1
|
Duan Y, Li L, Hu J, Zheng B, He K. Engineering Gas-Releasing Nanomaterials for Efficient Wound Healing. Chembiochem 2025; 26:e202400790. [PMID: 39592412 DOI: 10.1002/cbic.202400790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Revised: 11/25/2024] [Accepted: 11/26/2024] [Indexed: 11/28/2024]
Abstract
The escalating prevalence of tissue damage and its associated complications has elicited global apprehension. While nanomaterial-based wound healing exhibits significant potential in terms of curbing infections and surpassing conventional methods, unresolved concerns regarding nanomaterial controllability and precision remain unresolved, jeopardizing its practical applications. In recent years, a unique strategy for creating gas-releasing nanomaterials for wound repair has been proposed, involving the creation of gas-releasing nanomaterials to facilitate wound repair by generating gas donor moieties. The operational spatiotemporal responsiveness and broad-spectrum antibacterial properties of these gases, combined with their inability to generate bacterial resistance like traditional antibiotics, establish their efficacy in addressing chronic non-healing wounds, specifically diabetic foot ulcers (DFUs). In this review, we delve into the intricacies of wound healing process, emphasizing the chemical design, functionality, bactericidal activity, and potential of gas-release materials, encompassing NO, CO, H2S, O2, CO2, and H2, for effective wound healing. Furthermore, we explore the advancements in synergistic therapy utilizing these gases, aiming to enhance our overall comprehension of this field. The insights gleaned from this review will undoubtedly aid researchers and developers in the creation of promising gas-releasing nanomaterials, thus propelling efficient wound healing in the future.
Collapse
Affiliation(s)
- Yutian Duan
- SINOPEC Nanjing Research Institute of Chemical Industry Co., Ltd., Nanjing, 210048, China
| | - Lei Li
- China Petroleum & Chemical Corporation, Beijing, 100728, China
| | - Jinming Hu
- Hefei National Research Center for Physical Sciences at the Microscale, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, 230026, China
| | - Bin Zheng
- School of Chemistry and Pharmaceutical Engineering, Hefei Normal University, Hefei, Anhui, 230061, China
| | - Kewu He
- Imaging Center of the Third Affiliated Hospital of Anhui Medical University, Hefei, 230031, Anhui, China
| |
Collapse
|
2
|
Patra DC, Mondal SP. Paper-based Electrochemical Sensor Integrated with Gold Nanoparticle-Decorated Carbon Cloth as a Working Electrode for Nitric Oxide Detection in Artificial Tears. ACS APPLIED BIO MATERIALS 2024; 7:5247-5257. [PMID: 39010742 DOI: 10.1021/acsabm.4c00425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/17/2024]
Abstract
Nitric oxide (NO) in human tears regulates numerous ocular surface processes, such as tear generation, corneal wound healing, conjunctival vascular tone, and so forth. Any deviation from its normal concentration is linked to various ocular syndromes, including microbial keratitis, conjunctivitis, pterygium, dry eye, retinitis, glaucoma, and so forth. Therefore, precise monitoring of NO in tears can be considered as a potential biomarker for ocular diseases. Here, we report a highly sensitive and selective electrochemical NO sensor using carbon ink-based electrodes. Counter, working (WE), and reference electrodes have been designed and painted on a butter paper by using carbon ink. To improve the sensing performance, the WE has been modified with a gold nanoparticle (Au NP)-deposited carbon cloth (CC). Such a paper-based sensor demonstrated high sensitivity of ∼0.34 μA μM-1 cm-2, ultralow detection limit of ∼2.35 nM, wide linear range of 10 nM-0.4 mM, and fast response time (0.35 s). The sensor also showed excellent stability and selectivity toward the interfering agents in human body fluids. Such a low-cost, flexible paper-based sensor was employed for the detection of NO in artificial tears.
Collapse
Affiliation(s)
- Dulal Chandra Patra
- Department of Physics, National Institute of Technology, Agartala 799046, India
| | | |
Collapse
|
3
|
Sun Z, Lu K, He Q, Tang Y, Li H, Pazo EE, Hu L, Wei R. INOS ablation promotes corneal wound healing via activation of Akt signaling. Exp Eye Res 2024; 243:109886. [PMID: 38583755 DOI: 10.1016/j.exer.2024.109886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 03/24/2024] [Accepted: 04/04/2024] [Indexed: 04/09/2024]
Abstract
Corneal injury leads to impaired normal structure of the cornea. Improving the wound healing process in epithelial cells significantly contributes to ocular damage treatments. Here, we aimed to investigate the potential mechanisms of nitric oxide (NO) and its mediator, inducible nitric oxide synthase (iNOS), in the process of corneal wound healing. We established a corneal injury model of iNOS-/- mice, and treated human corneal epithelial cell lines (HCE-2) with the iNOS inhibitor L-INL, with or without NO replenishment by supplying sodium nitroferricyanide dihydrate (SNP). Our findings showed that inhibition of NO/iNOS accelerated corneal repair, enhanced uPAR (a receptor protein indicating the migration ability), and improved epithelial cell migration. Furthermore, NO/iNOS ablation activated Akt phosphorylation, reduced neutrophil marker protein MPO expression, and downregulated the transcription of inflammation cytokines CXCL-1, CXCL-2, IL-1β, IL-6, and TNF-α. However, the protective effects of NO/iNOS inhibition are significantly reduced by NO replenishment when treated with SNP. Therefore, we confirmed that inhibiting NO/iNOS improved the corneal wound healing by facilitating epithelial cell migration and reducing inflammatory reactions, which might be related to the activation of the Akt signaling pathway.
Collapse
Affiliation(s)
- Ziwen Sun
- Tianjin Key Laboratory of Retinal Functions and Diseases, Tianjin Branch of National Clinical Research Center for Ocular Disease, Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital, 300070, Tianjin, China
| | - Kunpeng Lu
- Tianjin Eye Hospital, Tianjin Key Lab of Ophthalmology and Visual Science, 300070, Tianjin, China
| | - Qing He
- Tianjin Key Laboratory of Retinal Functions and Diseases, Tianjin Branch of National Clinical Research Center for Ocular Disease, Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital, 300070, Tianjin, China
| | - Yang Tang
- Qingdao State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Shandong Eye Institute, Shandong Academy of Medical Sciences, 266071, Qingdao, China
| | - Haoru Li
- Tianjin Key Laboratory of Retinal Functions and Diseases, Tianjin Branch of National Clinical Research Center for Ocular Disease, Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital, 300070, Tianjin, China
| | - Emmanuel Eric Pazo
- Tianjin Key Laboratory of Retinal Functions and Diseases, Tianjin Branch of National Clinical Research Center for Ocular Disease, Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital, 300070, Tianjin, China
| | - Lizhi Hu
- Basic Medical College, Immunology Department, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Tianjin Medical University, Tianjin, 300070, China.
