1
|
Choi S, Kim EH, Kim D, Park HJ, Gil J, Bian Y, Bae ON. Polyhexamethylene guanidine-phosphate enhances pro-coagulant activity of human erythrocytes and venous thrombosis in rats through phosphatidylserine externalization. JOURNAL OF HAZARDOUS MATERIALS 2025; 492:138303. [PMID: 40250271 DOI: 10.1016/j.jhazmat.2025.138303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2025] [Revised: 04/09/2025] [Accepted: 04/14/2025] [Indexed: 04/20/2025]
Abstract
Polyhexamethylene guanidine-phosphate (PHMG-p) is a main compound used as a humidifier disinfectant, but the systemic health effects of PHMG-p still need to be explored. The circulatory and blood system is the organ that comes into contact with compounds absorbed into the body after inhalation exposure, resulting in various health problems, including cardiovascular diseases. This study examined the impact of PHMG-p on erythrocytes (red blood cells; RBCs), which are essential for sustaining circulatory health and are directly associated with thrombotic risks. We demonstrated that PHMG-p could enhance the thrombotic risk by promoting pro-coagulant activity and reducing erythrocyte deformability. In PHMG-p-exposed erythrocytes, phosphatidylserine externalization in the outer membrane and microvesicle generation were significantly increased under sub-hemolytic conditions, along with the morphological alterations in the erythrocytes. Exposure to PHMG-p induced erythrocyte phosphatidylserine externalization, leading to enhanced pro-coagulant activity, which was characterized by increased adhesion to vascular endothelial cells, elevated thrombin generation, and decreased deformability. Notably, calcium chelation effectively inhibited PS externalization and thrombin generation, highlighting the pivotal role of calcium influx in PHMG-p-induced thrombogenic alterations. Moreover, intratracheal instillation of PHMG-p promoted phosphatidylserine externalization and thrombin generation in rat erythrocytes, leading to a significant increase in thrombus formation, thereby corroborating the link between in vitro findings and the increased thrombotic risk observed in vivo. These findings suggest that PHMG-p may increase pro-thrombotic risk by promoting RBC pro-coagulant activity through calcium influx-driven PS externalization.
Collapse
Affiliation(s)
- Sungbin Choi
- College of Pharmacy Institute of Pharmaceutical Science and Technology, Hanyang University, Ansan 15588, Republic of Korea
| | - Eun-Hye Kim
- College of Pharmacy Institute of Pharmaceutical Science and Technology, Hanyang University, Ansan 15588, Republic of Korea; College of Pharmacy, Kyungsung University, Busan 48434, Republic of Korea
| | - Donghyun Kim
- College of Pharmacy Institute of Pharmaceutical Science and Technology, Hanyang University, Ansan 15588, Republic of Korea
| | - Han Jin Park
- College of Pharmacy Institute of Pharmaceutical Science and Technology, Hanyang University, Ansan 15588, Republic of Korea
| | - Junkyung Gil
- College of Pharmacy Institute of Pharmaceutical Science and Technology, Hanyang University, Ansan 15588, Republic of Korea
| | - Yiying Bian
- School of Public Health, China Medical University, Shenyang 110122, China
| | - Ok-Nam Bae
- College of Pharmacy Institute of Pharmaceutical Science and Technology, Hanyang University, Ansan 15588, Republic of Korea.
| |
Collapse
|
2
|
Langlands HD, Shoemark DK, Toye AM. Modulation of Antioxidant Enzyme Expression of In Vitro Culture-Derived Reticulocytes. Antioxidants (Basel) 2024; 13:1070. [PMID: 39334729 PMCID: PMC11429491 DOI: 10.3390/antiox13091070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 08/16/2024] [Accepted: 08/22/2024] [Indexed: 09/30/2024] Open
Abstract
The regulation of reactive oxygen species (ROS) in red blood cells (RBCs) is crucial for maintaining functionality and lifespan. Indeed, dysregulated ROS occurs in haematological diseases such as sickle cell disease and β-thalassaemia. In order to combat this, RBCs possess high levels of protective antioxidant enzymes. We aimed to further boost RBC antioxidant capacity by overexpressing peroxiredoxin (Prxs) and glutathione peroxidase (GPxs) enzymes. Multiple antioxidant enzyme cDNAs were individually overexpressed in expanding immortalised erythroblasts using lentivirus, including Prx isoforms 1, 2, and 6 and GPx isoforms 1 and 4. Enhancing Prx protein expression proved straightforward, but GPx overexpression required modifications. For GPx4, these modifications included adding a SECIS element in the 3'UTR, the removal of a mitochondrial-targeting sequence, and removing putative ubiquitination sites. Culture-derived reticulocytes exhibiting enhanced levels of Prx and GPx antioxidant proteins were successfully engineered, demonstrating a novel approach to improve RBC resilience to oxidative stress. Further work is needed to explore the activity of these proteins and their impact on RBC metabolism, but this strategy shows promise for improving RBC function in physiological and pathological contexts and during storage for transfusion. Enhancing the antioxidant capacity of reticulocytes has exciting promise for developing culture-derived RBCs with enhanced resistance to oxidative damage and offers new therapeutic interventions in diseases with elevated oxidative stress.
Collapse
Affiliation(s)
- Hannah D Langlands
- School of Biochemistry, University of Bristol, Biomedical Sciences Building, University Walk, Bristol BS8 1TD, UK
| | - Deborah K Shoemark
- School of Biochemistry, University of Bristol, Biomedical Sciences Building, University Walk, Bristol BS8 1TD, UK
| | - Ashley M Toye
- School of Biochemistry, University of Bristol, Biomedical Sciences Building, University Walk, Bristol BS8 1TD, UK
| |
Collapse
|
3
|
Muller CR, Courelli V, Govender K, Omert L, Yoshida T, Cabrales P. Hypoxically stored RBC resuscitation in a rat model of traumatic brain injury and severe hemorrhagic shock. Life Sci 2024; 340:122423. [PMID: 38278347 DOI: 10.1016/j.lfs.2024.122423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 12/23/2023] [Accepted: 01/10/2024] [Indexed: 01/28/2024]
Abstract
This study aims to investigate the effects of hypoxically stored Red Blood Cells (RBCs) in a rat model of traumatic brain injury followed by severe hemorrhagic shock (HS) and resuscitation. RBCs were made hypoxic using an O2 depletion system (Hemanext Inc. Lexington, MA) and stored for 3 weeks. Experimental animals underwent craniotomy and blunt brain injury followed by severe HS. Rats were resuscitated with either fresh RBCs (FRBCs), 3-week-old hypoxically stored RBCs (HRBCs), or 3-week-old conventionally stored RBCs (CRBCs). Resuscitation was provided via RBCs transfusion equivalent to 70 % of the shed blood and animals were followed for 2 h. The control group was comprised of healthy animals that were not instrumented or injured. Post-resuscitation hemodynamics and lactate levels were improved with FRBCs and HRBCs, and markers of organ injury in the liver (Aspartate aminotransferase [AST]), lung (chemokine ligand 1 [CXCL-1] and Leukocytes count), and heart (cardiac troponin, Interleukin- 6 [IL-6] and Tumor Necrosis Factor Alpha[TNF-α]) were lower with FRBCs and HRBCs resuscitation compared to CRBCs. Following reperfusion, biomarkers for oxidative stress, lipid peroxidation, and RNA/DNA injury were assessed. Superoxide dismutase [SOD] levels in the HRBCs group were similar to the FRBCs group and levels in both groups were significantly higher than CRBCs. Catalase levels were not different than control values in the FRBCs and HRBCs groups but significantly lower with CRBCs. Thiobarbituric acid reactive substances [Tbars] levels were higher for both CRBCs and HRBCs. Hypoxically stored RBCs show few differences from fresh RBCs in resuscitation from TBI + HS and decreased organ injury and oxidative stress compared to conventionally stored RBCs.
Collapse
Affiliation(s)
- Cynthia R Muller
- Functional Cardiovascular Engineering Laboratory, Bioengineering Department, UC San Diego, La Jolla, CA 92093, United States of America
| | - Vasiliki Courelli
- Functional Cardiovascular Engineering Laboratory, Bioengineering Department, UC San Diego, La Jolla, CA 92093, United States of America
| | - Krianthan Govender
- Functional Cardiovascular Engineering Laboratory, Bioengineering Department, UC San Diego, La Jolla, CA 92093, United States of America
| | - Laurel Omert
- Hemanext, Lexington, MA, United States of America
| | | | - Pedro Cabrales
- Functional Cardiovascular Engineering Laboratory, Bioengineering Department, UC San Diego, La Jolla, CA 92093, United States of America.
| |
Collapse
|
4
|
Kozlova E, Sherstyukova E, Sergunova V, Grechko A, Kuzovlev A, Lyapunova S, Inozemtsev V, Kozlov A, Chernysh A. Atomic Force Microscopy and High-Resolution Spectrophotometry for Study of Anoxemia and Normoxemia in Model Experiment In Vitro. Int J Mol Sci 2023; 24:11043. [PMID: 37446221 PMCID: PMC10341442 DOI: 10.3390/ijms241311043] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 06/28/2023] [Accepted: 06/29/2023] [Indexed: 07/15/2023] Open
Abstract
The oxygen content in the blood may decrease under the influence of various physicochemical factors and different diseases. The state of hypoxemia is especially dangerous for critically ill patients. In this paper, we describe and analyze the changes in the characteristics of red blood cells (RBCs) with decreasing levels of oxygen in the RBC suspension from normoxemia to hypoxemia/anoxemia in an in vitro model experiment. The RBCs were stored in hypoxemia/anoxemia and normoxemia conditions in closed and open tubes correspondingly. For the quantitative study of RBC parameter changes, we used atomic force microscopy, digital spectrophotometry, and nonlinear curve fitting of the optical spectra. In both closed and open tubes, at the end of the storage period by day 29, only 2% of discocytes remained, and mainly irreversible types, such as microspherocytes and ghosts, were observed. RBC hemolysis occurred at a level of 25-30%. Addition of the storage solution, depending on the concentration, changed the influence of hypoxemia on RBCs. The reversibility of the change in hemoglobin derivatives was checked. Based on the experimental data and model approach, we assume that there is an optimal level of hypoxemia at which the imbalance between the oxidative and antioxidant systems, the rate of formation of reactive oxygen species, and, accordingly, the disturbances in RBCs, will be minimal.
Collapse
Affiliation(s)
- Elena Kozlova
- Laboratory of Biophysics of Cell Membranes under Critical State, Federal Research and Clinical Center of Intensive Care Medicine and Rehabilitology, V.A. Negovsky Research Institute of General Reanimatology, 107031 Moscow, Russia; (E.K.); (E.S.); (V.S.); (V.I.); (A.C.)
