes with pleiotropic effects. Moreover, the MDD risk genes participated in more interactions with each other than did randomly-selected genes from similar-sized gene sets. Syntenic blocks of risk genes with common functional activities were also identified. By characterizing evolutionarily-conserved counterparts to the MDD risk genes, we have gained new insights into pathogenetic processes relevant to the emergence of depressive symptoms in man.
Collapse
Affiliation(s)
- Saveen Sall
- Department of Psychiatry and Behavioral Medicine, Louisiana State University Health Shreveport, Shreveport, LA, United States
| | - Willie Thompson
- Department of Psychiatry and Behavioral Medicine, Louisiana State University Health Shreveport, Shreveport, LA, United States
| | - Aurianna Santos
- Department of Psychiatry and Behavioral Medicine, Louisiana State University Health Shreveport, Shreveport, LA, United States
| | - Donard S. Dwyer
- Department of Psychiatry and Behavioral Medicine, Louisiana State University Health Shreveport, Shreveport, LA, United States
- Department of Pharmacology, Toxicology and Neuroscience, Louisiana State University Health Shreveport, Shreveport, LA, United States
| |
Collapse
|
22
|
Childhood maltreatment correlates with higher concentration of transforming growth factor beta (TGF-β) in adult patients with major depressive disorder. Psychiatry Res 2021; 301:113987. [PMID: 34023675 DOI: 10.1016/j.psychres.2021.113987] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Accepted: 05/04/2021] [Indexed: 12/29/2022]
Abstract
Transforming growth factor beta (TGF-β), which has a role as a regulatory cytokine, has not been widely investigated in patients with major depressive disorder (MDD) who experienced childhood trauma. The aim of our study was to investigate the differences in circulating TGF-β levels between the patients with major depressive disorder (MDD) with and without child maltreatment (CM) history, and to compare them to the corresponding control subjects' groups (with or without CM). Blood samples were obtained from 55 patients, fulfilling DSM-IV-R criteria for a current MDD episode without psychotic symptoms, and 45 healthy controls, matched for age and gender. Participants were administered the Childhood Trauma Questionnaire (CTQ). Serum TGF-β concentration was determined by enzyme-linked immunosorbent assay. The concentration of TGF-β was significantly higher in patients with MDD with CM history, compared to MDD patients with no CM, as well as both control groups. Furthermore, we have shown that the combined effect of CM history and MDD affected TGF-β levels in adulthood, which was not observed in the control group with CM. These results indicate that MDD patients with the experience of CM have altered immune-regulatory response, and they may constitute a specific subtype within this heterogenic disorder (ecophenotype).
Collapse
|
23
|
Wendt FR, Pathak GA, Levey DF, Nuñez YZ, Overstreet C, Tyrrell C, Adhikari K, De Angelis F, Tylee DS, Goswami A, Krystal JH, Abdallah CG, Stein MB, Kranzler HR, Gelernter J, Polimanti R. Sex-stratified gene-by-environment genome-wide interaction study of trauma, posttraumatic-stress, and suicidality. Neurobiol Stress 2021; 14:100309. [PMID: 33665242 PMCID: PMC7905234 DOI: 10.1016/j.ynstr.2021.100309] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Revised: 01/20/2021] [Accepted: 02/10/2021] [Indexed: 12/27/2022] Open
Abstract
Epidemiologic studies recognize that trauma and posttraumatic stress are associated with heightened suicidal behavior severity, yet examination of these associations from a genetic perspective is limited. We performed a multivariate gene-by-environment genome-wide interaction study (GEWIS) of suicidality in 123,633 individuals using a covariance matrix based on 26 environments related to traumatic experiences, posttraumatic stress, social support, and socioeconomic status. We discovered five suicidality risk loci, including the male-associated rs2367967 (CWC22), which replicated in an independent cohort. All GEWIS-significant loci exhibited interaction effects where at least 5% of the sample had environmental profiles conferring opposite SNP effects from the majority. We identified PTSD as a primary driving environment for GxE at suicidality risk loci. The male suicidality GEWIS was enriched for three middle-temporal-gyrus inhibitory neuron transcriptomic profiles: SCUBE- and PVALB-expressing cells (β = 0.028, p = 3.74 × 10-4), OPRM1-expressing cells (β = 0.030, p = 0.001), and SPAG17-expressing cells (β = 0.029, p = 9.80 × 10-4). Combined with gene-based analyses (CNTN5 p association = 2.38 × 10-9, p interaction = 1.51 × 10-3; PSMD14 p association = 2.04 × 10-7, p interaction = 7.76 × 10-6; HEPACAM p association = 2.43 × 10-6, p interaction = 3.82 × 10-7) including information about brain chromatin interaction profiles (UBE2E3 in male neuron p = 1.07 × 10-5), our GEWIS points to extracellular matrix biology and synaptic plasticity as biological interactors with the effects of potentially modifiable lifetime traumatic experiences on genetic risk for suicidality. Characterization of molecular basis for the effects of traumatic experience and posttraumatic stress on risk of suicidal behaviors may help to identify novel targets for which more effective treatments can be developed for use in high-risk populations.
Collapse
Affiliation(s)
- Frank R. Wendt
- Department of Psychiatry, Yale School of Medicine, New Haven, CT, 06510, USA
- VA CT Healthcare System, West Haven, CT, 06520, USA
| | - Gita A. Pathak
- Department of Psychiatry, Yale School of Medicine, New Haven, CT, 06510, USA
- VA CT Healthcare System, West Haven, CT, 06520, USA
| | - Daniel F. Levey
- Department of Psychiatry, Yale School of Medicine, New Haven, CT, 06510, USA
- VA CT Healthcare System, West Haven, CT, 06520, USA
| | - Yaira Z. Nuñez
- Department of Psychiatry, Yale School of Medicine, New Haven, CT, 06510, USA
- VA CT Healthcare System, West Haven, CT, 06520, USA
| | - Cassie Overstreet
- Department of Psychiatry, Yale School of Medicine, New Haven, CT, 06510, USA
- VA CT Healthcare System, West Haven, CT, 06520, USA
- National Center for Posttraumatic Stress Disorder, Clinical Neurosciences Division, West Haven CT, 06520, USA
| | - Chelsea Tyrrell
- Department of Psychiatry, Yale School of Medicine, New Haven, CT, 06510, USA
- VA CT Healthcare System, West Haven, CT, 06520, USA
| | - Keyrun Adhikari
- Department of Psychiatry, Yale School of Medicine, New Haven, CT, 06510, USA
- VA CT Healthcare System, West Haven, CT, 06520, USA
| | - Flavio De Angelis
- Department of Psychiatry, Yale School of Medicine, New Haven, CT, 06510, USA
- VA CT Healthcare System, West Haven, CT, 06520, USA
| | - Daniel S. Tylee
- Department of Psychiatry, Yale School of Medicine, New Haven, CT, 06510, USA
- VA CT Healthcare System, West Haven, CT, 06520, USA
| | - Aranyak Goswami
- Department of Psychiatry, Yale School of Medicine, New Haven, CT, 06510, USA
- VA CT Healthcare System, West Haven, CT, 06520, USA
| | - John H. Krystal
- Department of Psychiatry, Yale School of Medicine, New Haven, CT, 06510, USA
| | - Chadi G. Abdallah
- Department of Psychiatry, Yale School of Medicine, New Haven, CT, 06510, USA
- VA CT Healthcare System, West Haven, CT, 06520, USA
| | - Murray B. Stein
- Psychiatry Service, VA San Diego Healthcare System, San Diego, CA, USA
- Departments of Psychiatry and Family Medicine & Public Health, University of California San Diego, La Jolla, CA, USA
| | - Henry R. Kranzler
- University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, 19104, USA
- Crescenz Veterans Affairs Medical Center, Philadelphia, PA, 19104, USA
| | - Joel Gelernter
- Department of Psychiatry, Yale School of Medicine, New Haven, CT, 06510, USA
- VA CT Healthcare System, West Haven, CT, 06520, USA
- Departments of Genetics and Neuroscience, Yale University School of Medicine, New Haven, CT, 06510, USA
| | - Renato Polimanti
- Department of Psychiatry, Yale School of Medicine, New Haven, CT, 06510, USA
- VA CT Healthcare System, West Haven, CT, 06520, USA
| |
Collapse
|
24
|
Wang Z, Wang Z, Sun L, Yu X, Pang Z, Liu H, Zhang F. Whole exome sequencing improves mutation detection in Hailey-Hailey disease. J Dermatol 2021; 48:989-992. [PMID: 33878236 DOI: 10.1111/1346-8138.15828] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2020] [Revised: 02/01/2021] [Accepted: 02/10/2021] [Indexed: 11/30/2022]
Abstract
Hailey-Hailey disease (HHD) is an autosomal dominant monogenic disease that is defective in the ATP2C1 gene. In previous studies, Sanger sequencing was the main method applied to detect mutations in HHD patients, and no mutations in the ATP2C1 gene were found in 12-55% of those reported. The aim of our study was to carry out whole exome sequencing (WES) for the HHD patients in whom efforts to identify mutations by Sanger sequencing had failed, and to find a new pathogenic gene. WES was performed using genomic DNA from 13 HHD patients and 364 in-house healthy controls. Potential pathogenic mutations were subsequently validated by Sanger sequencing. As a result, eight mutations in the ATP2C1 gene were identified using WES. In the remaining five patients, we found one mutation in the ATP2A2 gene which was the causal gene of Darier's disease. Four patients had no detectable mutations in ATP2C1 and the other ATPase genes. Together with our previous study in 2019, the total mutation rate was calculated to be 47/52 (90.4%). These findings demonstrate that WES is capable of improving the mutation detection sensitivity in HHD compared with Sanger sequencing.