| | - Ruihua Wei
- Tianjin Key Laboratory of Retinal Functions and Diseases, Tianjin Branch of National Clinical Research Center for Ocular Disease, Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital, 300070, Tianjin, China.
| |
Collapse
|
4
|
Xia Y, Chen K, Yang Q, Chen Z, Jin L, Zhang L, Yu X, Wang L, Xie C, Zhao Y, Shen Y, Tong J. Methylation in cornea and corneal diseases: a systematic review. Cell Death Discov 2024; 10:169. [PMID: 38589350 PMCID: PMC11002037 DOI: 10.1038/s41420-024-01935-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 03/24/2024] [Accepted: 03/25/2024] [Indexed: 04/10/2024] Open
Abstract
Corneal diseases are among the primary causes of blindness and vision loss worldwide. However, the pathogenesis of corneal diseases remains elusive, and diagnostic and therapeutic tools are limited. Thus, identifying new targets for the diagnosis and treatment of corneal diseases has gained great interest. Methylation, a type of epigenetic modification, modulates various cellular processes at both nucleic acid and protein levels. Growing evidence shows that methylation is a key regulator in the pathogenesis of corneal diseases, including inflammation, fibrosis, and neovascularization, making it an attractive potential therapeutic target. In this review, we discuss the major alterations of methylation and demethylation at the DNA, RNA, and protein levels in corneal diseases and how these dynamics contribute to the pathogenesis of corneal diseases. Also, we provide insights into identifying potential biomarkers of methylation that may improve the diagnosis and treatment of corneal diseases.
Collapse
Affiliation(s)
- Yutong Xia
- Department of Ophthalmology, The First Affiliated Hospital of Zhejiang University, Hangzhou, 310003, China
| | - Kuangqi Chen
- Department of Ophthalmology, The First Affiliated Hospital of Zhejiang University, Hangzhou, 310003, China
| | - Qianjie Yang
- Department of Ophthalmology, The First Affiliated Hospital of Zhejiang University, Hangzhou, 310003, China
| | - Zhitong Chen
- Department of Ophthalmology, The First Affiliated Hospital of Zhejiang University, Hangzhou, 310003, China
| | - Le Jin
- Department of Ophthalmology, The First Affiliated Hospital of Zhejiang University, Hangzhou, 310003, China
| | - Liyue Zhang
- Department of Ophthalmology, The First Affiliated Hospital of Zhejiang University, Hangzhou, 310003, China
| | - Xin Yu
- Department of Ophthalmology, The First Affiliated Hospital of Zhejiang University, Hangzhou, 310003, China
| | - Liyin Wang
- Department of Ophthalmology, The First Affiliated Hospital of Zhejiang University, Hangzhou, 310003, China
| | - Chen Xie
- Department of Ophthalmology, The First Affiliated Hospital of Zhejiang University, Hangzhou, 310003, China
| | - Yuan Zhao
- Department of Ophthalmology, The First Affiliated Hospital of Zhejiang University, Hangzhou, 310003, China
| | - Ye Shen
- Department of Ophthalmology, The First Affiliated Hospital of Zhejiang University, Hangzhou, 310003, China.
| | - Jianping Tong
- Department of Ophthalmology, The First Affiliated Hospital of Zhejiang University, Hangzhou, 310003, China.
| |
Collapse
|
5
|
Lee S, Park CY. Nitric oxide: an old drug but with new horizons in ophthalmology-a narrative review. ANNALS OF TRANSLATIONAL MEDICINE 2023; 11:352. [PMID: 37675299 PMCID: PMC10477639 DOI: 10.21037/atm-22-5634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2022] [Accepted: 04/21/2023] [Indexed: 09/08/2023]
Abstract
Background and Objective Based on basic knowledge and prior research on nitric oxide (NO), the potential of NO for treating eye diseases is reviewed, and the possibility of NO-based eye drops in clinical practice and the future potential of NO in ophthalmology are discussed. Methods A PubMed search was performed for English-language original reports and reviews using the following key words: nitric oxide, eye, ocular, and drug. Key Content and Findings NO is synthesized in the human body by NO synthase (NOS) from L-arginine or through enzyme-dependent reduction of dietary nitrate. Three types of NOS (eNOS, nNOS, and iNOS) are abundantly expressed in the eye under normal physiologic or pathologic conditions. The biological effect of NO in the eye is dose dependent. Low intraocular NO concentrations, produced by eNOS or nNOS, have various cellular effects, including vasodilation, intraocular pressure (IOP) regulation, and neuroprotection. iNOS induced under pathologic ocular conditions produces high NO concentrations in the local environment and mediates tissue inflammation, ocular cell apoptosis, and neurodegeneration. In particular, increased iNOS has been reported in glaucoma and retinal ischemic or degenerative diseases. NO plays a vital role in ocular injury. NO can facilitate ocular surface wound healing while eradicating pathogens such as bacteria and Acanthamoeba in chemical burns or infectious keratitis. Furthermore, NO has antifibrotic activity via the cyclic guanosine monophosphate (cGMP) signaling pathway. NO causes smooth muscle relaxation, which can be used to inhibit myopia progression in children. NO can be a stem cell modulator and may help in treating ocular stem cell disorders. Conclusions Because of its diverse biologic effects, NO can be a key player in regulating ocular inflammation in various ocular diseases, aiding ocular surface wound healing, controlling IOP in glaucoma, alleviating retinal disease, and suppressing myopia progression. Although there remain limitations to the effective use of highly unstable state, gaseous NO, the role of NO in the field of ophthalmology can be greatly expanded through the development of novel NO donors and effective delivery platforms.
Collapse
Affiliation(s)
- Soomin Lee
- Department of Ophthalmology, Dongguk University, Ilsan Hospital, Goyang, South Korea
| | - Choul Yong Park
- Department of Ophthalmology, Dongguk University, Ilsan Hospital, Goyang, South Korea
| |
Collapse
|
6
|
Flynn K, Mahmoud NN, Sharifi S, Gould LJ, Mahmoudi M. Chronic Wound Healing Models. ACS Pharmacol Transl Sci 2023; 6:783-801. [PMID: 37200810 PMCID: PMC10186367 DOI: 10.1021/acsptsci.3c00030] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Indexed: 05/20/2023]
Abstract
In this paper, we review and analyze the commonly available wound healing models reported in the literature and discuss their advantages and issues, considering their relevance and translational potential to humans. Our analysis includes different in vitro and in silico as well as in vivo models and experimental techniques. We further explore the new technologies in the study of wound healing to provide an all encompassing review of the most efficient ways to proceed with wound healing experiments. We revealed that there is not one model of wound healing that is superior and can give translatable results to human research. Rather, there are many different models that have specific uses for studying certain processes or stages of wound healing. Our analysis suggests that when performing an experiment to assess stages of wound healing or different therapies to enhance healing, one must consider not only the species that will be used but also the type of model and how this can best replicate the physiology or pathophysiology in humans.
