1
|
Caro-Astorga J, Meyerowitz JT, Stork DA, Nattermann U, Piszkiewicz S, Vimercati L, Schwendner P, Hocher A, Cockell C, DeBenedictis E. Polyextremophile engineering: a review of organisms that push the limits of life. Front Microbiol 2024; 15:1341701. [PMID: 38903795 PMCID: PMC11188471 DOI: 10.3389/fmicb.2024.1341701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Accepted: 05/16/2024] [Indexed: 06/22/2024] Open
Abstract
Nature exhibits an enormous diversity of organisms that thrive in extreme environments. From snow algae that reproduce at sub-zero temperatures to radiotrophic fungi that thrive in nuclear radiation at Chernobyl, extreme organisms raise many questions about the limits of life. Is there any environment where life could not "find a way"? Although many individual extremophilic organisms have been identified and studied, there remain outstanding questions about the limits of life and the extent to which extreme properties can be enhanced, combined or transferred to new organisms. In this review, we compile the current knowledge on the bioengineering of extremophile microbes. We summarize what is known about the basic mechanisms of extreme adaptations, compile synthetic biology's efforts to engineer extremophile organisms beyond what is found in nature, and highlight which adaptations can be combined. The basic science of extremophiles can be applied to engineered organisms tailored to specific biomanufacturing needs, such as growth in high temperatures or in the presence of unusual solvents.
Collapse
Affiliation(s)
| | | | - Devon A. Stork
- Pioneer Research Laboratories, San Francisco, CA, United States
| | - Una Nattermann
- Pioneer Research Laboratories, San Francisco, CA, United States
| | | | - Lara Vimercati
- Department of Ecology and Evolutionary Biology, University of Colorado, Boulder, CO, United States
| | | | - Antoine Hocher
- London Institute of Medical Sciences, London, United Kingdom
| | - Charles Cockell
- UK Centre for Astrobiology, University of Edinburgh, Edinburgh, United Kingdom
| | - Erika DeBenedictis
- The Francis Crick Institute, London, United Kingdom
- Pioneer Research Laboratories, San Francisco, CA, United States
| |
Collapse
|
2
|
A Remote Sensing Perspective on Mass Wasting in Contrasting Planetary Environments: Cases of the Moon and Ceres. REMOTE SENSING 2022. [DOI: 10.3390/rs14041049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/10/2022]
Abstract
Mass wasting, as one of the most significant geomorphological processes, contributes immensely to planetary landscape evolution. The frequency and diversity of mass wasting features on any planetary body also put engineering constraints on its robotic exploration. Mass wasting on other Solar System bodies shares similar, although not identical, morphological characteristics with its terrestrial counterpart, indicating a possible common nature for their formation. Thus, planetary bodies with contrasting environmental conditions might help reveal the effects of the atmosphere, subsurface fluids, mass accumulation/precipitation, and seismicity on mass wasting, and vice versa. Their relative positions within our Solar System and the environmental and geophysical conditions on the Moon and the dwarf planet Ceres are not only extremely different from Earth’s but from each other too. Their smaller sizes coupled with the availability of global-scale remote sensing datasets make them ideal candidates to understand mass wasting processes in widely contrasting planetary environments. Through this concept article, we highlight several recent advances in and prospects of using remote sensing datasets to reveal unprecedented details on lunar and Cerean mass wasting processes. We start with briefly discussing several recent studies on mass wasting using Lunar Reconnaissance Orbiter Camera (LROC) data for the Moon and Dawn spacecraft data for Ceres. We further identify the prospects of available remote sensing data in advancing our understanding of mass wasting processes under reduced gravity and in a scant (or absent) atmosphere, and we conclude the article by suggesting future research directions.
Collapse
|
3
|
Dundas CM, Becerra P, Byrne S, Chojnacki M, Daubar IJ, Diniega S, Hansen CJ, Herkenhoff KE, Landis ME, McEwen AS, Portyankina G, Valantinas A. Active Mars: A Dynamic World. JOURNAL OF GEOPHYSICAL RESEARCH. PLANETS 2021; 126:e2021JE006876. [PMID: 35845553 PMCID: PMC9285055 DOI: 10.1029/2021je006876] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 06/17/2021] [Accepted: 06/21/2021] [Indexed: 06/15/2023]
Abstract
Mars exhibits diverse surface changes at all latitudes and all seasons. Active processes include impact cratering, aeolian sand and dust transport, a variety of slope processes, changes in polar ices, and diverse effects of seasonal CO2 frost. The extent of surface change has been surprising and indicates that the present climate is capable of reshaping the surface. Activity has important implications for the Amazonian history of Mars: understanding processes is a necessary step before we can understand their implications and variations over time.