Collapse
Affiliation(s)
- Zhe Wang
- Shandong Provincial Hospital for Skin Diseases & Shandong Provincial Institute of Dermatology and Venereology, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, China
| | - Zhenzhen Wang
- Shandong Provincial Hospital for Skin Diseases & Shandong Provincial Institute of Dermatology and Venereology, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, China
| | - Lele Sun
- Shandong Provincial Hospital for Skin Diseases & Shandong Provincial Institute of Dermatology and Venereology, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, China
| | - Xueping Yu
- Shandong Provincial Hospital for Skin Diseases & Shandong Provincial Institute of Dermatology and Venereology, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, China
| | - Zheng Pang
- Shandong Provincial Hospital for Skin Diseases & Shandong Provincial Institute of Dermatology and Venereology, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, China
| | - Hong Liu
- Shandong Provincial Hospital for Skin Diseases & Shandong Provincial Institute of Dermatology and Venereology, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, China
| | - Furen Zhang
- Shandong Provincial Hospital for Skin Diseases & Shandong Provincial Institute of Dermatology and Venereology, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, China
| |
Collapse
|
25
|
Wang Y, Wang X, Huang X, Zhang J, Hu J, Qi Y, Xiang B, Wang Q. Integrated Genomic and Transcriptomic Analysis reveals key genes for predicting dual-phenotype Hepatocellular Carcinoma Prognosis. J Cancer 2021; 12:2993-3010. [PMID: 33854600 PMCID: PMC8040886 DOI: 10.7150/jca.56005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Accepted: 02/20/2021] [Indexed: 12/24/2022] Open
Abstract
Dual-phenotype hepatocellular carcinoma (DPHCC) expresses both hepatocyte and cholangiocyte markers, and is characterized by high recurrence and low survival rates. The underlying molecular mechanisms of DPHCC pathogenesis are unclear. We performed whole exome sequencing and RNA sequencing of three subtypes of HCC (10 DPHCC, 10 CK19-positive HCC, and 14 CK19-negative HCC), followed by integrated bioinformatics analysis, including somatic mutation analysis, mutation signal analysis, differential gene expression analysis, and pathway enrichment analysis. Cox proportional hazard regression analyses were applied for exploring survival related characteristics. We found that mutated genes in DPHCC patients were associated with carcinogenesis and immunity, and the up-regulated genes were mainly enriched in transcription-related and cancer-related pathways, and the down-regulated genes were mainly enriched in immune-related pathways. CXCL9 was selected as the hub gene, which is associated with immune cells and survival prognosis. Our results showed that low CXCL9 expression was significantly associated with poor prognosis, and its expression was significantly reduced in DPHCC samples. In conclusion, we explored the molecular mechanisms governing DPHCC development and progression and identified CXCL9, which influences the immune microenvironment and prognosis of DPHCC and might be new clinically significant biomarkers for predicting prognosis.
Collapse
Affiliation(s)
- Yaobang Wang
- Guangxi Key Laboratory for Genomic and Personalized Medicine, Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, China.,Guangxi Collaborative Innovation Center for Genomic and Personalized Medicine, Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, China.,Department of Clinical Laboratory. First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, China
| | - Xi Wang
- Guangxi Key Laboratory for Genomic and Personalized Medicine, Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, China.,Guangxi Collaborative Innovation Center for Genomic and Personalized Medicine, Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, China
| | - Xiaoliang Huang
- Guangxi Key Laboratory for Genomic and Personalized Medicine, Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, China.,Guangxi Collaborative Innovation Center for Genomic and Personalized Medicine, Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, China
| | - Jie Zhang
- Department of Hepatobiliary Surgery, Guangxi Medical University Cancer Hospital, Guangxi Zhuang Autonomous Region, China
| | - Junwen Hu
- Department of Hepatobiliary Surgery, Guangxi Medical University Cancer Hospital, Guangxi Zhuang Autonomous Region, China
| | - Yapeng Qi
- Department of Hepatobiliary Surgery, Guangxi Medical University Cancer Hospital, Guangxi Zhuang Autonomous Region, China
| | - Bangde Xiang
- Department of Hepatobiliary Surgery, Guangxi Medical University Cancer Hospital, Guangxi Zhuang Autonomous Region, China
| | - Qiuyan Wang
- Guangxi Key Laboratory for Genomic and Personalized Medicine, Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, China.,Guangxi Collaborative Innovation Center for Genomic and Personalized Medicine, Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, China
| |
Collapse
|
26
|
Font-Porterias N, Caro-Consuegra R, Lucas-Sánchez M, Lopez M, Giménez A, Carballo-Mesa A, Bosch E, Calafell F, Quintana-Murci L, Comas D. The Counteracting Effects of Demography on Functional Genomic Variation: The Roma Paradigm. Mol Biol Evol 2021; 38:2804-2817. [PMID: 33713133 PMCID: PMC8233508 DOI: 10.1093/molbev/msab070] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Demographic history plays a major role in shaping the distribution of genomic variation. Yet the interaction between different demographic forces and their effects in the genomes is not fully resolved in human populations. Here, we focus on the Roma population, the largest transnational ethnic minority in Europe. They have a South Asian origin and their demographic history is characterized by recent dispersals, multiple founder events, and extensive gene flow from non-Roma groups. Through the analyses of new high-coverage whole exome sequences and genome-wide array data for 89 Iberian Roma individuals together with forward simulations, we show that founder effects have reduced their genetic diversity and proportion of rare variants, gene flow has counteracted the increase in mutational load, runs of homozygosity show ancestry-specific patterns of accumulation of deleterious homozygotes, and selection signals primarily derive from preadmixture adaptation in the Roma population sources. The present study shows how two demographic forces, bottlenecks and admixture, act in opposite directions and have long-term balancing effects on the Roma genomes. Understanding how demography and gene flow shape the genome of an admixed population provides an opportunity to elucidate how genomic variation is modeled in human populations.
Collapse
Affiliation(s)
- Neus Font-Porterias
- Departament de Ciències Experimentals i de la Salut, Institut de Biologia Evolutiva (UPF-CSIC), Universitat Pompeu Fabra, Barcelona, Spain
| | - Rocio Caro-Consuegra
- Departament de Ciències Experimentals i de la Salut, Institut de Biologia Evolutiva (UPF-CSIC), Universitat Pompeu Fabra, Barcelona, Spain
| | - Marcel Lucas-Sánchez
- Departament de Ciències Experimentals i de la Salut, Institut de Biologia Evolutiva (UPF-CSIC), Universitat Pompeu Fabra, Barcelona, Spain
| | - Marie Lopez
- Human Evolutionary Genetics Unit, Institut Pasteur, UMR2000, CNRS, Paris, France
| | - Aaron Giménez
- Facultat de Sociologia, Universitat Autònoma de Barcelona, Barcelona, Spain
| | | | - Elena Bosch
- Departament de Ciències Experimentals i de la Salut, Institut de Biologia Evolutiva (UPF-CSIC), Universitat Pompeu Fabra, Barcelona, Spain.,Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Reus, Spain
| | - Francesc Calafell
- Departament de Ciències Experimentals i de la Salut, Institut de Biologia Evolutiva (UPF-CSIC), Universitat Pompeu Fabra, Barcelona, Spain
| | - Lluís Quintana-Murci
- Human Evolutionary Genetics Unit, Institut Pasteur, UMR2000, CNRS, Paris, France.,Human Genomics and Evolution, Collège de France, Paris, France
| | - David Comas
- Departament de Ciències Experimentals i de la Salut, Institut de Biologia Evolutiva (UPF-CSIC), Universitat Pompeu Fabra, Barcelona, Spain
| |
Collapse
|
27
|
Park JH, Lim SW, Myung W, Park I, Jang HJ, Kim S, Lee MS, Chang HS, Yum D, Suh YL, Kim JW, Kim DK. Whole-genome sequencing reveals KRTAP1-1 as a novel genetic variant associated with antidepressant treatment outcomes. Sci Rep 2021; 11:4552. [PMID: 33633223 PMCID: PMC7907209 DOI: 10.1038/s41598-021-83887-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Accepted: 02/08/2021] [Indexed: 12/30/2022] Open
Abstract
Achieving remission following initial antidepressant therapy in patients with major depressive disorder (MDD) is an important clinical result. Making predictions based on genetic markers holds promise for improving the remission rate. However, genetic variants found in previous genetic studies do not provide robust evidence to aid pharmacogenetic decision-making in clinical settings. Thus, the objective of this study was to perform whole-genome sequencing (WGS) using genomic DNA to identify genetic variants associated with the treatment outcomes of selective serotonin reuptake inhibitors (SSRIs). We performed WGS on 100 patients with MDD who were treated with escitalopram (discovery set: 36 remitted and 64 non-remitted). The findings were applied to an additional 553 patients with MDD who were treated with SSRIs (replication set: 185 remitted and 368 non-remitted). A novel loss-of-function variant (rs3213755) in keratin-associated protein 1-1 (KRTAP1-1) was identified in this study. This rs3213755 variant was significantly associated with remission following antidepressant treatment (p = 0.0184, OR 3.09, 95% confidence interval [CI] 1.22-7.80 in the discovery set; p = 0.00269, OR 1.75, 95% CI 1.22-2.53 in the replication set). Moreover, the expression level of KRTAP1-1 in surgically resected human temporal lobe samples was significantly associated with the rs3213755 genotype. WGS studies on a larger sample size in various ethnic groups are needed to investigate genetic markers useful in the pharmacogenetic prediction of remission following antidepressant treatment.