Collapse
Affiliation(s)
- Kiley Flynn
- Department
of Radiology and Precision Health Program, Michigan State University, East Lansing, Michigan 48824-1312, United States
| | - Nouf N. Mahmoud
- Faculty
of Pharmacy, Al-Zaytoonah University of
Jordan, Amman 11733, Jordan
- Department
of Biomedical Sciences, College of Health Sciences, QU Health, Qatar University, Doha 2713, Qatar
| | - Shahriar Sharifi
- Department
of Radiology and Precision Health Program, Michigan State University, East Lansing, Michigan 48824-1312, United States
| | - Lisa J. Gould
- Department
of Surgery, South Shore Hospital, South Weymouth, Massachusetts 02190, United States
| | - Morteza Mahmoudi
- Department
of Radiology and Precision Health Program, Michigan State University, East Lansing, Michigan 48824-1312, United States
| |
Collapse
|
7
|
Rauchman SH, Locke B, Albert J, De Leon J, Peltier MR, Reiss AB. Toxic External Exposure Leading to Ocular Surface Injury. Vision (Basel) 2023; 7:vision7020032. [PMID: 37092465 PMCID: PMC10123707 DOI: 10.3390/vision7020032] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 03/30/2023] [Accepted: 04/01/2023] [Indexed: 04/07/2023] Open
Abstract
The surface of the eye is directly exposed to the external environment, protected only by a thin tear film, and may therefore be damaged by contact with ambient particulate matter, liquids, aerosols, or vapors. In the workplace or home, the eye is subject to accidental or incidental exposure to cleaning products and pesticides. Organic matter may enter the eye and cause infection. Ocular surface damage can trigger a range of symptoms such as itch, discharge, hyperemia, photophobia, blurred vision, and foreign body sensation. Toxin exposure can be assessed clinically in multiple ways, including via measurement of tear production, slit-lamp examination, corneal staining, and conjunctival staining. At the cellular level, environmental toxins can cause oxidative damage, apoptosis of corneal and conjunctival cells, cell senescence, and impaired motility. Outcomes range from transient and reversible with complete healing to severe and sight-compromising structural changes. Classically, evaluation of tolerance and safety was carried out using live animal testing; however, new in vitro and computer-based, in silico modes are superseding the gold standard Draize test. This review examines how environmental features such as pollutants, temperature, and seasonality affect the ocular surface. Chemical burns to the eye are considered, and approaches to protect the ocular surface are detailed.
Collapse
Affiliation(s)
| | - Brandon Locke
- Department of Medicine and Biomedical Research Institute, NYU Long Island School of Medicine, Mineola, NY 11501, USA
| | - Jacqueline Albert
- Department of Medicine and Biomedical Research Institute, NYU Long Island School of Medicine, Mineola, NY 11501, USA
| | - Joshua De Leon
- Department of Medicine and Biomedical Research Institute, NYU Long Island School of Medicine, Mineola, NY 11501, USA
| | - Morgan R. Peltier
- Department of Psychiatry and Behavioral Health, Jersey Shore University Medical Center, Neptune, NJ 07753, USA
| | - Allison B. Reiss
- Department of Medicine and Biomedical Research Institute, NYU Long Island School of Medicine, Mineola, NY 11501, USA
| |
Collapse
|
8
|
Guo G, Dong J. Diosmetin attenuates oxidative stress-induced damage to lens epithelial cells via the mitogen-activated protein kinase (MAPK) pathway. Bioengineered 2022; 13:11072-11081. [PMID: 35481411 PMCID: PMC9208454 DOI: 10.1080/21655979.2022.2068755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Cataract is a global ophthalmic disease that blinds the eye, and oxidative stress is one of its primary causes. Apoptosis of lens epithelial cells (LECs) is considered the major cytological basis of many cataracts except congenital cataracts. The purpose of this study was to investigate whether diosmetin could reduce oxidative stress-induced damage to LECs, and explore its regulatory pathway. Lens epithelial cell line SRA01/04 was used as the object of study. Using ultraviolet B (UVB) and hydrogen peroxide (H2O2) as sources of oxidative stress, the protective effects of diosmetin at different concentrations on cells were investigated, including inhibition of proliferation, apoptosis, and oxidative stress. Molecular docking was then used to predict the target proteins and validation was performed at the cellular and protein levels. The oxidative stress of SRA01/04 was induced by UVB and H2O2, and inhibition of proliferation and apoptosis were observed. Here, diosmetin has a dose-dependent cell-protecting effect. This effect is achieved by targeting the MEK2 protein and inhibiting the MAPK signaling. In conclusion, diosmetin reduces H2O2- and UVB-induced inhibition of SRA01/04 proliferation and apoptosis by reducing oxidative stress-induced activation of the MAPK pathway.
Collapse
Affiliation(s)
- Guanghai Guo
- Department of Ophthalmology, Feicheng Hospital of Shandong Yiyang Health Group, Shandong, Feicheng, P.R. China
| | - Jin Dong
- Department of Clinical Laboratory, Feicheng Hospital of Shandong Yiyang Health Group, Shandong, Feicheng, P.R. China
| |
Collapse
|
9
|
Erdinest N, London N, Ovadia H, Levinger N. Nitric Oxide Interaction with the Eye. Vision (Basel) 2021; 5:29. [PMID: 34207828 PMCID: PMC8293394 DOI: 10.3390/vision5020029] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 06/03/2021] [Accepted: 06/07/2021] [Indexed: 12/14/2022] Open
Abstract
Nitric oxide (NO) is acknowledged as a vital intercellular messenger in multiple systems in the body. Medicine has focused on its functions and therapeutic applications for decades, especially in cardiovascular and nervous systems, and its role in immunological responses. This review was composed to demonstrate the prevalence of NO in components of the ocular system, including corneal cells and multiple cells in the retina. It discussed NO's assistance during the immune, inflammation and wound-healing processes. NO is identified as a vascular endothelial relaxant that can alter the choroidal blood flow and prompt or suppress vascular changes in age-related macular degeneration and diabetes, as well as the blood supply to the optic nerve, possibly influencing the progression of glaucoma. It will provide a deeper understanding of the role of NO in ocular homeostasis, the delicate balance between overproduction or underproduction and the effect on the processes from aqueous outflow and subsequent intraocular pressure to axial elongation and the development of myopia. This review also recognized the research and investigation of therapies being developed to target the NO complex and treat various ocular diseases.