- Department of Medical and Biological Physics, Sechenov First Moscow State Medical University, 119991 Moscow, Russia;
- Faculty of Physics, Federal State Budget Educational Institution of Higher Education M.V. Lomonosov Moscow State University, 119234 Moscow, Russia
| | - Ekaterina Sherstyukova
- Laboratory of Biophysics of Cell Membranes under Critical State, Federal Research and Clinical Center of Intensive Care Medicine and Rehabilitology, V.A. Negovsky Research Institute of General Reanimatology, 107031 Moscow, Russia; (E.K.); (E.S.); (V.S.); (V.I.); (A.C.)
- Department of Medical and Biological Physics, Sechenov First Moscow State Medical University, 119991 Moscow, Russia;
| | - Viktoria Sergunova
- Laboratory of Biophysics of Cell Membranes under Critical State, Federal Research and Clinical Center of Intensive Care Medicine and Rehabilitology, V.A. Negovsky Research Institute of General Reanimatology, 107031 Moscow, Russia; (E.K.); (E.S.); (V.S.); (V.I.); (A.C.)
| | - Andrey Grechko
- Administration, Federal Research and Clinical Center of Intensive Care Medicine and Rehabilitology, 107031 Moscow, Russia; (A.G.); (A.K.)
| | - Artem Kuzovlev
- Administration, Federal Research and Clinical Center of Intensive Care Medicine and Rehabilitology, 107031 Moscow, Russia; (A.G.); (A.K.)
| | - Snezhanna Lyapunova
- Laboratory of Biophysics of Cell Membranes under Critical State, Federal Research and Clinical Center of Intensive Care Medicine and Rehabilitology, V.A. Negovsky Research Institute of General Reanimatology, 107031 Moscow, Russia; (E.K.); (E.S.); (V.S.); (V.I.); (A.C.)
| | - Vladimir Inozemtsev
- Laboratory of Biophysics of Cell Membranes under Critical State, Federal Research and Clinical Center of Intensive Care Medicine and Rehabilitology, V.A. Negovsky Research Institute of General Reanimatology, 107031 Moscow, Russia; (E.K.); (E.S.); (V.S.); (V.I.); (A.C.)
| | - Aleksandr Kozlov
- Department of Medical and Biological Physics, Sechenov First Moscow State Medical University, 119991 Moscow, Russia;
| | - Aleksandr Chernysh
- Laboratory of Biophysics of Cell Membranes under Critical State, Federal Research and Clinical Center of Intensive Care Medicine and Rehabilitology, V.A. Negovsky Research Institute of General Reanimatology, 107031 Moscow, Russia; (E.K.); (E.S.); (V.S.); (V.I.); (A.C.)
| |
Collapse
|
5
|
Dybas J, Wajda A, Alcicek FC, Kaczmarska M, Bulat K, Szczesny-Malysiak E, Martyna A, Perez-Guaita D, Sacha T, Marzec KM. Label-free testing strategy to evaluate packed red blood cell quality before transfusion to leukemia patients. Sci Rep 2022; 12:21849. [PMID: 36528645 PMCID: PMC9759565 DOI: 10.1038/s41598-022-26309-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Accepted: 12/13/2022] [Indexed: 12/23/2022] Open
Abstract
Patients worldwide require therapeutic transfusions of packed red blood cells (pRBCs), which is applied to the high-risk patients who need periodic transfusions due to leukemia, lymphoma, myeloma and other blood diseases or disorders. Contrary to the general hospital population where the transfusions are carried out mainly for healthy trauma patients, in case of high-risk patients the proper quality of pRBCs is crucial. This leads to an increased demand for efficient technology providing information on the pRBCs alterations deteriorating their quality. Here we present the design of an innovative, label-free, noninvasive, rapid Raman spectroscopy-based method for pRBCs quality evaluation, starting with the description of sample measurement and data analysis, through correlation of spectroscopic results with reference techniques' outcomes, and finishing with methodology verification and its application in clinical conditions. We have shown that Raman spectra collected from the pRBCs supernatant mixture with a proper chemometric analysis conducted for a minimum one ratio of integral intensities of the chosen Raman marker bands within the spectrum allow evaluation of the pRBC quality in a rapid, noninvasive, and free-label manner, without unsealing the pRBCs bag. Subsequently, spectroscopic data were compared with predefined reference values, either from pRBCs expiration or those defining the pRBCs quality, allowing to assess their utility for transfusion to patients with acute myeloid leukemia (AML) and lymphoblastic leukemia (ALL).
Collapse
Affiliation(s)
- Jakub Dybas
- Jagiellonian Center for Experimental Therapeutics, Jagiellonian University, 14 Bobrzyskiego St., 30-348, Krakow, Poland
| | - Aleksandra Wajda
- Faculty of Chemistry, Jagiellonian University, 2 Gronostajowa St., 30-387, Krakow, Poland
| | - Fatih Celal Alcicek
- Jagiellonian Center for Experimental Therapeutics, Jagiellonian University, 14 Bobrzyskiego St., 30-348, Krakow, Poland
| | - Magdalena Kaczmarska
- Jagiellonian Center for Experimental Therapeutics, Jagiellonian University, 14 Bobrzyskiego St., 30-348, Krakow, Poland
| | - Katarzyna Bulat
- Jagiellonian Center for Experimental Therapeutics, Jagiellonian University, 14 Bobrzyskiego St., 30-348, Krakow, Poland
- Lukasiewicz Research Network, Krakow Institute of Technology, 73 Zakopiaska St., 30-418, Krakow, Poland
| | - Ewa Szczesny-Malysiak
- Jagiellonian Center for Experimental Therapeutics, Jagiellonian University, 14 Bobrzyskiego St., 30-348, Krakow, Poland
| | - Agnieszka Martyna
- Forensic Chemistry Research Group, University of Silesia in Katowice, 9 Szkolna St., 40-006, Katowice, Poland
| | - David Perez-Guaita
- Department of Analytical Chemistry, University of Valancia, Dr. Moliner 50, Burjassot, Spain
| | - Tomasz Sacha
- Chair of Haematology, Faculty of Medicine, Jagiellonian University Medical College, 12 Sw. Anny St., 30-008, Krakow, Poland
- Department of Haematology, Jagiellonian University Hospital, 2 Jakubowskiego St., 30-688, Krakow, Poland
| | - Katarzyna M Marzec
- Jagiellonian Center for Experimental Therapeutics, Jagiellonian University, 14 Bobrzyskiego St., 30-348, Krakow, Poland.
- Lukasiewicz Research Network, Krakow Institute of Technology, 73 Zakopiaska St., 30-418, Krakow, Poland.
| |
Collapse
|
6
|
Bernecker C, Lima M, Kolesnik T, Lampl A, Ciubotaru C, Leita R, Kolb D, Fröhlich E, Schlenke P, Holzapfel GA, Dorn I, Cojoc D. Biomechanical properties of native and cultured red blood cells–Interplay of shape, structure and biomechanics. Front Physiol 2022; 13:979298. [PMID: 36051915 PMCID: PMC9424772 DOI: 10.3389/fphys.2022.979298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Accepted: 07/25/2022] [Indexed: 11/13/2022] Open
Abstract
Modern medicine increases the demand for safe blood products. Ex vivo cultured red blood cells (cRBC) are eagerly awaited as a standardized, safe source of RBC. Established culture models still lack the terminal cytoskeletal remodeling from reticulocyte to erythrocyte with changes in the biomechanical properties and interacts with membrane stiffness, viscosity of the cytoplasm and the cytoskeletal network. Comprehensive data on the biomechanical properties of cRBC are needed to take the last step towards translation into clinical use in transfusion medicine. Aim of the study was the comparative analysis of topographical and biomechanical properties of cRBC, generated from human CD34+ adult hematopoietic stem/progenitor cells, with native reticulocytes (nRET) and erythrocytes (nRBC) using cell biological and biomechanical technologies. To gain the desired all-encompassing information, a single method was unsatisfactory and only the combination of different methods could lead to the goal. Topographical information was matched with biomechanical data from optical tweezers (OT), atomic force microscopy (AFM) and digital holographic microscopy (DHM). Underlying structures were investigated in detail. Imaging, deformability and recovery time showed a high similarity between cRBC and nRBC. Young’s modulus and plasticity index also confirmed this similarity. No significant differences in membrane and cytoskeletal proteins were found, while lipid deficiency resulted in spherical, vesiculated cells with impaired biomechanical functionality. The combination of techniques has proven successful and experiments underscore a close relationship between lipid content, shape and biomechanical functionality of RBC.
Collapse
Affiliation(s)
- Claudia Bernecker
- Department for Blood Group Serology and Transfusion Medicine, Medical University of Graz, Graz, Austria
| | - Maria Lima
- CNR-IOM, National Research Council of Italy - Institute of Materials, Trieste, Italy
- University of Trieste, Physics Department, Trieste, Italy
| | - Tatjana Kolesnik
- Core Facility Imaging, Center for Medical Research, Medical University of Graz, Graz, Austria
| | - Annika Lampl
- Department for Blood Group Serology and Transfusion Medicine, Medical University of Graz, Graz, Austria
| | - Catalin Ciubotaru
- CNR-IOM, National Research Council of Italy - Institute of Materials, Trieste, Italy
| | - Riccardo Leita
- CNR-IOM, National Research Council of Italy - Institute of Materials, Trieste, Italy
| | - Dagmar Kolb
- Core Facility Ultrastructure Analysis, Center for Medical Research, Medical University of Graz, Graz, Austria
- Gottfried Schatz Research Center for Cell Signaling, Metabolism and Aging, Division of Cell Biology, Histology and Embryology, Medical University of Graz, Graz, Austria
| | - Eleonore Fröhlich
- Core Facility Imaging, Center for Medical Research, Medical University of Graz, Graz, Austria
| | - Peter Schlenke
- Department for Blood Group Serology and Transfusion Medicine, Medical University of Graz, Graz, Austria
| | - Gerhard A. Holzapfel
- Institute of Biomechanics, Graz University of Technology, Graz, Austria
- Department of Structural Engineering, Norwegian University of Science and Technology, Trondheim, Norway
| | - Isabel Dorn
- Department for Blood Group Serology and Transfusion Medicine, Medical University of Graz, Graz, Austria
- *Correspondence: Dan Cojoc, ; Isabel Dorn,
| | - Dan Cojoc
- CNR-IOM, National Research Council of Italy - Institute of Materials, Trieste, Italy
- *Correspondence: Dan Cojoc, ; Isabel Dorn,
| |
Collapse
|
7
|
Sergunova V, Leesment S, Kozlov A, Inozemtsev V, Platitsina P, Lyapunova S, Onufrievich A, Polyakov V, Sherstyukova E. Investigation of Red Blood Cells by Atomic Force Microscopy. SENSORS 2022; 22:s22052055. [PMID: 35271203 PMCID: PMC8914789 DOI: 10.3390/s22052055] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 03/03/2022] [Accepted: 03/05/2022] [Indexed: 02/04/2023]
Abstract
Currently, much research is devoted to the study of biological objects using atomic force microscopy (AFM). This method’s resolution is superior to the other non-scanning techniques. Our study aims to further emphasize some of the advantages of using AFM as a clinical screening tool. The study focused on red blood cells exposed to various physical and chemical factors, namely hemin, zinc ions, and long-term storage. AFM was used to investigate the morphological, nanostructural, cytoskeletal, and mechanical properties of red blood cells (RBCs). Based on experimental data, a set of important biomarkers determining the status of blood cells have been identified.
