1
|
Biscontin A, Russo A, Marnetto D, Pagani L, Costa R, Montagnese S. Validation and TaqMan Conversion of a Molecular Chronotype Assessment Approach. J Biol Rhythms 2025; 40:19-26. [PMID: 39604164 DOI: 10.1177/07487304241298404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2024]
Abstract
The present study aimed to develop a TaqMan genotyping card for molecular chronotype assessment based on a predictive panel of 35 previously identified genetic variants. A reliable TaqMan assay was successfully developed for 33 out of the 35 chronotype-predictive variants. The resulting TaqMan genotyping card was utilized to genetically characterize 196 new individuals (in addition to the previously studied 96) and the Morningness-Eveningness Questionnaire was utilized for their phenotypical chronotype assessment. The predictive panel performance was validated on (a) a group of morning and evening individuals (logistic regression model), (b) a representative sample of the original study population also including intermediate chronotypes (linear regression model) and, (c) 25,986 individuals from the Estonian Biobank, for whom Munich Chronotype Questionnaire scores were available. The validation of the morningness-eveningness logistic regression model on 25 morning and 21 evening types resulted in a predictive value of 72%, confirming the reliability of the predictive panel and the success of its conversion into a TaqMan genotyping card. By contrast, the inclusion of intermediate individuals in the model led to a significant decrease in predictive performance (45% on 100 individuals [25 morning, 54 intermediate, and 21 evening]), with intermediate types being the most affected. No significant associations were observed between the genotype panel and chronotype in the Estonian Biobank sample. In conclusion, our genotyping card might represent a promising molecular chronotyping tool for the Italian population. Its performance in other populations is worthy of further study.
Collapse
Affiliation(s)
- Alberto Biscontin
- Department of Medicine, University of Padova, Padova, Italy
- Department of Agricultural, Food, Environmental, and Animal Sciences, University of Udine, Udine, Italy
| | - Antonella Russo
- Department of Molecular Medicine, University of Padova, Padova, Italy
| | - Davide Marnetto
- Department of Neurosciences "Rita Levi Montalcini," University of Torino, Torino, Italy
| | - Luca Pagani
- Department of Biology, University of Padova, Padova, Italy
- Estonian Biobank, Institute of Genomics, University of Tartu, Tartu, Estonia
| | - Rodolfo Costa
- Institute of Neuroscience, National Research Council, Padova, Italy
- Department of Biomedical Sciences, University of Padova, Padova, Italy
- Chronobiology Section, Faculty of Health and Medical Sciences, University of Surrey, Guildford, UK
| | - Sara Montagnese
- Department of Medicine, University of Padova, Padova, Italy
- Chronobiology Section, Faculty of Health and Medical Sciences, University of Surrey, Guildford, UK
| |
Collapse
|
2
|
Xie X, Xu H, Shu R, Du S, Fan H, Zhang M, Sun L, Zhou J, Wang L, Li Z, Anthony DC. Period3 modulates the NAD +-SIRT3 axis to alleviate depression-like behaviour by enhancing NAMPT activity in mice. J Adv Res 2025:S2090-1232(25)00062-1. [PMID: 39894345 DOI: 10.1016/j.jare.2025.01.043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Revised: 01/23/2025] [Accepted: 01/24/2025] [Indexed: 02/04/2025] Open
Abstract
INTRODUCTION PERIOD (PER)3 deficiency is associated with depression-like behaviors, but the underlying mechanisms remain unclear. OBJECTIVES This study aims to elucidate the role and mechanism of PER3 in regulating depression-like behaviors in mice. METHODS Depression-like behaviors were assessed using the sucrose preference test, tail suspension test, and forced swimming test. Metabolomic analysis was conducted on hippocampal tissues from Per3 knockout mice using chromatography-mass spectrometry. The regulatory role of PER3 on the expression of nicotinamide phosphoribosyltransferase (Nampt) was investigated through co-immunoprecipitation and chromatin immunoprecipitation assays. RESULTS Metabolomic analysis revealed that Per3 deficiency disrupts mitochondrial function, as evidenced by reduced activities of key tricarboxylic acidcycle enzymes (succinate dehydrogenase, citrate synthase, and α-ketoglutarate dehydrogenase), diminished expression of mitochondrial respiratory chain complexes I-V, and decreased nicotinamide adenine dinucleotide (NAD)+ levels in Per3 knockout mice. Supplementation with the NAD+ precursor nicotinamide rescued mitochondrial function and alleviated depression-like behaviors in Per3 knockout mice. Similar effects were observed with intraperitoneal administration of the NAMPT activator P7C3-A20, while these effects were abolished by the NAMPT inhibitor FK866. Mechanistically, PER3 was found to regulate Nampt expression by binding to E-box elements within its intronic regions in conjunction with BMAL1. This interaction enhanced NAD+ production, activating SIRT3 to mitigate mitochondrial dysfunction in Per3 knockout mice. CONCLUSIONS These findings uncover a novel mechanism by which PER3 ameliorates depressive behaviors through the regulation of NAMPT-controlled NAD+ levels and mitochondrial function, underscoring the critical role of PER3 in depression-related pathophysiology.
Collapse
Affiliation(s)
- Xiaoxian Xie
- Shanghai Mental Health Center, Shanghai Jiao Tong University, School of Medicine, Shanghai 201108, China; Department of Pharmacology, University of Oxford, Mansfield Road OX1 3QT, Oxford, UK; Shanghai Key Laboratory of Psychotic Disorders, Brain Health Institute, Shanghai Mental Health Center, Shanghai 201108, China.
| | - Haoshen Xu
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310032, China
| | - Ruonan Shu
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310032, China
| | - Shulin Du
- Department of Nutritional and Metabolic Psychiatry, Affliated Brain Hospital, Guangzhou Medical University, Guangzhou, China; Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, Guangzhou Medical University, Guangzhou, China
| | - Haidan Fan
- College of Animal Science, South China Agricultural University, Guangzhou 510640, China
| | - Mengya Zhang
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310032, China
| | - Lei Sun
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310032, China
| | - Jiafeng Zhou
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310032, China
| | | | - Zezhi Li
- Department of Nutritional and Metabolic Psychiatry, Affliated Brain Hospital, Guangzhou Medical University, Guangzhou, China; Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, Guangzhou Medical University, Guangzhou, China.
| | - Daniel C Anthony
- Department of Pharmacology, University of Oxford, Mansfield Road OX1 3QT, Oxford, UK
| |
Collapse
|
3
|
Li T, Chen Y, Xie Y, Tao S, Zou L, Yang Y, Tao F, Wu X. Moderating effects of PER3 gene DNA methylation on the association between problematic mobile phone use and chronotype among Chinese young adults: Focus on gender differences. J Behav Addict 2024; 13:554-564. [PMID: 38829707 PMCID: PMC11220799 DOI: 10.1556/2006.2024.00027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 08/06/2023] [Accepted: 04/25/2024] [Indexed: 06/05/2024] Open
Abstract
Objective To investigate the rates of problematic mobile phone use (PMPU) and chronotypes in young adults, and examine the associations of PMPU with chronotypes, as well as its gender differences. Furthermore, we explored the moderating role of PER3 gene DNA methylation on the associations. Methods From April to May 2019, a total of 1,179 young adults were selected from 2 universities in Anhui and Jiangxi provinces. The Self-rating Questionnaire for Adolescent Problematic Mobile Phone Use (SQAPMPU) and reduced Morningness-Eveningness Questionnaire (rMEQ) were adopted to investigate PMPU and chronotypes in young adults, respectively. Moreover, 744 blood samples were collected to measure PER3 gene DNA methylation. Multivariate logistic regression models were established to analyze the associations between PMPU and chronotypes. Moderating analysis was used to determine whether PER3 gene DNA methylation moderated the relationships between PMPU and chronotypes. Results The prevalence of PMPU, morning chronotypes (M-types), neutral chronotypes (N-types), and evening chronotypes (E-types) of young adults were 24.6%, 18.4%, 71.1%, and 10.5%, respectively. Multivariate logistic regression results indicated that PMPU was positively correlated with E-types (OR = 3.53, 95%CI: 2.08-6.00), and the association was observed only in females after stratified by gender (OR = 5.36, 95%CI: 2.70-10.67). Furthermore, PER3 gene DNA methylation has a negative moderating role between PMPU and chronotypes and has a sex-based difference. Conclusions This study can provide valuable information for the prevention and control of circadian rhythm disturbance among young adults from the perspective of epidemiology and biological etiology.