Collapse
Affiliation(s)
- Nir Erdinest
- Department of Ophthalmology, Hadassah-Hebrew University Medical Center, Jerusalem 91120, Israel; (N.E.); (N.L.)
| | | | - Haim Ovadia
- Agnes Ginges, Center for Human Neurogenetics, Department of Neurology, Hadassah-Hebrew University Medical Center, Jerusalem 91120, Israel;
| | - Nadav Levinger
- Department of Ophthalmology, Hadassah-Hebrew University Medical Center, Jerusalem 91120, Israel; (N.E.); (N.L.)
- Enaim Refractive Surgery Center, Jerusalem 9438307, Israel
| |
Collapse
|
10
|
Park JH, Kim M, Yim B, Park CY. Nitric oxide attenuated transforming growth factor-β induced myofibroblast differentiation of human keratocytes. Sci Rep 2021; 11:8183. [PMID: 33854158 PMCID: PMC8046755 DOI: 10.1038/s41598-021-87791-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2020] [Accepted: 03/30/2021] [Indexed: 11/09/2022] Open
Abstract
Nitric oxide (NO) has the potential to modulate myofibroblast differentiation. In this study, we investigated the effect of exogenous NO on the myofibroblast differentiation of human keratocytes using sodium nitrite as a NO donor. Myofibroblasts were induced by exposing resting keratocytes to transforming growth factor (TGF)-β1. N-cadherin and α-smooth muscle actin (αSMA) were used as myofibroblast markers. Both resting keratocytes and -stimulated keratocytes were exposed to various concentrations of sodium nitrite (1 μM to 1000 mM) for 24 to 72 h. Exposure to sodium nitrite did not alter keratocytes’ viability up to a 10 mM concentration for 72 h. However, significant cytotoxicity was observed in higher concentrations of sodium nitrite (over 100 mM). The expression of αSMA and N-cadherin was significantly increased in keratocytes by TGF-β1 stimulation after 72 h incubation. The addition of sodium nitrite (1 mM) to TGF-β1-stimulated keratocytes significantly decreased αSMA and N cadherin expression. Smad3 phosphorylation decreased after sodium nitrite (1 mM) exposure in TGF-β1-stimulated keratocytes. The effect of NO was reversed when NO scavenger, 2-4-carboxyphenyl-4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide (cPTIO) was added in the culture medium. Application of sodium nitrite resulted in significant decrease of corneal opacity when measured at 2 weeks after the chemical burn in the mouse. These results verified the potential therapeutic effect of NO to decrease myofibroblast differentiation of human keratocytes and corneal opacity after injury.
Collapse
Affiliation(s)
- Joo-Hee Park
- Department of Biochemistry, College of Medicine, Dongguk University, Gyeongju, South Korea
| | - Martha Kim
- Department of Ophthalmology, Ilsan Hospital, Dongguk University, 814, Siksadong, Ilsan-dong-gu, Goyang, Gyunggido, 410-773, South Korea
| | - Bora Yim
- Department of Ophthalmology, Ilsan Hospital, Dongguk University, 814, Siksadong, Ilsan-dong-gu, Goyang, Gyunggido, 410-773, South Korea
| | - Choul Yong Park
- Department of Ophthalmology, Ilsan Hospital, Dongguk University, 814, Siksadong, Ilsan-dong-gu, Goyang, Gyunggido, 410-773, South Korea.
| |
Collapse
|
11
|
Health Potential of Aloe vera against Oxidative Stress Induced Corneal Damage: An "In Vitro" Study. Antioxidants (Basel) 2021; 10:antiox10020318. [PMID: 33672553 PMCID: PMC7923787 DOI: 10.3390/antiox10020318] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 02/05/2021] [Accepted: 02/17/2021] [Indexed: 02/07/2023] Open
Abstract
Fuchs endothelial corneal dystrophy (FECD) is characterized by the gradual deterioration of corneal endothelial cells (CECs) and is the most common cause of corneal transplantation worldwide. CECs apoptosis caused by oxidative stress plays a pivotal role in the pathogenesis of FECD. Antioxidant compounds have been of considerable significance as a candidate treatment in the management of corneal diseases. Based on these findings, the objective of this study was to evaluate the effects of an aloe extract with antioxidant properties, in an “in vitro” model of FECD. Human corneal epithelial (HCE) cells were preincubated with aloe extract 100 μg/mL, two hours before hydrogen peroxide (H2O2) stimulus. H2O2 challenge significantly reduced the cell viability, increased the generation of Reactive Oxygen Species (ROS) and malondialdehyde levels. Moreover, m-RNA expression and activity of Nrf-2, Catalase and Superoxide dismutase (SOD) were reduced together with an enhanced expression of IL-1β, tumor necrosis factor-α (TNF-α), IL-6, and cyclooxygenase 2 (COX-2). Furthermore, Bcl-2, Caspase-3 and Caspase-8 expression were down-regulated while Bax was up-regulated by H2O2 stimulus. Aloe extract blunted the oxidative stress-induced inflammatory cascade triggered by H2O2 and modulated apoptosis. Aloe extract defends HCE cells from H2O2-induced injury possibly due its antioxidant and anti-inflammatory activity, indicating that eye drops containing aloe extract may be used as an adjunctive treatment for FECD.
Collapse
|
12
|
Seggio M, Tessaro AL, Nostro A, Ginestra G, Graziano ACE, Cardile V, Acierno S, Russo P, Catanzano O, Quaglia F, Sortino S. A thermoresponsive gel photoreleasing nitric oxide for potential ocular applications. J Mater Chem B 2020; 8:9121-9128. [PMID: 32936201 DOI: 10.1039/d0tb01194k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We report herein the design, preparation, characterization and biological evaluation of a thermoresponsive gel based on binary mixtures of Pluronic® co-polymers F127 and P123, the latter being covalently functionalized with a nitric oxide (NO) photodonor (NOPD). The weight ratio between the two polymeric components is optimized in order to observe gelation of their saline water solution in the range of 32-35 °C, in order to exploit the therapeutic properties of NO for potential ocular applications. Rheological measurements were performed to evaluate the gelation temperature and, hence, to select a co-polymer mixture specifically appropriate for the reference application. Integration of the NOPD into the polymeric scaffold does not affect its rheological and spectroscopic properties, making it a good absorber of visible light both in solution and in the gel phase. Irradiation of the saline solution of the polymeric components with visible light triggers NO release, which occurs with an efficiency of more than one order of magnitude faster than that observed for the isolated NOPD. The polymeric system fully preserves such photobehavior after gelation as demonstrated by the effective NO photorelease from the gel matrix and its diffusion in the supernatant upon illumination. The gel is well-tolerated in both dark and light conditions by corneal cells, while being able to induce growth inhibition towards Staphylococcus aureus under visible light irradiation and has high moduli which can contribute to an adequate retention time within the eyes.