Collapse
Affiliation(s)
- Colin M. Dundas
- U.S. Geological SurveyAstrogeology Science CenterFlagstaffAZUSA
| | | | - Shane Byrne
- Lunar and Planetary LaboratoryUniversity of ArizonaTucsonAZUSA
| | | | - Ingrid J. Daubar
- Department of Earth, Environmental, and Planetary SciencesBrown UniversityProvidenceRIUSA
| | - Serina Diniega
- Jet Propulsion Laboratory/California Institute of TechnologyPasadenaCAUSA
| | | | | | - Margaret E. Landis
- Laboratory for Atmospheric and Space PhysicsUniversity of ColoradoBoulderCOUSA
| | | | - Ganna Portyankina
- Laboratory for Atmospheric and Space PhysicsUniversity of ColoradoBoulderCOUSA
| | | |
Collapse
|
4
|
Dundas CM. Geomorphological evidence for a dry dust avalanche origin of slope streaks on Mars. NATURE GEOSCIENCE 2020; 13:473-476. [PMID: 34221112 PMCID: PMC8243413 DOI: 10.1038/s41561-020-0598-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Accepted: 05/21/2020] [Indexed: 06/13/2023]
Abstract
Mars has several different types of slope feature that resemble aqueous flows. However, current cold, dry conditions are inimical to liquid water, resulting in uncertainty about its role in modern surface processes. Dark slope streaks were among the first distinctive young slope features to be identified on Mars and the first with activity seen in orbital images. They form markings on steep slopes that can persist for decades, and the role of water in their formation remains under debate. Here I analyze the geomorphic features of new slope streaks using high-resolution orbital images. Comparison of before-and-after images reveals how the streak formation process affects the surface and provides information about the cause. These observations demonstrate that slope streaks erode and deposit material in some instances. They also reveal that streaks can jump slopes and may be erosive very near their termini. These observations support a formation model where dark slope streaks form as ground-hugging, low-density avalanches of dry surface dust. Such streaks need not be treated as Special Regions for planetary protection.
Collapse
Affiliation(s)
- Colin M Dundas
- U.S. Geological Survey, Astrogeology Science Center, 2255 N. Gemini Dr., Flagstaff, AZ 86001, USA
| |
Collapse
|
5
|
Small Lava Caves as Possible Exploratory Targets on Mars: Analogies Drawn from UAV Imaging of an Icelandic Lava Field. REMOTE SENSING 2020. [DOI: 10.3390/rs12121970] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Volcanic-aeolian interactions and processes have played a vital role in landscape evolution on Mars. Martian lava fields and associated caves have extensive geomorphological, astrobiological, and in-situ resource utilization (ISRU) implications for future Mars missions which might be focused on subsurface exploration. Although several possible cave “skylights” of tens to >100 m diameter have been spotted in lava fields of Mars, there is a possibility of prevalence of meter-scale features which are an order of magnitude smaller and difficult to identify but could have vital significance from the scientific and future exploration perspectives. The Icelandic volcanic-aeolian environment and fissure volcanoes can serve as analogs to study lava flow-related small caves such as surface tubes, inflationary caves, liftup caves, and conduits. In the present work, we have tried to explore the usability of unmanned aerial vehicle (UAV)-derived images for characterizing a solidified lava flow and designing a sequential methodology to identify small caves in the lava flow. In the mapped area of ~0.33 km2, we were able to identify 81 small cave openings, five lava flow morphologies, and five small cave types using 2 cm/pixel high-resolution images. The results display the usefulness of UAV imaging for such analogous research, and also highlight the possibility of the widespread presence of similar small cave openings in Martian lava fields. Such small openings can facilitate optimal air circulation within the caves while sheltering the insides from physical weathering and harmful radiations. Using the available best resolution remote sensing images, we extend the analogy through the contextual and geomorphological analysis of several possible pit craters in the Tharsis region of Mars, in a region of extremely vesicular and fragile lava crust with pahoehoe-type morphology. We report two possible pit craters in this region, with diameters as small as ~20 m. The possibility that such small cave openings can lead to vast subterranean hollow spaces on Mars cannot be ruled out considering its low gravity.