Collapse
Affiliation(s)
- Viktoria Sergunova
- Laboratory of Biophysics of Cell Membranes under Critical State, Federal Research and Clinical Center of Intensive Care Medicine and Rehabilitology, V.A. Negovsky Research Institute of General Reanimatology, 107031 Moscow, Russia; (V.I.); (S.L.); (E.S.)
- Correspondence: ; Tel.: +7-985-724-1827
| | - Stanislav Leesment
- NT-MDT Spectrum Instruments, Proezd 4922, 4/3 Zelenograd, 124460 Moscow, Russia; (S.L.); (V.P.)
| | - Aleksandr Kozlov
- Department of Medical and Biological Physics, Sechenov First Moscow State Medical University (Sechenov University), 119991 Moscow, Russia;
| | - Vladimir Inozemtsev
- Laboratory of Biophysics of Cell Membranes under Critical State, Federal Research and Clinical Center of Intensive Care Medicine and Rehabilitology, V.A. Negovsky Research Institute of General Reanimatology, 107031 Moscow, Russia; (V.I.); (S.L.); (E.S.)
| | - Polina Platitsina
- Institute of Biotechnical Systems and Technologies National Research“MIET”, Shokin Sq., Build.1, 124498 Zelenograd, Russia;
| | - Snezhanna Lyapunova
- Laboratory of Biophysics of Cell Membranes under Critical State, Federal Research and Clinical Center of Intensive Care Medicine and Rehabilitology, V.A. Negovsky Research Institute of General Reanimatology, 107031 Moscow, Russia; (V.I.); (S.L.); (E.S.)
| | - Alexander Onufrievich
- Federal State Budgetary Institution “N.N. Burdenko Main Military Clinical Hospital” of the Ministry of Defense of the Russian Federation, Hospital Sq., Build. 3, 105094 Moscow, Russia;
| | - Vyacheslav Polyakov
- NT-MDT Spectrum Instruments, Proezd 4922, 4/3 Zelenograd, 124460 Moscow, Russia; (S.L.); (V.P.)
| | - Ekaterina Sherstyukova
- Laboratory of Biophysics of Cell Membranes under Critical State, Federal Research and Clinical Center of Intensive Care Medicine and Rehabilitology, V.A. Negovsky Research Institute of General Reanimatology, 107031 Moscow, Russia; (V.I.); (S.L.); (E.S.)
- Department of Medical and Biological Physics, Sechenov First Moscow State Medical University (Sechenov University), 119991 Moscow, Russia;
| |
Collapse
|
8
|
The Toxic Influence of Excess Free Iron on Red Blood Cells in the Biophysical Experiment: An In Vitro Study. J Toxicol 2022; 2022:7113958. [PMID: 35256882 PMCID: PMC8898121 DOI: 10.1155/2022/7113958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Accepted: 01/10/2022] [Indexed: 11/18/2022] Open
Abstract
Iron is needed for life-essential processes, but free iron overload causes dangerous clinical consequences. The study of the role of red blood cells (RBCs) in the influence of excess free iron in the blood on the pathological consequences in an organism is relevant. Here, in a direct biophysical experiment in vitro, we studied the action of free iron overload on the packed red blood cell (pRBC) characteristics. In experiments, we incubated pRBCs with the ferrous sulfate solution (Fe2+). Wе used free iron in a wide range of concentrations. High Fe2+ concentrations made us possible to establish the pattern of the toxic effect of excess iron on pRBCs during a reduced incubation time in a biophysical experiment in vitro. It was found that excess free iron causes changes in pRBC morphology, the appearance of bridges between cells, and the formation of clots, increasing the membrane stiffness and methemoglobin concentration. We created a kinetic model of changes in the hemoglobin derivatives. The complex of simultaneous distortions of pRBCs established in our experiments can be taken into account when studying the mechanism of the toxic influence of excess free iron in the blood on pathological changes in an organism.
Collapse
|
9
|
Topological Relationships Cytoskeleton-Membrane Nanosurface-Morphology as a Basic Mechanism of Total Disorders of RBC Structures. Int J Mol Sci 2022; 23:ijms23042045. [PMID: 35216154 PMCID: PMC8876224 DOI: 10.3390/ijms23042045] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 02/08/2022] [Accepted: 02/09/2022] [Indexed: 11/22/2022] Open
Abstract
The state of red blood cells (RBCs) and their functional possibilities depend on the structural organization of the membranes. Cell morphology and membrane nanostructure are compositionally and functionally related to the cytoskeleton network. In this work, the influence of agents (hemin, endogenous oxidation during storage of packed RBCs, ultraviolet (UV) radiation, temperature, and potential of hydrogen (pH) changes) on the relationships between cytoskeleton destruction, membrane nanostructure, and RBC morphology was observed by atomic force microscope. It was shown that the influence of factors of a physical and biochemical nature causes structural rearrangements in RBCs at all levels of organization, forming a unified mechanism of disturbances in relationships “cytoskeleton-membrane nanosurface-cell morphology”. Filament ruptures and, consequently, large cytoskeleton pores appeared. The pores caused membrane topological defects in the form of separate grain domains. Increasing loading doses led to an increase in the number of large cytoskeleton pores and defects and their fusion at the membrane nanosurfaces. This caused the changes in RBC morphology. Our results can be used in molecular cell biology, membrane biophysics, and in fundamental and practical medicine.
Collapse
|
10
|
Trends in biomedical analysis of red blood cells – Raman spectroscopy against other spectroscopic, microscopic and classical techniques. Trends Analyt Chem 2022. [DOI: 10.1016/j.trac.2021.116481] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
11
|
Himbert S, Qadri SM, Sheffield WP, Schubert P, D’Alessandro A, Rheinstädter MC. Blood bank storage of red blood cells increases RBC cytoplasmic membrane order and bending rigidity. PLoS One 2021; 16:e0259267. [PMID: 34767588 PMCID: PMC8589153 DOI: 10.1371/journal.pone.0259267] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Accepted: 10/17/2021] [Indexed: 12/05/2022] Open
Abstract
Blood banks around the world store blood components for several weeks ensuring its availability for transfusion medicine. Red blood cells (RBCs) are known to undergo compositional changes during storage, which may impact the cells' function and eventually the recipients' health. We extracted the RBC's cytoplasmic membrane (RBCcm) to study the effect of storage on the membranes' molecular structure and bending rigidity by a combination of X-ray diffraction (XRD), X-ray diffuse scattering (XDS) and coarse grained Molecular Dynamics (MD) simulations. Blood was stored in commercial blood bags for 2 and 5 weeks, respectively and compared to freshly drawn blood. Using mass spectrometry, we measured an increase of fatty acids together with a slight shift towards shorter tail lengths. We observe an increased fraction (6%) of liquid ordered (lo) domains in the RBCcms with storage time, and an increased lipid packing in these domains, leading to an increased membrane thickness and membrane order. The size of both, lo and liquid disordered (ld) lipid domains was found to decrease with increased storage time by up to 25%. XDS experiments reveal a storage dependent increase in the RBCcm's bending modulus κ by a factor of 2.8, from 1.9 kBT to 5.3 kBT. MD simulations were conducted in the absence of proteins. The results show that the membrane composition has a small contribution to the increased bending rigidity and suggests additional protein-driven mechanisms.
Collapse
Affiliation(s)
- Sebastian Himbert
- Department of Physics and Astronomy, McMaster University, Hamilton, ON, Canada
- Origins Institute, McMaster University, Hamilton, ON, Canada
| | - Syed M. Qadri
- Faculty of Health Sciences, Ontario Tech University, Oshawa, ON, Canada
| | - William P. Sheffield
- Department of Pathology and Molecular Medicine, McMaster University, Hamilton, ON, Canada
- Centre for Innovation, Canadian Blood Services, Hamilton, ON, Canada
| | - Peter Schubert
- Centre for Innovation, Canadian Blood Services, Vancouver, BC, Canada
- Centre for Blood Research, University of British Columbia, Vancouver, BC, Canada
| | - Angelo D’Alessandro
- University of Colorado Denver-Anschutz Medical Campus, Aurora, CO, United States of America
| | - Maikel C. Rheinstädter
- Department of Physics and Astronomy, McMaster University, Hamilton, ON, Canada
- Origins Institute, McMaster University, Hamilton, ON, Canada
| |
Collapse
|
12
|
Barshtein G, Pajic-Lijakovic I, Gural A. Deformability of Stored Red Blood Cells. Front Physiol 2021; 12:722896. [PMID: 34690797 PMCID: PMC8530101 DOI: 10.3389/fphys.2021.722896] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Accepted: 08/18/2021] [Indexed: 12/24/2022] Open
Abstract
Red blood cells (RBCs) deformability refers to the cells’ ability to adapt their shape to the dynamically changing flow conditions so as to minimize their resistance to flow. The high red cell deformability enables it to pass through small blood vessels and significantly determines erythrocyte survival. Under normal physiological states, the RBCs are attuned to allow for adequate blood flow. However, rigid erythrocytes can disrupt the perfusion of peripheral tissues and directly block microvessels. Therefore, RBC deformability has been recognized as a sensitive indicator of RBC functionality. The loss of deformability, which a change in the cell shape can cause, modification of cell membrane or a shift in cytosol composition, can occur due to various pathological conditions or as a part of normal RBC aging (in vitro or in vivo). However, despite extensive research, we still do not fully understand the processes leading to increased cell rigidity under cold storage conditions in a blood bank (in vitro aging), In the present review, we discuss publications that examined the effect of RBCs’ cold storage on their deformability and the biological mechanisms governing this change. We first discuss the change in the deformability of cells during their cold storage. After that, we consider storage-related alterations in RBCs features, which can lead to impaired cell deformation. Finally, we attempt to trace a causal relationship between the observed phenomena and offer recommendations for improving the functionality of stored cells.
Collapse
Affiliation(s)
- Gregory Barshtein
- Biochemistry Department, The Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
| | | | - Alexander Gural
- Department of Hematology, Hadassah Hebrew University Medical Center, Jerusalem, Israel
| |
Collapse
|
13
|
Nirmalraj PN, Schneider T, Felbecker A. Spatial organization of protein aggregates on red blood cells as physical biomarkers of Alzheimer's disease pathology. SCIENCE ADVANCES 2021; 7:eabj2137. [PMID: 34559561 PMCID: PMC8462905 DOI: 10.1126/sciadv.abj2137] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Accepted: 08/04/2021] [Indexed: 06/13/2023]
Abstract
Quantifying physical differences of protein aggregates implicated in Alzheimer’s disease (AD), in blood, could provide crucial information on disease stages. Here, red blood cells (RBCs) from 50 patients with neurocognitive complaints and 16 healthy individuals were profiled using an atomic force microscope (AFM). AFM measurements revealed patient age– and stage of neurocognitive disorder–dependent differences in size, shape, morphology, assembly, and prevalence of protein aggregates on RBCs, referred to as physical biomarkers. Crystals composed of fibrils were exclusively detected on RBCs for AD patients aged above 80 years. Fibril prevalence was negatively correlated with the cerebrospinal fluid (CSF) β-amyloid (Aβ) 42/40 ratio and was observed to be higher in the Aβ-positive patient category. Using a cutoff of ≥40% fibril prevalence, the CSF Aβ status was classified with 88% accuracy (sensitivity 100%, specificity 73%). The merits and challenges in integrating physical biomarkers in AD diagnosis are discussed.