Collapse
Affiliation(s)
- Mimimorena Seggio
- PhotoChemLab, Department of Drug Sciences, University of Catania, I-95125, Italy.
| | - André Luiz Tessaro
- Nucleus of Industrial Innovation, Federal University of Technology - Paraná (UTFPR), UTFPR, CEP 86812-460, Apucarana, Paraná, Brazil
| | - Antonia Nostro
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Polo Annunziata, 98168, Messina, Italy
| | - Giovanna Ginestra
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Polo Annunziata, 98168, Messina, Italy
| | - Adriana C E Graziano
- Department of Bio-Medical and Biotechnological Sciences, Physiology Division, University of Catania, I-95125 Catania, Italy
| | - Venera Cardile
- Department of Bio-Medical and Biotechnological Sciences, Physiology Division, University of Catania, I-95125 Catania, Italy
| | - Stefano Acierno
- Department of Engineering, University of Sannio, Piazza Roma 21, 82100, Benevento, Italy
| | - Pietro Russo
- Institute for Polymers, Composites and Biomaterials, National Council of Research, Via Campi Flegrei 34, 80078, Pozzuoli (Na), Italy
| | - Ovidio Catanzano
- Drug Delivery Laboratory, Department of Pharmacy, University of Napoli Federico II, Via Domenico Montesano 49, 80131, Napoli, Italy.
| | - Fabiana Quaglia
- Drug Delivery Laboratory, Department of Pharmacy, University of Napoli Federico II, Via Domenico Montesano 49, 80131, Napoli, Italy.
| | - Salvatore Sortino
- PhotoChemLab, Department of Drug Sciences, University of Catania, I-95125, Italy.
| |
Collapse
|
13
|
Design and study of nitric oxide portable producing device using continuous discharging arc plasma reaction keeping low energy efficiency for viral pneumonia emergency therapy. PLoS One 2020; 15:e0237604. [PMID: 32790732 PMCID: PMC7425952 DOI: 10.1371/journal.pone.0237604] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Accepted: 07/29/2020] [Indexed: 11/21/2022] Open
Abstract
This study investigated the efficiency of a portable nitric oxide (NO) inhalation device through optimizing its design and structure. The portable rescue device could be used in clinical applications in outbreaks of viral pneumonia such as SARS. To reduce energy consumption for battery-powered portable usage, NO micro-channel plasma reactions induced by a continuous discharge arc were employed. A single-use airway tube could be combined with an intubation tube in clinical applications. In the experiment, a switching transistor controlled high frequency DC (12.5 kHz) was used to create a continuous discharge arc between two stainless steel electrodes (1-mm separation) after high-voltage breakthrough. A rotate instrument was employed to change the direction angle between the airflow and discharge arc, tube filled with Calcium hydroxide connected with gas outlet for reducing NO2, gas flow rate and input voltage were evaluated separately with concentration of NO and NO2/NO ratio. Results showed that a 2 L/min air flow direction from the cathode to the anode of electrodes (direction angle was zero) under 4 V input voltages produced 32.5±3.8 ppm NO, and the NO2/NO ratio reduced to less than 10%, stable output of nitric oxide might be convenient and effective for NO inhalation therapy. Modularization of the design produced a portable NO inhalation device that has potential for use in clinical applications as it is low cost, easy to disinfect, consumes low levels of energy and is ready to use.
Collapse
|
14
|
Martínez-Chacón G, Vela FJ, Campos JL, Abellán E, Yakhine-Diop SMS, Ballestín A. Autophagy modulation in animal models of corneal diseases: a systematic review. Mol Cell Biochem 2020; 474:41-55. [PMID: 32710189 DOI: 10.1007/s11010-020-03832-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2020] [Accepted: 07/11/2020] [Indexed: 12/19/2022]
Abstract
Autophagy is an intracellular catabolic process implicated in the recycling and degradation of intracellular components. Few studies have defined its role in corneal pathologies. Animal models are essential for understanding autophagy regulation and identifying new treatments to modulate its effects. A systematic review (SR) was conducted of studies employing animal models for investigations of autophagy in corneal diseases. Studies were identified using a structured search strategy (TS = autophagy AND cornea*) in Web of Science, Scopus, and PubMed from inception to September 2019. In this study, 230 articles were collected, of which 28 were analyzed. Mouse models were used in 82% of the studies, while rat, rabbit, and newt models were used in the other 18%. The most studied corneal layer was the epithelium, followed by the endothelium and stroma. In 13 articles, genetically modified animal models were used to study Fuch endothelial corneal dystrophy (FECD), granular corneal dystrophy type 2 (GCD2), dry eye disease (DED), and corneal infection. In other 13 articles, animal models were experimentally induced to mimic DED, keratitis, inflammation, and surgical scenarios. Furthermore, in 50% of studies, modulators that activated or inhibited autophagy were also investigated. Protective effects of autophagy activators were demonstrated, including rapamycin for DED and keratitis, lithium for FECD, LYN-1604 for DED, cysteamine and miR-34c antagomir for damaged corneal epithelium. Three autophagy suppressors were also found to have therapeutic effects, such as aminoimidazole-4-carboxamide-riboside (AICAR) for corneal allogeneic transplantation, celecoxib and chloroquine for DED.
Collapse
Affiliation(s)
- Guadalupe Martínez-Chacón
- Department of Microsurgery, Jesús Usón Minimally Invasive Surgery Centre, 10071, Cáceres, Spain. .,Department of Biochemistry and Molecular Biology and Genetics, Faculty of Nursing and Occupational Therapy, University of Extremadura, Avda de La Universidad S/N, 10003, Cáceres, Spain. .,Network Center for Biomedical Research in Neurodegenerative Diseases (CIBERNED), 28049, Madrid, Spain. .,Instituto Universitario de Investigación Biosanitaria de Extremadura (INUBE), 10003, Cáceres, Spain.