Collapse
|
6
|
Maus D, Heinz J, Schirmack J, Airo A, Kounaves SP, Wagner D, Schulze-Makuch D. Methanogenic Archaea Can Produce Methane in Deliquescence-Driven Mars Analog Environments. Sci Rep 2020; 10:6. [PMID: 31913316 PMCID: PMC6949245 DOI: 10.1038/s41598-019-56267-4] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Accepted: 12/05/2019] [Indexed: 11/09/2022] Open
Abstract
The current understanding of the Martian surface indicates that briny environments at the near-surface are temporarily possible, e.g. in the case of the presumably deliquescence-driven Recurring Slope Lineae (RSL). However, whether such dynamic environments are habitable for terrestrial organisms remains poorly understood. This hypothesis was tested by developing a Closed Deliquescence System (CDS) consisting of a mixture of desiccated Martian Regolith Analog (MRA) substrate, salts, and microbial cells, which over the course of days became wetted through deliquescence. The methane produced via metabolic activity for three methanogenic archaea: Methanosarcina mazei, M. barkeri and M. soligelidi, was measured after exposing them to three different MRA substrates using either NaCl or NaClO4 as a hygroscopic salt. Our experiments showed that (1) M. soligelidi rapidly produced methane at 4 °C, (2) M. barkeri produced methane at 28 °C though not at 4 °C, (3) M. mazei was not metabolically reactivated through deliquescence, (4) none of the species produced methane in the presence of perchlorate, and (5) all species were metabolically most active in the phyllosilicate-containing MRA. These results emphasize the importance of the substrate, microbial species, salt, and temperature used in the experiments. Furthermore, we show here for the first time that water provided by deliquescence alone is sufficient to rehydrate methanogenic archaea and to reactivate their metabolism under conditions roughly analogous to the near-subsurface Martian environment.
Collapse
Affiliation(s)
- Deborah Maus
- Zentrum für Astronomie und Astrophysik (ZAA), AG Astrobiologie, Technische Universität Berlin, Hardenbergstr. 36, 10623, Berlin, Germany.,Metabolism of Microbial Pathogens, Robert Koch-Institute, Berlin, Germany
| | - Jacob Heinz
- Zentrum für Astronomie und Astrophysik (ZAA), AG Astrobiologie, Technische Universität Berlin, Hardenbergstr. 36, 10623, Berlin, Germany
| | - Janosch Schirmack
- Zentrum für Astronomie und Astrophysik (ZAA), AG Astrobiologie, Technische Universität Berlin, Hardenbergstr. 36, 10623, Berlin, Germany
| | - Alessandro Airo
- Zentrum für Astronomie und Astrophysik (ZAA), AG Astrobiologie, Technische Universität Berlin, Hardenbergstr. 36, 10623, Berlin, Germany
| | - Samuel P Kounaves
- Department of Chemistry, Tufts University, Medford, Massachusetts, USA.,Department of Earth Science and Engineering, Imperial College, London, UK
| | - Dirk Wagner
- GFZ German Research Center for Geosciences, Section Geomicrobiology, Potsdam, Germany.,Institute of Geosciences, University of Potsdam, Potsdam, Germany
| | - Dirk Schulze-Makuch
- Zentrum für Astronomie und Astrophysik (ZAA), AG Astrobiologie, Technische Universität Berlin, Hardenbergstr. 36, 10623, Berlin, Germany. .,GFZ German Research Center for Geosciences, Section Geomicrobiology, Potsdam, Germany. .,Leibniz-Institute of Freshwater Ecology and Inland Fisheries (IGB), Department of Experimental Limnology, Stechlin, Germany.