Collapse
Affiliation(s)
- Jong-Ho Park
- Department of Health Sciences and Technology, SAIHST, Sungkyunkwan University, Seoul, Korea.,Clinical Genomics Center, Samsung Medical Center, Seoul, Korea
| | - Shinn-Won Lim
- Department of Health Sciences and Technology, SAIHST, Sungkyunkwan University, Seoul, Korea
| | - Woojae Myung
- Department of Neuropsychiatry, Seoul National University Bundang Hospital, Seongnam, Korea
| | - Inho Park
- Precision Medicine Center, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, Korea
| | - Hyeok-Jae Jang
- Department of Health Sciences and Technology, SAIHST, Sungkyunkwan University, Seoul, Korea
| | - Seonwoo Kim
- Statistics and Data Center, Research Institute for Future Medicine, Samsung Medical Center, Seoul, Korea
| | - Min-Soo Lee
- Department of Psychiatry, College of Medicine, Korea University, Seoul, Korea
| | - Hun Soo Chang
- Soonchunhyang Medical Institute, College of Medicine, Soonchunhyang University, Asan, Korea
| | - DongHo Yum
- Department of Pathology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Yeon-Lim Suh
- Department of Pathology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Jong-Won Kim
- Department of Health Sciences and Technology, SAIHST, Sungkyunkwan University, Seoul, Korea. .,Department of Laboratory Medicine and Genetics, Samsung Medical Center, Sungkyunkwan University School of Medicine, 81 Irwon-ro, Gangnam-gu, Seoul, 135-710, Korea.
| | - Doh Kwan Kim
- Department of Psychiatry, Samsung Medical Center, Sungkyunkwan University School of Medicine, 81 Irwon-ro, Gangnam-gu, Seoul, 135-710, Korea.
| |
Collapse
|
28
|
Activation of proprotein convertase in the mouse habenula causes depressive-like behaviors through remodeling of extracellular matrix. Neuropsychopharmacology 2021; 46:442-454. [PMID: 32942293 PMCID: PMC7852607 DOI: 10.1038/s41386-020-00843-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Revised: 07/20/2020] [Accepted: 08/25/2020] [Indexed: 12/16/2022]
Abstract
The lateral habenula (LHb) attracts a growing interest as a regulator of monoaminergic activity which were frequently reported to be defective in depression. Here we found that chronic social defeat stress (CSDS) increased production of pro-inflammatory cytokines in LHb associated with mobilization of monocytes and remodeling of extracellular matrix by increased matrix metalloproteinase (MMP) activity. RNA-seq analysis identified proprotein convertase Pcsk5 as an upstream regulator of MMP activation, with upregulation in LHb neurons of mice with susceptibility to CSDS. PCSK5 facilitated motility of microglia in vitro by converting inactive pro-MMP14 and pro-MMP2 to their active forms, highlighting its role in mobilization of microglia and monocytes in neuroinflammation. Suppression of Pcsk5 expression via small interfering RNA (siRNA) ameliorated depressive-like behaviors and pathological mobilization of monocytes in mice with susceptibility to CSDS. PCSK5-MMPs signaling pathway could be a target for development of the antidepressants targeting the inflammatory response in specific brain regions implicated in depression.
Collapse
|
29
|
Baldaçara L, Rocha GA, Leite VDS, Porto DM, Grudtner RR, Diaz AP, Meleiro A, Correa H, Tung TC, Quevedo J, da Silva AG. Brazilian Psychiatric Association guidelines for the management of suicidal behavior. Part 1. Risk factors, protective factors, and assessment. ACTA ACUST UNITED AC 2020; 43:525-537. [PMID: 33111773 PMCID: PMC8555650 DOI: 10.1590/1516-4446-2020-0994] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Accepted: 06/21/2020] [Indexed: 12/28/2022]
Abstract
Suicide is a global public health problem that causes the loss of more than 800,000 lives each year, principally among young people. In Brazil, the average mortality rate attributable to suicide is approximately 5.23 per 100,000 population. Although many guidelines have been published for the management of suicidal behavior, to date, there are no recent guidelines based on the principles of evidence-based medicine that apply to the reality of suicide in Brazil. The objective of this work is to provide key guidelines for managing patients with suicidal behavior in Brazil. This project involved 11 Brazilian psychiatry professionals selected by the Psychiatric Emergencies Committee (Comissão de Emergências Psiquiátricas) of the Brazilian Psychiatric Association for their experience and knowledge in psychiatry and psychiatric emergencies. For the development of these guidelines, 79 articles were reviewed (from 5,362 initially collected and 755 abstracts). In this review, we present definitions, risk and protective factors, assessments, and an introduction to the Safety Plan. Systematic review registry number: CRD42020206517
Collapse
Affiliation(s)
- Leonardo Baldaçara
- Universidade Federal do Tocantins, Palmas, TO, Brazil.,Associação Brasileira de Psiquiatria (ABP), Rio de Janeiro, RJ, Brazil
| | - Gislene A Rocha
- Associação Brasileira de Psiquiatria (ABP), Rio de Janeiro, RJ, Brazil.,Hospital Universitário Clemente de Faria, Universidade Estadual de Montes Claros, Montes Claros, MG, Brazil.,Serviço Especializado em Reabilitação em Deficiência Intelectual, Associação de Pais e Amigos dos Excepcionais, Montes Claros, MG, Brazil
| | - Verônica da S Leite
- Universidade Federal do Tocantins, Palmas, TO, Brazil.,Associação Brasileira de Psiquiatria (ABP), Rio de Janeiro, RJ, Brazil.,Secretaria Municipal de Saúde de Palmas, Palmas, TO, Brazil
| | - Deisy M Porto
- Associação Brasileira de Psiquiatria (ABP), Rio de Janeiro, RJ, Brazil.,Associação Catarinense de Psiquiatria, Florianópolis, SC, Brazil
| | - Roberta R Grudtner
- Associação Brasileira de Psiquiatria (ABP), Rio de Janeiro, RJ, Brazil.,Núcleo de Dor e Neuromodulação, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil.,Secretaria Estadual da Saúde, Porto Alegre, RS, Brazil
| | - Alexandre P Diaz
- Associação Brasileira de Psiquiatria (ABP), Rio de Janeiro, RJ, Brazil.,Translational Psychiatry Program, Faillace Department of Psychiatry and Behavioral Sciences, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, USA.,Laboratório de Psiquiatria Translacional, Programa de Pós-Graduação em Ciências da Saúde, Universidade do Extremo Sul Catarinense (UNESC), Criciúma, SC, Brazil
| | | | - Humberto Correa
- Associação Brasileira de Psiquiatria (ABP), Rio de Janeiro, RJ, Brazil.,Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, MG, Brazil
| | - Teng C Tung
- Associação Brasileira de Psiquiatria (ABP), Rio de Janeiro, RJ, Brazil.,Instituto de Psiquiatria (IPq), Hospital das Clínicas, Faculdade de Medicina, Universidade de São Paulo (HCFMUSP), São Paulo, SP, Brazil.,Serviços de Pronto Socorro e Interconsultas, IPq, HCFMUSP, São Paulo, SP, Brazil
| | - João Quevedo
- Associação Brasileira de Psiquiatria (ABP), Rio de Janeiro, RJ, Brazil.,Translational Psychiatry Program, Faillace Department of Psychiatry and Behavioral Sciences, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, USA.,Laboratório de Psiquiatria Translacional, Programa de Pós-Graduação em Ciências da Saúde, Universidade do Extremo Sul Catarinense (UNESC), Criciúma, SC, Brazil
| | - Antônio G da Silva
- Associação Brasileira de Psiquiatria (ABP), Rio de Janeiro, RJ, Brazil.,Asociación Psiquiátrica de América Latina (APAL)
| |
Collapse
|
30
|
Abstract
In the post-genomic era, genetics has led to limited clinical applications in the diagnosis and treatment of major depressive disorder (MDD). Variants in genes coding for cytochrome enzymes are included in guidelines for assisting in antidepressant choice and dosing, but there are no recommendations involving genes responsible for antidepressant pharmacodynamics and no consensus applications for guiding diagnosis or prognosis. However, genetics has contributed to a better understanding of MDD pathogenesis and the mechanisms of antidepressant action, also thanks to recent methodological innovations that overcome the challenges posed by the polygenic architecture of these traits. Polygenic risk scores can be used to estimate the risk of disease at the individual level, which may have clinical relevance in cases with extremely high scores (e.g. top 1%). Genetic studies have also shed light on a wide genetic overlap between MDD and other psychiatric disorders. The relationships between genes/pathways associated with MDD and known drug targets are a promising tool for drug repurposing and identification of new pharmacological targets. Increase in power thanks to larger samples and methods integrating genetic data with gene expression, the integration of common variants and rare variants, are expected to advance our knowledge and assist in personalized psychiatry.