Collapse
Affiliation(s)
- Peter Niraj Nirmalraj
- Transport at Nanoscale Interfaces Laboratory, Swiss Federal Laboratories for Materials Science and Technology, Dübendorf CH-8600, Switzerland
| | - Thomas Schneider
- Department of Neurology, Cantonal Hospital St. Gallen, St. Gallen CH-9007, Switzerland
| | - Ansgar Felbecker
- Department of Neurology, Cantonal Hospital St. Gallen, St. Gallen CH-9007, Switzerland
| |
Collapse
|
14
|
López-Canizales AM, Angulo-Molina A, Garibay-Escobar A, Silva-Campa E, Mendez-Rojas MA, Santacruz-Gómez K, Acosta-Elías M, Castañeda-Medina B, Soto-Puebla D, Álvarez-Bajo O, Burgara-Estrella A, Pedroza-Montero M. Nanoscale Changes on RBC Membrane Induced by Storage and Ionizing Radiation: A Mini-Review. Front Physiol 2021; 12:669455. [PMID: 34149450 PMCID: PMC8213202 DOI: 10.3389/fphys.2021.669455] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Accepted: 05/10/2021] [Indexed: 11/25/2022] Open
Abstract
The storage lesions and the irradiation of blood cellular components for medical procedures in blood banks are events that may induce nanochanges in the membrane of red blood cells (RBCs). Alterations, such as the formation of pores and vesicles, reduce flexibility and compromise the overall erythrocyte integrity. This review discusses the alterations on erythrocytic lipid membrane bilayer through their characterization by confocal scanning microscopy, Raman, scanning electron microscopy, and atomic force microscopy techniques. The interrelated experimental results may address and shed light on the correlation of biomechanical and biochemical transformations induced in the membrane and cytoskeleton of stored and gamma-irradiated RBC. To highlight the main advantages of combining these experimental techniques simultaneously or sequentially, we discuss how those outcomes observed at micro- and nanoscale cell levels are useful as biomarkers of cell aging and storage damage.
Collapse
Affiliation(s)
| | - Aracely Angulo-Molina
- Departamento de Ciencias Químico-Biológicas, Universidad de Sonora, Hermosillo, Mexico
| | | | - Erika Silva-Campa
- Departamento de Investigación en Física, Universidad de Sonora, Hermosillo, Mexico
| | - Miguel A. Mendez-Rojas
- Departamento de Ciencias Químico-Biológicas, Universidad de las Américas, Puebla, Mexico
| | | | - Mónica Acosta-Elías
- Departamento de Investigación en Física, Universidad de Sonora, Hermosillo, Mexico
| | | | - Diego Soto-Puebla
- Departamento de Investigación en Física, Universidad de Sonora, Hermosillo, Mexico
| | - Osiris Álvarez-Bajo
- Departamento de Investigación en Física, Universidad de Sonora, Hermosillo, Mexico
| | | | | |
Collapse
|
15
|
Otzen DE, Dueholm MS, Najarzadeh Z, Knowles TPJ, Ruggeri FS. In situ Sub-Cellular Identification of Functional Amyloids in Bacteria and Archaea by Infrared Nanospectroscopy. SMALL METHODS 2021; 5:e2001002. [PMID: 34927901 DOI: 10.1002/smtd.202001002] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Revised: 03/16/2021] [Indexed: 06/14/2023]
Abstract
Formation of amyloid structures is originally linked to human disease. However, amyloid materials are found extensively in the animal and bacterial world where they stabilize intra- and extra-cellular environments like biofilms or cell envelopes. To date, functional amyloids have largely been studied using optical microscopy techniques in vivo, or after removal from their biological context for higher-resolution studies in vitro. Furthermore, conventional microscopies only indirectly identify amyloids based on morphology or unspecific amyloid dyes. Here, the high chemical and spatial (≈20 nm) resolution of Infrared Nanospectroscopy (AFM-IR) to investigate functional amyloid from Escherichia coli (curli), Pseudomonas (Fap), and the Archaea Methanosaeta (MspA) in situ is exploited. It is demonstrated that AFM-IR identifies amyloid protein within single intact cells through their cross β-sheet secondary structure, which has a unique spectroscopic signature in the amide I band of protein. Using this approach, nanoscale-resolved chemical images and spectra of purified curli and Methanosaeta cell wall sheaths are provided. The results highlight significant differences in secondary structure between E. coli cells with and without curli. Taken together, these results suggest that AFM-IR is a new and powerful label-free tool for in situ investigations of the biophysical state of functional amyloid and biomolecules in general.
Collapse
Affiliation(s)
- Daniel E Otzen
- Interdisciplinary Nanoscience Center (iNANO), Aarhus University, Gustav Wieds Vej 14, Aarhus C, Aarhus, 8000, Denmark
| | - Morten S Dueholm
- Department of Chemistry and Bioscience, Aalborg University, Fredrik Bajers Vej 7H, Aalborg, 9220, Denmark
| | - Zahra Najarzadeh
- Interdisciplinary Nanoscience Center (iNANO), Aarhus University, Gustav Wieds Vej 14, Aarhus C, Aarhus, 8000, Denmark
| | - Tuomas P J Knowles
- Department of Chemistry, University of Cambridge, Cambridge, CB2 1EW, UK
- Cavendish Laboratory, University of Cambridge, Cambridge, CB30HE, UK
| | - Francesco Simone Ruggeri
- Department of Chemistry, University of Cambridge, Cambridge, CB2 1EW, UK
- Laboratory of Organic Chemistry, Wageningen University, Wageningen, WE 6703, the Netherlands
- Laboratory of Physical Chemistry, Wageningen University, Wageningen, WE 6703, the Netherlands
| |
Collapse
|
16
|
Lenzi E, Dinarelli S, Longo G, Girasole M, Mussi V. Multivariate analysis of mean Raman spectra of erythrocytes for a fast analysis of the biochemical signature of ageing. Talanta 2021; 221:121442. [PMID: 33076067 DOI: 10.1016/j.talanta.2020.121442] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 07/16/2020] [Accepted: 07/19/2020] [Indexed: 12/12/2022]
Abstract
Ageing of red blood cells (RBC) is a physiological process, fundamental to ensure a proper blood homeostasis that, in vivo, balances the production of new cells and the removal of senescent erythrocytes. A detailed characterization at the cellular level of the progression of the ageing phenomenon can reveal biological, biophysical and biochemical fingerprints for diseases related to misbalances of the cell turnover and for blood pathologies. We applied Principal Components Analysis (PCA) to mean Raman spectra of single cells at different ageing times to rapidly highlight subtle spectral differences associated with conformational and biochemical modifications. Our results demonstrate a two-step ageing process characterized by a first phase in which proteins plays a relevant role, followed by a further cellular evolution driven by alterations in the membrane lipid contribution. Moreover, we used the same approach to directly analyse relevant spectral effects associated to reduction in Haemoglobin oxygenation level and membrane fluidity induced by the ageing. The method is robust and effective, allowing to classify easily the studied cells based on their age and morphology, and consequently to evaluate the biological quality of a blood sample.
Collapse
Affiliation(s)
- E Lenzi
- Physics Department, University of Rome Tor Vergata, Rome, Italy
| | - S Dinarelli
- Institute of Structure of Matter, National Research Council, Rome, Italy
| | - G Longo
- Institute of Structure of Matter, National Research Council, Rome, Italy
| | - M Girasole
- Institute of Structure of Matter, National Research Council, Rome, Italy
| | - V Mussi
- Institute of Microelectronics and Microsystems, National Research Council, Rome, Italy.
| |
Collapse
|
17
|
Two-step process of cytoskeletal structural damage during long-term storage of packed red blood cells. BLOOD TRANSFUSION = TRASFUSIONE DEL SANGUE 2020; 19:124-134. [PMID: 33370227 DOI: 10.2450/2020.0220-20] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Accepted: 09/25/2020] [Indexed: 12/26/2022]
Abstract
BACKGROUND Storage of packed red blood cells (PRBC) for 42 days causes morphological, structural, and functional changes in the red cells. To assess the quality of stored PRBC, it is important to evaluate the main components of the product. The aim of this study was to evaluate the kinetics of the structural transformations in the cytoskeleton of red cells during long-term storage (up to 42 days). MATERIALS AND METHODS Bags of PRBC were stored with CPD/SAGM solution at +4 °C. Cytoskeletal parameters were measured on days 3, 12, 19, 21, 24, 28, 35, and 42 of storage to determine their changes. Atomic force microscopy was used to obtain images and analyse the parameters of the cytoskeletal network. As the storage time increased, a general PRBC test was performed. Membrane fixatives were not used at any stage of the preparation of the specimens for cytoskeletal imaging. RESULTS When PRBC were stored for 42 days, the main changes to the cytoskeletal mesh included rupture of filaments, merger of small pores into larger ones, a decrease of the number of pores, thickening of filaments, and an increase of membrane stiffness. A process of irreversible changes to the cytoskeleton started on days 19-21. A kinetic model of changes in the parameters of the cytoskeletal mesh with time of PRBC storage was created. DISCUSSION Two stages of impairment in cytoskeletal elements were found: rupture of filaments and clustering of protein components. The typical time of development and specifics of these stages are discussed. The consequences of the altered configuration of the cytoskeleton are also discussed. Destruction of the red cell cytoskeleton can have a negative effect on the efficacy of blood transfusion and increase the risk of post-transfusion complications. Our findings can be used in clinical medicine to evaluate the quality of PRBC for blood transfusion as well as for studies of the molecular organisation of red cells undergoing various types of physical and chemical treatment.