| |
Collapse
|
7
|
UAV Imaging of a Martian Brine Analogue Environment in a Fluvio-Aeolian Setting. REMOTE SENSING 2019. [DOI: 10.3390/rs11182104] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Understanding extraterrestrial environments and landforms through remote sensing and terrestrial analogy has gained momentum in recent years due to advances in remote sensing platforms, sensors, and computing efficiency. The seasonal brines of the largest salt plateau on Earth in Salar de Uyuni (Bolivian Altiplano) have been inadequately studied for their localized hydrodynamics and the regolith volume transport across the freshwater-brine mixing zones. These brines have recently been projected as a new analogue site for the proposed Martian brines, such as recurring slope lineae (RSL) and slope streaks. The Martian brines have been postulated to be the result of ongoing deliquescence-based salt-hydrology processes on contemporary Mars, similar to the studied Salar de Uyuni brines. As part of a field-site campaign during the cold and dry season in the latter half of August 2017, we deployed an unmanned aerial vehicle (UAV) at two sites of the Salar de Uyuni to perform detailed terrain mapping and geomorphometry. We generated high-resolution (2 cm/pixel) photogrammetric digital elevation models (DEMs) for observing and quantifying short-term terrain changes within the brines and their surroundings. The achieved co-registration for the temporal DEMs was considerably high, from which precise inferences regarding the terrain dynamics were derived. The observed average rate of bottom surface elevation change for brines was ~1.02 mm/day, with localized signs of erosion and deposition. Additionally, we observed short-term changes in the adjacent geomorphology and salt cracks. We conclude that the transferred regolith volume via such brines can be extremely low, well within the resolution limits of the remote sensors that are currently orbiting Mars, thereby making it difficult to resolve the topographic relief and terrain perturbations that are produced by such flows on Mars. Thus, the absence of observable erosion and deposition features within or around most of the proposed Martian RSL and slope streaks cannot be used to dismiss the possibility of fluidized flow within these features.
Collapse
|
8
|
Habitability of Mars: How Welcoming Are the Surface and Subsurface to Life on the Red Planet? GEOSCIENCES 2019. [DOI: 10.3390/geosciences9090361] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Mars is a planet of great interest in the search for signatures of past or present life beyond Earth. The years of research, and more advanced instrumentation, have yielded a lot of evidence which may be considered by the scientific community as proof of past or present habitability of Mars. Recent discoveries including seasonal methane releases and a subglacial lake are exciting, yet challenging findings. Concurrently, laboratory and environmental studies on the limits of microbial life in extreme environments on Earth broaden our knowledge of the possibility of Mars habitability. In this review, we aim to: (1) Discuss the characteristics of the Martian surface and subsurface that may be conducive to habitability either in the past or at present; (2) discuss laboratory-based studies on Earth that provide us with discoveries on the limits of life; and (3) summarize the current state of knowledge in terms of direction for future research.
Collapse
|
9
|
Distribution and Morphologies of Transverse Aeolian Ridges in ExoMars 2020 Rover Landing Site. REMOTE SENSING 2019. [DOI: 10.3390/rs11080912] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Aeolian processes are believed to play a major role in the landscape evolution of Mars. Investigations on Martian aeolian landforms such as ripples, transverse aeolian ridges (TARs), and dunes, and aeolian sediment flux measurements are important to enhance our understanding of past and present wind regimes, the ongoing dust cycle, landscape evolution, and geochemistry. These aeolian bedforms are often comprised of loose sand and sharply undulating topography and thus pose a threat to mobility and maneuvers of Mars rovers. Here we present a first-hand account of the distribution, morphologies, and morphometrics of TARs in Oxia Planum, the recently selected ExoMars 2020 Rover landing site. The gridded mapping was performed for contiguous stretches of TARs within all the landing ellipses using 57 sub-meter high resolution imaging science experiment (HiRISE) scenes. We also provide the morphological descriptions for all types of TARs present within the landing ellipses. We use HiRISE digital terrain models (DTMs) along with the images to derive morphometric information for TARs in Oxia Planum. In general, the average areal TAR coverage was found to be 5.4% (±4.9% standard deviation), increasing from west to east within the landing ellipses. We report the average TAR morphometrics in the form of crest–ridge width (131.1 ± 106.2 m), down-wind TAR length (17.6 ± 10.1 m), wavelength (37.3 ± 11.6 m), plan view aspect ratio (7.1 ± 2.3), inter-bedform spacing (2.1 ± 1.1), slope (10.6° ± 6.1°), predominant orientations (NE-SW and E-W), and height (1.2 ± 0.8 m). While simple TARs are predominant, we report other TAR morphologies such as forked TAR, wavy TAR with associated smaller secondary ripples, barchan-like TAR, networked TAR, and mini-TARs from the region. Our results can help in planning the rover traverses in terms of both safe passage and scientific returns favoring aeolian research, particularly improving our understanding of TARs.