Collapse
Affiliation(s)
- Tingting Li
- Department of Maternal, Child and Adolescent Health, School of Public Health, Anhui Medical University, No 81 Meishan Road, Hefei 230032, Anhui, China
| | - Yuming Chen
- Department of Maternal, Child and Adolescent Health, School of Public Health, Anhui Medical University, No 81 Meishan Road, Hefei 230032, Anhui, China
| | - Yang Xie
- Department of Maternal, Child and Adolescent Health, School of Public Health, Anhui Medical University, No 81 Meishan Road, Hefei 230032, Anhui, China
| | - Shuman Tao
- MOE Key Laboratory of Population Health Across Life Cycle, No 81 Meishan Road, Hefei 230032, Anhui, China
- Anhui Provincial Key Laboratory of Environment and Population Health Across the Life Course, Anhui Medical University, No 81 Meishan Road, Hefei 230032, Anhui, China
| | - Liwei Zou
- MOE Key Laboratory of Population Health Across Life Cycle, No 81 Meishan Road, Hefei 230032, Anhui, China
- Anhui Provincial Key Laboratory of Environment and Population Health Across the Life Course, Anhui Medical University, No 81 Meishan Road, Hefei 230032, Anhui, China
| | - Yajuan Yang
- School of Nursing, Anhui Medical University, 15 Feicui Road, Hefei 230601, Anhui, China
| | - Fangbiao Tao
- Department of Maternal, Child and Adolescent Health, School of Public Health, Anhui Medical University, No 81 Meishan Road, Hefei 230032, Anhui, China
- MOE Key Laboratory of Population Health Across Life Cycle, No 81 Meishan Road, Hefei 230032, Anhui, China
- Anhui Provincial Key Laboratory of Environment and Population Health Across the Life Course, Anhui Medical University, No 81 Meishan Road, Hefei 230032, Anhui, China
- NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, No 81 Meishan Road, Hefei 230032, Anhui, China
| | - Xiaoyan Wu
- Department of Maternal, Child and Adolescent Health, School of Public Health, Anhui Medical University, No 81 Meishan Road, Hefei 230032, Anhui, China
- MOE Key Laboratory of Population Health Across Life Cycle, No 81 Meishan Road, Hefei 230032, Anhui, China
- Anhui Provincial Key Laboratory of Environment and Population Health Across the Life Course, Anhui Medical University, No 81 Meishan Road, Hefei 230032, Anhui, China
- NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, No 81 Meishan Road, Hefei 230032, Anhui, China
| |
Collapse
|
4
|
Gubin D. Chronotherapeutic Approaches. CHRONOBIOLOGY AND CHRONOMEDICINE 2024:536-577. [DOI: 10.1039/bk9781839167553-00536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/07/2024]
Abstract
The chapter provides a comprehensive review of current approaches to personalized chronodiagnosis and chronotherapy. We discuss circadian clock drug targets that aim to affect cellular clock machinery, circadian mechanisms of pharmacokinetics/pharmacodynamics, and chronotherapeutic approaches aimed at increasing treatment efficacy and minimizing its side effects. We explore how chronotherapy can combat acquired and compensatory drug resistance. Non-pharmacological interventions for clock preservation and enhancement are also overviewed, including light treatment, melatonin, sleep scheduling, time-restricted feeding, physical activity, and exercise.
Collapse
Affiliation(s)
- Denis Gubin
- aTyumen State Medical University, Tyumen, Russia
- bTyumen Cardiology Research Center, Tomsk National Research Medical Center, Russian Academy of Science, Tomsk, Russia
| |
Collapse
|
5
|
Overton R, Zafar A, Attia Z, Ay A, Ingram KK. Machine Learning Analyses Reveal Circadian Features Predictive of Risk for Sleep Disturbance. Nat Sci Sleep 2022; 14:1887-1900. [PMID: 36304418 PMCID: PMC9595061 DOI: 10.2147/nss.s379888] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Accepted: 09/21/2022] [Indexed: 11/05/2022] Open
Abstract
Introduction Sleep disturbances often co-occur with mood disorders, with poor sleep quality affecting over a quarter of the global population. Recent advances in sleep and circadian biology suggest poor sleep quality is linked to disruptions in circadian rhythms, including significant associations between sleep features and circadian clock gene variants. Methods Here, we employ machine learning techniques, combined with statistical approaches, in a deeply phenotyped population to explore associations between clock genotypes, circadian phenotypes (diurnal preference and circadian phase), and risk for sleep disturbance symptoms. Results As found in previous studies, evening chronotypes report high levels of sleep disturbance symptoms. Using molecular chronotyping by measuring circadian phase, we extend these findings and show that individuals with a mismatch between circadian phase and diurnal preference report higher levels of sleep disturbance. We also report novel synergistic interactions in genotype combinations of Period 3, Clock and Cryptochrome variants (PER3B (rs17031614)/ CRY1 (rs228716) and CLOCK3111 (rs1801260)/ CRY2 (rs10838524)) that yield strong associations with sleep disturbance, particularly in males. Conclusion Our results indicate that both direct and indirect mechanisms may impact sleep quality; sex-specific clock genotype combinations predictive of sleep disturbance may represent direct effects of clock gene function on downstream pathways involved in sleep physiology. In addition, the mediation of clock gene effects on sleep disturbance indicates circadian influences on the quality of sleep. Unraveling the complex molecular mechanisms at the intersection of circadian and sleep physiology is vital for understanding how genetic and behavioral factors influencing circadian phenotypes impact sleep quality. Such studies provide potential targets for further study and inform efforts to improve non-invasive therapeutics for sleep disorders.
Collapse
Affiliation(s)
| | - Aziz Zafar
- Department of Biology, Colgate University, Hamilton, NY, USA
- Department of Mathematics, Colgate University, Hamilton, NY, USA
| | - Ziad Attia
- Department of Biology, Colgate University, Hamilton, NY, USA
- Department of Computer Science, Colgate University, Hamilton, NY, USA
| | - Ahmet Ay
- Department of Biology, Colgate University, Hamilton, NY, USA
- Department of Mathematics, Colgate University, Hamilton, NY, USA
| | - Krista K Ingram
- Department of Biology, Colgate University, Hamilton, NY, USA
| |
Collapse
|
6
|
Biscontin A, Zarantonello L, Russo A, Costa R, Montagnese S. Toward a Molecular Approach to Chronotype Assessment. J Biol Rhythms 2022; 37:272-282. [PMID: 35583112 DOI: 10.1177/07487304221099365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The aim of the present study was to develop a Polygenic Score-based model for molecular chronotype assessment. Questionnaire-based phenotypical chronotype assessment was used as a reference. In total, 54 extremely morning/morning (MM/M; 35 females, 39.7 ± 3.8 years) and 44 extremely evening/evening (EE/E; 20 females, 27.3 ± 7.7 years) individuals donated a buccal DNA sample for genotyping by sequencing of the entire genetic variability of 19 target genes known to be involved in circadian rhythmicity and/or sleep duration. Targeted genotyping was performed using the single primer enrichment technology and a specifically designed panel of 5526 primers. Among 2868 high-quality polymorphisms, a cross-validation approach lead to the identification of 83 chronotype predictive variants, including previously known and also novel chronotype-associated polymorphisms. A large (35 single-nucleotide polymorphisms [SNPs]) and also a small (13 SNPs) panel were obtained, both with an estimated predictive validity of approximately 80%. Potential mechanistic hypotheses for the role of some of the newly identified variants in modulating chronotype are formulated. Once validated in independent populations encompassing the whole range of chronotypes, the identified panels might become useful within the setting of both circadian public health initiatives and precision medicine.