Collapse
|
18
|
Loyola-Leyva A, Loyola-Rodríguez JP, Terán-Figueroa Y, Camacho-Lopez S, González FJ, Barquera S. Application of atomic force microscopy to assess erythrocytes morphology in early stages of diabetes. A pilot study. Micron 2020; 141:102982. [PMID: 33227627 DOI: 10.1016/j.micron.2020.102982] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Revised: 11/04/2020] [Accepted: 11/05/2020] [Indexed: 10/23/2022]
Abstract
The study aim was to assess the application of atomic force microscopy (AFM) to evaluate erythrocyte morphology in early stages of type 2 diabetes mellitus, and the association with biochemical, anthropometric, diet, and physical activity indicators. This was a pilot cross-sectional study with four groups: healthy individuals, people with prediabetes (PDG), metabolic syndrome (MSG), and diabetes mellitus group (DMG). Blood samples were obtained to assess the erythrocyte morphology and biochemical parameters. Anthropometrical measurements were taken. Besides, a diet and a physical activity questionnaire were applied. The evaluation of the erythrocyte morphology through the AFM showed quantitative and qualitative alterations in the cell's form and size. Compared to the healthy group, the PDG had a reduction in height (-0.80 μm, p < 0.05), and an increase in axial ratio (-0.09 μm, p < 0.05); the MSG had lower concave depth (-0.19 μm, p < 0.05); and the DMG had a decreased height (-0.46 μm, p < 0.05) and concave depth (-0.29 μm, p < 0.05), and higher axial ratio (+0.08 μm) and thickness (+0.32 μm, p < 0.05). The PDG vs. DMG had a statistically significant difference in concave depth (+0.23 μm, p < 0.05) and thickness (-0.26 μm, p < 0.05). The MSG was different than the DMG in variables like axial ratio (-0.05 μm) and thickness (-0.25 μm). Besides, higher values of age, HbA1c, triglycerides, body mass index, waist-to-hip ratio, and physical inactivity were associated with altered erythrocyte morphology. AFM is a promising instrument to assess early but subtle changes in erythrocyte morphology (height, axial ratio, concave depth, thickness) before significant pathological conditions, such as type 2 diabetes mellitus. HbA1c might have a major effect in altered morphology, vs. metabolic parameters like high triglycerides, body mass index, waist, and physical inactivity.
Collapse
Affiliation(s)
- Alejandra Loyola-Leyva
- Coordination for Innovation and Application of Science and Technology (Coordinación para la Innovación y Aplicación de la Ciencia y Tecnología, CIACyT), Avenida Sierra Leona 550, Lomas 2ª sección, 78210, San Luis Potosí, S.L.P, Mexico.
| | - Juan Pablo Loyola-Rodríguez
- Faculty of Dentistry, Popular Autonomous University of the State of Puebla, 21 sur 1103, Barrio de Santiago, 72410, Puebla, Puebla, Mexico.
| | - Yolanda Terán-Figueroa
- Faculty of Nursing and Nutrition, Autonomous University of San Luis Potosí (Universidad Autónoma de San Luis Potosí), Lateral Av. Salvador Nava, Lomas, 78290, San Luis Potosí, S.L.P, Mexico.
| | - Santiago Camacho-Lopez
- Department of Optics, Center for Scientific Research and Higher Education of Ensenada (Centro de Investigación Científica y de Educación Superior de Ensenada, CICESE), Carretera Ensenada-Tijuana 3918. Zona Playitas, Ensenada, Baja California, Mexico.
| | - Francisco Javier González
- Coordination for Innovation and Application of Science and Technology (Coordinación para la Innovación y Aplicación de la Ciencia y Tecnología, CIACyT), Avenida Sierra Leona 550, Lomas 2ª sección, 78210, San Luis Potosí, S.L.P, Mexico.
| | - Simón Barquera
- Center for Nutrition and Health Research. National Institute of Public Health. Address: Av. Universidad No.655 Col Sta. Ma. Ahuacatitlán. Cuernavaca, Morelos, Mexico.
| |
Collapse
|
19
|
Sherstyukova E, Chernysh A, Moroz V, Kozlova E, Sergunova V, Gudkova O. The relationship of membrane stiffness, cytoskeleton structure and storage time of pRBCs. Vox Sang 2020; 116:405-415. [PMID: 33103792 DOI: 10.1111/vox.13017] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Revised: 09/10/2020] [Accepted: 09/22/2020] [Indexed: 12/16/2022]
Abstract
BACKGROUND AND OBJECTIVES In clinical practice, it has been shown that transfusion of packed red blood cells (pRBCs) with late shelf life increases the risk of post-transfusion complications. OBJECTIVE To study relationship of membrane stiffness, cytoskeleton structure and storage time of pRBCs. MATERIALS AND METHODS pRBCs were processed and stored according to blood bank procedure, for 42 days, at +4°C; pRBC samples were taken on days 3, 12, 19, 21, 24, 28, 35 and 42. Cytoskeleton images and membrane stiffness were studied using atomic force microscope. RESULTS In the course of the pRBC storage, the cytoskeleton network configuration underwent structural changes. Simultaneously, pRBC membrane stiffness was increasing, with the correlation coefficient 0·88. Until 19 days, the stiffness grew slowly, in 19-24 days there occurred a transition period, after which its growth rate was three times higher than the initial. A chain of pathological processes developed in pRBC during long storage: pH reduction (linked to increased oxidative stress), then cytoskeletal destruction and an associated increase in pRBC membrane stiffness. CONCLUSION During prolonged storage of pRBCs and their acidification, there is a progression of pRBC cytoskeletal changes and associated increase of membrane stiffness, observed to increase in rate after days 19-24. Mutual measurements of cytoskeletal integrity and membrane stiffness may be useful quality assessment tool to study the molecular mechanisms of RBC structural degradation during storage.
Collapse
Affiliation(s)
- Ekaterina Sherstyukova
- Federal Research and Clinical Center of Intensive Care Medicine and Rehabilitology, V.A. Negovsky Research Institute of General Reanimatology, Moscow, Russia.,Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia
| | - Aleksandr Chernysh
- Federal Research and Clinical Center of Intensive Care Medicine and Rehabilitology, V.A. Negovsky Research Institute of General Reanimatology, Moscow, Russia.,Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia
| | - Viktor Moroz
- Federal Research and Clinical Center of Intensive Care Medicine and Rehabilitology, V.A. Negovsky Research Institute of General Reanimatology, Moscow, Russia
| | - Elena Kozlova
- Federal Research and Clinical Center of Intensive Care Medicine and Rehabilitology, V.A. Negovsky Research Institute of General Reanimatology, Moscow, Russia.,Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia
| | - Viktoria Sergunova
- Federal Research and Clinical Center of Intensive Care Medicine and Rehabilitology, V.A. Negovsky Research Institute of General Reanimatology, Moscow, Russia
| | - Olga Gudkova
- Federal Research and Clinical Center of Intensive Care Medicine and Rehabilitology, V.A. Negovsky Research Institute of General Reanimatology, Moscow, Russia
| |
Collapse
|
20
|
Fellows AP, Casford MTL, Davies PB, Gibson JS, Brewin JN, Rees DC. Nanoscale adhesion profiling and membrane characterisation in sickle cell disease using hybrid atomic force microscopy-IR spectroscopy. Colloids Surf B Biointerfaces 2020; 197:111383. [PMID: 33039752 DOI: 10.1016/j.colsurfb.2020.111383] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Revised: 08/13/2020] [Accepted: 09/24/2020] [Indexed: 10/23/2022]
Abstract
Sickle cell disease (SCD) presents a significant global health problem. At present there is no effective treatment, with most being supportive for its associated complications such as the vaso-occlusive crises that result from increased cell adhesion. Hypoxic sickle cells have previously shown greater phosphatidylserine (PS) exposure and oxidative damage, as well as being notably "stickier" suggesting that increased cell cohesion and adhesion to the blood vessel endothelium is a possible mechanism for vaso-occlusion. The present work uses the hybrid technique of atomic force microscopy nano-infrared spectroscopy (AFM-IR) to probe changes to the coefficient of friction and C-O IR intensity in SCD on a nanoscale for dried red blood cells (RBCs) fixed under conditions of hypoxia and correlates these observations with adhesive interactions at the membrane. Using functionalised AFM tips, it has been possible to probe adhesive interactions between hydrophilic and hydrophobic moieties exposed at the surface of the dried RBCs fixed under different oxygenation states and for different cell genotypes. The results are consistent with greater PS-exposure and oxidative damage in hypoxic sickle cells, as previously proposed, and also show strong correlation between localised oxidative damage and increased adhesion. A mechanistic explanation involving significant lipid tail disruption as a result of oxidative action, in combination with differing concentrations of externalised PS lipids, is proposed to explain the observed adhesion behaviour of each type of cell.
Collapse
Affiliation(s)
- A P Fellows
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, UK
| | - M T L Casford
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, UK
| | - P B Davies
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, UK.
| | - J S Gibson
- Department of Veterinary Medicine, Madingley Road, Cambridge, CB3 0ES, UK.
| | - J N Brewin
- Department of Paediatric Haematology, King's College Hospital, London, SE5 9RS, UK
| | - D C Rees
- Department of Paediatric Haematology, King's College Hospital, London, SE5 9RS, UK
| |
Collapse
|
21
|
Kaczmarska M, Grosicki M, Bulat K, Mardyla M, Szczesny-Malysiak E, Blat A, Dybas J, Sacha T, Marzec KM. Temporal sequence of the human RBCs' vesiculation observed in nano-scale with application of AFM and complementary techniques. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2020; 28:102221. [PMID: 32438105 DOI: 10.1016/j.nano.2020.102221] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Revised: 02/27/2020] [Accepted: 04/26/2020] [Indexed: 12/22/2022]
Abstract
Based on the multimodal characterization of human red blood cells (RBCs), the link between the storage-related sequence of the nanoscale changes in RBC membranes in the relation to their biochemical profile as well as mechanical and functional properties was presented. On the background of the accumulation of RBCs waste products, programmed cell death and impaired rheological properties, progressive alterations in the RBC membranes including changes in their height and diameter as well as the in situ characterization of RBC-derived microparticles (RMPs) on the RBCs surface were presented. The advantage of atomic force microscopy (AFM) in RMPs visualization, even at the very early stage of vesiculation, was shown based on the results revealed by other reference techniques. The nanoscale characterization of RMPs was correlated with a decrease in cholesterol and triglycerides levels in the RBC membranes, proving the link between the lipids leakage from RBCs and the process of vesiculation.