Collapse
|
10
|
Bhardwaj A, Sam L, Martín-Torres FJ, Zorzano MP. Discovery of recurring slope lineae candidates in Mawrth Vallis, Mars. Sci Rep 2019; 9:2040. [PMID: 30765841 PMCID: PMC6376049 DOI: 10.1038/s41598-019-39599-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2018] [Accepted: 01/28/2019] [Indexed: 11/09/2022] Open
Abstract
Several interpretations of recurring slope lineae (RSL) have related RSL to the potential presence of transient liquid water on Mars. Such probable signs of liquid water have implications for Mars exploration in terms of rover safety, planetary protection during rover operations, and the current habitability of the planet. Mawrth Vallis has always been a prime target to be considered for Mars rover missions due to its rich mineralogy. Most recently, Mawrth Vallis was one of the two final candidates selected by the European Space Agency as a landing site for the ExoMars 2020 mission. Therefore, all surface features and landforms in Mawrth Vallis that may be of special interest in terms of scientific goals, rover safety, and operations must be scrutinised to better assess it for future Mars missions. Here, we report on the initial detection of RSL candidates in two craters of Mawrth Vallis. The new sightings were made outside of established RSL regions and further prompt the inclusion of a new geographical region within the RSL candidate group. Our inferences on the RSL candidates are based on several morphological and geophysical evidences and analogies: (i) the dimensions of the RSL candidates are consistent with confirmed mid-latitude RSL; (ii) albedo and thermal inertia values are comparable to those of other mid-latitude RSL sites; and (iii) features are found in a summer season image and on the steep and warmest slopes. These results denote the plausible presence of transient liquid brines close to the previously proposed landing ellipse of the ExoMars rover, rendering this site particularly relevant to the search of life. Further investigations of Mawrth Vallis carried out at higher spatial and temporal resolutions are needed to identify more of such features at local scales to maximize the scientific return from the future Mars rovers, to prevent probable biological contamination during rover operations, to evade damage to rover components as brines can be highly corrosive, and to quantify the ability of the regolith at mid-latitudes to capture atmospheric water which is relevant for in-situ-resource utilization.
Collapse
Affiliation(s)
- Anshuman Bhardwaj
- Division of Space Technology, Department of Computer Science, Electrical and Space Engineering, Luleå University of Technology, Luleå, Sweden.
| | - Lydia Sam
- Division of Space Technology, Department of Computer Science, Electrical and Space Engineering, Luleå University of Technology, Luleå, Sweden
- Institut für Kartographie, Technische Universität Dresden, Dresden, Germany
| | - F Javier Martín-Torres
- Division of Space Technology, Department of Computer Science, Electrical and Space Engineering, Luleå University of Technology, Luleå, Sweden
- Instituto Andaluz de Ciencias de la Tierra (CSIC-UGR), Armilla, Granada, Spain
- UK Centre for Astrobiology, School of Physics and Astronomy, University of Edinburgh, Edinburgh, UK
| | - María-Paz Zorzano
- Division of Space Technology, Department of Computer Science, Electrical and Space Engineering, Luleå University of Technology, Luleå, Sweden
- Centro de Astrobiología (INTA-CSIC), 28850, Torrejón de Ardoz, Madrid, Spain
| |
Collapse
|
11
|
Stevens AH, Childers D, Fox-Powell M, Nicholson N, Jhoti E, Cockell CS. Growth, Viability, and Death of Planktonic and Biofilm Sphingomonas desiccabilis in Simulated Martian Brines. ASTROBIOLOGY 2019; 19:87-98. [PMID: 30048150 PMCID: PMC6338574 DOI: 10.1089/ast.2018.1840] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2018] [Accepted: 06/12/2018] [Indexed: 05/22/2023]
Abstract
Aqueous solutions on Mars are theorized to contain very different ion compositions than those on Earth. To determine the effect of such solutions on typical environmental micro-organisms, which could be released from robotic spacecraft or human exploration activity, we investigated the resistance of Sphingomonas desiccabilis to brines that simulate the composition of martian aqueous environments. S. desiccabilis is a desiccation-resistant, biofilm-forming microbe found in desert crusts. The viability of cells in both planktonic and biofilm forms was measured after exposure to simulated martian brines. Planktonic cells showed a loss of viability over the course of several hours in almost all of the seven brines tested. Biofilms conferred greater resistance to all the brines, including those with low water activity and pH, but even cells in biofilms showed a complete loss of viability in <6 h in the harsher brines and in <2 days in the less harsh brines. One brine, however, allowed the microbes to maintain viability over several days, despite having a water activity and pH lower and ionic strength higher than brines that reduced viability over the same timescales, suggesting important ion-specific effects. These data show that biofilm-forming cells have a greater capacity to resist martian aqueous extremes, but that evaporative or deliquescent brines are likely to be destructive to many organisms over relatively short timescales, with implications for the habitability of Mars and for micro-organisms dispersed by robotic or human explorers.