Collapse
Affiliation(s)
| | | | - Antonella Russo
- Department of Molecular Medicine, University of Padova, Padova, Italy
| | - Rodolfo Costa
- Department of Biology, University of Padova, Padova, Italy.,Institute of Neuroscience, National Research Council, Padova, Italy.,Chronobiology Section, Faculty of Health and Medical Sciences, University of Surrey, Guildford, UK
| | | |
Collapse
|
7
|
PER Gene Family Polymorphisms in Relation to Cluster Headache and Circadian Rhythm in Sweden. Brain Sci 2021; 11:brainsci11081108. [PMID: 34439727 PMCID: PMC8393578 DOI: 10.3390/brainsci11081108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 08/18/2021] [Accepted: 08/20/2021] [Indexed: 11/16/2022] Open
Abstract
The trigeminal autonomic cephalalgia, cluster headache (CH), is one of the most painful disorders known to man. One of the disorder's most striking features is the reported diurnal rhythmicity of the attacks. For a majority of patients, the headache attacks occur at approximately the same time every day. Genetic variants of genes involved in the circadian rhythm such as Period Circadian Regulator 1, 2, and 3 (PER1, 2 and 3) are hypothesized to have an effect on the rhythmicity of the attacks. Six PER1, 2 and 3 genetic markers; the indel rs57875989 and five single nucleotide polymorphisms (SNPs), rs2735611, rs2304672, rs934945, rs10462020, and rs228697, were genotyped, using TaqMan® or regular polymerase chain reaction (PCR), in a Swedish CH case control material. Logistic regression showed no association between CH and any of the six genetic variants; rs57875989, p = 0.523; rs2735611, p = 0.416; rs2304672, p = 0.732; rs934945, p = 0.907; rs10462020, p = 0.726; and rs228697, p = 0.717. Furthermore, no difference in allele frequency was found for patients reporting diurnal rhythmicity of attacks, nor were any of the variants linked to diurnal preference. The results of this study indicate no involvement of these PER genetic variants in CH or diurnal phenotype in Sweden.
Collapse
|
8
|
Erblang M, Sauvet F, Drogou C, Quiquempoix M, Van Beers P, Guillard M, Rabat A, Trignol A, Bourrilhon C, Erkel MC, Léger D, Thomas C, Gomez-Merino D, Chennaoui M. Genetic Determinants of Neurobehavioral Responses to Caffeine Administration during Sleep Deprivation: A Randomized, Cross Over Study (NCT03859882). Genes (Basel) 2021; 12:555. [PMID: 33920292 PMCID: PMC8069049 DOI: 10.3390/genes12040555] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 04/06/2021] [Accepted: 04/08/2021] [Indexed: 02/06/2023] Open
Abstract
This study investigated whether four single nucleotide polymorphisms (SNPs) moderated caffeine effects on vigilance and performance in a double-blind and crossover total sleep deprivation (TSD) protocol in 37 subjects. In caffeine (2 × 2.5 mg/kg/24 h) or placebo-controlled condition, subjects performed a psychomotor vigilance test (PVT) and reported sleepiness every six hours (Karolinska sleepiness scale (KSS)) during TSD. EEG was also analyzed during the 09:15 PVT. Carriers of the TNF-α SNP A allele appear to be more sensitive than homozygote G/G genotype to an attenuating effect of caffeine on PVT lapses during sleep deprivation only because they seem more degraded, but they do not perform better as a result. The A allele carriers of COMT were also more degraded and sensitive to caffeine than G/G genotype after 20 h of sleep deprivation, but not after 26 and 32 h. Regarding PVT reaction time, ADORA2A influences the TSD effect but not caffeine, and PER3 modulates only the caffeine effect. Higher EEG theta activity related to sleep deprivation was observed in mutated TNF-α, PER3, and COMT carriers, in the placebo condition particularly. In conclusion, there are genetic influences on neurobehavioral impairments related to TSD that appear to be attenuated by caffeine administration. (NCT03859882).
Collapse
Affiliation(s)
- Mégane Erblang
- Institut de Recherche Biomédicale des Armées (IRBA), 91190 Brétigny sur Orge, France; (M.E.); (C.D.); (M.Q.); (P.V.B.); (M.G.); (A.R.); (A.T.); (C.B.); (M.-C.E.); (D.G.-M.); (M.C.)
- EA VIFASOM (EA 7330 Vigilance, Fatigue, Sommeil et Santé Publique), Université de Paris, 75004 Paris, France;
- LBEPS, Univ Evry, IRBA, Université Paris Saclay, 91025 Evry, France;
| | - Fabien Sauvet
- Institut de Recherche Biomédicale des Armées (IRBA), 91190 Brétigny sur Orge, France; (M.E.); (C.D.); (M.Q.); (P.V.B.); (M.G.); (A.R.); (A.T.); (C.B.); (M.-C.E.); (D.G.-M.); (M.C.)
- EA VIFASOM (EA 7330 Vigilance, Fatigue, Sommeil et Santé Publique), Université de Paris, 75004 Paris, France;
| | - Catherine Drogou
- Institut de Recherche Biomédicale des Armées (IRBA), 91190 Brétigny sur Orge, France; (M.E.); (C.D.); (M.Q.); (P.V.B.); (M.G.); (A.R.); (A.T.); (C.B.); (M.-C.E.); (D.G.-M.); (M.C.)
- EA VIFASOM (EA 7330 Vigilance, Fatigue, Sommeil et Santé Publique), Université de Paris, 75004 Paris, France;
| | - Michaël Quiquempoix
- Institut de Recherche Biomédicale des Armées (IRBA), 91190 Brétigny sur Orge, France; (M.E.); (C.D.); (M.Q.); (P.V.B.); (M.G.); (A.R.); (A.T.); (C.B.); (M.-C.E.); (D.G.-M.); (M.C.)
- EA VIFASOM (EA 7330 Vigilance, Fatigue, Sommeil et Santé Publique), Université de Paris, 75004 Paris, France;
| | - Pascal Van Beers
- Institut de Recherche Biomédicale des Armées (IRBA), 91190 Brétigny sur Orge, France; (M.E.); (C.D.); (M.Q.); (P.V.B.); (M.G.); (A.R.); (A.T.); (C.B.); (M.-C.E.); (D.G.-M.); (M.C.)
- EA VIFASOM (EA 7330 Vigilance, Fatigue, Sommeil et Santé Publique), Université de Paris, 75004 Paris, France;
| | - Mathias Guillard
- Institut de Recherche Biomédicale des Armées (IRBA), 91190 Brétigny sur Orge, France; (M.E.); (C.D.); (M.Q.); (P.V.B.); (M.G.); (A.R.); (A.T.); (C.B.); (M.-C.E.); (D.G.-M.); (M.C.)
- EA VIFASOM (EA 7330 Vigilance, Fatigue, Sommeil et Santé Publique), Université de Paris, 75004 Paris, France;
| | - Arnaud Rabat
- Institut de Recherche Biomédicale des Armées (IRBA), 91190 Brétigny sur Orge, France; (M.E.); (C.D.); (M.Q.); (P.V.B.); (M.G.); (A.R.); (A.T.); (C.B.); (M.-C.E.); (D.G.-M.); (M.C.)