Collapse
|
31
|
Le TT, Fu W, Moore JH. Scaling tree-based automated machine learning to biomedical big data with a feature set selector. Bioinformatics 2020; 36:250-256. [PMID: 31165141 PMCID: PMC6956793 DOI: 10.1093/bioinformatics/btz470] [Citation(s) in RCA: 131] [Impact Index Per Article: 26.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2019] [Revised: 05/17/2019] [Accepted: 06/02/2019] [Indexed: 12/13/2022] Open
Abstract
Motivation Automated machine learning (AutoML) systems are helpful data science assistants designed to scan data for novel features, select appropriate supervised learning models and optimize their parameters. For this purpose, Tree-based Pipeline Optimization Tool (TPOT) was developed using strongly typed genetic programing (GP) to recommend an optimized analysis pipeline for the data scientist’s prediction problem. However, like other AutoML systems, TPOT may reach computational resource limits when working on big data such as whole-genome expression data. Results We introduce two new features implemented in TPOT that helps increase the system’s scalability: Feature Set Selector (FSS) and Template. FSS provides the option to specify subsets of the features as separate datasets, assuming the signals come from one or more of these specific data subsets. FSS increases TPOT’s efficiency in application on big data by slicing the entire dataset into smaller sets of features and allowing GP to select the best subset in the final pipeline. Template enforces type constraints with strongly typed GP and enables the incorporation of FSS at the beginning of each pipeline. Consequently, FSS and Template help reduce TPOT computation time and may provide more interpretable results. Our simulations show TPOT-FSS significantly outperforms a tuned XGBoost model and standard TPOT implementation. We apply TPOT-FSS to real RNA-Seq data from a study of major depressive disorder. Independent of the previous study that identified significant association with depression severity of two modules, TPOT-FSS corroborates that one of the modules is largely predictive of the clinical diagnosis of each individual. Availability and implementation Detailed simulation and analysis code needed to reproduce the results in this study is available at https://github.com/lelaboratoire/tpot-fss. Implementation of the new TPOT operators is available at https://github.com/EpistasisLab/tpot. Supplementary information Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- Trang T Le
- Department of Biostatistics, Epidemiology and Informatics, Institute for Biomedical Informatics, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Weixuan Fu
- Department of Biostatistics, Epidemiology and Informatics, Institute for Biomedical Informatics, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Jason H Moore
- Department of Biostatistics, Epidemiology and Informatics, Institute for Biomedical Informatics, University of Pennsylvania, Philadelphia, PA 19104, USA
| |
Collapse
|
32
|
Sokolowski M, Wasserman D. Genetic origins of suicidality? A synopsis of genes in suicidal behaviours, with regard to evidence diversity, disorder specificity and neurodevelopmental brain transcriptomics. Eur Neuropsychopharmacol 2020; 37:1-11. [PMID: 32636053 DOI: 10.1016/j.euroneuro.2020.06.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Accepted: 06/08/2020] [Indexed: 12/17/2022]
Abstract
With regard to suicidal behavior (SB) genetics, many novel genes have been implicated over the years, in particular by a variety of hypothesis-free genomic methods (e.g. GWAS and exome sequencing). In addition, many novel SB gene findings appear enigmatic in their biological relevance and have weak statistical support, e.g. lack direct replications. Adding to this is the comorbidity between psychiatric disorders and SB. Here we provide a synopsis of SB genes, by prioritization of 106 (out of ~2500) genes based on their highest level of evidence diversity across mainly five genetic evidence types (candidate/GWAS SNP, CNV, linkage and whole exome sequencing), supplemented by three functional categories. This is a representative set of both old and new SB gene candidates, implicated by all kinds of evidence. Furthermore, we define a subset of 40 SB "specific" genes, which are not found among ~3900 genes implicated in other neuropsychiatric disorders, e.g. Autism spectrum disorders (ASD) or Schizophrenia. Biological research of suicidality contains a major developmental focus, e.g. with regard to the gene-environment interactions and epigenetic effects during childhood. Less is known about early (fetal) development and SB genes. Inspired by huge efforts to understand the role early (fetal) neurodevelopment in e.g. ASD by using brain transcriptomic data, we here also characterize the 106 SB genes. We find interesting spatiotemporal expression differences and similarities between SB specific and non-specific genes during brain neurodevelopment. These aspects are of interest to investigate further, to better understand and counteract the genetic origins suicidality.
Collapse
Affiliation(s)
- Marcus Sokolowski
- National Centre for Suicide Research and Prevention of Mental Ill-Health (NASP), Karolinska Institute (KI), Stockholm, Sweden.
| | - Danuta Wasserman
- National Centre for Suicide Research and Prevention of Mental Ill-Health (NASP), Karolinska Institute (KI), Stockholm, Sweden; WHO collaborating Centre for research, methods, development and training in suicide prevention, Sweden
| |
Collapse
|
33
|
Forstner AJ, Hoffmann P, Nöthen MM, Cichon S. Insights into the genomics of affective disorders. MED GENET-BERLIN 2020. [DOI: 10.1515/medgen-2020-2003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Abstract
Affective disorders, or mood disorders, are a group of neuropsychiatric illnesses that are characterized by a disturbance of mood or affect. Most genetic research in this field to date has focused on bipolar disorder and major depression. Symptoms of major depression include a depressed mood, reduced energy, and a loss of interest and enjoyment. Bipolar disorder is characterized by the occurrence of (hypo)manic episodes, which generally alternate with periods of depression. Formal and molecular genetic studies have demonstrated that affective disorders are multifactorial diseases, in which both genetic and environmental factors contribute to disease development. Twin and family studies have generated heritability estimates of 58–85 % for bipolar disorder and 40 % for major depression.
Large genome-wide association studies have provided important insights into the genetics of affective disorders via the identification of a number of common genetic risk factors. Based on these studies, the estimated overall contribution of common variants to the phenotypic variability (single-nucleotide polymorphism [SNP]-based heritability) is 17–23 % for bipolar disorder and 9 % for major depression. Bioinformatic analyses suggest that the associated loci and implicated genes converge into specific pathways, including calcium signaling. Research suggests that rare copy number variants make a lower contribution to the development of affective disorders than to other psychiatric diseases, such as schizophrenia or the autism spectrum disorders, which would be compatible with their less pronounced negative impact on reproduction. However, the identification of rare sequence variants remains in its infancy, as available next-generation sequencing studies have been conducted in limited samples. Future research strategies will include the enlargement of genomic data sets via innovative recruitment strategies; functional analyses of known associated loci; and the development of new, etiologically based disease models. Researchers hope that deeper insights into the biological causes of affective disorders will eventually lead to improved diagnostics and disease prediction, as well as to the development of new preventative, diagnostic, and therapeutic strategies. Pharmacogenetics and the application of polygenic risk scores represent promising initial approaches to the future translation of genomic findings into psychiatric clinical practice.