| | - Francisco Javier Vela
- Department of Microsurgery, Jesús Usón Minimally Invasive Surgery Centre, 10071, Cáceres, Spain
| | - José Luis Campos
- Department of Microsurgery, Jesús Usón Minimally Invasive Surgery Centre, 10071, Cáceres, Spain
| | - Elena Abellán
- Department of Microsurgery, Jesús Usón Minimally Invasive Surgery Centre, 10071, Cáceres, Spain
| | - Sokhna M S Yakhine-Diop
- Department of Biochemistry and Molecular Biology and Genetics, Faculty of Nursing and Occupational Therapy, University of Extremadura, Avda de La Universidad S/N, 10003, Cáceres, Spain.,Network Center for Biomedical Research in Neurodegenerative Diseases (CIBERNED), 28049, Madrid, Spain.,Instituto Universitario de Investigación Biosanitaria de Extremadura (INUBE), 10003, Cáceres, Spain
| | - Alberto Ballestín
- Department of Microsurgery, Jesús Usón Minimally Invasive Surgery Centre, 10071, Cáceres, Spain
| |
Collapse
|
15
|
A Systematic Review of Emerging Therapeutic Strategies in the Management of Chemical Injuries of the Ocular Surface. Eye Contact Lens 2020; 46:329-340. [PMID: 32452924 DOI: 10.1097/icl.0000000000000715] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
OBJECTIVES To evaluate recent in vivo studies on emerging therapies for managing corneal epithelial injuries. METHODS The search was conducted on PubMed for articles published between January 2015 and September 2019 and in English language. RESULTS Thirty studies were identified for evaluation, including those on mesenchymal stem cells, amniotic membrane-derived therapies, endogenous peptides and their inhibitors, as well as hydrogel therapies. Intermediate to strong levels of evidence are presented regarding the use of these strategies on chemically injured cornea, including their effects on healing of corneal epithelial defect, anti-inflammatory properties, prevention of corneal neovascularization, as well as restoration of anatomy and functions of the anterior eye, although clinical trials are needed to determine the safety and efficacy of these strategies on humans. CONCLUSION Recent advances and understanding in various novel therapeutic methods for corneal epithelial chemical injuries should provide potential alternatives to current standard treatment regimens and help reduce risks of complications, hence improve patient outcomes.
Collapse
|
16
|
Duan Y, Wang Y, Li X, Zhang G, Zhang G, Hu J. Light-triggered nitric oxide (NO) release from photoresponsive polymersomes for corneal wound healing. Chem Sci 2020; 11:186-194. [PMID: 32110370 PMCID: PMC7012058 DOI: 10.1039/c9sc04039k] [Citation(s) in RCA: 66] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Accepted: 10/31/2019] [Indexed: 12/25/2022] Open
Abstract
Polymersomes have been extensively used in the delivery of both small and macromolecular payloads. However, the controlled delivery of gaseous therapeutics (e.g., nitric oxide, NO) remains a grand challenge due to its difficulty in loading of gaseous payloads into polymersomes without premature leakage. Herein, NO-releasing vesicles could be fabricated via the self-assembly of NO-releasing amphiphiles, which were synthesized by the direct polymerization of photoresponsive NO monomers (abbreviated as oNBN, pNBN, and BN). These monomers were rationally designed through the integration of the photoresponsive behavior of N-nitrosoamine moieties and the self-immolative chemistry of 4-aminobenzyl alcohol derivatives, which outperformed conventional NO donors such as diazeniumdiolates (NONOates) and S-nitrosothiols (SNOs) in terms of ease of preparation, stability of storage, and controllability of NO release. The unique design made it possible to selectively release NO by a light stimulus and to regulate the NO release rates. Importantly, the photo-mediated NO release could be manipulated in living cells and showed promising applications in the treatment of corneal wounds. In addition to delivering NO, the current design enabled the synergistic delivery of NO and other therapeutic payloads by taking advantage of NO release-mediated traceless crosslinking of the vesicles.
Collapse
Affiliation(s)
- Yutian Duan
- CAS Key Laboratory of Soft Matter Chemistry , Hefei National Laboratory for Physical Science at the Microscale , Department of Polymer Science and Engineering , University of Science and Technology of China , Hefei 230026 , Anhui , China .
| | - Yong Wang
- Department of Ophthalmology , The First Affiliated Hospital of Anhui Medical University , Hefei , Anhui 230022 , China
| | - Xiaohu Li
- Department of Radiology , The First Affiliated Hospital of Anhui Medical University , Hefei , Anhui 230022 , China
| | - Guozhen Zhang
- Hefei National Laboratory for Physical Sciences at the Microscale , iChEM (Collaborative Innovation Center of Chemistry for Energy Materials) , University of Science and Technology of China , Hefei , Anhui 230026 , P. R. China
| | - Guoying Zhang
- CAS Key Laboratory of Soft Matter Chemistry , Hefei National Laboratory for Physical Science at the Microscale , Department of Polymer Science and Engineering , University of Science and Technology of China , Hefei 230026 , Anhui , China .
| | - Jinming Hu
- CAS Key Laboratory of Soft Matter Chemistry , Hefei National Laboratory for Physical Science at the Microscale , Department of Polymer Science and Engineering , University of Science and Technology of China , Hefei 230026 , Anhui , China .
| |
Collapse
|
17
|
Cai HA, Huang L, Zheng LJ, Fu K, Wang J, Hu FD, Liao RY. Ginsenoside (Rg-1) promoted the wound closure of diabetic foot ulcer through iNOS elevation via miR-23a/IRF-1 axis. Life Sci 2019; 233:116525. [DOI: 10.1016/j.lfs.2019.05.081] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Accepted: 05/30/2019] [Indexed: 01/13/2023]
|
18
|
Seggio M, Nostro A, Ginestra G, Quaglia F, Sortino S. Contact Lenses Delivering Nitric Oxide under Daylight for Reduction of Bacterial Contamination. Int J Mol Sci 2019; 20:E3735. [PMID: 31370152 PMCID: PMC6696341 DOI: 10.3390/ijms20153735] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Revised: 07/24/2019] [Accepted: 07/29/2019] [Indexed: 01/23/2023] Open
Abstract
Ocular infection due to microbial contamination is one of the main risks associated with the wearing of contact lens, which demands novel straightforward strategies to find reliable solutions. This contribution reports the preparation, characterization and biological evaluation of soft contact lenses (CL) releasing nitric oxide (NO), as an unconventional antibacterial agent, under daylight exposure. A tailored NO photodonor (NOPD) was embedded into commercial CL leading to doped CL with an excellent optical transparency (transmittance = 100%) at λ ≥ 450 nm. The NOPD results homogeneously distributed in the CL matrix where it fully preserves the photobehavior exhibited in solution. In particular, NO release from the CL and its diffusion in the supernatant physiological solution is observed upon visible light illumination. The presence of a blue fluorescent reporting functionality into the molecular skeleton of the NOPD, which activates concomitantly to the NO photorelease, allows the easy monitoring of the NO delivery in real-time and confirms that the doped CL work under daylight exposure. The NO photoreleasing CL are well-tolerated in both dark and light conditions by corneal cells while being able to induce good growth inhibition of Staphylococcus aureus under visible light irradiation. These results may pave the way to further engineering of the CL with NOPD as innovative ocular devices activatable by sunlight.