- EA VIFASOM (EA 7330 Vigilance, Fatigue, Sommeil et Santé Publique), Université de Paris, 75004 Paris, France;
| | - Aurélie Trignol
- Institut de Recherche Biomédicale des Armées (IRBA), 91190 Brétigny sur Orge, France; (M.E.); (C.D.); (M.Q.); (P.V.B.); (M.G.); (A.R.); (A.T.); (C.B.); (M.-C.E.); (D.G.-M.); (M.C.)
- EA VIFASOM (EA 7330 Vigilance, Fatigue, Sommeil et Santé Publique), Université de Paris, 75004 Paris, France;
| | - Cyprien Bourrilhon
- Institut de Recherche Biomédicale des Armées (IRBA), 91190 Brétigny sur Orge, France; (M.E.); (C.D.); (M.Q.); (P.V.B.); (M.G.); (A.R.); (A.T.); (C.B.); (M.-C.E.); (D.G.-M.); (M.C.)
- LBEPS, Univ Evry, IRBA, Université Paris Saclay, 91025 Evry, France;
| | - Marie-Claire Erkel
- Institut de Recherche Biomédicale des Armées (IRBA), 91190 Brétigny sur Orge, France; (M.E.); (C.D.); (M.Q.); (P.V.B.); (M.G.); (A.R.); (A.T.); (C.B.); (M.-C.E.); (D.G.-M.); (M.C.)
- EA VIFASOM (EA 7330 Vigilance, Fatigue, Sommeil et Santé Publique), Université de Paris, 75004 Paris, France;
| | - Damien Léger
- EA VIFASOM (EA 7330 Vigilance, Fatigue, Sommeil et Santé Publique), Université de Paris, 75004 Paris, France;
- APHP, Hôtel-Dieu, Centre du sommeil et de la Vigilance, 75004 Paris, France
| | - Claire Thomas
- LBEPS, Univ Evry, IRBA, Université Paris Saclay, 91025 Evry, France;
| | - Danielle Gomez-Merino
- Institut de Recherche Biomédicale des Armées (IRBA), 91190 Brétigny sur Orge, France; (M.E.); (C.D.); (M.Q.); (P.V.B.); (M.G.); (A.R.); (A.T.); (C.B.); (M.-C.E.); (D.G.-M.); (M.C.)
- EA VIFASOM (EA 7330 Vigilance, Fatigue, Sommeil et Santé Publique), Université de Paris, 75004 Paris, France;
| | - Mounir Chennaoui
- Institut de Recherche Biomédicale des Armées (IRBA), 91190 Brétigny sur Orge, France; (M.E.); (C.D.); (M.Q.); (P.V.B.); (M.G.); (A.R.); (A.T.); (C.B.); (M.-C.E.); (D.G.-M.); (M.C.)
- EA VIFASOM (EA 7330 Vigilance, Fatigue, Sommeil et Santé Publique), Université de Paris, 75004 Paris, France;
| |
Collapse
|
9
|
Sleep, Circadian Rhythmicity and Response to Chronotherapy in University Students: Tips from Chronobiology Practicals. J Circadian Rhythms 2021; 19:1. [PMID: 33552216 PMCID: PMC7824979 DOI: 10.5334/jcr.202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Chronobiology is not routinely taught to biology or medical students in most European countries. Here we present the results of the chronobiology practicals of a group of students of the University of Padova, with a view to highlight some interesting features of this group, and to share a potentially interesting cross-faculty teaching experience. Thirty-eight students (17 males; 22.9 ± 1.6 yrs) completed a set of self-administered electronic sleep quality [Pittsburgh Sleep Quality Index (PSQI)], chronotype and sleepiness [Epworth Sleepiness Scale (ESS)] questionnaires. They then went on to complete sleep diaries for two weeks. Sixteen also wore an actigraph, 8 wore wireless sensors for skin temperature, and 8 underwent a course of chronotherapy aimed at anticipating their sleep-wake timing. Analyses were performed as practicals, together with the students. Average PSQI score was 5.4 ± 1.9, with 15 (39%) students being poor sleepers. Average ESS score was 6.5 ± 3.3, with 3 (8%) students exhibiting excessive daytime sleepiness. Seven classified themselves as definitely/moderately morning, 25 as intermediates, 6 as moderately/definitely evening. Students went to bed/fell asleep significantly later on weekends, it took them less to fall asleep and they woke up/got up significantly later. Diary-reported sleep onset time coincided with the expected decrease in proximal skin temperature. Finally, during chronotherapy they took significantly less time to fall asleep. In conclusion, significant abnormalities in the sleep-wake patterns of a small group of university students were observed, and the students seemed to benefit from chronotherapy. We had a positive impression of our teaching experience, and the chronobiology courses obtained excellent student feedback.
Collapse
|
10
|
Barnett R, Westbury MV, Sandoval-Velasco M, Vieira FG, Jeon S, Zazula G, Martin MD, Ho SYW, Mather N, Gopalakrishnan S, Ramos-Madrigal J, de Manuel M, Zepeda-Mendoza ML, Antunes A, Baez AC, De Cahsan B, Larson G, O'Brien SJ, Eizirik E, Johnson WE, Koepfli KP, Wilting A, Fickel J, Dalén L, Lorenzen ED, Marques-Bonet T, Hansen AJ, Zhang G, Bhak J, Yamaguchi N, Gilbert MTP. Genomic Adaptations and Evolutionary History of the Extinct Scimitar-Toothed Cat, Homotherium latidens. Curr Biol 2020; 30:5018-5025.e5. [PMID: 33065008 PMCID: PMC7762822 DOI: 10.1016/j.cub.2020.09.051] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 07/10/2020] [Accepted: 09/15/2020] [Indexed: 12/17/2022]
Abstract
Homotherium was a genus of large-bodied scimitar-toothed cats, morphologically distinct from any extant felid species, that went extinct at the end of the Pleistocene [1-4]. They possessed large, saber-form serrated canine teeth, powerful forelimbs, a sloping back, and an enlarged optic bulb, all of which were key characteristics for predation on Pleistocene megafauna [5]. Previous mitochondrial DNA phylogenies suggested that it was a highly divergent sister lineage to all extant cat species [6-8]. However, mitochondrial phylogenies can be misled by hybridization [9], incomplete lineage sorting (ILS), or sex-biased dispersal patterns [10], which might be especially relevant for Homotherium since widespread mito-nuclear discrepancies have been uncovered in modern cats [10]. To examine the evolutionary history of Homotherium, we generated a ∼7x nuclear genome and a ∼38x exome from H. latidens using shotgun and target-capture sequencing approaches. Phylogenetic analyses reveal Homotherium as highly divergent (∼22.5 Ma) from living cat species, with no detectable signs of gene flow. Comparative genomic analyses found signatures of positive selection in several genes, including those involved in vision, cognitive function, and energy consumption, putatively consistent with diurnal activity, well-developed social behavior, and cursorial hunting [5]. Finally, we uncover relatively high levels of genetic diversity, suggesting that Homotherium may have been more abundant than the limited fossil record suggests [3, 4, 11-14]. Our findings complement and extend previous inferences from both the fossil record and initial molecular studies, enhancing our understanding of the evolution and ecology of this remarkable lineage.