Collapse
Affiliation(s)
- Andreas J. Forstner
- Centre for Human Genetics , University of Marburg , Marburg , Germany
- Institute of Human Genetics , University of Bonn, School of Medicine & University Hospital Bonn , Bonn , Germany
| | - Per Hoffmann
- Institute of Human Genetics , University of Bonn, School of Medicine & University Hospital Bonn , Bonn , Germany
- Department of Biomedicine , University of Basel , Basel , Switzerland
| | - Markus M. Nöthen
- Institute of Human Genetics , University of Bonn, School of Medicine & University Hospital Bonn , Bonn , Germany
| | - Sven Cichon
- Institute of Medical Genetics and Pathology , University Hospital Basel , Basel , Switzerland
- Department of Biomedicine , University of Basel , Basel , Switzerland
- Institute of Neuroscience and Medicine (INM-1) , Research Center Jülich , Jülich , Germany
| |
Collapse
|
34
|
Ablinger C, Geisler SM, Stanika RI, Klein CT, Obermair GJ. Neuronal α 2δ proteins and brain disorders. Pflugers Arch 2020; 472:845-863. [PMID: 32607809 PMCID: PMC7351808 DOI: 10.1007/s00424-020-02420-2] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Revised: 06/08/2020] [Accepted: 06/12/2020] [Indexed: 01/31/2023]
Abstract
α2δ proteins are membrane-anchored extracellular glycoproteins which are abundantly expressed in the brain and the peripheral nervous system. They serve as regulatory subunits of voltage-gated calcium channels and, particularly in nerve cells, regulate presynaptic and postsynaptic functions independently from their role as channel subunits. α2δ proteins are the targets of the widely prescribed anti-epileptic and anti-allodynic drugs gabapentin and pregabalin, particularly for the treatment of neuropathic pain conditions. Recently, the human genes (CACNA2D1-4) encoding for the four known α2δ proteins (isoforms α2δ-1 to α2δ-4) have been linked to a large variety of neurological and neuropsychiatric disorders including epilepsy, autism spectrum disorders, bipolar disorders, schizophrenia, and depressive disorders. Here, we provide an overview of the hitherto identified disease associations of all known α2δ genes, hypothesize on the pathophysiological mechanisms considering their known physiological roles, and discuss the most immanent future research questions. Elucidating their specific physiological and pathophysiological mechanisms may open the way for developing entirely novel therapeutic paradigms for treating brain disorders.
Collapse
Affiliation(s)
- Cornelia Ablinger
- Institute of Physiology, Medical University Innsbruck, 6020, Innsbruck, Austria
| | - Stefanie M Geisler
- Department of Pharmacology and Toxicology, University of Innsbruck, 6020, Innsbruck, Austria
| | - Ruslan I Stanika
- Division Physiology, Karl Landsteiner University of Health Sciences, 3500, Krems, Austria
| | - Christian T Klein
- Department of Life Sciences, IMC University of Applied Sciences, 3500, Krems, Austria
| | - Gerald J Obermair
- Institute of Physiology, Medical University Innsbruck, 6020, Innsbruck, Austria.
- Division Physiology, Karl Landsteiner University of Health Sciences, 3500, Krems, Austria.
| |
Collapse
|
35
|
A study combining whole-exome sequencing and structural neuroimaging analysis for major depressive disorder. J Affect Disord 2020; 262:31-39. [PMID: 31706157 DOI: 10.1016/j.jad.2019.10.039] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Revised: 10/01/2019] [Accepted: 10/27/2019] [Indexed: 12/30/2022]
Abstract
BACKGROUND Genetic variations associated with major depressive disorder (MDD) may affect the structural aspects of neural networks mediated by the molecular pathways involved in neuronal survival and synaptic plasticity. However, few studies have applied a novel approach such as whole-exome sequencing (WES) analysis to investigate the genetic contribution to the neurostructural changes in MDD. METHODS In the first part of the study, we investigated rare variants of selected genes from previous WES studies using a WES analysis in 184 patients with MDD and 82 healthy controls. In the second part of the study, we explored the association between the common genetic variants from the WES analysis and cortical thickness in 91 patients with MDD and 75 healthy controls. The gray-matter thickness of each cortical region was measured using FreeSurfer. RESULTS We identified recurrent non-silent variants in 24 MDD-related genes including FASN, MYH13, UNC13D, LILRA1, CACNA1B, TRIO, HOMER3, and BCAR3, and observed eleven recurrently altered copy number alternations where a gain on 15q11.2 and losses on 7q34 and 15q11.1-q11.2 in MDD genomes. We also found that rs11592462 in CDH23, a calcium-dependent cell-adhesion molecule encoding gene, was significantly associated with thinning in the right anterior cingulate cortex. LIMITATION The small sample size may lead our findings to be underpowered regarding rare variants. CONCLUSION The present study identified that non-synonymous rare variants were significantly associated with risk of MDD and found that genetic contributions to the development of MDD may be mediated by alterations in cortical thickness of emotion-processing neural circuits.
Collapse
|
36
|
Zhang Y, Li M, Wang Q, Hsu JS, Deng W, Ma X, Ni P, Zhao L, Tian Y, Sham PC, Li T. A joint study of whole exome sequencing and structural MRI analysis in major depressive disorder. Psychol Med 2020; 50:384-395. [PMID: 30722798 DOI: 10.1017/s0033291719000072] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
BACKGROUND Major depressive disorder (MDD) is a leading cause of disability worldwide and influenced by both environmental and genetic factors. Genetic studies of MDD have focused on common variants and have been constrained by the heterogeneity of clinical symptoms. METHODS We sequenced the exome of 77 cases and 245 controls of Han Chinese ancestry and scanned their brain. Burden tests of rare variants were performed first to explore the association between genes/pathways and MDD. Secondly, parallel Independent Component Analysis was conducted to investigate genetic underpinnings of gray matter volume (GMV) changes of MDD. RESULTS Two genes (CSMD1, p = 5.32×10-6; CNTNAP5, p = 1.32×10-6) and one pathway (Neuroactive Ligand Receptor Interactive, p = 1.29×10-5) achieved significance in burden test. In addition, we identified one pair of imaging-genetic components of significant correlation (r = 0.38, p = 9.92×10-6). The imaging component reflected decreased GMV in cases and correlated with intelligence quotient (IQ). IQ mediated the effects of GMV on MDD. The genetic component enriched in two gene sets, namely Singling by G-protein coupled receptors [false discovery rate (FDR) q = 3.23×10-4) and Alzheimer Disease Up (FDR q = 6.12×10-4). CONCLUSIONS Both rare variants analysis and imaging-genetic analysis found evidence corresponding with the neuroinflammation and synaptic plasticity hypotheses of MDD. The mediation of IQ indicates that genetic component may act on MDD through GMV alteration and cognitive impairment.