Collapse
Affiliation(s)
- Adam H. Stevens
- UK Centre for Astrobiology, School of Physics and Astronomy, University of Edinburgh, Edinburgh, United Kingdom
| | - Delma Childers
- UK Centre for Astrobiology, School of Physics and Astronomy, University of Edinburgh, Edinburgh, United Kingdom
- Aberdeen Fungal Group, Institute of Medical Sciences, MRC Centre for Medical Mycology at the University of Aberdeen, Aberdeen, United Kingdom
| | - Mark Fox-Powell
- UK Centre for Astrobiology, School of Physics and Astronomy, University of Edinburgh, Edinburgh, United Kingdom
- School of Earth and Environmental Sciences, University of St. Andrews, St. Andrews, United Kingdom
| | - Natasha Nicholson
- UK Centre for Astrobiology, School of Physics and Astronomy, University of Edinburgh, Edinburgh, United Kingdom
| | - Elisha Jhoti
- UK Centre for Astrobiology, School of Physics and Astronomy, University of Edinburgh, Edinburgh, United Kingdom
| | - Charles S. Cockell
- UK Centre for Astrobiology, School of Physics and Astronomy, University of Edinburgh, Edinburgh, United Kingdom
| |
Collapse
|
12
|
Sam L, Bhardwaj A, Kumar R, Buchroithner MF, Martín-Torres FJ. Heterogeneity in topographic control on velocities of Western Himalayan glaciers. Sci Rep 2018; 8:12843. [PMID: 30150785 PMCID: PMC6110744 DOI: 10.1038/s41598-018-31310-y] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2018] [Accepted: 08/17/2018] [Indexed: 11/09/2022] Open
Abstract
Studies of the seasonal and annual patterns of glacier velocities improve our understanding of the ice volume, topography, responses to climate change, and surge events of glaciers. Such studies are especially relevant and equally rare for the Himalayan glaciers, which supply many rivers that sustain some of the most heavily populated mountainous regions in the world. In particular, the control of the hypsometric distribution of geomorphometric parameters, such as slope, aspect, and curvature, on the dynamics of Himalayan glaciers have never been studied so far, at the river basin scale. Here, we present the degree to which topographic and hypsometric parameters affect the seasonal and annual average flow velocities of 112 glaciers in the Baspa River basin in the Western Indian Himalaya by analysing Global Land Ice Velocity Extraction from Landsat 8 (GoLIVE) datasets for the years 2013-2017. We observe, (i) significant heterogeneity in topographic controls on the velocities of these glaciers, (ii) elevation and the seasons play important roles in regulating the degree to which morphometric parameters (slope, aspect, and curvature) affect these velocities, (iii) a possible polythermal regime promoting both sliding and deformational forms of motion in a majority of these glaciers, and (iv) a detailed analysis of complex topographic controls within various elevation zones using a novel hypso-morphometric approach. These findings can help us to better model the dynamics of Himalayan glaciers and their responses to the future climatic scenarios. The inferences also suggest the need to incorporate dynamic topography in glacio-hydrological models in the wake of constant glacial evolutions.