Collapse
Affiliation(s)
- Ross Barnett
- Section for Evolutionary Genomics, The GLOBE Institute, University of Copenhagen, Øster Voldgade 5-7, Copenhagen, Denmark
| | - Michael V Westbury
- Section for Evolutionary Genomics, The GLOBE Institute, University of Copenhagen, Øster Voldgade 5-7, Copenhagen, Denmark.
| | - Marcela Sandoval-Velasco
- Section for Evolutionary Genomics, The GLOBE Institute, University of Copenhagen, Øster Voldgade 5-7, Copenhagen, Denmark
| | - Filipe Garrett Vieira
- Section for Evolutionary Genomics, The GLOBE Institute, University of Copenhagen, Øster Voldgade 5-7, Copenhagen, Denmark
| | - Sungwon Jeon
- Korean Genomics Center (KOGIC), Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea; Department of Biomedical Engineering, School of Life Sciences, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - Grant Zazula
- Yukon Palaeontology Program, Department of Tourism and Culture, Government of Yukon, PO Box 2703, Whitehorse, YT Y1A 2C6, Canada
| | - Michael D Martin
- Department of Natural History, NTNU University Museum, Norwegian University of Science and Technology (NTNU), Trondheim NO-7491, Norway
| | - Simon Y W Ho
- School of Life and Environmental Sciences, University of Sydney, NSW 2006, Australia
| | - Niklas Mather
- School of Life and Environmental Sciences, University of Sydney, NSW 2006, Australia
| | - Shyam Gopalakrishnan
- Section for Evolutionary Genomics, The GLOBE Institute, University of Copenhagen, Øster Voldgade 5-7, Copenhagen, Denmark; Center for Evolutionary Hologenomics, The GLOBE Institute, University of Copenhagen, Øster Farimagsgade 5A, Copenhagen 1352, Denmark
| | - Jazmín Ramos-Madrigal
- Section for Evolutionary Genomics, The GLOBE Institute, University of Copenhagen, Øster Voldgade 5-7, Copenhagen, Denmark; Center for Evolutionary Hologenomics, The GLOBE Institute, University of Copenhagen, Øster Farimagsgade 5A, Copenhagen 1352, Denmark
| | - Marc de Manuel
- Institute of Evolutionary Biology (UPF-CSIC), PRBB, Dr. Aiguader 88, Barcelona 08003, Spain
| | - M Lisandra Zepeda-Mendoza
- Section for Evolutionary Genomics, The GLOBE Institute, University of Copenhagen, Øster Voldgade 5-7, Copenhagen, Denmark; School of Medical and Dental Sciences, Institute of Microbiology and Infection, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
| | - Agostinho Antunes
- CIIMAR/CIMAR, Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos, s/n, Porto 4450-208, Portugal; Department of Biology, Faculty of Sciences, University of Porto, Porto 4169-007, Portugal
| | - Aldo Carmona Baez
- Section for Evolutionary Genomics, The GLOBE Institute, University of Copenhagen, Øster Voldgade 5-7, Copenhagen, Denmark
| | - Binia De Cahsan
- Section for Evolutionary Genomics, The GLOBE Institute, University of Copenhagen, Øster Voldgade 5-7, Copenhagen, Denmark
| | - Greger Larson
- The Palaeogenomics and Bio-Archaeology Research Network, Research Laboratory for Archaeology and History of Art, University of Oxford, 1 South Parks Road, Oxford OX1 3TG, UK
| | - Stephen J O'Brien
- Laboratory of Genomic Diversity, Center for Computer Technologies, ITMO University, 49 Kronverkskiy Pr., St. Petersburg 197101, Russia; Guy Harvey Oceanographic Center, Halmos College of Natural Sciences and Oceanography, Nova Southeastern University, 8000 North Ocean Drive. Ft Lauderdale, FL 33004, USA
| | - Eduardo Eizirik
- Laboratory of Genomics and Molecular Biology, Escola de Ciências da Saúde e da Vida, PUCRS, Porto Alegre, RS, Brazil; INCT Ecologia, Evolução e Conservação da Biodiversidade (INCT-EECBio), Goiânia, GO, Brazil; Instituto Pró-Carnívoros, Atibaia, SP, Brazil
| | - Warren E Johnson
- Center for Species Survival, Smithsonian Conservation Biology Institute, National Zoological Park, 1500 Remount Road, Front Royal, VA 22630, USA; The Walter Reed Biosystematics Unit, Museum Support Center MRC-534, Smithsonian Institution, 4210 Silver Hill Rd., Suitland, MD 20746-2863, USA; Walter Reed Army Institute of Research, 503 Robert Grant Avenue, Silver Spring, MD 20910, USA
| | - Klaus-Peter Koepfli
- Center for Species Survival, Smithsonian Conservation Biology Institute, National Zoological Park, 1500 Remount Road, Front Royal, VA 22630, USA
| | - Andreas Wilting
- Leibniz Institute for Zoo and Wildlife Research, Alfred-Kowalke-Str. 17, Berlin 10315, Germany
| | - Jörns Fickel
- Leibniz Institute for Zoo and Wildlife Research, Alfred-Kowalke-Str. 17, Berlin 10315, Germany; Institute for Biochemistry and Biology, University of Potsdam, Karl-Liebknecht-Strasse 24-25, Potsdam 14476, Germany
| | - Love Dalén
- Centre for Palaeogenetics, Svante Arrhenius väg 20C, Stockholm SE-10691, Sweden; Department of Bioinformatics and Genetics, Swedish Museum of Natural History, Box 50007, Stockholm 10405, Sweden
| | - Eline D Lorenzen
- Section for Evolutionary Genomics, The GLOBE Institute, University of Copenhagen, Øster Voldgade 5-7, Copenhagen, Denmark; Center for Evolutionary Hologenomics, The GLOBE Institute, University of Copenhagen, Øster Farimagsgade 5A, Copenhagen 1352, Denmark
| | - Tomas Marques-Bonet
- Institute of Evolutionary Biology (UPF-CSIC), PRBB, Dr. Aiguader 88, Barcelona 08003, Spain; CNAG-CRG, Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Baldiri Reixac 4, Barcelona 08028, Spain; Institució Catalana de Recerca i Estudis Avançats, ICREA, Barcelona 08003, Spain; Institut Català de Paleontologia Miquel Crusafont, Universitat Autònoma de Barcelona, Edifici ICTA-ICP, c/ Columnes s/n, Cerdanyola del Vallès, Barcelona 08193, Spain
| | - Anders J Hansen
- Center for Evolutionary Hologenomics, The GLOBE Institute, University of Copenhagen, Øster Farimagsgade 5A, Copenhagen 1352, Denmark; Section for GeoGenetics, The GLOBE Institute, University of Copenhagen, Øster Voldgade 5-7, Copenhagen, Denmark
| | - Guojie Zhang
- BGI-Shenzhen, Shenzhen 518083, China; Section for Ecology and Evolution, Department of Biology, Faculty of Science, University of Copenhagen, Universitetsparken 15, Copenhagen, Denmark; State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China
| | - Jong Bhak
- Korean Genomics Center (KOGIC), Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea; Department of Biomedical Engineering, School of Life Sciences, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea; Clinomics, Inc., Ulsan 44919, Republic of Korea; Personal Genomics Institute (PGI), Genome Research Foundation (GRF), Osong 28160, Republic of Korea
| | - Nobuyuki Yamaguchi
- Institute of Tropical Biodiversity and Sustainable Development, Universiti Malaysia Terengganu, Kuala Nerus, Terengganu 21030, Malaysia
| | - M Thomas P Gilbert
- Section for Evolutionary Genomics, The GLOBE Institute, University of Copenhagen, Øster Voldgade 5-7, Copenhagen, Denmark; Department of Natural History, NTNU University Museum, Norwegian University of Science and Technology (NTNU), Trondheim NO-7491, Norway; Center for Evolutionary Hologenomics, The GLOBE Institute, University of Copenhagen, Øster Farimagsgade 5A, Copenhagen 1352, Denmark.