Collapse
Affiliation(s)
- Magdalena Kaczmarska
- Jagiellonian Center for Experimental Therapeutics, Jagiellonian University, Krakow, Poland
| | - Marek Grosicki
- Jagiellonian Center for Experimental Therapeutics, Jagiellonian University, Krakow, Poland
| | - Katarzyna Bulat
- Jagiellonian Center for Experimental Therapeutics, Jagiellonian University, Krakow, Poland
| | - Mateusz Mardyla
- Jagiellonian Center for Experimental Therapeutics, Jagiellonian University, Krakow, Poland; Faculty of Motor Rehabilitation, University of Physical Education, Krakow, Poland
| | - Ewa Szczesny-Malysiak
- Jagiellonian Center for Experimental Therapeutics, Jagiellonian University, Krakow, Poland
| | - Aneta Blat
- Faculty of Chemistry, Jagiellonian University, Krakow, Poland
| | - Jakub Dybas
- Jagiellonian Center for Experimental Therapeutics, Jagiellonian University, Krakow, Poland
| | - Tomasz Sacha
- Chair and Department of Hematology, Jagiellonian University Hospital, Krakow, Poland
| | - Katarzyna M Marzec
- Jagiellonian Center for Experimental Therapeutics, Jagiellonian University, Krakow, Poland.
| |
Collapse
|
22
|
Modelling of Red Blood Cell Morphological and Deformability Changes during In-Vitro Storage. APPLIED SCIENCES-BASEL 2020. [DOI: 10.3390/app10093209] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Storage lesion is a critical issue facing transfusion treatments, and it adversely affects the quality and viability of stored red blood cells (RBCs). RBC deformability is a key indicator of cell health. Deformability measurements of each RBC unit are a key challenge in transfusion medicine research and clinical haematology. In this paper, a numerical study, inspired from the previous research for RBC deformability and morphology predictions, is conducted for the first time, to investigate the deformability and morphology characteristics of RBCs undergoing storage lesion. This study investigates the evolution of the cell shape factor, elongation index and membrane spicule details, where applicable, of discocyte, echinocyte I, echinocyte II, echinocyte III and sphero-echinocyte morphologies during 42 days of in-vitro storage at 4 °C in saline-adenine-glucose-mannitol (SAGM). Computer simulations were performed to investigate the influence of storage lesion-induced membrane structural defects on cell deformability and its recoverability during optical tweezers stretching deformations. The predicted morphology and deformability indicate decreasing quality and viability of stored RBCs undergoing storage lesion. The loss of membrane structural integrity due to the storage lesion further degrades the cell deformability and recoverability during mechanical deformations. This numerical approach provides a potential framework to study the RBC deformation characteristics under varying pathophysiological conditions for better diagnostics and treatments.
Collapse
|
23
|
Kozlova E, Chernysh A, Sergunova V, Manchenko E, Moroz V, Kozlov A. Conformational Distortions of the Red Blood Cell Spectrin Matrix Nanostructure in Response to Temperature Changes In Vitro. SCANNING 2019; 2019:8218912. [PMID: 31198487 PMCID: PMC6526551 DOI: 10.1155/2019/8218912] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2018] [Revised: 02/18/2019] [Accepted: 02/27/2019] [Indexed: 05/09/2023]
Abstract
The spectrin matrix is a structural element of red blood cells (RBCs). As such, it affects RBC morphology, membrane deformability, nanostructure, stiffness, and, ultimately, the rheological properties of blood. However, little is known about how temperature affects the spectrin matrix. In this study, the nanostructure of the spectrin network was recorded by atomic force microscopy. We describe how the nanostructure of the RBC spectrin matrix changes from a regular network to a chaotic pattern following an increase in temperature from 20 to 50°C. At 20-37°С, the spectrin network formed a regular structure with dimensions of typically 150 ± 60 nm. At 42-43°С, 83% of the spectrin network assumed an irregular structure. Finally, at 49-50°С the chaotic pattern was observed, and no quantitative estimates of the spectrin structure's parameters could be made. These results can be useful for biophysical studies on the destruction of the spectrin network under pathological conditions, as well as for investigating cell morphology and blood rheology in different diseases.
Collapse
Affiliation(s)
- Elena Kozlova
- V.A. Negovsky Research Institute of General Reanimatology, Federal Research and Clinical Center of Intensive Care Medicine and Rehabilitology, 107031, 25 Petrovka St., Build. 2, Moscow, Russia
- Sechenov First Moscow State Medical University (Sechenov University), 119991, 2-4 Bolshaya Pirogovskaya St, Moscow, Russia
| | - Aleksandr Chernysh
- V.A. Negovsky Research Institute of General Reanimatology, Federal Research and Clinical Center of Intensive Care Medicine and Rehabilitology, 107031, 25 Petrovka St., Build. 2, Moscow, Russia
- Sechenov First Moscow State Medical University (Sechenov University), 119991, 2-4 Bolshaya Pirogovskaya St, Moscow, Russia
| | - Viktoria Sergunova
- V.A. Negovsky Research Institute of General Reanimatology, Federal Research and Clinical Center of Intensive Care Medicine and Rehabilitology, 107031, 25 Petrovka St., Build. 2, Moscow, Russia
| | - Ekaterina Manchenko
- V.A. Negovsky Research Institute of General Reanimatology, Federal Research and Clinical Center of Intensive Care Medicine and Rehabilitology, 107031, 25 Petrovka St., Build. 2, Moscow, Russia
- Sechenov First Moscow State Medical University (Sechenov University), 119991, 2-4 Bolshaya Pirogovskaya St, Moscow, Russia
| | - Viktor Moroz
- V.A. Negovsky Research Institute of General Reanimatology, Federal Research and Clinical Center of Intensive Care Medicine and Rehabilitology, 107031, 25 Petrovka St., Build. 2, Moscow, Russia
| | - Aleksandr Kozlov
- Sechenov First Moscow State Medical University (Sechenov University), 119991, 2-4 Bolshaya Pirogovskaya St, Moscow, Russia
| |
Collapse
|
24
|
Park HS, Eldridge WJ, Yang WH, Crose M, Ceballos S, Roback JD, Chi JTA, Wax A. Quantitative phase imaging of erythrocytes under microfluidic constriction in a high refractive index medium reveals water content changes. MICROSYSTEMS & NANOENGINEERING 2019; 5:63. [PMID: 31814994 PMCID: PMC6885519 DOI: 10.1038/s41378-019-0113-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2018] [Revised: 05/06/2019] [Accepted: 10/15/2019] [Indexed: 05/19/2023]
Abstract
Changes in the deformability of red blood cells can reveal a range of pathologies. For example, cells which have been stored for transfusion are known to exhibit progressively impaired deformability. Thus, this aspect of red blood cells has been characterized previously using a range of techniques. In this paper, we show a novel approach for examining the biophysical response of the cells with quantitative phase imaging. Specifically, optical volume changes are observed as the cells transit restrictive channels of a microfluidic chip in a high refractive index medium. The optical volume changes indicate an increase of cell's internal density, ostensibly due to water displacement. Here, we characterize these changes over time for red blood cells from two subjects. By storage day 29, a significant decrease in the magnitude of optical volume change in response to mechanical stress was witnessed. The exchange of water with the environment due to mechanical stress is seen to modulate with storage time, suggesting a potential means for studying cell storage.
Collapse
Affiliation(s)
- Han Sang Park
- Department of Biomedical Engineering, Duke University, Durham, NC 27708 USA
| | - Will J. Eldridge
- Department of Biomedical Engineering, Duke University, Durham, NC 27708 USA
| | - Wen-Hsuan Yang
- Department of Molecular Genetics and Microbiology, Duke University, Durham, NC 27708 USA
- Duke Center for Genomic and Computational Biology, Duke University, Durham, NC 27708 USA
- Department of Biochemistry, Duke University, Durham, NC 27708 USA
| | - Michael Crose
- Department of Biomedical Engineering, Duke University, Durham, NC 27708 USA
| | - Silvia Ceballos
- Department of Biomedical Engineering, Duke University, Durham, NC 27708 USA
| | - John D. Roback
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, GA 30322 USA
| | - Jen-Tsan Ashley Chi
- Department of Molecular Genetics and Microbiology, Duke University, Durham, NC 27708 USA
- Duke Center for Genomic and Computational Biology, Duke University, Durham, NC 27708 USA
| | - Adam Wax
- Department of Biomedical Engineering, Duke University, Durham, NC 27708 USA
| |
Collapse
|
25
|
Yoshida T, Prudent M, D’Alessandro A. Red blood cell storage lesion: causes and potential clinical consequences. BLOOD TRANSFUSION = TRASFUSIONE DEL SANGUE 2019; 17:27-52. [PMID: 30653459 PMCID: PMC6343598 DOI: 10.2450/2019.0217-18] [Citation(s) in RCA: 149] [Impact Index Per Article: 24.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Received: 11/07/2018] [Accepted: 12/06/2018] [Indexed: 11/21/2022]
Abstract
Red blood cells (RBCs) are a specialised organ that enabled the evolution of multicellular organisms by supplying a sufficient quantity of oxygen to cells that cannot obtain oxygen directly from ambient air via diffusion, thereby fueling oxidative phosphorylation for highly efficient energy production. RBCs have evolved to optimally serve this purpose by packing high concentrations of haemoglobin in their cytosol and shedding nuclei and other organelles. During their circulatory lifetimes in humans of approximately 120 days, RBCs are poised to transport oxygen by metabolic/redox enzymes until they accumulate damage and are promptly removed by the reticuloendothelial system. These elaborate evolutionary adaptions, however, are no longer effective when RBCs are removed from the circulation and stored hypothermically in blood banks, where they develop storage-induced damages ("storage lesions") that accumulate over the shelf life of stored RBCs. This review attempts to provide a comprehensive view of the literature on the subject of RBC storage lesions and their purported clinical consequences by incorporating the recent exponential growth in available data obtained from "omics" technologies in addition to that published in more traditional literature. To summarise this vast amount of information, the subject is organised in figures with four panels: i) root causes; ii) RBC storage lesions; iii) physiological effects; and iv) reported outcomes. The driving forces for the development of the storage lesions can be roughly classified into two root causes: i) metabolite accumulation/depletion, the target of various interventions (additive solutions) developed since the inception of blood banking; and ii) oxidative damages, which have been reported for decades but not addressed systemically until recently. Downstream physiological consequences of these storage lesions, derived mainly by in vitro studies, are described, and further potential links to clinical consequences are discussed. Interventions to postpone the onset and mitigate the extent of the storage lesion development are briefly reviewed. In addition, we briefly discuss the results from recent randomised controlled trials on the age of stored blood and clinical outcomes of transfusion.
Collapse
Affiliation(s)
| | - Michel Prudent
- Laboratoire de Recherche sur les Produits Sanguins, Transfusion Interrégionale CRS, Epalinges, Switzerland
- Faculté de Biologie et de Médicine, Université de Lausanne, Lausanne, Switzerland
| | - Angelo D’Alessandro
- Department of Biochemistry and Molecular Genetics University of Colorado, Denver, CO, United States of America
| |
Collapse
|
26
|
Abonnenc M, Tissot JD, Prudent M. General overview of blood products in vitro quality: Processing and storage lesions. Transfus Clin Biol 2018; 25:269-275. [PMID: 30241785 DOI: 10.1016/j.tracli.2018.08.162] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Accepted: 08/29/2018] [Indexed: 12/12/2022]
Abstract
Blood products are issued from blood collection. Collected blood is immediately mixed with anticoagulant solutions that immediately induce chemical and/or biochemical modifications. Collected blood is then transformed into different blood products according to various steps of fabrication. All these steps induce either reversible or irreversible "preparation-related" lesions that combine with "storage-related" lesions. This short paper aims to provide an overview of the alterations that are induced by the "non-physiological" processes used to prepare blood products that are used in clinical practice.