Collapse
Affiliation(s)
- Mimimorena Seggio
- Laboratory of Photochemistry, Department of Drug Sciences, University of Catania, 95124 Catania, Italy
| | - Antonia Nostro
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98122 Messina, Italy
| | - Giovanna Ginestra
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98122 Messina, Italy
| | - Fabiana Quaglia
- Drug Delivery Laboratory, Department of Pharmacy, University of Napoli Federico II, 80138 Napoli, Italy
| | - Salvatore Sortino
- Laboratory of Photochemistry, Department of Drug Sciences, University of Catania, 95124 Catania, Italy.
| |
Collapse
|
19
|
Yim B, Park JH, Jeong H, Hong J, Kim M, Chang M, Chuck RS, Park CY. Effect of Nitric Oxide on Acanthamoeba castellanii. Invest Ophthalmol Vis Sci 2019; 59:3239-3248. [PMID: 29971441 DOI: 10.1167/iovs.18-23786] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Purpose Acanthamoeba keratitis is a well-known intractable corneal infectious disease. We investigated the anti-Acanthamoeba effect of exogenous nitric oxide (NO). Methods Acanthamoeba castellanii was axenically cultured and exposed to various concentrations of NO donors, such as sodium nitrite, sodium nitroprusside (SNP), and NO-releasing silica nanoparticles (coated in branched polyethylene imine, size:100 nm), for 1 to 7 days (sodium nitrite and SNP: 0, 0.1, 1, 10, 100, and 1000 μM; silica nanoparticles: 0, 6.25, 12.5, 25, 50, and 100 μg/mL). Human corneal epithelial cells (HCECs) were cultured and exposed to sodium nitrite, SNP (0, 0.1, 1, 10, 100, and 1000 μM), and silica nanoparticles for 1, 2, and 3 days. Results Sodium nitrite and SNP showed a dose-dependent inhibitory effect on A. castellanii viability. A more prominent inhibitory effect was observed with SNP (less than 10% of organisms survived at 7-day culture with 1000 μM) compared with sodium nitrite. However, more cytotoxicity on HCEC was observed with SNP. NO-releasing silica nanoparticles were successfully internalized into the amoebic cytoplasm and accumulated in large vacuoles. Although blank silica nanoparticles had no inhibitory effect on A. castellanii viability, NO-releasing silica nanoparticles showed a dose-dependent amoebicidal effect. Furthermore, no cystic transformation of A. castellanii was observed under a phase contrast microscope or transmission electron microscope after exogenous NO treatment. Conclusions Our results demonstrated the anti-Acanthamoeba effect of exogenous NO. This finding suggests that NO-releasing drug platforms, including nano-carriers, can be a promising therapeutic strategy for Acanthamoeba keratitis.
Collapse
Affiliation(s)
- Bora Yim
- Department of Ophthalmology, Dongguk University, Ilsan Hospital, Goyang, South Korea
| | - Joo-Hee Park
- Department of Ophthalmology, Dongguk University, Ilsan Hospital, Goyang, South Korea
| | - Hyejoong Jeong
- Department of Chemical and Biomolecular Engineering, Yonsei University, Seoul, South Korea
| | - Jinkee Hong
- Department of Chemical and Biomolecular Engineering, Yonsei University, Seoul, South Korea
| | - Martha Kim
- Department of Ophthalmology, Dongguk University, Ilsan Hospital, Goyang, South Korea
| | - Minwook Chang
- Department of Ophthalmology, Dongguk University, Ilsan Hospital, Goyang, South Korea
| | - Roy S Chuck
- Department of Ophthalmology and Visual Sciences, Montefiore Medical Center, Albert Einstein College of Medicine, Bronx, New York, United States
| | - Choul Yong Park
- Department of Ophthalmology, Dongguk University, Ilsan Hospital, Goyang, South Korea
| |
Collapse
|
20
|
von Kobbe C. Cellular senescence: a view throughout organismal life. Cell Mol Life Sci 2018; 75:3553-3567. [PMID: 30030594 PMCID: PMC11105332 DOI: 10.1007/s00018-018-2879-8] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2018] [Revised: 07/03/2018] [Accepted: 07/16/2018] [Indexed: 01/10/2023]
Abstract
Cellular senescence is the final fate of most cells in response to specific stimuli, but is not the end. Indeed, it is the beginning of a singular life, with multiple side roads leading to diverse effects on the organism. Many studies have been done in the last few years to elucidate the intriguing role of senescent cells in the organism, demonstrating them as the cause of several age-related diseases. However, these cells are also positively implicated in other important pathways, such as embryogenesis and wound healing. It appears that the multiple effects are time-dependent: long-term senescence is mostly implicated in chronic inflammation and disease, whereas in the short term, senescent cells seem to be beneficial, being rapidly targeted by the innate immune system. The influence of senescent cells on their neighbors by paracrine factors, differential activity depending on developmental stage, and duration of the effects make the cellular senescent program a unique spatial-temporal mechanism. During pathological conditions such as progeroid syndromes, this mechanism is deregulated, leading to accelerated onset of some aging-related diseases and a shorter lifespan, among other physiological defects. Here, we review the three primary cell senescence programs described so far (replicative, stress-induced, and developmentally programmed senescence), their onset during development, and their potential roles in diseases with premature aging. Finally, we discuss the role of immune cells in keeping senescence burden below the threshold of disease.
Collapse
Affiliation(s)
- Cayetano von Kobbe
- Centro de Biología Molecular "Severo Ochoa" (CBMSO), Consejo Superior de Investigaciones Científicas (CSIC), Universidad Autónoma de Madrid, 28049, Madrid, Spain.