| |
Collapse
|
11
|
Magee M, Sletten TL, Murray JM, Gordon CJ, Lovato N, Bartlett DJ, Kennaway DJ, Lockley SW, Lack LC, Grunstein RR, Archer SN, Rajaratnam SMW. A PERIOD3 variable number tandem repeat polymorphism modulates melatonin treatment response in delayed sleep-wake phase disorder. J Pineal Res 2020; 69:e12684. [PMID: 32682347 DOI: 10.1111/jpi.12684] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Revised: 06/09/2020] [Accepted: 07/09/2020] [Indexed: 12/15/2022]
Abstract
We examined whether a polymorphism of the PERIOD3 gene (PER3; rs57875989) modulated the sleep-promoting effects of melatonin in Delayed Sleep-Wake Phase Disorder (DSWPD). One hundred and four individuals (53 males; 29.4 ±10.0 years) with DSWPD and a delayed dim light melatonin onset (DLMO) collected buccal swabs for genotyping (PER34/4 n = 43; PER3 5 allele [heterozygous and homozygous] n = 60). Participants were randomised to placebo or 0.5 mg melatonin taken 1 hour before desired bedtime (or ~1.45 hours before DLMO), with sleep attempted at desired bedtime (4 weeks; 5-7 nights/week). We assessed sleep (diary and actigraphy), Pittsburgh Sleep Quality Index (PSQI), Insomnia Severity Index (ISI), Patient-Reported Outcomes Measurement Information System (PROMIS: Sleep Disturbance, Sleep-Related Impairment), Sheehan Disability Scale (SDS) and Patient- and Clinician-Global Improvement (PGI-C, CGI-C). Melatonin treatment response on actigraphic sleep onset time did not differ between genotypes. For PER34/4 carriers, self-reported sleep onset time was advanced by a larger amount and sleep onset latency (SOL) was shorter in melatonin-treated patients compared to those receiving placebo (P = .008), while actigraphic sleep efficiency in the first third of the sleep episode (SE T1) did not differ. For PER3 5 carriers, actigraphic SOL and SE T1 showed a larger improvement with melatonin (P < .001). Melatonin improved ISI (P = .005), PROMIS sleep disturbance (P < .001) and sleep-related impairment (P = .017), SDS (P = .019), PGI-C (P = .028) and CGI-C (P = .016) in PER34/4 individuals only. Melatonin did not advance circadian phase. Overall, PER34/4 DSWPD patients have a greater response to melatonin treatment. PER3 genotyping may therefore improve DSWPD patient outcomes.
Collapse
Affiliation(s)
- Michelle Magee
- Turner Institute for Brain and Mental Health, School of Psychological Sciences, Monash University, Clayton, Victoria, Australia
- Cooperative Research Centre for Alertness, Safety and Productivity, Clayton, Victoria, Australia
- Centre for Neuroscience of Speech, Department of Audiology and Speech Pathology, University of Melbourne, Parkville, Victoria, Australia
| | - Tracey L Sletten
- Turner Institute for Brain and Mental Health, School of Psychological Sciences, Monash University, Clayton, Victoria, Australia
- Cooperative Research Centre for Alertness, Safety and Productivity, Clayton, Victoria, Australia
| | - Jade M Murray
- Turner Institute for Brain and Mental Health, School of Psychological Sciences, Monash University, Clayton, Victoria, Australia
- Cooperative Research Centre for Alertness, Safety and Productivity, Clayton, Victoria, Australia
| | - Christopher J Gordon
- Cooperative Research Centre for Alertness, Safety and Productivity, Clayton, Victoria, Australia
- Woolcock Institute of Medical Research, Sydney, NSW, Australia
- Sydney Nursing School, The University of Sydney, Sydney, NSW, Australia
| | - Nicole Lovato
- Cooperative Research Centre for Alertness, Safety and Productivity, Clayton, Victoria, Australia
- Adelaide Institute for Sleep Health: A Flinders Centre of Research Excellence, School of Medicine, Flinders University, Adelaide, South Australia, Australia
| | - Delwyn J Bartlett
- Cooperative Research Centre for Alertness, Safety and Productivity, Clayton, Victoria, Australia
- Woolcock Institute of Medical Research, Sydney, NSW, Australia
| | - David J Kennaway
- Robinson Research Institute, Adelaide School of Medicine, University of Adelaide, Adelaide, South Australia, Australia
| | - Steven W Lockley
- Turner Institute for Brain and Mental Health, School of Psychological Sciences, Monash University, Clayton, Victoria, Australia
- Cooperative Research Centre for Alertness, Safety and Productivity, Clayton, Victoria, Australia
- Division of Sleep and Circadian Disorders, Departments of Medicine and Neurology, Brigham and Women's Hospital, Boston, MA, USA
- Division of Sleep Medicine, Harvard Medical School, Boston, MA, USA
| | - Leon C Lack
- Adelaide Institute for Sleep Health: A Flinders Centre of Research Excellence, School of Medicine, Flinders University, Adelaide, South Australia, Australia
| | - Ronald R Grunstein
- Cooperative Research Centre for Alertness, Safety and Productivity, Clayton, Victoria, Australia
- Woolcock Institute of Medical Research, Sydney, NSW, Australia
| | - Simon N Archer
- Surrey Sleep Research Centre, Faculty of Health and Medical Sciences, University of Surrey, Guildford, UK
| | - Shantha M W Rajaratnam
- Turner Institute for Brain and Mental Health, School of Psychological Sciences, Monash University, Clayton, Victoria, Australia
- Cooperative Research Centre for Alertness, Safety and Productivity, Clayton, Victoria, Australia
- Division of Sleep and Circadian Disorders, Departments of Medicine and Neurology, Brigham and Women's Hospital, Boston, MA, USA
- Division of Sleep Medicine, Harvard Medical School, Boston, MA, USA
| | | |
Collapse
|
12
|
Weiss C, Woods K, Filipowicz A, Ingram KK. Sleep Quality, Sleep Structure, and PER3 Genotype Mediate Chronotype Effects on Depressive Symptoms in Young Adults. Front Psychol 2020; 11:2028. [PMID: 32982844 PMCID: PMC7479229 DOI: 10.3389/fpsyg.2020.02028] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2020] [Accepted: 07/21/2020] [Indexed: 11/13/2022] Open
Abstract
Depression and its related mood disorders are a major global health issue that disproportionately affects young adults. A number of factors that influence depressive symptoms are particularly relevant to the young adult developmental stage, including sleep loss, poor sleep quality, and the tendency toward eveningness in circadian preferences. However, relatively few studies have examined the relationship between sleep and circadian phenotypes, and their respective influences on mood, or considered potential molecular mechanisms driving these associations. Here, we use a multi-year, cross-sectional study of 806 primarily undergraduates to examine the relationships between sleep-wake chronotype, sleep disturbance, depression and genotypes associated with the PER3 variable number of tandom repeats (VNTR) polymorphism-circadian gene variants associated with both chronotype and sleep homeostatic drive. In addition, we use objective, Fitbit-generated sleep structure data on a subset of these participants (n = 67) to examine the relationships between chronotype, depression scores, actual measures of sleep duration, social jetlag, and the percent of deep and rapid eye movement (REM) sleep per night. In this population, chronotype is weakly associated with depressive symptoms and moderately correlated with self-reported sleep disturbance. Sleep disturbance is significantly associated with depression scores, but objective sleep parameters are not directly correlated with Beck Depression Inventory (BDI-II) scores, with the exceptions of a moderate correlation between social jetlag and depression scores in females and a marginal correlation between sleep duration and depression scores. Multiple regression and path analyses reveal that chronotype effects on depressive symptoms in this population are mediated largely by sleep disturbance. The PER3 VNTR genotype significantly predicts depressive symptoms in a model with objective sleep parameters, but it does not significantly predict depressive symptoms in a model with chronotype or subjective sleep disturbance. Interestingly, PER35,5 genotypes, in males only, are independently related to chronotype and depression scores. Our results support hypotheses linking subjective sleep quality and chronotype and provide a first step in understanding how objective sleep structure may be linked to chronotype and depressive symptoms. Our results also suggest that circadian gene variants may show sex-specific effects linking sleep duration and sleep structure to depression.