Collapse
Affiliation(s)
- Mélanie Abonnenc
- Transfusion interrégionale CRS, laboratoire de recherche sur les produits sanguins, route de la Corniche 2, 1066 Epalinges, Switzerland
| | - Jean-Daniel Tissot
- Transfusion interrégionale CRS, laboratoire de recherche sur les produits sanguins, route de la Corniche 2, 1066 Epalinges, Switzerland; Faculté de biologie et de médecine, université de Lausanne, Lausanne, Switzerland
| | - Michel Prudent
- Transfusion interrégionale CRS, laboratoire de recherche sur les produits sanguins, route de la Corniche 2, 1066 Epalinges, Switzerland; Faculté de biologie et de médecine, université de Lausanne, Lausanne, Switzerland.
| |
Collapse
|
27
|
Reshetnyak VI, Zhuravel SV, Kuznetsova NK, Pisarev VМ, Klychnikova EV, Syutkin VЕ, Reshetnyak ТM. The System of Blood Coagulation in Normal and in Liver Transplantation (Review). GENERAL REANIMATOLOGY 2018; 14:58-84. [DOI: 10.15360/1813-9779-2018-5-58-84] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The review dwells on the problem of hemostatic disorders in patients undergoing liver transplantation and their correction in the perioperative period. The physiology of the hemostatic system, disorders of the blood coagulation system in patients at various stages of liver transplantation, correction of hemostatic disorders during and after orthotopic liver transplantation are discussed. Liver transplantation is performed in patients with liver diseases in the terminal stage of liver failure. At the same time, changes in the hemostatic system of these patients pose a significant risk of developing bleeding and/or thrombosis during and after liver transplantation. The hypothesis is suggested that the personalized correction of hemostasis disorder in liver transplantation should be based on considerating the nosological forms of the liver damage, mechanisms of development of recipient’s hemostatic disorders, and the stage of the surgery.
Collapse
Affiliation(s)
- V. I. Reshetnyak
- V. A. Negovsky Research Institute of General Reanimatology, Federal Research and Clinical Center of Intensive Care Medicine and Rehabilitology
| | - S. V. Zhuravel
- N.V. Sklifosovsky Research Institute of Emergency Care, Moscow Healthcare Department
| | - N. K. Kuznetsova
- N.V. Sklifosovsky Research Institute of Emergency Care, Moscow Healthcare Department
| | - V. М. Pisarev
- V. A. Negovsky Research Institute of General Reanimatology, Federal Research and Clinical Center of Intensive Care Medicine and Rehabilitology
| | - E. V. Klychnikova
- N.V. Sklifosovsky Research Institute of Emergency Care, Moscow Healthcare Department
| | - V. Е. Syutkin
- N.V. Sklifosovsky Research Institute of Emergency Care, Moscow Healthcare Department
| | | |
Collapse
|
28
|
Ruggeri FS, Marcott C, Dinarelli S, Longo G, Girasole M, Dietler G, Knowles TPJ. Identification of Oxidative Stress in Red Blood Cells with Nanoscale Chemical Resolution by Infrared Nanospectroscopy. Int J Mol Sci 2018; 19:E2582. [PMID: 30200270 PMCID: PMC6163177 DOI: 10.3390/ijms19092582] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2018] [Revised: 08/23/2018] [Accepted: 08/27/2018] [Indexed: 12/18/2022] Open
Abstract
During their lifespan, Red blood cells (RBC), due to their inability to self-replicate, undergo an ageing degradation phenomenon. This pathway, both in vitro and in vivo, consists of a series of chemical and morphological modifications, which include deviation from the biconcave cellular shape, oxidative stress, membrane peroxidation, lipid content decrease and uncoupling of the membrane-skeleton from the lipid bilayer. Here, we use the capabilities of atomic force microscopy based infrared nanospectroscopy (AFM-IR) to study and correlate, with nanoscale resolution, the morphological and chemical modifications that occur during the natural degradation of RBCs at the subcellular level. By using the tip of an AFM to detect the photothermal expansion of RBCs, it is possible to obtain nearly two orders of magnitude higher spatial resolution IR spectra, and absorbance images than can be obtained on diffraction-limited commercial Fourier-transform Infrared (FT-IR) microscopes. Using this approach, we demonstrate that we can identify localized sites of oxidative stress and membrane peroxidation on individual RBC, before the occurrence of neat morphological changes in the cellular shape.
Collapse
Affiliation(s)
| | - Curtis Marcott
- Department of Materials Science and Engineering, University of Delaware, Newark, DE 19716, USA.
- Light Light Solutions, Athens, GA 30608, USA.
| | - Simone Dinarelli
- Institute of Structural Matter, ISM-CNR, via del Fosso del Cavaliere 100, 00133 Rome, Italy.
| | - Giovanni Longo
- Institute of Structural Matter, ISM-CNR, via del Fosso del Cavaliere 100, 00133 Rome, Italy.
| | - Marco Girasole
- Institute of Structural Matter, ISM-CNR, via del Fosso del Cavaliere 100, 00133 Rome, Italy.
| | - Giovanni Dietler
- Laboratoire de Physique de la Matière Vivante, Ecole Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland.
| | - Tuomas P J Knowles
- Department of Chemistry, Cambridge University, Cambridge CB21EW, UK.
- Cavendish Laboratory, Department of Physics, University of Cambridge, Cambridge CB3 0HE, UK.
| |
Collapse
|
29
|
Dinarelli S, Longo G, Krumova S, Todinova S, Danailova A, Taneva SG, Lenzi E, Mussi V, Girasole M. Insights into the morphological pattern of erythrocytes' aging: Coupling quantitative AFM data to microcalorimetry and Raman spectroscopy. J Mol Recognit 2018; 31:e2732. [PMID: 29876977 DOI: 10.1002/jmr.2732] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2017] [Revised: 05/02/2018] [Accepted: 05/02/2018] [Indexed: 01/11/2023]
Abstract
Erythrocytes (RBCs) constitute a very interesting class of cells both for their physiological function and for a variety of peculiarities. Due to their exceptionally strong relationship with the environment, the morphology and nanoscale characteristics of these cells can reveal their biochemical status and structural integrity. Among the possible subjects of investigations, the RBCs' ageing is of the utmost importance. This is a fundamental phenomenon that, in physiological conditions, triggers the cell turnover and ensures the blood homeostasis. With these premises, in recent years, we have presented an atomic force microscopy-based methodology to characterize the patterns of RBC ageing from the morphological point of view. In the present work, we used an ageing protocol more similar to the physiological conditions and we used differential scanning calorimetry and atomic force microscopy to probe the cross correlation between important structural and functional proteins. We also assessed the role played by fundamental structural and membrane proteins in the development of the most relevant morphological intermediates observed along the ageing. Furthermore, we coupled the morphological ageing patterns to the (bio)chemical alterations detected by Raman spectroscopy. This allowed identifying the chronology of the ageing morphologies and the metabolic pathways most involved in their development. As a whole, the present study provides the base to correlate specific molecular alterations to the development of structural anomalies, and these latter to the functional status of blood cells.
Collapse
Affiliation(s)
- S Dinarelli
- Institute for the Structure of Matter (ISM-CNR), Rome, Italy
| | - G Longo
- Institute for the Structure of Matter (ISM-CNR), Rome, Italy
| | - S Krumova
- Institute of Biophysics and Biomedical Engineering, Bulgarian Academy of Sciences, Sofia, Bulgaria
| | - S Todinova
- Institute of Biophysics and Biomedical Engineering, Bulgarian Academy of Sciences, Sofia, Bulgaria
| | - A Danailova
- Institute of Biophysics and Biomedical Engineering, Bulgarian Academy of Sciences, Sofia, Bulgaria
| | - S G Taneva
- Institute of Biophysics and Biomedical Engineering, Bulgarian Academy of Sciences, Sofia, Bulgaria
| | - E Lenzi
- Physics Department, University of Rome Tor Vergata, Rome, Italy
| | - V Mussi
- Institute of Microelectronics and Microsystems (IMM-CNR), Rome, Italy
| | - M Girasole
- Institute for the Structure of Matter (ISM-CNR), Rome, Italy
| |
Collapse
|
30
|
Roussel C, Monnier S, Dussiot M, Farcy E, Hermine O, Le Van Kim C, Colin Y, Piel M, Amireault P, Buffet PA. Fluorescence Exclusion: A Simple Method to Assess Projected Surface, Volume and Morphology of Red Blood Cells Stored in Blood Bank. Front Med (Lausanne) 2018; 5:164. [PMID: 29900172 PMCID: PMC5989133 DOI: 10.3389/fmed.2018.00164] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2018] [Accepted: 05/08/2018] [Indexed: 12/26/2022] Open
Abstract
Red blood cells (RBC) ability to circulate is closely related to their surface area-to-volume ratio. A decrease in this ratio induces a decrease in RBC deformability that can lead to their retention and elimination in the spleen. We recently showed that a subpopulation of “small RBC” with reduced projected surface area accumulated upon storage in blood bank concentrates, but data on the volume of these altered RBC are lacking. So far, single cell measurement of RBC volume has remained a challenging task achieved by a few sophisticated methods some being subject to potential artifacts. We aimed to develop a reproducible and ergonomic method to assess simultaneously RBC volume and morphology at the single cell level. We adapted the fluorescence exclusion measurement of volume in nucleated cells to the measurement of RBC volume. This method requires no pre-treatment of the cell and can be performed in physiological or experimental buffer. In addition to RBC volume assessment, brightfield images enabling a precise definition of the morphology and the measurement of projected surface area can be generated simultaneously. We first verified that fluorescence exclusion is precise, reproducible and can quantify volume modifications following morphological changes induced by heating or incubation in non-physiological medium. We then used the method to characterize RBC stored for 42 days in SAG-M in blood bank conditions. Simultaneous determination of the volume, projected surface area and morphology allowed to evaluate the surface area-to-volume ratio of individual RBC upon storage. We observed a similar surface area-to-volume ratio in discocytes (D) and echinocytes I (EI), which decreased in EII (7%) and EIII (24%), sphero-echinocytes (SE; 41%) and spherocytes (S; 47%). If RBC dimensions determine indeed the ability of RBC to cross the spleen, these modifications are expected to induce the rapid splenic entrapment of the most morphologically altered RBC (EIII, SE, and S) and further support the hypothesis of a rapid clearance of the “small RBC” subpopulation by the spleen following transfusion.