Collapse
Affiliation(s)
- Lydia Sam
- Institut für Kartographie, Technische Universität Dresden, Dresden, Germany. .,Department of Environmental Science, Sharda University, Greater Noida, India. .,Division of Space Technology, Department of Computer Science, Electrical and Space Engineering, Luleå University of Technology, Luleå, Sweden.
| | - Anshuman Bhardwaj
- Division of Space Technology, Department of Computer Science, Electrical and Space Engineering, Luleå University of Technology, Luleå, Sweden
| | - Rajesh Kumar
- Department of Environmental Science, Sharda University, Greater Noida, India
| | | | - F Javier Martín-Torres
- Division of Space Technology, Department of Computer Science, Electrical and Space Engineering, Luleå University of Technology, Luleå, Sweden.,Instituto Andaluz de Ciencias de la Tierra (CSIC-UGR), Armilla, Granada, Spain.,UK Centre for Astrobiology, School of Physics and Astronomy, University of Edinburgh, Edinburgh, UK
| |
Collapse
|
13
|
Rivera-Valentín EG, Gough RV, Chevrier VF, Primm KM, Martínez GM, Tolbert M. Constraining the Potential Liquid Water Environment at Gale Crater, Mars. JOURNAL OF GEOPHYSICAL RESEARCH. PLANETS 2018; 123:1156-1167. [PMID: 33294305 PMCID: PMC7720553 DOI: 10.1002/2018je005558] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2018] [Accepted: 03/26/2018] [Indexed: 05/28/2023]
Abstract
The Mars Science Laboratory (MSL) Rover Environmental Monitoring Station (REMS) has now made continuous in situ meteorological measurements for several Martian years at Gale crater, Mars. Of importance in the search for liquid formation are REMS' measurements of ground temperature and in-air measurements of temperature and relative humidity, which is with respect to ice. Such data can constrain the surface and subsurface stability of brines. Here we use updated calibrations to REMS data and consistent relative humidity comparisons (i.e., with respect to liquid versus with respect to ice) to investigate the potential formation of surface and subsurface liquids throughout MSL's traverse. We specifically study the potential for the deliquescence of calcium perchlorate. Our data analysis suggests that surface brine formation is not favored within the first 1648 sols as there are only two times (sols 1232 and 1311) when humidity-temperature conditions were within error consistent with a liquid phase. On the other hand, modeling of the subsurface environment would support brine production in the shallow subsurface. Indeed, we find that the shallow subsurface for terrains with low thermal inertia (Γ ≲ 300 J m-2 K-1 s-1/2) may be occasionally favorable to brine formation through deliquescence. Terrains with Γ ≲ 175 J m-2 K-1 s-1/2 and albedos of ≳0.25 are the most apt to subsurface brine formation. Should brines form, they would occur around Ls 100°. Their predicted properties would not meet the Special nor Uncertain Region requirements, as such they would not be potential habitable environments to life as we know it.
Collapse
Affiliation(s)
- Edgard G Rivera-Valentín
- Arecibo Observatory, Universities Space Research Association, Arecibo, PR, USA
- Lunar and Planetary Institute, Universities Space Research Association, Houston, TX, USA
| | - Raina V Gough
- Cooperative Institute for Research in Environmental Sciences, University of Colorado Boulder, Boulder, CO, USA
- Department of Chemistry and Biochemistry, University of Colorado Boulder, Boulder, CO, USA
| | - Vincent F Chevrier
- Arkansas Center for Space and Planetary Sciences, University of Arkansas, Fayetteville, AR, USA
| | - Katherine M Primm
- Cooperative Institute for Research in Environmental Sciences, University of Colorado Boulder, Boulder, CO, USA
- Department of Chemistry and Biochemistry, University of Colorado Boulder, Boulder, CO, USA
| | - German M Martínez
- Department of Climate and Space Sciences and Engineering, University of Michigan, Ann Arbor, MI, USA
| | - Margaret Tolbert
- Cooperative Institute for Research in Environmental Sciences, University of Colorado Boulder, Boulder, CO, USA
- Department of Chemistry and Biochemistry, University of Colorado Boulder, Boulder, CO, USA
| |
Collapse
|
14
|
Fairén AG, Parro V, Schulze-Makuch D, Whyte L. Is Searching for Martian Life a Priority for the Mars Community? ASTROBIOLOGY 2018; 18:101-107. [PMID: 29359967 PMCID: PMC5820680 DOI: 10.1089/ast.2017.1772] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2017] [Accepted: 11/02/2017] [Indexed: 06/07/2023]