Collapse
Affiliation(s)
- Chloe Weiss
- Department of Biology, Colgate University, Hamilton, NY, United States
| | - Kerri Woods
- Department of Biology, Colgate University, Hamilton, NY, United States
| | - Allan Filipowicz
- Samuel Curtis Johnson Graduate School of Management, Cornell University, Ithaca, NY, United States
| | - Krista K. Ingram
- Department of Biology, Colgate University, Hamilton, NY, United States
| |
Collapse
|
13
|
Münch M, Wirz-Justice A, Brown SA, Kantermann T, Martiny K, Stefani O, Vetter C, Wright KP, Wulff K, Skene DJ. The Role of Daylight for Humans: Gaps in Current Knowledge. Clocks Sleep 2020; 2:61-85. [PMID: 33089192 PMCID: PMC7445840 DOI: 10.3390/clockssleep2010008] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Accepted: 02/21/2020] [Indexed: 01/04/2023] Open
Abstract
Daylight stems solely from direct, scattered and reflected sunlight, and undergoes dynamic changes in irradiance and spectral power composition due to latitude, time of day, time of year and the nature of the physical environment (reflections, buildings and vegetation). Humans and their ancestors evolved under these natural day/night cycles over millions of years. Electric light, a relatively recent invention, interacts and competes with the natural light-dark cycle to impact human biology. What are the consequences of living in industrialised urban areas with much less daylight and more use of electric light, throughout the day (and at night), on general health and quality of life? In this workshop report, we have classified key gaps of knowledge in daylight research into three main groups: (I) uncertainty as to daylight quantity and quality needed for "optimal" physiological and psychological functioning, (II) lack of consensus on practical measurement and assessment methods and tools for monitoring real (day) light exposure across multiple time scales, and (III) insufficient integration and exchange of daylight knowledge bases from different disciplines. Crucial short and long-term objectives to fill these gaps are proposed.
Collapse
Affiliation(s)
- Mirjam Münch
- Sleep/Wake Research Centre, Massey University Wellington, Wellington 6021, New Zealand
| | - Anna Wirz-Justice
- Centre for Chronobiology, Psychiatric Hospital of the University of Basel, 4002 Basel, Switzerland; (A.W.-J.); (O.S.)
- Transfaculty Research Platform Molecular and Cognitive Neurosciences (MCN), University of Basel, 4002 Basel, Switzerland
| | - Steven A. Brown
- Chronobiology and Sleep Research Group, Institute of Pharmacology and Toxicology, University of Zürich, 8057 Zürich, Switzerland;
| | - Thomas Kantermann
- Faculty for Health and Social Affairs, University of Applied Sciences for Economics and Management (FOM), 45141 Essen, Germany;
- SynOpus, 44789 Bochum, Germany
| | - Klaus Martiny
- Psychiatric Center Copenhagen, University of Copenhagen, Rigshospitalet, 2100 Copenhagen, Denmark;
| | - Oliver Stefani
- Centre for Chronobiology, Psychiatric Hospital of the University of Basel, 4002 Basel, Switzerland; (A.W.-J.); (O.S.)
- Transfaculty Research Platform Molecular and Cognitive Neurosciences (MCN), University of Basel, 4002 Basel, Switzerland
| | - Céline Vetter
- Department of Integrative Physiology, University of Colorado Boulder, Boulder, CO 80309, USA; (C.V.); (K.P.W.J.)
| | - Kenneth P. Wright
- Department of Integrative Physiology, University of Colorado Boulder, Boulder, CO 80309, USA; (C.V.); (K.P.W.J.)
- Division of Endocrinology, Metabolism and Diabetes, University of Colorado, Aurora, CO 80045, USA
| | - Katharina Wulff
- Departments of Radiation Sciences and Molecular Biology, Umeå University, 901 87 Umeå, Sweden;
- Wallenberg Centre for Molecular Medicine (WCMM), Umeå University, 901 87 Umeå, Sweden
| | - Debra J. Skene
- Chronobiology, Faculty of Health and Medical Sciences, University of Surrey, Guildford GU2 7XH, UK;
| |
Collapse
|
14
|
Genetics of Circadian and Sleep Measures in Adults: Implications for Sleep Medicine. CURRENT SLEEP MEDICINE REPORTS 2020. [DOI: 10.1007/s40675-020-00165-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
15
|
Off the Clock: From Circadian Disruption to Metabolic Disease. Int J Mol Sci 2019; 20:ijms20071597. [PMID: 30935034 PMCID: PMC6480015 DOI: 10.3390/ijms20071597] [Citation(s) in RCA: 81] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Revised: 03/20/2019] [Accepted: 03/27/2019] [Indexed: 12/18/2022] Open
Abstract
Circadian timekeeping allows appropriate temporal regulation of an organism’s internal metabolism to anticipate and respond to recurrent daily changes in the environment. Evidence from animal genetic models and from humans under circadian misalignment (such as shift work or jet lag) shows that disruption of circadian rhythms contributes to the development of obesity and metabolic disease. Inappropriate timing of food intake and high-fat feeding also lead to disruptions of the temporal coordination of metabolism and physiology and subsequently promote its pathogenesis. This review illustrates the impact of genetically or environmentally induced molecular clock disruption (at the level of the brain and peripheral tissues) and the interplay between the circadian system and metabolic processes. Here, we discuss some mechanisms responsible for diet-induced circadian desynchrony and consider the impact of nutritional cues in inter-organ communication, with a particular focus on the communication between peripheral organs and brain. Finally, we discuss the relay of environmental information by signal-dependent transcription factors to adjust the timing of gene oscillations. Collectively, a better knowledge of the mechanisms by which the circadian clock function can be compromised will lead to novel preventive and therapeutic strategies for obesity and other metabolic disorders arising from circadian desynchrony.
Collapse
|
16
|
Archer SN, Schmidt C, Vandewalle G, Dijk DJ. Phenotyping of PER3 variants reveals widespread effects on circadian preference, sleep regulation, and health. Sleep Med Rev 2018; 40:109-126. [PMID: 29248294 DOI: 10.1016/j.smrv.2017.10.008] [Citation(s) in RCA: 69] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Revised: 10/16/2017] [Accepted: 10/30/2017] [Indexed: 12/29/2022]
Abstract
Period3 (Per3) is one of the most robustly rhythmic genes in humans and animals. It plays a significant role in temporal organisation in peripheral tissues. The effects of PER3 variants on many phenotypes have been investigated in targeted and genome-wide studies. PER3 variants, especially the human variable number tandem repeat (VNTR), associate with diurnal preference, mental disorders, non-visual responses to light, brain and cognitive responses to sleep loss/circadian misalignment. Introducing the VNTR into mice alters responses to sleep loss and expression of sleep homeostasis-related genes. Several studies were limited in size and some findings were not replicated. Nevertheless, the data indicate a significant contribution of PER3 to sleep and circadian phenotypes and diseases, which may be connected by common pathways. Thus, PER3-dependent altered light sensitivity could relate to high retinal PER3 expression and may contribute to altered brain response to light, diurnal preference and seasonal mood. Altered cognitive responses during sleep loss/circadian misalignment and changes to slow wave sleep may relate to changes in wake/activity-dependent patterns of hypothalamic gene expression involved in sleep homeostasis and neural network plasticity. Comprehensive characterisation of effects of clock gene variants may provide new insights into the role of circadian processes in health and disease.