Collapse
Affiliation(s)
- Yamin Zhang
- Psychiatric Laboratory and Mental Health Center, The State Key Laboratory of Biotherapy, West China Hospital of Sichuan University, Chengdu, Sichuan, China
- Huaxi Brain Research Center, West China Hospital of Sichuan University, Chengdu, Sichuan, China
| | - Mingli Li
- Psychiatric Laboratory and Mental Health Center, The State Key Laboratory of Biotherapy, West China Hospital of Sichuan University, Chengdu, Sichuan, China
- Huaxi Brain Research Center, West China Hospital of Sichuan University, Chengdu, Sichuan, China
| | - Qiang Wang
- Psychiatric Laboratory and Mental Health Center, The State Key Laboratory of Biotherapy, West China Hospital of Sichuan University, Chengdu, Sichuan, China
- Huaxi Brain Research Center, West China Hospital of Sichuan University, Chengdu, Sichuan, China
| | - Jacob Shujui Hsu
- Department of Psychiatry, The University of Hong Kong, Pokfulam, Hong Kong, China
- State Key Laboratory for Cognitive and Brain Sciences, The University of Hong Kong, Pokfulam, Hong Kong, China
| | - Wei Deng
- Psychiatric Laboratory and Mental Health Center, The State Key Laboratory of Biotherapy, West China Hospital of Sichuan University, Chengdu, Sichuan, China
- Huaxi Brain Research Center, West China Hospital of Sichuan University, Chengdu, Sichuan, China
| | - Xiaohong Ma
- Psychiatric Laboratory and Mental Health Center, The State Key Laboratory of Biotherapy, West China Hospital of Sichuan University, Chengdu, Sichuan, China
- Huaxi Brain Research Center, West China Hospital of Sichuan University, Chengdu, Sichuan, China
| | - Peiyan Ni
- Psychiatric Laboratory and Mental Health Center, The State Key Laboratory of Biotherapy, West China Hospital of Sichuan University, Chengdu, Sichuan, China
- Huaxi Brain Research Center, West China Hospital of Sichuan University, Chengdu, Sichuan, China
| | - Liansheng Zhao
- Psychiatric Laboratory and Mental Health Center, The State Key Laboratory of Biotherapy, West China Hospital of Sichuan University, Chengdu, Sichuan, China
- Huaxi Brain Research Center, West China Hospital of Sichuan University, Chengdu, Sichuan, China
| | - Yang Tian
- Psychiatric Laboratory and Mental Health Center, The State Key Laboratory of Biotherapy, West China Hospital of Sichuan University, Chengdu, Sichuan, China
- Huaxi Brain Research Center, West China Hospital of Sichuan University, Chengdu, Sichuan, China
| | - Pak Chung Sham
- Department of Psychiatry, The University of Hong Kong, Pokfulam, Hong Kong, China
- State Key Laboratory for Cognitive and Brain Sciences, The University of Hong Kong, Pokfulam, Hong Kong, China
| | - Tao Li
- Psychiatric Laboratory and Mental Health Center, The State Key Laboratory of Biotherapy, West China Hospital of Sichuan University, Chengdu, Sichuan, China
- Huaxi Brain Research Center, West China Hospital of Sichuan University, Chengdu, Sichuan, China
| |
Collapse
|
37
|
Abstract
Although recent years have seen large decreases in the overall global rate of suicide fatalities, this trend is not reflected everywhere. Suicide and suicidal behaviour continue to present key challenges for public policy and health services, with increasing suicide deaths in some countries such as the USA. The development of suicide risk is complex, involving contributions from biological (including genetics), psychological (such as certain personality traits), clinical (such as comorbid psychiatric illness), social and environmental factors. The involvement of multiple risk factors in conveying risk of suicide means that determining an individual's risk of suicide is challenging. Improving risk assessment, for example, by using computer testing and genetic screening, is an area of ongoing research. Prevention is key to reduce the number of suicide deaths and prevention efforts include universal, selective and indicated interventions, although these interventions are often delivered in combination. These interventions, combined with psychological (such as cognitive behavioural therapy, caring contacts and safety planning) and pharmacological treatments (for example, clozapine and ketamine) along with coordinated social and public health initiatives, should continue to improve the management of individuals who are suicidal and decrease suicide-associated morbidity.
Collapse
|
38
|
Ran L, Ai M, Wang W, Chen J, Wu T, Liu W, Jin J, Wang S, Kuang L. Rare variants in SLC6A4 cause susceptibility to major depressive disorder with suicidal ideation in Han Chinese adolescents and young adults. Gene 2019; 726:144147. [PMID: 31629822 DOI: 10.1016/j.gene.2019.144147] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Revised: 09/25/2019] [Accepted: 09/26/2019] [Indexed: 12/16/2022]
Abstract
BACKGROUND Suicidal ideation (SI) is the most serious symptom of major depressive disorder (MDD) and considered an extreme state. The serotonin transporter gene (SLC6A4) plays a significant role in MDD and suicide pathophysiology. Previous studies have revealed an association between common variants of SLC6A4 with the risk of MDD and suicide. However, very few studies have so far focused on the degree to which rare variants of SLC6A4 are responsible for the depression observed in adolescent and young adult suicide patients. The aim of this study was to examine the impact of common and rare variants of SLC6A4 on the risk of Han Chinese adolescents and young adults suffering MDD with SI. METHODS Targeted sequencing of the SLC6A4 gene was conducted using FastTarget technology in Han Chinese adolescents and young adults, of which 74 were MDD patients with SI and 150 were healthy controls. Gene-based association analyses of rare variants were performed using enrichment analysis and a cumulative allele test. An allele association study was performed against common variants. RESULTS After sequencing and bioinformatics analysis, a total of 15 single nucleotide variants (SNVs) were detected in the targeted regions from all participants, including 9 common and 6 rare variants. Among these, 5 rare variants were identified within the study group. Enrichment analysis of rare variants demonstrated a statistical difference (p = 0.042) between the study and control groups. Using cumulative allele analysis, alternative alleles in the SLC6A4 gene exhibited an association with MDD patients with SI (cumulative allele: OR = 10.18, 95% CI = 1.18-87.32, p = 0.017). No significant association was found between the 9 common SLC6A4 variants and MDD patients with SI. CONCLUSIONS Our results suggest that rare variants of SLC6A4 may contribute to a genetic risk of adolescents and young adults suffering MDD with SI.
Collapse
Affiliation(s)
- Liuyi Ran
- Mental Health Center, University-Town Hospital of Chongqing Medical University, Chongqing 401331, China
| | - Ming Ai
- Department of Psychiatry, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Wo Wang
- Mental Health Center, University-Town Hospital of Chongqing Medical University, Chongqing 401331, China
| | - Jianmei Chen
- Department of Psychiatry, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Tong Wu
- Mental Health Center, University-Town Hospital of Chongqing Medical University, Chongqing 401331, China
| | - Wei Liu
- Mental Health Center, University-Town Hospital of Chongqing Medical University, Chongqing 401331, China
| | - Jiajia Jin
- Mental Health Center, University-Town Hospital of Chongqing Medical University, Chongqing 401331, China
| | - Suya Wang
- Mental Health Center, University-Town Hospital of Chongqing Medical University, Chongqing 401331, China
| | - Li Kuang
- Mental Health Center, University-Town Hospital of Chongqing Medical University, Chongqing 401331, China; Department of Psychiatry, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China.
| |
Collapse
|
39
|
Dapas M, Sisk R, Legro RS, Urbanek M, Dunaif A, Hayes MG. Family-Based Quantitative Trait Meta-Analysis Implicates Rare Noncoding Variants in DENND1A in Polycystic Ovary Syndrome. J Clin Endocrinol Metab 2019; 104:3835-3850. [PMID: 31038695 PMCID: PMC6660913 DOI: 10.1210/jc.2018-02496] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Accepted: 04/17/2019] [Indexed: 02/07/2023]
Abstract
CONTEXT Polycystic ovary syndrome (PCOS) is among the most common endocrine disorders of premenopausal women, affecting 5% to15% of this population depending on the diagnostic criteria applied. It is characterized by hyperandrogenism, ovulatory dysfunction, and polycystic ovarian morphology. PCOS is highly heritable, but only a small proportion of this heritability can be accounted for by the common genetic susceptibility variants identified to date. OBJECTIVE The objective of this study was to test whether rare genetic variants contribute to PCOS pathogenesis. DESIGN, PATIENTS, AND METHODS We performed whole-genome sequencing on DNA from 261 individuals from 62 families with one or more daughters with PCOS. We tested for associations of rare variants with PCOS and its concomitant hormonal traits using a quantitative trait meta-analysis. RESULTS We found rare variants in DENND1A (P = 5.31 × 10-5, adjusted P = 0.039) that were significantly associated with reproductive and metabolic traits in PCOS families. CONCLUSIONS Common variants in DENND1A have previously been associated with PCOS diagnosis in genome-wide association studies. Subsequent studies indicated that DENND1A is an important regulator of human ovarian androgen biosynthesis. Our findings provide additional evidence that DENND1A plays a central role in PCOS and suggest that rare noncoding variants contribute to disease pathogenesis.
Collapse
Affiliation(s)
- Matthew Dapas
- Division of Endocrinology, Metabolism, and Molecular Medicine, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, Illinois
| | - Ryan Sisk
- Division of Endocrinology, Metabolism, and Molecular Medicine, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, Illinois
| | - Richard S Legro
- Department of Obstetrics and Gynecology, Penn State College of Medicine, Hershey, Pennsylvania
| | - Margrit Urbanek
- Division of Endocrinology, Metabolism, and Molecular Medicine, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, Illinois
- Center for Genetic Medicine, Northwestern University Feinberg School of Medicine, Chicago, Illinois
- Center for Reproductive Science, Northwestern University Feinberg School of Medicine, Chicago, Illinois
| | - Andrea Dunaif
- Division of Endocrinology, Diabetes, and Bone Disease, Icahn School of Medicine at Mount Sinai, New York, New York
| | - M Geoffrey Hayes
- Division of Endocrinology, Metabolism, and Molecular Medicine, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, Illinois
- Center for Genetic Medicine, Northwestern University Feinberg School of Medicine, Chicago, Illinois
- Department of Anthropology, Northwestern University, Evanston, Illinois
| |
Collapse
|
40
|
Andrade A, Brennecke A, Mallat S, Brown J, Gomez-Rivadeneira J, Czepiel N, Londrigan L. Genetic Associations between Voltage-Gated Calcium Channels and Psychiatric Disorders. Int J Mol Sci 2019; 20:E3537. [PMID: 31331039 PMCID: PMC6679227 DOI: 10.3390/ijms20143537] [Citation(s) in RCA: 62] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Revised: 07/12/2019] [Accepted: 07/13/2019] [Indexed: 12/23/2022] Open
Abstract
Psychiatric disorders are mental, behavioral or emotional disorders. These conditions are prevalent, one in four adults suffer from any type of psychiatric disorders world-wide. It has always been observed that psychiatric disorders have a genetic component, however, new methods to sequence full genomes of large cohorts have identified with high precision genetic risk loci for these conditions. Psychiatric disorders include, but are not limited to, bipolar disorder, schizophrenia, autism spectrum disorder, anxiety disorders, major depressive disorder, and attention-deficit and hyperactivity disorder. Several risk loci for psychiatric disorders fall within genes that encode for voltage-gated calcium channels (CaVs). Calcium entering through CaVs is crucial for multiple neuronal processes. In this review, we will summarize recent findings that link CaVs and their auxiliary subunits to psychiatric disorders. First, we will provide a general overview of CaVs structure, classification, function, expression and pharmacology. Next, we will summarize tools to study risk loci associated with psychiatric disorders. We will examine functional studies of risk variations in CaV genes when available. Finally, we will review pharmacological evidence of the use of CaV modulators to treat psychiatric disorders. Our review will be of interest for those studying pathophysiological aspects of CaVs.