| |
Collapse
|
21
|
Champeau M, Póvoa V, Militão L, Cabrini FM, Picheth GF, Meneau F, Jara CP, de Araujo EP, de Oliveira MG. Supramolecular poly(acrylic acid)/F127 hydrogel with hydration-controlled nitric oxide release for enhancing wound healing. Acta Biomater 2018; 74:312-325. [PMID: 29777958 DOI: 10.1016/j.actbio.2018.05.025] [Citation(s) in RCA: 80] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2018] [Revised: 05/07/2018] [Accepted: 05/15/2018] [Indexed: 01/20/2023]
Abstract
Topical nitric oxide (NO) delivery has been shown to accelerate wound healing. However, delivering NO to wounds at appropriate rates and doses requires new biomaterial-based strategies. Here, we describe the development of supramolecular interpolymer complex hydrogels comprising PEO-PPO-PEO (F127) micelles embedded in a poly(acrylic acid) (PAA) matrix, with S-nitrosoglutathione (GSNO) molecules dissolved in the hydrophilic domain. We show that PAA:F127/GSNO hydrogels start releasing NO upon hydration at rates controlled by their rates of water absorption. SAXS measurements indicate that the supramolecular structure of the hydrogels retains long-range order domains of F127 micelles. The PAA/F1227 hydrogels displayed dense morphologies and reduced rates of hydration. The NO release rates remain constant over the first 200 min, are directly correlated with the hydration rates of the PAA:F127/GSNO hydrogels, and can be modulated in the range of 40 nmol/g h to 1.5 μmol/g h by changing the PAA:F127 mass ratio. Long-term NO-release profiles over 5 days are governed by the first-order exponential decay of GSNO, with half-lives in the range of 0.5-3.4 days. A preliminary in vivo study on full-thickness excisional wounds in mice showed that topical NO release from the PAA:F127/GSNO hydrogels is triggered by exudate absorption and leads to increased angiogenesis and collagen fiber organization, as well as TGF-β, IGF-1, SDF-1, and IL-10 gene expressions in the cicatricial tissue. In summary, these results suggest that hydration-controlled NO release from topical PAA:F127/GSNO hydrogels is a potential strategy for enhancing wound healing. STATEMENT OF SIGNIFICANCE The topical delivery of nitric oxide (NO) to wounds may provide significant beneficial results and represent a promising strategy to treat chronic wounds. However, wound dressings capable of releasing NO after application and allowing the modulation of NO release rates, demand new platforms. Here, we describe a novel strategy to overcome these challenges, based on the use of supramolecular poly(acrylic acid) (PAA):F127 hydrogels charged with the NO donor S-nitrosoglutathione (GSNO) from whereby the NO release can be triggered by exudate absorption and delivered to the wound at rates controlled by the PAA:F127 mass ratio. Preliminary in vivo results offer a proof of concept for this strategy by demonstrating increased angiogenesis; collagen fibers organization; and TGF-β, IGF-1, SDF-1, and IL-10 gene expressions in the cicatricial tissue after topical treatment with a PAA:F127/GSNO hydrogel.
Collapse
|
22
|
Zhan R, Wang F, Wu Y, Wang Y, Qian W, Liu M, Liu T, He W, Ren H, Luo G. Nitric oxide induces epidermal stem cell de-adhesion by targeting integrin β1 and Talin via the cGMP signalling pathway. Nitric Oxide 2018; 78:1-10. [PMID: 29698689 DOI: 10.1016/j.niox.2018.04.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2017] [Revised: 03/24/2018] [Accepted: 04/01/2018] [Indexed: 01/12/2023]
Abstract
OBJECTIVE Nitric oxide (NO) has emerged as a critical molecule in wound healing, but the mechanism underlying its activity is not well defined. Here, we explored the effect of NO on the de-adhesion of epidermal stem cells (ESCs) and the mechanism involved in this process. METHODS The effects of NO on isolated human and mouse ESCs cultured in the presence of different concentrations of the NO donor S-nitroso-N-acetyl penicillamine (SNAP) were evaluated in cell de-adhesion assays mediated by integrin β and collagen IV. Subsequently, changes in the expression of integrin β1 and the phosphorylation of Talin in response to different doses of SNAP were detected by Western blot analysis and real-time PCR in vitro. Furthermore, the roles of various soluble guanylyl cyclase (sGC)- and protein kinase G (PKG)-specific inhibitors and agonists in the effects of NO on ESC de-adhesion, integrin β1 expression and Talin phosphorylation were analysed. Moreover, the effects of NO on integrin β1 expression and sGC/cGMP/PKG signalling-mediated wound healing were detected in vivo using 5-bromo-2-deoxyuridine (BrdU) label-retaining cells (LRCs) in a scald model and an excision wound healing model, respectively. RESULTS SNAP promoted primary human and mouse ESC de-adhesion in a concentration-dependent manner in the integrin β1-and collagen IV-mediated adhesion assay, and this effect was suppressed by the sGC and PKG inhibitors. Additionally, integrin β1 expression and Talin phosphorylation at serine 425 (S425) were negatively correlated with SNAP levels, and this effect was blocked by the sGC and PKG inhibitors. Moreover, the roles of NO in integrin β1 expression and cGMP signalling pathway-mediated wound healing were confirmed in vivo. CONCLUSION Our data indicate that the stimulatory effects of NO on ESC de-adhesion related to integrin β1 expression and Talin phosphorylation were mediated by the cGMP signalling pathway, which is likely involved in wound healing.
Collapse
Affiliation(s)
- Rixing Zhan
- Institute of Burn Research, State Key Laboratory of Trauma, Burn and Combined Injury, Key Laboratory of Proteomics of Chongqing, Southwest Hospital, The Third Military Medical University (Army Medical University), Chongqing 400038, China; School of Nursing, The Third Military Medical University (Army Medical University), Chongqing 400038, China.
| | - Fan Wang
- Department of Plastic and Reconstructive Surgery, Southwestern Hospital, The Third Military Medical University (Army Medical University), Chongqing 400038, China.
| | - Ying Wu
- The Institute of Hepatobiliary Surgery, Southwest Hospital, The Third Military Medical University (Army Medical University), Chongqing, China.
| | - Ying Wang
- Institute of Burn Research, State Key Laboratory of Trauma, Burn and Combined Injury, Key Laboratory of Proteomics of Chongqing, Southwest Hospital, The Third Military Medical University (Army Medical University), Chongqing 400038, China.
| | - Wei Qian
- Institute of Burn Research, State Key Laboratory of Trauma, Burn and Combined Injury, Key Laboratory of Proteomics of Chongqing, Southwest Hospital, The Third Military Medical University (Army Medical University), Chongqing 400038, China.
| | - Menglong Liu
- Institute of Burn Research, State Key Laboratory of Trauma, Burn and Combined Injury, Key Laboratory of Proteomics of Chongqing, Southwest Hospital, The Third Military Medical University (Army Medical University), Chongqing 400038, China.
| | - Tengfei Liu
- Institute of Burn Research, State Key Laboratory of Trauma, Burn and Combined Injury, Key Laboratory of Proteomics of Chongqing, Southwest Hospital, The Third Military Medical University (Army Medical University), Chongqing 400038, China.
| | - Weifeng He
- Institute of Burn Research, State Key Laboratory of Trauma, Burn and Combined Injury, Key Laboratory of Proteomics of Chongqing, Southwest Hospital, The Third Military Medical University (Army Medical University), Chongqing 400038, China.
| | - Hui Ren
- School of Nursing, The Third Military Medical University (Army Medical University), Chongqing 400038, China.
| | - Gaoxing Luo
- Institute of Burn Research, State Key Laboratory of Trauma, Burn and Combined Injury, Key Laboratory of Proteomics of Chongqing, Southwest Hospital, The Third Military Medical University (Army Medical University), Chongqing 400038, China.
| |
Collapse
|
23
|
Preparation and characterization of nanocomposite polyvinyl chloride films with NO-generating activity. APPLIED NANOSCIENCE 2018. [DOI: 10.1007/s13204-018-0693-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|