Collapse
Affiliation(s)
- Simon N Archer
- Sleep Research Centre, Faculty of Health and Medical Sciences, University of Surrey, Guildford GU2 7XP, UK.
| | - Christina Schmidt
- GIGA-Research, Cyclotron Research Centre-In Vivo Imaging Unit, University of Liège, Belgium; Psychology and Neuroscience of Cognition Research Unit (PsyNCog), Faculty of Psychology and Educational Sciences, University of Liège, Belgium
| | - Gilles Vandewalle
- GIGA-Research, Cyclotron Research Centre-In Vivo Imaging Unit, University of Liège, Belgium
| | - Derk-Jan Dijk
- Sleep Research Centre, Faculty of Health and Medical Sciences, University of Surrey, Guildford GU2 7XP, UK
| |
Collapse
|
17
|
Hida A, Kitamura S, Kadotani H, Uchiyama M, Ebisawa T, Inoue Y, Kamei Y, Mishima K. Lack of association between PER3 variable number tandem repeat and circadian rhythm sleep-wake disorders. Hum Genome Var 2018; 5:17. [PMID: 30083361 PMCID: PMC6043536 DOI: 10.1038/s41439-018-0017-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2018] [Accepted: 05/27/2018] [Indexed: 12/02/2022] Open
Abstract
Circadian rhythm sleep–wake disorders (CRSWDs) are characterized by disturbed sleep–wake patterns. We genotyped a PER3 variable number tandem repeat (VNTR) in 248 CRSWD individuals and 925 controls and found no significant association between the VNTR and CRSWDs or morningness–eveningness (diurnal) preferences in the Japanese population. Although the VNTR has been associated with circadian and sleep phenotypes in some other populations, the polymorphism may not be a universal genetic marker.
Collapse
Affiliation(s)
- Akiko Hida
- 1Department of Sleep-Wake Disorders, National Institute of Mental Health, National Center of Neurology and Psychiatry, Tokyo, 187-8553 Japan
| | - Shingo Kitamura
- 1Department of Sleep-Wake Disorders, National Institute of Mental Health, National Center of Neurology and Psychiatry, Tokyo, 187-8553 Japan
| | - Hiroshi Kadotani
- 2Department of Sleep and Behavioral Sciences, Shiga University of Medical Science, Shiga, 520-2192 Japan
| | - Makoto Uchiyama
- 3Department of Psychiatry, Nihon University School of Medicine, Tokyo, 173-8610 Japan
| | - Takashi Ebisawa
- Yokohama Clinic for Psychosomatic Medicine and Psychiatry, Medical Corporation Warakukai, Kanagawa, 220-0004 Japan
| | - Yuichi Inoue
- 5Department of Somnology, Tokyo Medical University, Tokyo, 160-8402 Japan.,Yoyogi Sleep Disorder Center, Tokyo, 151-0053 Japan
| | - Yuichi Kamei
- 7Department of Laboratory Medicine, National Center Hospital, National Center of Neurology and Psychiatry, Tokyo, 187-8551 Japan
| | - Kazuo Mishima
- 1Department of Sleep-Wake Disorders, National Institute of Mental Health, National Center of Neurology and Psychiatry, Tokyo, 187-8553 Japan
| |
Collapse
|
18
|
Dorokhov VB, Puchkova AN, Taranov AO, Slominsky PA, Tupitsina TV, Ivanov ID, Vavilin VA, Nechunaev VV, Kolomeichuk SN, Morozov AV, Budkevich EV, Budkevich RO, Dementienko VV, Sveshnikov DS, Donskaya OG, Putilov AA. An hour in the morning is worth two in the evening: association of morning component of morningness–eveningness with single nucleotide polymorphisms in circadian clock genes. BIOL RHYTHM RES 2018; 49:622-642. [DOI: 10.1080/09291016.2017.1390823] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2017] [Accepted: 10/06/2017] [Indexed: 10/18/2022]
Affiliation(s)
- Vladimir B. Dorokhov
- Laboratory of Sleep/Wake Neurobiology, The Institute of Higher Nervous Activity and Neurophysiology of the Russian Academy of Sciences, Moscow, Russia
| | - Alexandra N. Puchkova
- Laboratory of Sleep/Wake Neurobiology, The Institute of Higher Nervous Activity and Neurophysiology of the Russian Academy of Sciences, Moscow, Russia
- Center for Cognition and Communication, Pushkin State Russian Language Institute, Moscow, Russia
| | - Anton O. Taranov
- Laboratory of Sleep/Wake Neurobiology, The Institute of Higher Nervous Activity and Neurophysiology of the Russian Academy of Sciences, Moscow, Russia
| | - Petr A. Slominsky
- Laboratory of Molecular Genetics of Hereditary Diseases, The Institute of Molecular Genetics of the Russian Academy of Sciences, Moscow, Russia
| | - Tatiana V. Tupitsina
- Laboratory of Molecular Genetics of Hereditary Diseases, The Institute of Molecular Genetics of the Russian Academy of Sciences, Moscow, Russia
| | - Igor D. Ivanov
- Laboratory of Drug Metabolism and Pharmacokinetics, The Research Institute for Molecular Biology and Biophysics, Novosibirsk, Russia
| | - Valentin A. Vavilin
- Laboratory of Drug Metabolism and Pharmacokinetics, The Research Institute for Molecular Biology and Biophysics, Novosibirsk, Russia
| | - Victor V. Nechunaev
- Chair of Personality Psychology, Novosibirsk State University, Novosibirsk, Russia
- Chair of Social Work, Novosibirsk State Pedagogical University, Novosibirsk, Russia
| | - Sergey N. Kolomeichuk
- Laboratory of Genetics, Institute of Biology, Karelian Research Centre, Russian Academy of Sciences, Petrozavodsk, Russia
| | - Artem V. Morozov
- Laboratory of Genetics, Institute of Biology, Karelian Research Centre, Russian Academy of Sciences, Petrozavodsk, Russia
| | - Elena V. Budkevich
- Laboratory of Nanobiotechnology and Biophysics, North-Caucasus Federal University, Stavropol, Russia
| | - Roman O. Budkevich
- Laboratory of Nanobiotechnology and Biophysics, North-Caucasus Federal University, Stavropol, Russia
| | - Valeriy V. Dementienko
- Laboratory of Medical Electronics, Kotelnikov Institute of Radio Engineering and Electronics, Russian Academy of Science, Moscow, Russia
| | - Dmitry S. Sveshnikov
- Department of Normal Physiology, Medical Institute, Peoples’ Friendship, University of Russia, Moscow, Russia
| | - Olga G. Donskaya
- Research Group for Math-Modeling of Biomedical Systems, The Research Institute for Molecular Biology and Biophysics, Novosibirsk, Russia
| | - Arcady A. Putilov
- Research Group for Math-Modeling of Biomedical Systems, The Research Institute for Molecular Biology and Biophysics, Novosibirsk, Russia
| |
Collapse
|
19
|
Putilov AA, Dorokhov VB, Poluektov MG. How have our clocks evolved? Adaptive and demographic history of the out-of-African dispersal told by polymorphic loci in circadian genes. Chronobiol Int 2017; 35:511-532. [DOI: 10.1080/07420528.2017.1417314] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Arcady A. Putilov
- Research Group for Math-Modeling of Biomedical Systems, the Research Institute for Molecular Biology and Biophysics, Novosibirsk, Russia
| | - Vladimir B. Dorokhov
- Laboratory of Sleep/Wake Neurobiology, The Institute of Higher Nervous Activity and Neurophysiology of the Russian Academy of Sciences, Moscow, Russia
| | - Michael G. Poluektov
- Department of Nervous Diseases, Institute of Professional Education, I.M. Sechenov 1-st Moscow State Medical University, Moscow, Russia
| |
Collapse
|