Collapse
Affiliation(s)
- Arturo Andrade
- Department of Biological Sciences, University of New Hampshire, Durham, NH 03824, USA.
| | - Ashton Brennecke
- Department of Biological Sciences, University of New Hampshire, Durham, NH 03824, USA
| | - Shayna Mallat
- Department of Biological Sciences, University of New Hampshire, Durham, NH 03824, USA
| | - Julian Brown
- Department of Biological Sciences, University of New Hampshire, Durham, NH 03824, USA
| | | | - Natalie Czepiel
- Department of Biological Sciences, University of New Hampshire, Durham, NH 03824, USA
| | - Laura Londrigan
- Department of Biological Sciences, University of New Hampshire, Durham, NH 03824, USA
| |
Collapse
|
41
|
González-Castro TB, Tovilla-Zárate CA, Genis-Mendoza AD, Juárez-Rojop IE, Nicolini H, López-Narváez ML, Martínez-Magaña JJ. Identification of gene ontology and pathways implicated in suicide behavior: Systematic review and enrichment analysis of GWAS studies. Am J Med Genet B Neuropsychiatr Genet 2019; 180:320-329. [PMID: 31045331 DOI: 10.1002/ajmg.b.32731] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/11/2018] [Revised: 04/03/2019] [Accepted: 04/16/2019] [Indexed: 12/14/2022]
Abstract
Multiple large-scale studies such as genome-wide association studies (GWAS) have been performed to identify genetic contributors to suicidal behaviors (SB). We aimed to summarize and analyze the information obtained in SB GWAS, to explore the biological process gene ontology (GO) of genes associated with SB from GWAS, and to determine the possible implications of the genes associated with SB in Kyoto encyclopedias of genes and genomes (KEGG) biological pathways. The articles included in the analysis were obtained from PubMed and Scopus databases. Enrichment analyses were performed in Enrichr to evaluate the KEGG pathways and GO of the genes associated with SB of GWAS. The findings of biological process GO analysis showed 924 GO involved in genes related with SB; of those, the regulation of glucose import in response to insulin stimulus, regulation of protein localization to plasma membrane, positive regulation of endopeptidase activity, heterotypic cell-cell adhesion, regulation of cardiac muscle cell contraction, positive regulation of protein localization to plasma membrane, and positive regulation of protein localization to cell periphery biological process GO showed significant statistical association. Furthermore, we obtained 130 KEGG pathways involved in genes related with SB, which Aldosterone synthesis and secretion, Rap1 signaling pathway and arrhythmogenic right ventricular cardiomyopathy pathways showed a significant statistical association. These findings give a better perspective of the biological participation of genes associated with SB, which will be important to perform adequate strategies to prevent and treat SB.
Collapse
Affiliation(s)
- Thelma B González-Castro
- Multidisciplinary Academic Division of Jalpa de Méndez, Juárez Autonomous University of Tabasco, Jalpa de Méndez, Tabasco, Mexico.,Multidisciplinary Academic Division of Health Sciences, Juárez Autonomous University of Tabasco, Villahermosa, Tabasco, Mexico
| | - Carlos A Tovilla-Zárate
- Multidisciplinary Academic Division of Comalcalco, Juárez Autonomous University of Tabasco, Comalcalco, Tabasco, Mexico
| | - Alma D Genis-Mendoza
- Secretary of Health, National Institute of Genomic Medicine (INMEGEN), City of Mexico, Mexico.,Secretary of Health, Children's Psychiatric Hospital "Dr. Juan N. Navarro", City of Mexico, Mexico
| | - Isela E Juárez-Rojop
- Multidisciplinary Academic Division of Comalcalco, Juárez Autonomous University of Tabasco, Comalcalco, Tabasco, Mexico
| | - Humberto Nicolini
- Secretary of Health, National Institute of Genomic Medicine (INMEGEN), City of Mexico, Mexico.,Secretary of Health, Children's Psychiatric Hospital "Dr. Juan N. Navarro", City of Mexico, Mexico
| | | | - José J Martínez-Magaña
- Secretary of Health, National Institute of Genomic Medicine (INMEGEN), City of Mexico, Mexico
| |
Collapse
|
42
|
Tang S, Patel A, Krause PR. Hidden regulation of herpes simplex virus 1 pre-mRNA splicing and polyadenylation by virally encoded immediate early gene ICP27. PLoS Pathog 2019; 15:e1007884. [PMID: 31206552 PMCID: PMC6597130 DOI: 10.1371/journal.ppat.1007884] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Revised: 06/27/2019] [Accepted: 06/03/2019] [Indexed: 12/23/2022] Open
Abstract
In contrast to human cells, very few HSV-1 genes are known to be spliced, although the same pre-mRNA processing machinery is shared. Here, through global analysis of splice junctions in cells infected with HSV-1 and an HSV-1 mutant virus with deletion of infectious cell culture protein 27 (ICP27), one of two viral immediate early (IE) genes essential for viral replication, we identify hundreds of novel alternative splice junctions mapping to both previously known HSV-1 spliced genes and previously unknown spliced genes, the majority of which alter the coding potential of viral genes. Quantitative and qualitative splicing efficiency analysis of these novel alternatively spliced genes based on RNA-Seq and RT-PCR reveals that splicing at these novel splice sites is efficient only when ICP27 is absent; while in wildtype HSV-1 infected cells, the splicing of these novel splice junctions is largely silenced in a gene/sequence specific manner, suggesting that ICP27 not only promotes accumulation of ICP27 targeted transcripts but also ensures correctness of the functional coding sequences through inhibition of alternative splicing. Furthermore, ICP27 toggles expression of ICP34.5, the major viral neurovirulence factor, through inhibition of splicing and activation of a proximal polyadenylation signal (PAS) in the newly identified intron, revealing a novel regulatory mechanism for expression of a viral gene. Thus, through the viral IE protein ICP27, HSV-1 co-opts both splicing and polyadenylation machinery to achieve optimal viral gene expression during lytic infection. On the other hand, during latent infection when ICP27 is absent, HSV-1 likely takes advantages of host splicing machinery to restrict expression of randomly activated antigenic viral genes to achieve immune evasion. Little is known regarding to how HSV, a large DNA virus and known to contain very few spliced genes, escapes host pre-mRNA splicing machinery. Here, by establishing a high throughput splice junction identification platform and quantitative analysis method to assess splicing efficiency based on high throughput data, we find that HSV-1 encodes hundreds of previously unknown alternative splice junctions; however, splicing of these novel spliced genes is largely silenced in wild-type HSV-1 infected cells, explaining why only very few spliced genes have been previously identified in HSV-1. Moreover, ICP27 is required for splicing inhibition and 3’ end formation of ICP34.5, the major viral neurovirulence factor and also the major target of latently expressed viral miRNAs. These findings not only fundamentally change the view of HSV gene structure, but also reveal a mechanism by which HSV employs host splicing and polyadenylation machineries to achieve optimal gene expression during acute infection and may also contribute to immune evasion during latency when ICP27 is not expressed.