Affiliation(s)
- Alberto G. Fairén
- Centro de Astrobiología (CSIC-INTA), Madrid, Spain
- Department of Astronomy, Cornell University, Ithaca, New York, USA
| | - Victor Parro
- Centro de Astrobiología (CSIC-INTA), Madrid, Spain
| | - Dirk Schulze-Makuch
- Center of Astronomy and Astrophysics, Technical University Berlin, Berlin, Germany
- School of the Environment, Washington State University, Pullman, Washington, USA
| | - Lyle Whyte
- Department of Natural Resource Sciences, McGill University, Ste-Anne-de-Bellevue, Canada
| |
Collapse
|
15
|
Sapers HM, Ronholm J, Raymond-Bouchard I, Comrey R, Osinski GR, Whyte LG. Biological Characterization of Microenvironments in a Hypersaline Cold Spring Mars Analog. Front Microbiol 2017; 8:2527. [PMID: 29312221 PMCID: PMC5744183 DOI: 10.3389/fmicb.2017.02527] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2017] [Accepted: 12/05/2017] [Indexed: 11/13/2022] Open
Abstract
While many habitable niches on Earth are characterized by permanently cold conditions, little is known about the spatial structure of seasonal communities and the importance of substrate-cell associations in terrestrial cyroenvironments. Here we use the 16S rRNA gene as a marker for genetic diversity to compare two visually distinct but spatially integrated surface microbial mats on Axel Heiberg Island, Canadian high arctic, proximal to a perennial saline spring. This is the first study to describe the bacterial diversity in microbial mats on Axel Heiberg Island. The hypersaline springs on Axel Heiberg represent a unique analog to putative subsurface aquifers on Mars. The Martian subsurface represents the longest-lived potentially habitable environment on Mars and a better understanding of the microbial communities on Earth that thrive in analog conditions will help direct future life detection missions. The microbial mats sampled on Axel Heiberg are only visible during the summer months in seasonal flood plains formed by melt water and run-off from the proximal spring. Targeted-amplicon sequencing revealed that not only does the bacterial composition of the two mat communities differ substantially from the sediment community of the proximal cold spring, but that the mat communities are distinct from any other microbial community in proximity to the Arctic springs studied to date. All samples are dominated by Gammaproteobacteria: Thiotichales is dominant within the spring samples while Alteromonadales comprises a significant component of the mat communities. The two mat samples differ in their Thiotichales:Alteromonadales ratio and contribution of Bacteroidetes to overall diversity. The red mats have a greater proportion of Alteromonadales and Bacteroidetes reads. The distinct bacterial composition of the mat bacterial communities suggests that the spring communities are not sourced from the surface, and that seasonal melt events create ephemerally habitable niches with distinct microbial communities in the Canadian high arctic. The finding that these surficial complex microbial communities exist in close proximity to perennial springs demonstrates the existence of a transiently habitable niche in an important Mars analog site.
Collapse
Affiliation(s)
- Haley M. Sapers
- Centre for Planetary Science and Exploration, Faculty of Science, Western Science Centre, Western University, London, ON, Canada
- Department of Earth Sciences, University of Western Ontario, London, ON, Canada
- Department of Natural Resource Sciences, McGill University, Montreal, QC, Canada
| | - Jennifer Ronholm
- Department of Food Science and Agricultural Chemistry, McGill University, Montreal, QC, Canada
- Department of Animal Science, Faculty of Agricultural and Environmental Sciences, McGill University, Montreal, QC, Canada
| | | | - Raven Comrey
- Department of Natural Resource Sciences, McGill University, Montreal, QC, Canada
| | - Gordon R. Osinski
- Centre for Planetary Science and Exploration, Faculty of Science, Western Science Centre, Western University, London, ON, Canada
- Department of Earth Sciences, University of Western Ontario, London, ON, Canada
- Department of Physics and Astronomy, University of Western Ontario, London, ON, Canada
| | - Lyle G. Whyte
- Department of Natural Resource Sciences, McGill University, Montreal, QC, Canada
| |
Collapse
|