Collapse
Affiliation(s)
- Camille Roussel
- Biologie Intégrée du Globule Rouge UMR_S1134, Institut National de la Santé et de la Recherche Médicale, Université Paris Diderot, Sorbonne Paris Cité, Université de La Réunion, Université des Antilles, Paris, France.,Institut National de la Transfusion Sanguine, Paris, France.,Laboratoire d'Excellence GR-Ex, Paris, France.,Université Paris Descartes, Paris, France.,Laboratory of Cellular and Molecular Mechanisms of Hematological Disorders and Therapeutic Implications U1163, Centre National de la Recherche Scientifique ERL 8254, Institut National de la Santé et de la Recherche Médicale, Université Paris Descartes, Sorbonne Paris Cité, Paris, France
| | - Sylvain Monnier
- Institut Curie, Centre National de la Recherche Scientifique, UMR 144, PSL Research University, Paris, France
| | - Michael Dussiot
- Laboratoire d'Excellence GR-Ex, Paris, France.,Laboratory of Cellular and Molecular Mechanisms of Hematological Disorders and Therapeutic Implications U1163, Centre National de la Recherche Scientifique ERL 8254, Institut National de la Santé et de la Recherche Médicale, Université Paris Descartes, Sorbonne Paris Cité, Paris, France
| | | | - Olivier Hermine
- Laboratoire d'Excellence GR-Ex, Paris, France.,Université Paris Descartes, Paris, France.,Laboratory of Cellular and Molecular Mechanisms of Hematological Disorders and Therapeutic Implications U1163, Centre National de la Recherche Scientifique ERL 8254, Institut National de la Santé et de la Recherche Médicale, Université Paris Descartes, Sorbonne Paris Cité, Paris, France.,Assistance Publique des Hôpitaux de Paris, Paris, France
| | - Caroline Le Van Kim
- Biologie Intégrée du Globule Rouge UMR_S1134, Institut National de la Santé et de la Recherche Médicale, Université Paris Diderot, Sorbonne Paris Cité, Université de La Réunion, Université des Antilles, Paris, France.,Institut National de la Transfusion Sanguine, Paris, France.,Laboratoire d'Excellence GR-Ex, Paris, France
| | - Yves Colin
- Biologie Intégrée du Globule Rouge UMR_S1134, Institut National de la Santé et de la Recherche Médicale, Université Paris Diderot, Sorbonne Paris Cité, Université de La Réunion, Université des Antilles, Paris, France.,Institut National de la Transfusion Sanguine, Paris, France.,Laboratoire d'Excellence GR-Ex, Paris, France
| | - Matthieu Piel
- Institut Curie, Centre National de la Recherche Scientifique, UMR 144, PSL Research University, Paris, France.,Institut Pierre-Gilles de Gennes, PSL Research University, Paris, France
| | - Pascal Amireault
- Biologie Intégrée du Globule Rouge UMR_S1134, Institut National de la Santé et de la Recherche Médicale, Université Paris Diderot, Sorbonne Paris Cité, Université de La Réunion, Université des Antilles, Paris, France.,Institut National de la Transfusion Sanguine, Paris, France.,Laboratoire d'Excellence GR-Ex, Paris, France.,Laboratory of Cellular and Molecular Mechanisms of Hematological Disorders and Therapeutic Implications U1163, Centre National de la Recherche Scientifique ERL 8254, Institut National de la Santé et de la Recherche Médicale, Université Paris Descartes, Sorbonne Paris Cité, Paris, France
| | - Pierre A Buffet
- Biologie Intégrée du Globule Rouge UMR_S1134, Institut National de la Santé et de la Recherche Médicale, Université Paris Diderot, Sorbonne Paris Cité, Université de La Réunion, Université des Antilles, Paris, France.,Institut National de la Transfusion Sanguine, Paris, France.,Laboratoire d'Excellence GR-Ex, Paris, France.,Université Paris Descartes, Paris, France.,Assistance Publique des Hôpitaux de Paris, Paris, France
| |
Collapse
|
31
|
Kozlova E, Chernysh A, Sergunova V, Gudkova O, Manchenko E, Kozlov A. Atomic force microscopy study of red blood cell membrane nanostructure during oxidation-reduction processes. J Mol Recognit 2018; 31:e2724. [PMID: 29740886 DOI: 10.1002/jmr.2724] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2017] [Revised: 03/07/2018] [Accepted: 04/04/2018] [Indexed: 02/06/2023]
Abstract
The morphology and functional state of red blood cells (RBCs) mainly depends on the configuration of the spectrin network, which can be broken under the influence of intoxication because of oxidation processes in the cells. Measurement of these processes is a complex problem. The most suitable and prospective method that resolves this problem is atomic force microscopy (AFM). We used AFM to study the changes in the spectrin matrix and RBC morphology during oxidation processes caused by ultraviolet (UV) irradiation in RBC suspension. The number of discocytes decreased from 98% (in control) to 12%. We obtained AFM images of the spectrin matrix in RBC ghosts. Atomic force microscopy allows for the direct observation and quantitative measurement of the disturbances in the structure of the spectrin matrix during oxidation processes in RBCs. The typical section size of the spectrin network changed from approximately 80 to 200 nm (in control) to 600 nm and even to 1000 nm after UV irradiation. An AFM study showed that incubation of RBCs with Cytoflavin® after UV irradiation preserved the forms of RBCs almost at control levels; 89% of the cells remained as discocytes. To quantify the intensity of the oxidation-reduction processes, the percentage of haemoglobin derivatives was measured. The content of methaemoglobin varied in the range of 1% to 70% during the experiments. These evidence-based studies are important for the fundamental research of interactions during redox processes in RBCs at the molecular level.
Collapse
Affiliation(s)
- E Kozlova
- Federal Research and Clinical Center of Intensive Care Medicine and Rehabilitology, V.A. Negovsky Scientific Research Institute of General Reanimatology, Moscow, Russian Federation.,I.M. Sechenov First Moscow State Medical University, Moscow, Russian Federation
| | - A Chernysh
- Federal Research and Clinical Center of Intensive Care Medicine and Rehabilitology, V.A. Negovsky Scientific Research Institute of General Reanimatology, Moscow, Russian Federation.,I.M. Sechenov First Moscow State Medical University, Moscow, Russian Federation
| | - V Sergunova
- Federal Research and Clinical Center of Intensive Care Medicine and Rehabilitology, V.A. Negovsky Scientific Research Institute of General Reanimatology, Moscow, Russian Federation
| | - O Gudkova
- Federal Research and Clinical Center of Intensive Care Medicine and Rehabilitology, V.A. Negovsky Scientific Research Institute of General Reanimatology, Moscow, Russian Federation
| | - E Manchenko
- Federal Research and Clinical Center of Intensive Care Medicine and Rehabilitology, V.A. Negovsky Scientific Research Institute of General Reanimatology, Moscow, Russian Federation.,I.M. Sechenov First Moscow State Medical University, Moscow, Russian Federation
| | - A Kozlov
- I.M. Sechenov First Moscow State Medical University, Moscow, Russian Federation
| |
Collapse
|
32
|
Kozlova E, Chernysh A, Manchenko E, Sergunova V, Moroz V. Nonlinear Biomechanical Characteristics of Deep Deformation of Native RBC Membranes in Normal State and under Modifier Action. SCANNING 2018; 2018:1810585. [PMID: 30581527 PMCID: PMC6276460 DOI: 10.1155/2018/1810585] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2018] [Accepted: 09/05/2018] [Indexed: 05/04/2023]
Abstract
The ability of membranes of native human red blood cells (RBCs) to bend into the cell to a depth comparable in size with physiological deformations was evaluated. For this, the methods of atomic force microscopy and atomic force spectroscopy were used. Nonlinear patterns of deep deformation (up to 600 nm) of RBC membranes were studied in normal state and under the action of modifiers: fixator (glutaraldehyde), natural oxidant (hemin), and exogenous intoxicator (zinc ions), in vitro. The experimental dependences of membrane bending for control RBC (normal) were approximated by the Hertz model to a depth up to 600 nm. The glutaraldehyde fixator and modifiers increased the absolute value of Young's modulus of membranes and changed the experimental dependences of probe indentation into the cells. Up to some depth h Hz, the force curves were approximated by the Hertz model, and for deeper indentations h > h Hz, the degree of the polynomial function was changed, the membrane stiffness increased, and the pattern of indentation became another and did not obey the Hertz model. Quantitative characteristics of nonlinear experimental dependences were calculated for deep bending of RBC membranes by approximating them by the degree polynomial function.
Collapse
Affiliation(s)
- Elena Kozlova
- Federal Research and Clinical Center of Intensive Care Medicine and Rehabilitology, V.A. Negovsky Research Institute of General Reanimatology, 107031, 25 Petrovka Str., Build. 2, Moscow, Russia
- Sechenov First Moscow State Medical University (Sechenov University), 119991, 2-4 Bolshaya Pirogovskaya st, Moscow, Russia
| | - Aleksandr Chernysh
- Federal Research and Clinical Center of Intensive Care Medicine and Rehabilitology, V.A. Negovsky Research Institute of General Reanimatology, 107031, 25 Petrovka Str., Build. 2, Moscow, Russia
- Sechenov First Moscow State Medical University (Sechenov University), 119991, 2-4 Bolshaya Pirogovskaya st, Moscow, Russia
| | - Ekaterina Manchenko
- Federal Research and Clinical Center of Intensive Care Medicine and Rehabilitology, V.A. Negovsky Research Institute of General Reanimatology, 107031, 25 Petrovka Str., Build. 2, Moscow, Russia
- Sechenov First Moscow State Medical University (Sechenov University), 119991, 2-4 Bolshaya Pirogovskaya st, Moscow, Russia
| | - Viktoria Sergunova
- Federal Research and Clinical Center of Intensive Care Medicine and Rehabilitology, V.A. Negovsky Research Institute of General Reanimatology, 107031, 25 Petrovka Str., Build. 2, Moscow, Russia
| | - Viktor Moroz
- Federal Research and Clinical Center of Intensive Care Medicine and Rehabilitology, V.A. Negovsky Research Institute of General Reanimatology, 107031, 25 Petrovka Str., Build. 2, Moscow, Russia
| |
Collapse
|
33
|
Vardaki MZ, Atkins CG, Schulze HG, Devine DV, Serrano K, Blades MW, Turner RFB. Raman spectroscopy of stored red blood cell concentrate within sealed transfusion blood bags. Analyst 2018; 143:6006-6013. [DOI: 10.1039/c8an01509k] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Spectral information relevant to the quality of stored blood can be obtained in situ through sealed blood transfusion bags using a commercially available instrument.
Collapse
Affiliation(s)
- M. Z. Vardaki
- Michael Smith Laboratories
- The University of British Columbia
- Vancouver
- Canada V6 T 1Z4
| | - C. G. Atkins
- Michael Smith Laboratories
- The University of British Columbia
- Vancouver
- Canada V6 T 1Z4
- Department of Chemistry
| | - H. G. Schulze
- Michael Smith Laboratories
- The University of British Columbia
- Vancouver
- Canada V6 T 1Z4
| | - D. V. Devine
- Department of Pathology and Laboratory Medicine
- The University of British Columbia
- Vancouver
- Canada V6 T 2B5
- Centre for Blood Research
| | - K. Serrano
- Department of Pathology and Laboratory Medicine
- The University of British Columbia
- Vancouver
- Canada V6 T 2B5
- Centre for Blood Research
| | - M. W. Blades
- Department of Chemistry
- The University of British Columbia
- Vancouver
- Canada V6 T 1Z1
| | - R. F. B. Turner
- Michael Smith Laboratories
- The University of British Columbia
- Vancouver
- Canada V6 T 1Z4
- Department of Chemistry
| |
Collapse
|