Collapse
Affiliation(s)
- Shuang Tang
- Division of Viral Products, Office of Vaccines Research and Review, Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, Maryland, United States of America
- * E-mail: (ST); (PRK)
| | - Amita Patel
- Division of Viral Products, Office of Vaccines Research and Review, Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, Maryland, United States of America
| | - Philip R. Krause
- Division of Viral Products, Office of Vaccines Research and Review, Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, Maryland, United States of America
- * E-mail: (ST); (PRK)
| |
Collapse
|
43
|
González-Castro TB, Genis-Mendoza AD, Tovilla-Zárate CA, Martínez-Magaña JJ, Juárez-Rojop IE, Sarmiento E, Nicolini H. Genome-wide association study of suicide attempt in a Mexican population: a study protocol. BMJ Open 2019; 9:e025335. [PMID: 30975676 PMCID: PMC6500275 DOI: 10.1136/bmjopen-2018-025335] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
INTRODUCTION Suicidality is a complex behaviour and a major health problem; the specific features that could predispose to suicidal behaviour have been extensively investigated, most frequently in European and Asian populations. Therefore, our aim is to present a protocol that will explore suicide attempt in Mexican individuals diagnosed with psychiatric disorders, through a genome-wide association study (GWAS). METHOD AND ANALYSIS We will perform a GWAS by comparing 700 individuals who have suicide attempt history, with control subjects without suicide attempt history (n=500). The genotyping will be conducted using the Infinium PsychArray BeadChip and quality controls will be applied to single nucleotides (SNPs) genotyped. After that, we will perform the imputation using reference panels provided by the Haplotype Reference Consortium. We will perform two different workflows: (A) the classic GWAS analysis applying the same weight to all the variants and (B) an algorithm with prediction of deleteriousness of variants. ETHICS AND DISSEMINATION This study was approved by the ethics and investigation committees of the National Institute of Genomic Medicine on 22 July 2015, No CEI 215/13. We plan to disseminate research findings in scientific conferences and as a manuscript in peer-reviewed journals. TRIAL REGISTRATION NUMBER CEI 215/13.
Collapse
Affiliation(s)
- Thelma Beatriz González-Castro
- División Académica Multidisciplinaria de Jalpa de Méndez, Universidad Juárez Autónoma de Tabasco, Jalpa de Méndez, Mexico
| | - Alma Delia Genis-Mendoza
- Laboratorio de Genomica de Enfermedades Psiquiatrica y Neurodegenerativas, Instituto Nacional de Medicina Genomica, Mexico, Mexico
| | - Carlos Alfonso Tovilla-Zárate
- División Académica Multidisciplinaria de Comalcalco, Universidad Juárez Autónoma de Tabasco, División Multidisciplinaria de Comalcalco, Comalcalco, Mexico
| | - José Jaime Martínez-Magaña
- Laboratorio de Genomica de Enfermedades Psiquiatrica y Neurodegenerativas, Instituto Nacional de Medicina Genomica, Mexico, Mexico
- División Académica de Ciencias de la Salud, Universidad Juárez Autónoma de Tabasco, Villahermosa, Mexico
| | - Isela Esther Juárez-Rojop
- División Académica de Ciencias de la Salud, Universidad Juárez Autónoma de Tabasco, Villahermosa, Mexico
| | - Emmanuel Sarmiento
- Urgencias y Pre-consulta, Hospital Psiquiátrico Infantil Dr. Juan N. Navarro, Ciudad de Mexico, Mexico
| | - Humberto Nicolini
- Laboratorio de Genomica de Enfermedades Psiquiatrica y Neurodegenerativas, Instituto Nacional de Medicina Genomica, Mexico, Mexico
| |
Collapse
|
44
|
Tombácz D, Maróti Z, Kalmár T, Palkovits M, Snyder M, Boldogkői Z. Whole-exome sequencing data of suicide victims who had suffered from major depressive disorder. Sci Data 2019; 6:190010. [PMID: 30720799 PMCID: PMC6362893 DOI: 10.1038/sdata.2019.10] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Accepted: 12/13/2018] [Indexed: 12/30/2022] Open
Abstract
Suicide is one of the leading causes of mortality worldwide; it causes the death of more than one million patients each year. Suicide is a complex, multifactorial phenotype with environmental and genetic factors contributing to the risk of the forthcoming suicide. These factors first generally lead to mental disorders, such as depression, schizophrenia and bipolar disorder, which then become the direct cause of suicide. Here we present a high quality dataset (including processed BAM and VCF files) gained from the high-throughput whole-exome Illumina sequencing of 23 suicide victims – all of whom had suffered from major depressive disorder - and 21 control patients to a depth of at least 40-fold coverage in both cohorts. We identified ~130,000 variants per sample and altogether 442,270 unique variants in the cohort of 44 samples. To our best knowledge, this is the first whole-exome sequencing dataset from suicide victims. We expect that this dataset provides useful information for genomic studies of suicide and depression, and also for the analysis of the Hungarian population.
Collapse
Affiliation(s)
- Dóra Tombácz
- Department of Medical Biology, Faculty of Medicine, University of Szeged, Somogyi B. u. 4., Szeged, H-6720, Hungary
| | - Zoltán Maróti
- Department of Paediatrics, Faculty of Medicine, University of Szeged, Korányi fasor 14-15., Szeged, H-6720, Hungary
| | - Tibor Kalmár
- Department of Paediatrics, Faculty of Medicine, University of Szeged, Korányi fasor 14-15., Szeged, H-6720, Hungary
| | - Miklós Palkovits
- Neuromorphological and Neuroendocrine Research Laboratory, Department of Anatomy, Histology and Embryology, Semmelweis University, Üllői u. 26., Budapest, H-1085, Hungary
| | - Michael Snyder
- Department of Genetics, School of Medicine, Stanford University, 300 Pasteur Dr., Stanford, CA, 94305-5120, USA
| | - Zsolt Boldogkői
- Department of Medical Biology, Faculty of Medicine, University of Szeged, Somogyi B. u. 4., Szeged, H-6720, Hungary
| |
Collapse
|
45
|
Thavarajah R, Mohandoss A, Joshua E, Rao U, Ranganathan K. Candidate Genes for Suicide Risk in Head and Neck Squamous Cell Carcinoma Patients. JOURNAL OF OROFACIAL SCIENCES 2019. [DOI: 10.4103/jofs.jofs_2_19] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
|
46
|
Maróti Z, Boldogkői Z, Tombácz D, Snyder M, Kalmár T. Evaluation of whole exome sequencing as an alternative to BeadChip and whole genome sequencing in human population genetic analysis. BMC Genomics 2018; 19:778. [PMID: 30373510 PMCID: PMC6206721 DOI: 10.1186/s12864-018-5168-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2018] [Accepted: 10/15/2018] [Indexed: 11/26/2022] Open
Abstract
Background Understanding the underlying genetic structure of human populations is of fundamental interest to both biological and social sciences. Advances in high-throughput genotyping technology have markedly improved our understanding of global patterns of human genetic variation. The most widely used methods for collecting variant information at the DNA-level include whole genome sequencing, which remains costly, and the more economical solution of array-based techniques, as these are capable of simultaneously genotyping a pre-selected set of variable DNA sites in the human genome. The largest publicly accessible set of human genomic sequence data available today originates from exome sequencing that comprises around 1.2% of the whole genome (approximately 30 million base pairs). Results To unbiasedly compare the effect of SNP selection strategies in population genetic analysis we subsampled the variants of the same highly curated 1 K Genome dataset to mimic genome, exome sequencing and array data in order to eliminate the effect of different chemistry and error profiles of these different approaches. Next we compared the application of the exome dataset to the array-based dataset and to the gold standard whole genome dataset using the same population genetic analysis methods. Conclusions Our results draw attention to some of the inherent problems that arise from using pre-selected SNP sets for population genetic analysis. Additionally, we demonstrate that exome sequencing provides a better alternative to the array-based methods for population genetic analysis. In this study, we propose a strategy for unbiased variant collection from exome data and offer a bioinformatics protocol for proper data processing. Electronic supplementary material The online version of this article (10.1186/s12864-018-5168-x) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Zoltán Maróti
- Department of Pediatrics and Pediatric Health Center, Faculty of Medicine, University of Szeged, Szeged, Hungary.
| | - Zsolt Boldogkői
- Department of Medical Biology, University of Szeged, Faculty of Medicine, Szeged, Hungary
| | - Dóra Tombácz
- Department of Medical Biology, University of Szeged, Faculty of Medicine, Szeged, Hungary.,Department of Genetics, School of Medicine, Stanford University, Stanford, CA, USA
| | - Michael Snyder
- Department of Genetics, School of Medicine, Stanford University, Stanford, CA, USA
| | - Tibor Kalmár
- Department of Pediatrics and Pediatric Health Center, Faculty of Medicine, University of Szeged, Szeged, Hungary.
| |
Collapse
|
47
|
Neurobiological links between depression and AD: The role of TGF-β1 signaling as a new pharmacological target. Pharmacol Res 2018; 130:374-384. [DOI: 10.1016/j.phrs.2018.02.007] [Citation(s) in RCA: 90] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/12/2017] [Revised: 02/03/2018] [Accepted: 02/07/2018] [Indexed: 12/19/2022]
|